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associations, which would lead to inaccurate evaluation of the systems concerned. It has 

been argued that package inserts over-report with respect to side effects (Duke J et al., 

2011). Analysis of SIDER has shown that text mining errors may occur when processing 

the package insert; for instance, generic warnings have been mistakenly extracted from 

labeling information (Kuhn et al., 2013).  

Therefore, to use a large scale reference standard in pharmacovigilance evaluation, it is of 

interest to determine the extent to which the side effects reported in SIDER occur in 

practice. By limiting to the side effects that have sufficient representations in practice, false 

drug/ADR associations can be eliminated from SIDER and the predictive power of 

pharmacovigilance methods can be less affected by inadequate sample size of drugs or 

events. The information of practice usage can be obtained from a post-marketing SRS. A 

SRS is designed to collect anecdotal case reports. Even though they are not peer-reviewed, 

the case reports in SRSs can provide supporting evidence for possible drug/ADR 

associations (J. K. Aronson & Hauben, 2006). These collected data represent suspected 

drug/ADR associations reported by healthcare practitioners that observed a reaction in a 

patient under their care, by pharmaceutical companies that are mandatory required to report 

any collected side effects, or by consumers that may experience unpleasant reactions for 

drug treatments. Therefore, these reports provide anecdotal evidence that a side effect 

mentioned in a repository has occurred in practice.  

In this study, I evaluate the frequency with which SIDER2 (SIDER version 2) drug/ADR 

associations occur in reports submitted to the Food and Drug Agency (FDA) Adverse Event 

Reporting System (FAERS). The ultimate goal of this research is to develop a drug/ADR 
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reference set consisting of those label-derived side effects that have been observed in 

practice, for the purpose of pharmacovigilance research.  

 

5.1 Materials 

SIDER2 is a publicly available database containing information on marketed medicines 

and their known adverse reactions (Campillos, Kuhn, Gavin, Jensen, & Bork, 2008; Kuhn 

et al., 2010). The current version (SIDER2) was released in 2012, and was used for this 

study. The information in SIDER2 was extracted from drug labeling information (package 

inserts) using text mining tools and a side effects dictionary. The source of package inserts 

includes British Columbia Cancer Agency, Facts@FDA, FDA Center for Drug Evaluation 

and Research, FDA MedWatch, and Health Canada Drug Product Database (DPD). 

Labeling information is from clinical trials, post-marketing surveillance, etc. To construct 

the side effects dictionary (Kuhn et al., 2010), Coding Symbols for Thesaurus of Adverse 

Reaction Terms (COSTART) was used as a seed dictionary and then was expanded by 

extracting synonyms for the seed dictionary from the Unified Medical Language System 

(UMLS). To build SIDER drug-event associations, the drugs’ indications and side effects 

related sections were processed to extract terms that correspond to the side effects 

dictionary and the terms extracted from indications were subsequently excluded from 

drugs’ side effects. SIDER2 contains 99,423 drug-event associations for 996 drugs and 

4192 side effects.  

FAERS is a spontaneous reporting system database that contains information on adverse 

event and medication error reports that were submitted to the FDA by pharmaceutical 

companies, health professionals and consumers in the United States (Center for Drug 
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Evaluation and Research & U.S. Food and Drug Administration, 2012). FAERS database 

contains 332,346 distinct strings in the “drug name” field, and 16,272 distinct strings in the 

“reaction” field within 4,070,077 reports collected between 2004 to 2012 Q3. MetaMap is 

a widely-used NLP tool that identifies concepts from the UMLS in biomedical text (A. R. 

Aronson & Lang, 2010; A. R. Aronson, 2001).  

 

5.2 Methods 

5.2.1 Import SIDER2 and FAERS data in database 

SIDER2 was downloaded and imported into a local database. Distinct drugs and side 

effects were retrieved from the “meddraAvderseEffects” table. Publicly available FAERS 

quarterly data files (2004 to 2012) were downloaded from the FDA website (Center for 

Drug Evaluation and Research & U.S. Food and Drug Administration, 2014). I imported 

all data into a SQL database aside from the 2012q4 data, since the metadata used in this 

quarter were inconsistent with the database as a whole. The database contain 4,070,077 

FAERS reports. For this study, I used information in the “Drug” and “Reaction” tables.  

