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mitotic spindle suggest that CYB-3 couples the fidelity of K-Mt interactions with 

dynein-dependent SAC inactivation. 

 Immunostaining of cultured human and chicken cells with cyclin B3 antibodies 

has suggested that cyclin B3 localizes to the nucleus in interphase and is more nuclear-

enriched compared to cyclin B1 (283, 284).  Staining of C. elegans embryos with a 

CYB-3 antibody (270) revealed clear nuclear localization during interphase and mitosis 

prior to NEB, and enrichment around metaphase chromosomes reflecting kinetochore 

and K-Mt localization (similar to the GFP::CYB-3 staining presented above).  Inactive 

CDK-1 (P-T14,Y15) showed similar nuclear enrichment during interphase and prophase 

but was exclusive to the metaphase kinetochore and was not detected on K-Mts.  In 

contrast, active CDK-1 (P-T161) localizes to K-Mts and the entire mitotic spindle.  

Thus, CYB-3 co-localizes with inactive kinetochore-bound CDK-1 and active CDK-1 

associated with microtubules.  These data indicate that CYB-3 may associate with 

inactive and active CDK-1 but awaits biochemical confirmation. 

 Altogether, our data demonstrate that CYB-3 plays a non-redundant role in 

mitosis by influencing K-Mt dynamics.  The next step in further clarifying the molecular 

mechanism by which CYB-3 influences K-Mt dynamics, AIR-2 activity, and dynein 

functions will be the identification of CYB-3 partners at the kinetochore.  Notably, 

cyclin B1 harboring a point mutation inhibiting its association with Cdk1 still localizes 

to kinetochores, suggesting that cyclin B1 may have Cdk1-independent functions (254). 

Therefore, although cyclins are well-known cofactors of cyclin-dependent kinases, the 

possibility that cyclins functionally interact with other mitotic partners is an intriguing 

question for the future.  

 

CYB-3 influences multiple aspects of the spindle assembly checkpoint  

 The accuracy of kinetochore interactions with spindle microtubules must be 

relayed to the SAC so that anaphase onset does not occur in the presence of incorrect K-

Mt attachments, as these can cause chromosome fragmentation and genome instability 

(158, 285).  The results presented here reveal that CYB-3 function is required to 

maintain ploidy via two mechanisms: generating stable K-Mt attachments and 

inactivating the SAC.  Both mechanisms may be linked if dynein function is required for 
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end-on attachments in additional to its established role in silencing the SAC.  K-Mt plus-

ends that are embedded perpendicular to the kinetochore surface (end-on) display less 

dynamic instability caused by relatively unknown molecular mechanisms (11).  

Interestingly, C. elegans dynein influences the generation of end-on K-Mt attachments 

by inhibiting the RZZ kinetochore complex, which antagonizes the switch from lateral to 

end-on attachments (286).  Hence, decreased dynein function in CYB-3-depleted 

embryos may directly interfere with the production of end-on K-Mt attachments that are 

a requirement for anaphase. 

 Human Cdk1 influences SAC inactivation through dynein phosphorylation.  

Cdk1-mediated phosphorylation of the dynein light intermediate chain stimulates the 

binding of SAC proteins to dynein and their movement away from kinetochores (184).  

Cdk1 also influences the kinetochore localization of dynein through intermediate chain 

phosphorylation-dependent binding of dynein to the zw10 subunit of the RZZ complex 

(287).  However, the identity of the cyclin subunit of the Cdk1 complex that mediates 

dynein phosphorylation was not verified but was assumed to be cyclin B1.  The data 

presented here suggest that B3-type cyclins may be dispensable for the kinetochore 

localization of dynein, but may have a critical and direct role mediating Cdk1 

phosphorylation of dynein subunits to promote SAC inactivation. 

 The SAC in the C. elegans embryo is not as robust as that in human cells and 

only provides a transient checkpoint that is eventually overridden or adapted to.  

Embryos treated with the microtubule-destabilizing drug nocodazole or depleted of K-

Mt binding entities at kinetochores only display a transient delay from nuclear envelope 

breakdown to anaphase onset (~ 250–300s) (165).  In embryos depleted of CYB-3, this 

interval is increased to ~ 600s and anaphase segregation does not occur.  Besides CYB-3 

depletion, the only other condition that leads to a prominent block at metaphase in C. 

elegans embryos is suspended animation (288).  Suspended animation is a phenomenon 

where unfavorable environmental conditions retard the development of an organism for 

long durations of time.  For example, embryos subjected to an anoxic environment 

display a SAC dependent block at metaphase (288).  This developmental program is 

reversible as shifting embryos to normal oxygen levels reinstates the cell cycle and 

anaphase onset (288).  Since CYB-3 is required to inactivate the SAC, progression out of 
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suspended animation may very well depend on CYB-3 as well.  Future investigation of 

CYB-3 function related to suspended animation may lead to a better understanding of 

exit from this conserved developmental process.   

 

Upregulated AIR-2 activity in the absence of CYB-3 

 cyb-3(RNAi)-mediated chromosome congression defects and alterations in the 

structure of metaphase chromosomes suggest that CYB-3 influences the production of 

tension-generating K-Mt interactions, as does the AIR-2/Aurora B kinase.  Although 

CYB-3-depleted embryos display a modest increase in AIR-2 activity, slight 

perturbations in Aurora B pathways can have a dramatic impact on mitosis.  For 

instance, mutation of a single residue of the S. cerevisiae Ipl1/Aurora substrate Dam1 to 

a non-phosphorylatable residue severely compromises chromosome segregation and cell 

viability (111).  Similarly, mutation of an Aurora B site in the MCAK kinesin results in 

severe chromosome segregation defects (112).  Thus, the loss of a sole Aurora B 

phosphorylation in a single substrate can lead to gross mitotic abnormalities.  

 Since Aurora B phosphorylation leads to the disassociation of K-Mt attachments, 

its activity must be down-regulated at or isolated from tension-producing interactions. 