5.2.2 Parsing drug and side effect terms using MetaMap (Figure 5-1) 

2013 edition of MetaMap (MetaMap 2013 was used to process and annotate retrieved drugs 

and reactions and map them to UMLS concepts (U. S. National Library of Medicine, 2009) 

for the purpose of mapping between FAERS and SIDER2. MetaMap identifies matches 

between terms in text and candidate concepts from the UMLS. Each of these candidates is 

annotated with a confidence score, a Concept Unique Identifier (CUI), a preferred label, 

and one or more semantic types. The semantic types indicate the type of the concept. 
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Examples include “Pharmacologic Substance” or “Diagnostic Procedure”. Candidates can 

be assigned multiple semantic types. 

I manually reviewed distinct semantic types or semantic type combinations for MetaMap 

processed SIDER2 drugs and side effects and found out two features of drugs or side effects 

relevant semantic types. First, there are semantic types that are irrelevant to my research, 

such as “Organ or Tissue Function”, “Organism”, or “Activity”. Candidates of those 

semantic types were excluded. Second, a combination of semantic types could often 

contribute a more relevant classification. For example, the semantic type “Immunologic 

Factor” occurred very frequently and often was associated with concepts that were not 

relevant to drugs. However “Immunologic Factor” in combination with “Pharmacologic 

Substance” provided more insight, and identified a relevant candidate in the context of our 

study. Another example of semantic type combinations is a concept annotation that has a 

candidate with only one semantic type having a higher confidence score and a candidate 

with semantic type combinations having a less confidence score. The manual review 

revealed that candidates with combinations of certain semantic types yielded more relevant 

concepts. Consequently, restricting the result list by only accepting very specific semantic 

types or combinations may increase the relevance of the concepts identified by MetaMap 

to the study.  
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Figure 5-1:  The procedure for mapping SIDER2 and FAERS 

 

5.2.3 Mapping between SIDER2 and FAERS 

After annotating SIDER2 and FAERS with selected semantic types or semantic type 

combinations, corresponding CUIs were retrieved and used to find the matched FAERS 

drugs or ADRs for parsed SIDER2 drugs or ADRs. Figure 5-2 illustrates this process using 

the example drug “dipyridamole”. For this drug, 78 FAERS drug inputs were found.  
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Figure 5-2:  Procedure of mapping SIDER2 drugs/side effects to FAERS drugs/reactions 

using “dipyridamole” as an example 

 

5.2.4 Retrieve number of reports for mapped SIDER2 drug-side effect pairs and 

perform disproportionality analysis to find significant SIDER2 drug/ADR 

associations 

For each SIDER2 drug-side effect pair, I retrieved the number of related FAERS reports 

through their mapped FAERS drugs or reactions. Then I constructed a contingency table 

for each drug-side effect association with corresponding FAERS terms. Disproportionality 

measures were used to calculate the significance of the association between drug and side 

effect pairs co-occurring in the FAERS reports. These methods operate under the 

assumption that if a drug causes a side effect, this drug and this event are more likely to 

appear together than random combinations of drugs and suspected adverse events in the 

SRS reports (Cao et al., 2005). 
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Routinely used disproportionality measures for pharmacovigilance drug-side effect signal 

detection include the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), 

Yule’s Q, and relative risk (RR) (Balakin & Ekins, 2009; Cao et al., 2007; Emmanuel Roux 

et al., 2005; van Puijenbroek et al., 2002). In addition to these measure, I applied Chi-

square test with the False Discovery Rate (FDR), which was introduced to measure the 

multiple-hypothesis testing error and has been successfully used in large-scale genomic 

studies to control false positive results (Benjamini & Hochberg, 1995; J. D. Storey & 

Tibshirani, 2003; J. D. Storey, 2002).  

5.2.5 Performance measure 

Descriptive statistics of agreement for drug-side effect relationships between SIDER2 and 

FAERS were estimated. We also conducted a manual review of a random sample of 60 

pairs that occurred in SIDER2 without accompanying FAERS reports, to investigate the 

cause of this mismatch. DailyMed was used to retrieve drug package inserts and review 

the “Adverse Drug Reaction” section to track down the side effect of interest. MEDLINE 

was queried to find published literature or case reports that relate to the drug/ADR pairs 

retrieved from the package inserts.  

 

5.3 Experimental design 

To identify the subset of SIDER2 drug/ADR pairs that have been reported in practice, I 

compare these pairs with anecdotal evidence from FAERS reports (Figure 5-3). To map 

SIDER2 drugs to text in the FAERS “drug” field, and SIDER2 side effect to text in the 

FAERS “reaction” field, MetaMap 2013 was used to process all terms and a manual review 

process of selecting related semantic types that (Figure 5-1) was used to select appropriate 
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UMLS candidates. Multiple disproportionality analysis methods (A. R. Aronson & Lang, 

2010; A. R. Aronson, 2001; Center for Drug Evaluation and Research & U.S. Food and 

Drug Administration, 2012) were then applied to analyze the significance of co-occurring 

drug-side effect associations. The significantly reported SIDER2 drug/ADR associations 

that are detected by all disproportionality measures are considered as a pharmacovigilance 

reference standard.  

 
Figure 5-3:  Study design for decreasing false SIDER2 drug-side effect associations 

 

5.4 Results 

5.4.1 Concept extraction 

Using the mapping procedure, I mapped 99% (986/996) of SIDER2 drugs and 97% 

(4072/4192) of SIDER2 side effects to UMLS concepts; 78% of FAERS drug strings 

(259,806 drugs) and 98% of FAERS reaction strings (15,989 reactions) to UMLS concepts.  

Among SIDER2 mapped UMLS concepts, 969 drugs and 3853 side effects were mapped 

to FAERS drug and reaction inputs. These concepts constituted 94.85% (94,306) of the 

SIDER2 drug/ADR pairs, which were subsequently compared with FAERS reports. Of 
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these 94,306 SIDER2 drug-side effect pairs, 11,306 pairs do not co-occur in FAERS 

reports. 83,000 drug/ADR pairs have co-occurring reports in FAERS database.  

For this study I only included reports that were related to these UMLS concepts. 

Consequently, 4,070,225 reports were used for disproportionality analysis.  

5.4.2 Reported SIDER side effects 

I analyzed the frequency distribution of reports related to 83,000 SIDER2 drug/ADR pairs 

that have co-occurred in FAERS reports (Figure 5-4). The number of FAERS reports 

ranges from 1 to 360,146, with mean of 1944, median of 85, 1st quartile at 14, and 3rd 

quartile at 598. The histogram of representing all pairs has long right tail and data are 

skewed. For a more granular picture of this distribution, I plotted the histogram for each 

quartile (Figure 5-4). Most drug/ADR pairs have a relatively small number of FAERS 

reports and less than 600 FAERS reports.  
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Figure 5-4:  Frequency distribution of SIDER2 drug/ADR pairs (y-axis) that are grouped 

by the number of FAERS reports that contain the drug/ADR of interest (x-axis) 

 

5.4.3 Statistically significant drug/ADR pairs detected by disproportionality 

measures 

I evaluated the significantly reported instances of SIDER2 drug/ADR associations by 

applying disproportionality measures using FAERS data (Table 5-1). About 60% to 80% 

of SIDER2 drug/ADR pairs met the thresholds for significance of these statistical 

measures. 46,203 SIDER2 pairs (904 drugs, 2984 side effects) were detected as statistically 

significant by all statistical metrics.  
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Table 5-1:  The percentage of statistically significant SIDER2 drug/ADR pairs using 

disproportionality measures 

ROR-1.96SE>1 PRR-1.96SE>1 YulesQ-

1.96SE>0 

IC-2SD>0 Chi-Square test 

with FDR (q 

Value<0.05) 

60%  

(50,139/83,000) 

60.9% 

(50,570/83,000) 

61.4% 

(50,978/83,000) 

55.7% 

(46,209/83,000) 

79.7% 

(66,178/83,000) 

 

5.4.4 Manual review sample drug/ADR pairs without case reports 

I randomly selected 60 drug/ADR pairs from 11,306 pairs that were not included in any 