Elegant experiments have recently shown that tension between sister chromatids results 

in the spatial sequestration of kinetochore substrates from Aurora B at the inner 

centromere (289).  These results suggest that Aurora B kinase activity may not be 

subject to active down-regulation.  Since cyb-3(RNAi) results in “twisted” metaphase 

kinetochores, AIR-2/Aurora B targets may traverse the inner centromere and be prone to 

phosphorylation.  Thus, two events relevant to AIR-2 regulation may occur in cyb-

3(RNAi) embryos: (i) a subtle increase in AIR-2 kinase activity, and (ii) an alteration in 

metaphase kinetochore architecture leading to increased phosphorylation of AIR-2 

kinetochore targets.  Whether these two molecular changes are linked is an important, 

outstanding question. 

 We posit that the morphological changes in cyb-3(RNAi) metaphase kinetochores 

are the result of aberrant K-Mts interactions and increased microtubule turnover due to 

AIR-2 hyperactivation.  K-fibers were resistant to cold treatment in control and cyb-

3(RNAi) embryos, suggesting that kinetochores are attached to K-Mts under both 
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conditions (data not shown).  K-Mt attachment is also supported by anaphase 

chromosome segregation when the SAC is compromised.  Therefore, the absence of 

kinetochore tension in CYB-3 depleted embryos may reflect either inappropriate K-Mt 

attachments or an inability to maintain tension-producing K-Mt interactions.  An 

alternative explanation for the altered architecture of metaphase kinetochores is the 

inability of kinetochore proteins to translocate to K-Mts, leading to their accumulation at 

kinetochores.  The Ndc80 complex is one of several complexes responsible for the K-Mt 

attachment (71), and is regulated by Aurora B phosphorylation (111, 290).  Thus, if 

Ndc80 components were unable to localize to K-Mts in CYB-3 depleted cells, the 

sustained proximity of this complex with AIR-2 may lead to increased phosphorylation 

and high rates of microtubule turnover.  

 

CYB-3 potentially regulates dynein function throughout mitosis 

 The cyb-3(RNAi) phenotype is strikingly similar to that of Drosophila S2 cells 

treated with spindly(RNAi) (167).  Like cyb-3(RNAi), Spindly-depleted cells undergo a 

SAC-dependent metaphase arrest characterized by bundled spindles that are pinched at 

the centrosomes.  These cells also fail to silence the spindle checkpoint.  However, 

unlike CYB-3, Spindly is required for the kinetochore localization of dynein (167).  C. 

elegans Spindly (SPDL-1) is also required for dynein localization to the kinetochore but 

is necessary for SAC signaling, acting as a kinetochore-targeting protein for MDF-

1/Mad1 and MDF-2/Mad2 (166, 286).  Human Spindly is also required for dynein 

kinetochore recruitment but is not required for SAC activation or the removal of Mad2 

from aligned chromosomes (291).  Interestingly, inhibition of dynein activity prevented 

Mad2 removal and SAC silencing in hsSpindly-depleted cells, suggesting that 

kinetochore recruitment is not necessary for dynein-dependent quenching of the SAC 

(291).  Our results show that dynein, dynein-regulatory proteins, and SAC components 

all accumulate on cyb-3(RNAi) metaphase kinetochores but do not appear to transfer to 

K-Mts or to centrosomes.  Therefore, unlike Spindly, CYB-3 is not required for 

kinetochore targeting, but rather may be affecting the minus-end directed motor activity 

of dynein or its association with microtubules.  
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 The research presented here has focused on prometaphase and metaphase 

abnormalities in the near absence of CYB-3 and suggest that altered dynein function 

may be a key contributing factor.  However, subtle defects in two prophase events occur 

in embryos depleted of CYB-3.  Firstly, the paternal pronucleus of wild-type embryos 

moves anteriorally away from the posterior cortex during pronuclear migration (PNM).  

Dynein-mediated pulling forces at the cell cortex mediate this movement (78).  In cyb-

3(RNAi) embryos, the paternal pronucleus does not migrate away from the posterior 

cortex.  Therefore, PNM in CYB-3-depleted embryos occurs at the posterior cortex and 

not ~ 15 microns from the cortex.  Secondly, dynein is a conserved regulator of 

centrosome separation and influences C. elegans spindle rotation during prophase (78).  

In C. elegans, loss of dynein function perturbs centrosome separation and the association 

of centrosomes with the maternal pronucleus (78).  In cyb-3(RNAi) embryos, centrosome 

movement on the maternal pronucleus and spindle rotation are abnormal (data not 

shown).  However, the spindle apparatus in cyb-3(RNAi) embryos eventually aligns with 

the A-P axis and is asymmetrically localized to the embryo posterior as in wild-type.  In 

conclusion, CYB-3 appears to influence dynein-dependent processes at all stages of 

mitosis, most strikingly SAC silencing. 
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CHAPTER FIVE: PERSPECTIVES AND SIGNIFICANCE 
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Summary 

 The proper development of organisms and the maintenance of cellular ploidy in 

adult somatic cells both require proper chromosome segregation.  Chromosome 

segregation demands a variety of chromosome-based processes including condensation, 

kinetochore attachment to spindle microtubules, and a checkpoint that monitors the 

attachment state of kinetochores to the spindle.  These studies utilized two model 

organisms to glean better insight into TLK-1 function during mitosis.  First, TLK-1-

mediated AIR-2 activation was proven to be independent of TLK-1 kinase activity.  

Subsequently, a tethered-catalysis yeast two-hybrid screen was conducted with a bait 

chimera harboring a fragment of TLK-1 containing a critical residue that is 

phosphorylated by AIR-2.  The results of this screen uncovered a wide range of potential 

TLK-1 interactors including proteins involved in transcription and mitosis.  Further 

investigation revealed that CYB-3 interacts with TLK-1 phosphorylated at T610 and 

binds conserved RXL motifs of TLK-1.  The conservation of the cyclin-box fold-binding 

RXL motifs indicate that Tousled homologs may also interact with cyclins to influence 

Cdk activity during the cell cycle. 

The data presented in the previous chapter reveal that CYB-3 is required for the 

fidelity of chromosome congression and silencing the SAC.  This work revealed that 

dynein activity is decreased in embryos depleted of CYB-3 suggesting that the 

regulation of dynein by cyclin/Cdk1 is a conserved mechanism.  In light of the 

interaction between CYB-3 and TLK-1 identified in Chapter 3, increased AIR-2 activity 

in CYB-3-depleted embryos may reflect the inability to remove TLK-1 from 

kinetochores via dynein transport.  TLK-1 at the kinetochore may positively regulate 

AIR-2 activity to degenerate K-Mt attachments resulting in persistent SAC activation.  

Taken together, these results indicate that CYB-3 function is crucial to maintain 

chromosomal stability by influencing the generation of proper K-Mt attachments that 

guarantee chromosomes remain intact during anaphase segregation.   
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Hypotheses to be tested in the future 

 Given the broad scope of these projects, the work presented here offer support 

for several conclusions regarding TLK-1 and CYB-3 function during C. elegans 

embryogenesis.  However, just as many questions have surfaced as conclusions have 

been drawn.  This section highlights several questions evoked from my experimental 

conclusions.  The questions are posed as testable hypothesis and strategies are offered in 

an attempt to guide future investigations.   

 

Does TLK-1 influence transcription by binding and influencing cyclin 

H/Cdk7 complexes? 

 Tousled kinase is unique in that it is highly expressed and active during S-phase 

but also has important mitotic functions that are likely independent of its own activity.  

The discovery that TLK-1 interacts with CYB-3 opens up the possibility that hTlk1 

interacts with cyclins during S-phase when tlk1 expression and kinase activity is 

maximal.  Binding and functional assays should be pursued to determine if TLK-1 

kinase activity influences CYH-1/CDK-7-mediated phosphorylation and activation of 

RNA pol II.  Since hTlk1 binds and phosphorylates the chromatin assembly factor Asf1 

(127), it will be interesting to determine if nucleosome eviction by ASF-1 is influenced 

by TLK-1 to mediate efficient RNA pol II transcription.  Lastly, CYH-1/CDK-7 may be 

an S-phase TLK-1-activating kinase similar to the activation of TLK-1 kinase activity by 

AIR-2 in vitro (123).  It should be determined whether TLK-1 is directly phosphorylated 

by CDK-7 and if TLK-1 kinase activity toward ASF-1 is increased.  Since the in vitro 

functionality of Asf1 phosphorylation by human Tlk1 remains enigmatic, identifying 

Tlk1 sites phosphorylated by Cdk7 may offer mechanistic insight into Asf1 regulation 

by Tlk1. 

 The screen described in Chapter 3 and our previous work (133) revealed several 

potential links between TLK-1 and the transcriptional machinery involving RNA pol II.  

Since cyclin H/Cdk7 is a transcriptional activator (292) and TLK-1 has cyclin binding 

motifs, TLK-1 may influence transcriptional events through binding cyclin H to 

influence Cdk7 activity.  Our previous results suggested that RNA pol II CTD 
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phosphorylation, a read-out of its transcription activity, is decreased in tlk-1(RNAi) 

embryos.  However, a direct molecular link between TLK-1 and RNA pol II was not 

studied.  Therefore, the loss of RNA pol II activity in tlk-1(RNAi) embryos may reflect 

decreased cyclin H (CYH-1)/Cdk7 (CDK-7) activity.  To test this, the phenotypes that 

result from singular or combined tlk-1(RNAi); cyh-1(RNAi) depletions will reveal if 

TLK-1 functions in the same or a parallel pathway for CDK-7 activation.   

  

How is CHK-1 activated and regulated during mitosis? 

 My data suggest that CHK-1 is active during mitosis as evidenced by phospho-

CHK-1 localization to the mitotic spindle.  Active CDK-1 also localizes to the mitotic 

spindle.  The results presented in Chapter 3 indicate that CHK-1 phosphorylates TLK-1 

at T610 to promote CYB-3/CDK-1 binding.  Therefore, TLK-1 may serve as a platform 

for CHK-1 and CYB-3/CDK-1 signaling to promote SAC silencing when microtubules 

are correctly attached to kinetochores.  This mechanism may be especially crucial for 

holocentric chromosomes that likely rely on tension-generated changes in microtubule 

dynamics and/or structure as a prerequisite for SAC silencing.  Accumulating evidence 

suggests that monocentric sister centromeres and kinetochores are stretched concomitant 

with the generation of tension (273).  However, holocentric chromosomes are relatively 

stiff, bar-like structures that do not exhibit robust tension-generated separation of sister 

centromeres or kinetochores (38).  Therefore, I propose that changes in microtubule 

dynamics or rigidity is a key readout of spindle tension at metaphase and therefore 

speculate that CHK-1 and CDK-1 activity at prometaphase and metaphase correlates 

with the fidelity of K-Mt attachments. 

 If CHK-1 and CDK-1 activity is linked to mitotic microtubule dynamics, what is 

a good experimental approach to determine the validity of this assumption?  

Immunostaining embryos treated with nocodazole or taxol with P-CHK-1 and P-CDK-1 

antibodies might give some indication of changes to their catalytic activity.  However, 

fixed embryo analyses would not reveal the temporality of kinase activity changes.  

Also, these specific phosphorylation sites in CHK-1 and CDK-1 may be poor indicators 

of their kinase activity.  To determine the spatial and temporal changes of CHK-1 and 

CDK-1 kinase activity elicited by altered K-Mt dynamics, an in vivo approach similar to 
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the method used to monitor aurora B activity in human cells should be performed (187, 

293).  This method uses a phosphorylation-sensitive fluorescent sensor to determine the 

in vivo catalytic activity of kinases.   

 The fluorescence intensity of phosphorylation sensors depends on the efficiency 

of intramolecular energy transfer between CFP and YFP in the sensor (187).  The CFP 

and YFP moieties are separated by the substrate and an FHA2 phospho-threonine 

binding domain (293).  Therefore, phosphorylation of the substrate results in 

intramolecular FHA2 domain binding and emission of lower wavelengths of the sensor 

(293).  The substrate peptide used in the Aurora B and Plk1 sensors were ~ 13 amino 

acids in length.  Therefore, the CHK-1 and CDK-1 sensors should contain a short region 

of known substrates that contain the consensus sequence [(K/R)-X-X-T)] and [T-P], 

respectively.  The mitotic spindle localization of CHK-1 and CDK-1 suggest that an 

untargeted, cytosolic sensor may be suitable for determining the influence microtubule 

dynamics have on kinase activity.  However, the sensor can be tethered to a histone 

protein and targeted to chromosomes to determine kinase activity at the centromere and 

kinetochore.  The sensor constructs can be introduced into C. elegans to obtain 

transgenic animals for live-cell imaging.  The specificity of the sensors for CHK-1 and 

CDK-1 phosphorylation could be confirmed via RNAi-depletion of the kinases and their 

positive regulators. 