FAERS report and analyzed possible reasons for why there are no case reports (Figure 5-

5). Only 25 pairs were listed as side effects in the drug labeling or package inserts. Among 

those 25, eight side effects were listed as “infrequent side effects” or less than 1% of tested 

patients. For three side effects, the trial provided limited evidence whether they were 

caused by the drug under trial. In two instances (cidofovir related hypophosphatemia and 

glycosuria), participants were on several other medications and so it is difficult to establish 

the causal relationships. In another instance (teniposide related arrhythmia), there was only 

one report of this complication during pre-marketing trials, it was presumed rather than 

confirmed clinically, and it had occurred in an elderly patient with a variety of other health 

problems. Another six pairs among the 25 pairs had either mild side effects (e.g. dry throat, 

dizziness), or concerned a rarely prescribed drug (e.g. maraviroc). I could not find a 

plausible explanation for the remaining eight side effects that did not occur in any FAERS 

report; these side effects were listed in “Adverse Reactions” section for different systems 

without frequency information in the package inserts.  
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Among the remaining 35 drug/ADR pairs, six did not concern drugs; they instead 

concerned a vitamin or some other chemical component. So no package insert was 

available specifically the six chemical components (e.g. 1,25-dihydroxyvitamin D3, 

betaine). For seventeen pairs package inserts were available, but the labeling does not list 

the side effects concerned. Four pairs suggested a possible text mining error, as SIDER2 

side effect was close to the information in the labelling either conceptually or 

orthographically, but is, in fact, not a match. For four pairs that are drugs (e.g. ofloxacin), 

I couldn't find the package insert in the DailyMed database.  

 

Figure 5-5:  Interpretation of 60 randomly selected SIDER2 pairs without any supporting 

reports 

 

5.5 Discussion 

The study suggests that a higher precision subset of SIDER2 pairs could be identified by 

filtering out possible false positives using an inclusion criterion based on statistically 

significant association in the FAERS data. These false positives may result from NLP 
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associations) and PSI double+triple group were best performing models in their respective 

experiments, and consequently were utilized for this one.  

In pre-reranking drug/ADR signals, the chi-square score is used as to reflect the statistical 

strength of the association observed in CDW data. The FDR-based q values are used as a 

significance threshold, to predict if the signal is true or false. Similarity scores from PSI 

double+triple model are used to rerank those signals that fell above the q-value threshold.  

6.2.2 Experimental reference standards and test dataset 

I evaluated the above models using two reference standards – side effect resource 

(SIDER2) and the reference set I developed using SIDER2 and FDA adverse event 

reporting system (FAERS, as described in Chapter 5). The reference set is relatively small 

and contains only those SIDER2 relationships that frequently occurred in SRS databases. 

For each reference standard, its drugs and side effects that are not only contained in the 

CDW EHR data but also represented in the PSI model were eligible for this experiment. 

This resulted in a set of 811 drugs and 1879 ADRs with SIDER2 and 773 drugs and 1374 

ADRs with the reference set (Table 6-1). Among these, only the predicted positive pairs 

by Chi-square statistics with FDR as statistically significant associations were utilized for 

the analysis.  

 

Table 6-1: SIDER2 and a Reference Set are used to construct the dataset for the 

experiment 

Group Drugs ADRs True 

Pairs 

False 

Pairs 

Total 

Pairs 

Statistically 

significant 

associations 

True 

positives in 

statistically 

significant 

associations 

SIDER2 811 1879 260,555 395,468 436,865 260,555 28,114 
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Group Drugs ADRs True 

Pairs 

False 

Pairs 

Total 

Pairs 

Statistically 

significant 

associations 

True 

positives in 

statistically 

significant 

associations 

Reference 

Set 

773 1374 40,838 315,544 356,382 215,024 27,765 

 

6.2.3 Performance metrics 

Average precision (AP) is the average of the precision that is measured at the rank at which 

each correct prediction is retrieved. Precision at 100 (Manning et al., 2008) is the precision 

at the first 100 retrieved results. A true positive drug/ADR association, defined as 

“rediscovery”, is an adverse effect that is confirmed by SDIER2 or the reference set. The 

median rank of rediscoveries across statistically significant drug/ADR associations 

approximates the point in the ranked list that half of the known adverse effects were 

recovered by Chi-square statistics with FDR or PSI-double+triple model.  