 

Does TLK-1 contribute to the cyb-3(RNAi) phenotype? 

 The data presented in Chapter 4 reveal multiple mitotic defects in embryos 

depleted of CYB-3 during the first embryonic divisions.  The results from Chapter 3 

suggest that TLK-1 and CYB-3 interact during mitosis.  However, embryos depleted of 

TLK-1 do not display mitotic defects until the ~ 16 cell stage.  At this stage, tlk-1(RNAi) 

results in prometaphase and metaphase delays due to SAC activation.  Therefore, the 

functionality of this interaction remains inconclusive given the distinct phenotypic 

severity caused by cyb-3(RNAi) and tlk-1(RNAi).  The pleiotropic mitotic alterations 

exhibited in cyb-3(RNAi) embryos suggests that TLK-1 likely modulates one or a few 

CYB-3-related functions.  To molecularly assign the contribution TLK-1 has on CYB-3 

function, genetic interactions between tlk-1 and cyb-3 should be explored.  Since TLK-1 



 196 

activates AIR-2, increased AIR-2 function in cyb-3(RNAi) embryos may reflect AIR-2 

activation by TLK-1 due to metaphase kinetochore architectural changes.  If increased 

AIR-2 activity destabilizes K-Mt attachments in embryos depleted of CYB-3, co-

depleting TLK-1 may bring AIR-2 activity closer to wild-type levels and stabilize K-Mt 

attachments.  Therefore, live-cell imaging may reveal partial suppression of the 

prometaphase defects in cyb-3(RNAi) embryos co-treated with tlk-1(RNAi).  To 

determine if the suppression is due to dampened AIR-2 activity, embryos can be fixed 

and stained with AIR-2 phospho-substrate antibodies.  Alternatively, performing live-

cell imaging with transgenic animals expressing an AIR-2 phosphorylation sensor would 

discern changes in AIR-2 activity in more precise terms. 

 Finally, Chapter 3 revealed that TLK-1 phosphorylated at T610 binds CYB-3.  

Thus, modification of TLK-1 at T610 may influence CYB-3/CDK-1 function.  To 

determine the in vivo consequence of TLK-1 T610 phosphorylation, transgenic animals 

expressing GFP-tagged TLK-1(T610A) and TLK-1(T610E) mutants will reveal if P-

T610 alters the localization or function of TLK-1 and/or CYB-3.   

  

What subunits of dynein are regulated by CYB-3/CDK-1-mediated 

phosphorylation? 

 The results presented in Chapter 4 suggest that CYB-3 positively influences 

dynein activity.  Although preliminary co-immunoprecipitation experiments revealed 

that dynein and CYB-3 may associate in vivo, the dynein subunit(s) that mediate this 

interaction are unknown.  As the dynein complex consists of 13 subunits, educated 

guesses of the subunits that may interact with CYB-3 would facilitate a molecular 

understanding of CDK-1-mediated dynein regulation.  Firstly, mammalian Cdk1 

phosphorylates the dynein light intermediate chain to influence dynein function (184).  

Therefore, C. elegans dynein light intermediate chains may be subject to CDK-1 

phosphorylation.  Secondly, the published research and the work presented in Chapter 3 

indicate that RXL motifs interact with the cyclin-box fold domains of cyclins.  For 

instance, cyclin A binds RXL motifs of Rb to promote Cdk1 phosphorylation of Rb at 

[(S/T)/P] residues and entry into the cell cycle (229).  Therefore, dynein subunits that 

interact with CYB-3 are expected to have RXL motifs and contain (S/T)/P residues for 
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CDK-1 phosphorylation.  Interestingly, 8 dynein subunits have at least one (and up to 

three) RXL motifs and all but DYBR-1 have at least one potential Cdk1 phosphorylation 

site (Table 2).  Out of the 5 subunits that do not have RXL motifs, only DYLT-2 has a 

Cdk1 site.  The other 4 have neither RXL motifs nor Cdk1 phosphorylation sequences 

suggesting the coexistence of RXL motifs and [(S/T)/P] sequences in most dynein 

subunits.  Therefore, DYCI-1 and DLI-1 are the most likely CYB-3-interacting dynein 

intermediate light chains and should be prioritized as potential CYB-3/CDK-1 

substrates. 

 Once the dynein subunits that bind CYB-3 are identified, it will be critical to 

determine the residue(s) targeted by CDK-1 phosphorylation.  The residue(s) of the 

dynein light chain(s) that are phosphorylated by CDK-1 may be efficiently revealed by 

in vitro kinase assays given their small size and predictable CDK-1 phosphorylation sites 

(Table 2).  Alternatively, a quantitative mass spectrometry approach such as the SILAC 

technique (294) would reveal the CDK-1 phosphorylation sites that could subsequently 

be verified by in vitro and in vivo techniques.  One key approach will be to raise 

phospho-specific antibodies to determine the spatial and temporal phosphorylation of 

dynein by CDK-1.  We hypothesize that CYB-3 provides the substrate specificity of the 

CYB-3/CDK-1 complex toward dynein.  Therefore, the immunoreactivity of the 

phospho-dynein antibody should be decreased in embryos treated with cdk-1(RNAi) and 

cyb-3(RNAi) but not cyb-1(RNAi).  It will also be vital to determine how dynein 

phosphorylation is affected by altered K-Mt dynamics.  In this line of investigation, 

embryos treated with nocodazole or depleted of kinetochore microtubule interactors will 

reveal if dynein phosphorylation by CDK-1 is influenced by the state of K-Mt 

attachment.  Moreover, the generation of transgenic animals expressing fluorophore-

tagged phospho-null or phospho-mimetic dynein subunits will determine the in vivo 

consequence of CDK-1 phosphorylation of dynein. 

!

Impacts from these studies 

 The research presented here has offered key insight into mechanisms governing 

chromosome segregation during C. elegans embryogenesis.  Two critically important 

perspectives can be drawn from this research.  Firstly, I have identified candidate TLK-1  
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interactors that may be involved in transcriptional events by regulating RNA pol II and 

chromatin assembly factor function.  Asf1 is the only known Tlk1 substrate, so the 

discovery of additional S-phase TLK-1 substrates will lead to a better understanding of 

Tousled function related to chromatin.  Secondly, my research has revealed that the 

orphan B-type cyclin CYB-3 influences many aspects of dynein function especially 

dynein-dependent silencing of the SAC.  

 Until now, B3-type cyclins have not been adequately characterized in any 

organism perhaps due to cyclin b3 expression predominantly in mouse and human 

spermatocytes (264).  However, the profound influence CYB-3 has on SAC silencing 

through dynein regulation suggests that the cyclin b3 family has unrecognized crucial 

functions.  Research performed with mouse models and human neoplastic tissues has 

confirmed that the spindle assembly checkpoint is required to maintain chromosome 

stability during development and in dividing adult somatic cells (1).  The deletion of one 

MAD2 allele in human cancer cells and murine primary embryonic fibroblasts results in 

defective SAC signaling and chromosome missegregation, while Mad2
+/-

 mice develop 

lung cancers (295).  Also, sequencing of BUB1 from 19 independent colorectal cell lines 

revealed a variety of mutations in the cancer but not adjacent wild-type cells that cause 

premature exit from mitosis (296).  However, the inability to silence the SAC may be as 

detrimental to changes in ploidy and tumor onset.  Mad2 overexpression in mice induces 

chromosome instability, aneuploidy, and tumor growth in a wide range of tissues (297).  

Importantly, Mad2 overexpression is common in human tumors and is associated with 

poor prognosis (297).  CYB-3 influences the generation of stable K-Mt attachments and 

stimulates dynein-dependent SAC silencing.  Therefore, decreased cyclin b3 levels in 

cancer cells may eliminate SAC silencing leading to the absence of sister chromatid 

separation and massive changes in ploidy.  Increased cyclin b3 levels may inactivate the 

SAC by facilitating dynein-dependent silencing and may phenocopy MAD2 and BUB1 

loss-of-function phenotypes (295, 296).  Lastly, searching for aberrant cyclin B3 

expression in human tumors by using the ONCOMINE database that contains 

microarray gene expression profiles (http://www.oncomine.org/) (298) revealed some 

interesting results.  The expression level of cyclin B3 in many cell lines including Aaboe 

(bladder) and Adib (ovarian) has not been measured.  In fact, cyclin B3 expression was 
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the only cyclin out of twenty (including cyclins A, D, E, F, and B1 and B2) that was not 

analyzed.  However, the Adai cell lines revealed increased cyclin B3 expression in breast 

carcinoma, bronchioloalveolar carcinoma, large cell lung carcinoma, and non-small cell 

lung carcinoma among others.  These revelations indicate that changes in cyclin b3 

protein level or function in cancer cells remains an outstanding and important area of 

future investigation. 
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CHAPTER SIX: MATERIALS AND METHODS 
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Chapter Two 

 

Yeast Strains, Plasmids, and Growth Conditions 

 Yeast strains used in this study were: SBY1730 (ura3-1, leu2-3,112, his3-

11pCUP1GFP12-Lac12:HIS3, trp1-1 256lacO:TRP1, lys2^, bar1, can1-100, ade2-1, 

IPL1-myc13:KAN)(from S.Biggins, Fred Hutchinson Cancer Center, Seattle,WA), 

DBY5301 (a ade2, his3-! 200, ura3-52, leu2!101::URA3::leu2!102,lys2!101 

::HIS3::lys2-!102ipl1-2) and DBY4962 (a corresponding isogenic wild type strain to 

DBY5301), CCY914-10D (a ura3-52, lys2-801, his3-d200, leu2-3,112, ipl1-1) and 

CCY914-6B (corresponding isogenic wild type strain to CCY914-10D but alpha mating 

type). The DBY and CCY strains were provided by C. Chan, University of Texas at 

Austin. Yeast were propagated according to standard procedures in either rich media 

(YPD) or appropriate selective media (SC). 

 The entire coding sequences of C. elegans TLK-1 (C07A9.3), ICP-1 

(Y39G10AR.13), and AIR-2 (B0207.4) were cloned into Xba I and Not I sites of the 

yeast expression vectors pYC2NTB or pYESNTB (Invitrogen, Carlsbad, CA) to create 

translational fusions with a 5’ V5 epitope tag. TLK-1 mutants (S634A, S634E, and 

kinase-dead (KD) (D802A)) were PCR amplified from previously described constructs 

(20) and subcloned into the Xba I and Not I sites of pYC2NTB or pYESNTB. The 

construction of GST-ASF-1 was described previously (20). All constructs were verified 

by automated DNA sequencing (MDACC DNA Analysis Core Facility (M. D. Anderson 

CCSG Grant, NCI CA-16672(DAF)). 

 

Immunoprecipitation and western blotting 

 Cell extracts were prepared from 500 ml cells grown in –ura media + 2% 

galactose for 6 hr to induce V5-TLK-1 expression (from a starting OD600 of 0.4). Cells 

were collected by centrifugation, washed once with water, and resuspended in 5 ml lysis 

buffer (50 mM Tris 8.0, 150 mM NaCl, 0.1% Triton-X100, 1 mM PMSF).  Cell 

suspensions were flash frozen in liquid nitrogen and ground into powder in a coffee mill 

with dry ice. After thawing on ice, cellular debris was pelleted by centrifugation at 5000 
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g for 10 min. Supernatants were then clarified by incubating with 100 ul Protein G 

Sepharose (GE Healthcare, Piscataway, NJ) at 4°C for 1 hr. V5-TLK-1 was then 

immunoprecipitated (IPed) with 2 ug monoclonal V5 antibody (Invitrogen) at 4°C 

overnight. V5-TLK-1 immunoprecipitates (IPs) were isolated by adding 25 ul Protein G 

Sepharose at 4°C for 2 hr. Bound material was washed five times with lysis buffer, and 

resuspended and boiled in 25 ul loading buffer. Proteins were resolved by 10% SDS-

PAGE and transferred to nitrocellulose. The membranes were blocked for 30 min in 

Tris-buffered saline (TBS) supplemented with 0.1% Tween 20 and 2% BSA, followed 

by overnight incubation with the antimyc mouse monoclonal 9E10 antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA) at a final dilution of 1/1000. After incubation with 

antimouse horseradish peroxidase-conjugated secondary antibodies (Biorad, Irvine, CA), 

proteins were detected by chemiluminescence (GE Healthcare). Following detection of 

myc-Ipl1 with an anti-myc monoclonal 9E10 antibody (Santa Cruz Biotechnology, Santa 

Cruz, CA), membranes were stripped (2.2 M glycine pH 4.0, 0.5 M NaCl) and reprobed 

with the anti-V5 antibody at a final dilution of 1/5000.   