AP, precision at 100, and median rank of rediscoveries are calculated and compared 

between pre- and post- reranking for the two datasets. A two-sample Kolmogorov-Smirnov 

test was conducted to evaluate if there is a significant difference for the total number of 

rediscoveries at each rank between pre- and post-reranking signals. The rediscovery at each 

rank is also plotted for different dataset.  

To measure the performance with respect to the true positive rate (TPR) and false positive 

rate (FPR), receiver operating characteristic (ROC) curve was plotted for statistically 

significant drug/ADR associations. Subsequently, an area under the ROC curve (AUROC) 



117 

from the ranking of each model and an area for precision and recall (AUC for Precision-

Recall) were calculated using AUCCalculator (Davis & Goadrich, 2006). 

 

 

6.3 Results 

6.3.1 Performance 

Results of comparing pre-reranking and post-reranking for different datasets are shown in 

Table 6-2. PSI-based models perform better than RRI-based models and both models 

perform better than the random baseline. 

 

Table 6-2: Results of precision and rank-based measures for different groups and 

different datasets 

Test Set Group MAP Precision 

at 100 

Median 

Rank 

AUC for 

Precision-

Recall 

AUROC 

SIDER2 Pre-

reranking 

(Chi) 

0.1424 0.16 103,528 0.1411 0.5708 

Post-

reranking 

(Similarity) 

0.1640 0.21 85,166 0.1639 0.6323 

Reference 

Set 

Pre-

reranking 

(Chi) 

0.1655 0.19 87,218 0.1641 0.5664 

Post-

reranking 

(Similarity) 

0.1847 0.21 75,197 0.1846 0.6173 
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With the SIDER2 dataset, the median rank of true positives with EHR data (pre-reranking 

signals) is 103,528; and in combination with the LBD model (post-reranking signals) it is 

85,166. With the reference set, the median rank of true positives in pre- and post-reranking 

signals is 87,218 and 75,197, respectively. Two-sample Kolmogorov-Smirnov test shows 

there is a significant difference of the accumulated number of true positives at each rank 

(Figure 6-2) between pre- and post- reranking methods for both datasets (all P-value < 

2.2e-16).  

 

 
Figure 6-2: Comparing accumulated number of true positives for each ranking between 

pre- and post-reranking signals for SIDER2 set (top) and the Reference set (bottom) 
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6.3.2 AUC 

Figures 6-3 and 6-4 present the global ROC curves. ROC curve shows the tradeoff between 

sensitivity and specificity. The AUC provides a cumulative estimate of accuracy, and is 

shown for each model in Table 6-2. With respective dataset, AUROC of post-reranking 

method is greater than the pre-reranking method.  

 

 

Figure 6-3: ROC plot of true positive rate and false positive rate for pre- and post-

reranking groups for SIDER2 set 
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Figure 6-4: ROC plot of true positive rate and false positive rate for pre- and post-

reranking groups for the Reference set  

 

6.4 Discussion 

In this experiment, drug/ADR signals that were predicted from EHR data using the best 

performing statistical algorithm were reranked using the PSI model. This resulted in 

significant increases of the true positive rate at a corresponding rank (in comparison to the 

true positive rate with no reranking). Precision and AUC are better performed with post-

reranking method. The experiment demonstrates that the PSI model can filter noisy signals 

using a measure of the plausibility of the relationship between the drugs and ADRs 

concerned.  

Overall, based on what I have learned from the series of experiments, I want to propose the 

architecture for a plausibility-based pharmacovigilance system (Figure 6-5). This 
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framework describes the essential steps: (1) Process EHR data to extract coded drugs and 

possible problems; a NLP tool is required for processing unstructured clinical notes. (2) 

Select a cohort for drug/ADR analysis. (3) From the drug/problem candidates, existing 

known relationships knowledge is used to filter the known drug/problem relationships. (4) 

Conducting statistical analysis for drug/problem candidates and identifying statistically 

significant drug/ADR associations. (5) Using the PSI model to justify plausible drug/ADR 

associations and filtering the statistically detected signals using their plausibility. (6) 

Present plausible drug/ADR signals and their evidence retrieved by the PSI model to 

clinicians or practitioners for review. (7) Automatically submit the detected drug/ADR 

signals with all related clinical information to PV health administrative departments. This 

helps clinicians in making clinical decision for the patients that are taking the relevant 

drugs.  