 

Kinase Assays 

 IP of V5-TLK-1 was performed as above. Concurrently, myc-Ipl1 was IPed from 

parallel cultures with 1 ug anti-myc antibody at 4°C overnight. Myc-Ipl1 IPs were 

isolated and washed as above for V5-TLK-1 IPs. After the final wash, a 27 1/2 gauge 

needle was used to remove all traces of wash buffer from the Protein G Sepharose 

pellets. V5-TLK-1 IPs were then resuspended in 20.5 ul kinase reaction buffer (20 mM 

HEPES (pH7.6), 5 mM EGTA, 1 mM DTT, 25 mM "-glycerophosphate), whereas the 

myc-Ipl1 IPs were resuspended in 60 ul of the same buffer. Increasing amounts of the 

myc-Ipl1 IPs were transferred to individual tubes and the final volumes adjusted to 20.5 

ul by addition of kinase buffer. 500 ng myelin basic protein (MYBP; Sigma, St. Louis, 

MO) and a cocktail of 30 uCi [3 Ci/umol] [#-32P], 10 nM cold ATP, and 7.5 mM 

magnesium chloride were added and each reaction incubated at RT for 15 mins. The 

samples were boiled in loading buffer, separated by SDS-PAGE, transferred to 

nitrocellulose, and [
32

P] incorporation into MYBP assessed by phosphoimaging. MYBP 

protein loading was determined by Ponceau S staining (Sigma).  Western blotting with 
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anti-V5 and anti-myc antibodies was performed as above.  Phosphorylation of GST-

ASF-1 was assayed by IP of V5-TLK-1 and V5-TLK-1KD as above followed by kinase 

assays with GST-ASF-1 substituted for MYBP. [
32

P] incorporation into GST-ASF-1 was 

assessed by phosphoimaging and GST-ASF-1 protein loading by Ponceau S staining 

(Sigma). 

 

Kinase-Assay Quantitation 

 [
32

P] incorporation into myelin basic protein (MYBP) (as visualized by 

phosphoimaging) and MYBP, V5-TLK-1, and myc-Ipl1 loading (as visualized by 

western analysis and chemiluminescence or Ponceau S staining) were measured with 

KodakID3.1 quantification software (Eastman Kodak, Rochester, NY). Phosphorylation 

of MYBP by Ipl1 in the presence of V5-TLK-1 was calculated as [((
32

P-MYBP)/MYBP 

load (LD)) – (
32

P-MYBP for vector alone/MYBP LD))/myc-Ipl1 LD] X (Avg. V5 

LD/V5 LD per lane). Phosphorylation of MYBP by Ipl1 in the absence of V5-TLK-1 

was calculated as ((
32

P-MYBP)/MYBP LD)/myc-Ipl1 LD. 

 

 

Chapter Three  

 

Plasmids construction  

 The entire coding sequence of AIR-2 (excluding the stop codon) was subcloned 

into the EcoR1 and Sal1 MCS of pAS2.1 to create an N-terminal fusion with a Gal4 

DBD.  TLK-1 (1810 – 1992) with a C-terminal HA tag and 5’ Sal1 and 3’ Pst1 sites was 

generated by PCR from previously described constructs (123) and subcloned into AIR-

2::pAS2.1 to generate the bait construct for the Y-2-H screen.  Site-directed mutagenesis 

was utilized to generate the S/T ! A and RXL ! LXR constructs.  All constructs were 

verified by automated DNA sequencing (MDACC DNA Analysis Core Facility (M. D. 

Anderson CCSG Grant, NCI CA-16672(DAF)). 

 

Yeast two-hybrid screening procedure 
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 Strain pJ694a (299) transformed with the Wt-S construct was grown in 5 ml –trp 

medium O/N at RT.  Culture was diluted in 50 ml –trp and grown O/N at RT.  Next a.m., 

cultures were diluted to OD600 = 0.35 in 125 ml YPD, grown 4 hr at 30°C, and 

centrifuged 5,000 rpm for 10 min.  Pellet was washed with 100 ml sterile water, 

centrifuged, R/S in 12.5 ml LiSORB, and nutated at 30°C for 30 min.  Yeast were 

pelleted, R/S in 156 µl LiSORB, and put on ice.  Carrier DNA was prepared by boiling 

100 µl SS DNA (10 mg/ml) for 5 min.  150 µl LiSORB was added to the SS DNA, 

mixed by pipetting, cooled to RT, and 10 µg of the C. elegans cDNA pACTII library 

(obtained from Caldwell lab) was added.  75 µl DNA mixture was added to 100 µl yeast 

in each of three eppendorf tubes and nutated 30 min at 30°C.  Cells were pooled and 

washed twice with 1 ml sterile water.  Pellet was R/S in 1.5 ml –leu, -trp, -his medium 

and plated on (5) 150 mm –leu, -trp, -his plates (300 µl each).  Colonies for further 

analysis were obtained from plates after incubation at 30°C for 5 days. 

 DNA was isolated from colonies that grew on –leu, -trp, -his medium (after 

growth in –leu liquid medium to select for the prey pACTII plasmid) and was 

electroporated into DH5! cells.  Three colonies from each DH5! plate were mini-prep’d 

and the DNA was used for PCR analysis with primers JMS 311 and JMS 545 to 

guarantee the absence of the bait construct.  DNA preparations that did not contain the 

bait construct were cut with XhoI O/N to assess band migration during agarose gel 

electrophoresis.  DNA isolated from three bacterial colonies from the same plate was 

expected to display similar-sized restriction fragments.  However, if one of the three 

restriction digestions displayed unique bands, the constructs were considered unique and 

treated as independent potential bait interactors.  pJ694a was co-transformed with 

pAS2.1 or Wt-S::pAS2.1 and the potential bait interactor constructs for the second round 

of screening. 

 

Yeast transformation for plate-spot assays 

 Yeast were transformed by the Lithium Acetate procedure.  5 ml O/N culture was 

centrifuged in a 50 ml conical at 3500 rpm for 10 min.  Yeast pellet was washed with 25 

ml sterile water, centrifuged as above, R/S in 1 ml sterile water, transferred to 1.5 ml 

eppendorf tubes, and centrifuged at 6,000 rpm, 1 min.  Pellet was R/S in 1 ml of 1X 
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LiAc/TE (made from 10X LiAc and 10X TE recipes below) and centrifuged at 6,000 g, 

1 min.  Pellet was R/S in 250-500 µl 1X LiAc/TE (corresponding to 50 µl per 

transformation, with 5-10 transformations respectively) and 50 µl yeast were allocated to 

eppendorf tubes.  ~ 1 µg (in 1-8 µl) transforming DNA and 16 µl SS carrier DNA 

(Salmon sperm DNA (10 mg/ml); boil 5 min followed by 2 min incubation on ice prior 

to addition) were added to yeast suspension and mix by flicking.  600 µl PEG/LiAc/TE 

(960 µl 50% PEG, 120 µl 10X LiAc, 120 µl 10X TE) was added and gently R/S by 

pipetting.  Tubes were incubated at RT for 2.5 – 3 hr, followed by centrifugation (6,000 

g) and two washes with 1 ml sterile water.  Pellets were R/S in 250 µl sterile water and 

plated on the appropriate medium.  10X Lithium Acetate: 1M, pH 7.5; 10X TE: 100mM 

Tris pH 7.5, 10 mM EDTA; 50% PEG (3500-4000).  100 µl 10X TE, 100 µl 10X LiAc, 

and 800 µl sterile water were mixed to make 1ml of 1X LiAc/TE. 

  

Plate spot assays 

 Yeast were grown in 5 ml of appropriate selective medium 2 O/N at RT.  Cell 

cultures were diluted 1:100 (2 µl O/N culture + 198 µl water) and spotted on a 

hemocytometer to count cell number (Z).  A sterile 96-well PCR plate was used for the 

following dilutions.  The initial dilution was (4000/Z) + sterile water to 200 µl.  Cells 

were diluted 1:5 (with sterile water) from the initial dilution with a multi-pipettor.  3 µl 

from each dilution were spotted on the appropriate medium.  Plates were incubated at 

30°C for 3 days (his+ medium) or 5 days (his- medium). 

 

Immunoprecipitation 

 5 ml –trp cultures grown O/N at RT in a 50 ml conical were diluted in 50 ml –trp 

and grown O/N.  The OD600 was determined and cultures were diluted to 0.4 in 125 ml –

trp medium.  Cultures were incubated at 30°C for 4 hr followed by centrifugation at 

12,000 rpm for 10 min.  Pellets were washed with 50 ml water, R/S in 5 ml lysis buffer 

(as Chapter 2, but including the following 10X phosphatase inhibitor cocktail (diluted to 

1X with lysis buffer): 375 mM sodium pyrophosphate, 1 M sodium azide, 1 M sodium 

fluoride, 50 mM sodium orthovanadate, 1 M #-glycerophosphate)).  1,500 µg of protein 
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extract in 1 ml total volume (diluted with lysis buffer) and 1 µg of a purified TLK-1 P-

S634 antibody was used for O/N precipitation.  Western analysis was performed with a 

polyclonal HA antibody (HA.11, Covance, Berkeley, CA). 

 

In vitro phospho-peptide binding assays 

 Phospho-TLK-1 peptides (40 residues H604 – D643) with biotin conjugated at 

the N-terminus were generated (Small Scale Peptide Synthesis, W.M. Keck 

Biotechnology Resource Center, Yale U, New Haven, CT).  10 mg (~1/6 of product 

received) was dissolved in 1 ml TEN (10 mM Tris pH 7.5, 1 mM EDTA, 1 M NaCl) to  

give a 10 µg/µl peptide stock.  The pH was very acidic and NaOH was added to obtain 

pH 7-8.  1 µl peptide stock was diluted with 49 µl PBS and incubated with 20 µl (50/50 

slurry) Ultralink Immobilized Streptavidin resin (Pierce; Rockford, IL) O/N at 4°C on 

360° tube rotator.  Beads were pelleted (6000 g) and washed twice with PBS.  10 µl 

CYB-3 (~ 500 ng) expressed and purified from E. coli (MBP tag cleaved with TEV 

protease site between MBP and CYB-3 coding sequence) was incubated with 20 µl 

immobilized peptides diluted with 480 µl TEN150 (150 mM Nacl) on a nutator for 30 

min at RT.  Beads were pelleted, washed 4 times with 500 µl TEN150  (each wash on ice 

for 2 mins followed by brief slow centrifugation), and R/S in 15 µl 5X protein loading 

buffer for subsequent western analysis with the CYB-3 antibody used in Chapter Four. 

 

Kinase assays 

 The assay conditions were similar to Chapter Two, except recombinant protein 

was used and the total reaction volume was 22.5 µl.  5 µl recombinant active human 

CHK1 (500ng) (Active Motif) and MBP::TLK-1 peptide (23 residues from H604 – 

H626) was used for the Chk1 kinase assays.  5 µl of AIR-2/ICP-1 purified from E. coli 

polycistronic expression and full-length MBP::TLK-1 was used for the AIR-2 kinase 

assays. 

 

Immunostaining 



 208 

Immunostaining was performed as Chapter Four.  Phospho-Chk1 (Ser345) (Cell 

Signaling cat no 2341) was used at 1:250.  Purified P-S634 and P-T610 antibodies were 

used at 1:500. 

 

 

Chapter Four 

 
C. elegans strains 

C. elegans strains were maintained at 15°C as described (300).  The following strains 

were used:  N2 (wt), OD57 (GFP::!-tubulin; mCherry::Histone H2B) (301), OD110 

(GFP::MDF-2; mCherry::Histone H2B) (154), OD203 (GFP::DHC-1; mCherry::Histone 

H2B) (286), OD204 (GFP::DNC-2; mCherry::Histone H2B) (286), OD11 (GFP::KBP-4) 

(286), TH32 (GFP::"-tubulin; GFP::Histone H2B), and dhc-1(or195ts) (Strome 2005).  