 

6.5 Conclusion 

This experiment supports my overall hypothesis that the precision of signal detection 

from EHR data can be improved by integrating knowledge from the biomedical literature.  

 

 



 

 

Figure 6-5: The proposed architecture for a plausibility-based pharmacovigilance system 

1
2
2
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Chapter 7: Key Findings, Innovation, Contributions, Future work and Conclusions 

7.1 Overview and summary of key findings 

For this thesis I conducted four experiments. First, of all the SIDER2 ADRs that occur in an 

outpatient EHR system, I was able to detect 10-15% in that EHR data by using existing 

disproportionality measures and Chi-square statistics with FDR. The Chi-square statistics with 

FDR was demonstrated as the best performing model with an F-measure of 0.1826, evaluated 

against SIDER2. Second, I built two LBD models based on scalable methods of distributional 

semantics (RRI and PSI discovery patterns) to identify possible drug/ADR associations utilizing 

the biomedical literature. The PSI discovery patterns model outperforms the RRI co-occurrence 

based model and can be used to evaluate the plausibility of drug/ADR associations. It has the 

additional advantage of modeling the relations between the involved medical concepts. Third, as 

a consequence of possible false associations that exist in the SIDER side effects dataset used for 

evaluation, I constructed a drug/ADR reference set. This reference set is based on the consistency 

between FAERS and the SIDER data set. I then used this as an additional reference set for 

evaluating side effects. Fourth and last, I applied a plausibility measure obtained through PSI 

discovery patterns to rerank the statistically significant drug/ADR associations detected in EHR 

data, which improved the precision against SIDER2 and the newly developed reference set. This 

verified my overall hypothesis that using literature to justify plausibility can improve the quality 

of signal detection from EHR data.  
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7.2 Innovation 

I have developed means to partially automate the signal evaluation process by integrating 

knowledge extracted from the biomedical literature with possible drug/ADR signals derived from 

EHR data using statistical methods. To do so, recent LBD methods using “discovery patterns” 

were adapted to the task of evaluating the plausibility of drug/ADR signals at scale. To the best of 

my knowledge, this is the first time knowledge from the biomedical literature has been integrated 

with EHR data for signal detection. Previous attempts at applying methods of literature based 

discovery to find possible mechanisms to explain drug/ADR associations were conducted using 

manually defined discovery patterns. My research describes a method to automatically define 

pharmacovigilance related discovery patterns from the literature, and applies those to find 

predication-based explanations in an automated way on a large scale.  

In summary, this research is the first to integrate semantic predications into the signal detection 

process to provide evidence supporting the plausibility of the connection between drugs and 

ADRs. The automated evaluation of plausibility to support causality according to the meaning 

defined by the Bradford-Hill criteria, is a novel contribution to the field of pharmacovigilance and 

to signal detection in general.  

 

7.3 Theoretical contribution 

From a theoretical perspective, my work is motivated by the notion of abductive reasoning as 

described by American philosopher CS Peirce (Peirce, 1955). According to Peirce, abductive 

reasoning (Schvaneveldt & Cohen, 2010) is the process of seeking the best possible explanation 

for an observation. The observation is a given and it is the goal to find an explanation that is 
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sufficient to justify the presence of the observation. This is in contrary to deductive reasoning 

where from a given starting condition possible consequences are deduced. It is also important to 

note the difference between a sufficient and a necessary condition. A sufficient explanation serves 

to explain an observation but its presence is not necessary. Thus, the observation can still be 

explained by other conditions and one explanation does not explicitly exclude others. 

Currently in PV, signals indicating possible causal associations are discovered within a large 

database and then manually evaluated. A problem with this approach is that mined associations 

can be relevant or irrelevant, or may even be negative associations. Exhaustive manual review of 

these potential signals is not feasible. In my research I abduce explanations in an automated way, 

or, in other words, propose and find logical explanations for the identified associations in an 

automated way. The theoretical value added is then to use the generated explanations to 

collectively assess a measure for the plausibility of an association. The theoretical contribution is 

constituted by not primarily focusing on finding explanatory hypotheses but by focusing on 

assessing the plausibility of an observation. Where abductive reasoning is concerned with finding 

truthful explanations for an observation, my framework adds to that by going a step further and 

also assessing the truthfulness of the observation itself. 

 

7.4 Practical contribution 

Practically, the detection of signals from EHR data has the potential to improve post-marketing 

drug surveillance in real world applications. The computational requirements of the employed 

algorithms and tools are sufficiently low to allow for delivery of results in real time. In this context, 

“real time” effectively means timely surveillance, and thus the early detection of ADRs that are 

potentially harmful to patients. In the concluding experiment I showed that augmenting statistical 
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associations with a plausibility measure enhances the identification of known ADRs, suggesting 

that this approach would also lead to more accurate identification of novel ADRs. Furthermore, 

delivery of the underlying explanatory hypotheses to domain experts has the potential to increase 

the efficiency of the critical clinical review process. This is because the number of associations 

that is mined from EHR data is very high, and these signals still have to be manually evaluated. 

Prioritizing signals automatically has the potential to speed up the review process. Noise can be 

separated from those signals supported by plausible evidence because of the evidence provided to 

researchers or practitioners. Moreover, the evidence provided is in a very concise format (at the 

predication level rather than the document level) that allows for the exploration of a large amount 

of evidence in an efficient manner.  

With respect to informatics in general, the methods and procedures of integrating formal 

knowledge can be generalized and applied to other domains. With the rapid growth of use of EHR 

data for clinical research (Hripcsak & Albers, 2013), new findings can be learned from the EHR 

data. The PSI discovery patterns model can be adapted and used to provide the automated 

interpretation of the findings. A very interesting example is outbreak surveillance, for which a 

timely identification of plausible signals is essential. For example, an influenza outbreak can be 

identified from EHR data by mining abnormal lab results, symptoms and outpatient diagnoses. PSI 

discovery patterns can retrieve possible sources, mode of transmission and risk factors (CDC, 

2006) by analyzing the plausible pathways between the virus and the disease/symptoms. This can 

assist field investigators’ work.  

In summary, the detection of signals from EHR data and the subsequent evaluation using 

supporting evidence from literature with PSI discovery patterns in pharmacovigilance on a large 

scale in an automated way has not been done before and has shown good results. The methods and 
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procedures proposed and examined in this work are novel to the field of pharmacovigilance and 

applicable to other informatics areas.   

 

7.5 Future work 

In future work, I plan to improve my methods for the estimation of plausibility, and provide better 

ways for domain experts to explore the evidence that supports the explanatory hypotheses the 

methods generate. Although predications are a concise way to present supporting evidence 

gathered by PSI discovery patterns from the medical literature, the presentation to domain experts 

for review in a concise way still presents a challenge. Since evidence is retrieved based on 

predications which can naturally be built into a graph network, it is straightforward to examine if 

graph algorithms can be utilized to analyze the evidence network. This can result in prioritization 

or the identification of important biological factors, or even biological pathways. Subsequently, 

improved visualizations could highlight specific aspects like biological factors and pathways and 

could put an emphasis on important concepts through their connectedness for example.  This would 

add to the efficacy of the manual review process. 

The methods developed for my research have the potential to support a real-time PV system. This 

work has demonstrated that signal detection and signal evaluation can be done in a partially 

automated and therefore, potentially more timely manner. I will continue working in this direction 

with the aim to contribute to the development of an active drug surveillance system. 

 

7.6 Conclusions 

This thesis demonstrates that drug/ADR associations can be detected from unstructured outpatient 

clinical notes by using statistical mining algorithms. PSI discovery patterns can further improve 
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the precision of detected signals by leveraging knowledge from literature and modeling the 

plausibility of the identified associations. Consequently this work has extended the state of the art 

in EHR-based pharmacovigilance and contributed new ideas that pave the way for further studies 

with the potential to further enhance the field of pharmacovigilance and drug safety.  
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