To create the GFP::AIR-2; mCherry::Histone H2B strain (JS713),  WH371 (GFP::AIR-

2) (122) and OD56 (mCherry::Histone H2B) strains were crossed and animals 

homozygous for both transgenes were isolated.  The same method was used to create the 

GFP::HCP-3; mCherry::Histone H2B strain (JS967) by crossing OD101 (GFP::HCP-3) 

(56) and OD56 (mCherry::Histone H2B) animals.  

 

RNAi-Mediated Interference (RNAi) 

 RNAi plasmids CYB-3, MDF-1, SAN-1, BUB-1, and DYLT-1 were obtained 

from the Geneservice Ltd. C. elegans feeding library (302).  The L4440 RNAi vector 

(T7) was used as an RNAi control.  To deplete CYB-3 alone, a 3 ml LB + 100 µg/µl 

ampicillin liquid culture was seeded with a single colony of HT115 bacteria transformed 

with the cyb-3(RNAi) L4440 plasmid and shaken overnight (O/N) at 37°C .  The next 

day, the O/N culture was expanded to 50 ml with the same media and grown for ~ 2 hrs 

until the OD600 of the culture was between 0.6 – 0.8.  IPTG was added to a final 

concentration of 1mM and the culture was grown an additional 3 hrs at 37°C to induce 

cyb-3 dsRNA expression.  The culture was then centrifuged at 5000 rpm for 10 mins, 

and the pellet was resuspended (R/S) in 800 µl LB.  200 µl of the R/S pellet was plated 

on nematode growth (NG) plates containing 100 µg/µl ampicillin and 3 mM ITPG 

(NG/AMP/IPTG).  Plates were incubated at 37°C O/N and then seeded with L4 larvae.  
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Seeded plates were incubated at 25°C overnight and young adult worms were utilized for 

experiments. 

 To co-deplete CYB-3 and MDF-1, SAN-1, or BUB-1, the induction conditions 

were as described above.  However, after R/S the pellets in 800 µl LB, 200 µl of each 

R/S pellet (i.e. cyb-3 and mdf-1 dsRNA-expressing bacteria) were thoroughly mixed and 

transferred to NG/AMP/IPTG plates, incubated at 37°C O/N, and then seeded with L4 

larvae. To generate dilute cyb-3(RNAi) conditions for the dhc-1ts experiments and the 

GFP::AIR-2 overexpression assays, T7 and cyb-3(RNAi) bacteria were induced, pelleted, 

and R/S as above.  10 µl bacteria expressing cyb-3 dsRNA and 190 µl T7 bacteria were 

mixed in a 15 ml conical, vortexed, and briefly centrifuged at low speed.  The pellet was 

R/S in the same supernatant and plated as above.  For the dilute cyb-3(RNAi) plus dylt-

1(RNAi) experiments, 10 ul bacteria expressing cyb-3 dsRNA and 190 ul dylt-1 dsRNA-

expressing bacteria were plated.  For cyb-1&2(RNAi) analyses, sense and anti-sense 

mRNAs corresponding to ZC168.4 (CYB-1) were transcribed from linearized templates 

using a T7 in vitro transcription kit (Ambion, Austin, TX), mixed, heated at 90°C for 

five minutes, and annealed at room temperature (RT).  cyb-3 dsRNA was also generated 

in this manner for direct comparison of injected animals.  dsRNAs were injected into the 

gonads of OD57 L4 larvae and the injected animals incubated at 25°C O/N. 

 

Immunostaining 

 Embryos from adult hermaphrodites were fixed and stained as previously 

described (303).  Primary antibodies used were anti-!-tubulin (1:2000; Sigma, St. Louis, 

MO), anti-HCP-1 (1:500) (62), anti-BUB-1 (1:5000) (304), 3F3/2 (1:250) (305), anti-

GFP (1:500) (Invitrogen, Eugene OR), anti-pICP-1(1:500) (150), anti-Phospho-cdc2 

(Thr161) (1:500; Cell Signaling), and anti-Cdk1 (pTpY
14/15

 1:500; Invitrogen, Carlsbad, 

CA).  Secondary antibodies were: Alexa Fluor 488 goat anti-mouse IgG and Alexa Fluor
 

555 goat anti-rabbit IgG (both at 1:1000) (Invitrogen Molecular Probes, Eugene, OR).  

For HCP-3 and BUB-1 co-staining experiments, anti-HCP-3 (304) and anti-BUB-1 

antibodies were directly conjugated to fluorophores utilizing the Zenon Tricolor Rabbit 

IgG labeling kit (Invitrogen Molecular Probes, Eugene, OR) as per the manufacturer’s 

instructions.  The labeled antibodies were incubated on slides with fixed embryos for 3 
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hrs at RT.  Slides were washed three times with PBSTb (PBS, 0.1% TritonX-100, 0.1% 

BSA) and mounted with ProLong Gold with DAPI (Invitrogen Molecular Probes, 

Eugene, OR). 

 For MAP staining, experiments were performed using control or cyb-3(RNAi)-

treated gravid hermaphrodites reared at 25°C.  Embryo fixation and antibody application 

was performed as previously described (306), albeit with these slight modifications: 

approximately 20 worms were placed on each slide and embryos were not excised from 

the adult worms.  The slides were incubated with the a-tubulin antibody (1:2000) and 

either anti-DNC-1 (1:400) (306) or anti-BMK-1 (1:500) (278) antibodies O/N at 4°C.  

The following secondary antibodies were applied for 2 hrs at RT: Alexa Fluor
 
488 goat 

anti-mouse IgG and Alexa Fluor 555 goat anti-rabbit IgG (both at 1:1000) (Invitrogen 

Molecular Probes, Eugene, OR).  After washing, slides were mounted with ProLong 

Gold with DAPI (Invitrogen Molecular Probes, Eugene, OR). 

 The following procedure was used for taxol treatment of embryos.  All steps 

were performed at RT.  ~ 30 adult hermaphrodites were cut open into a 30µl 1:9 bleach 

solution (diluted from a 6.15% sodium hypochlorite stock with M9) on a microscope 

slide.  After 3 min incubation, embryo concoctions were R/S in 1 ml M9 and centrifuged 

at 1,500 g for 1 min.  The embryo pellet was R/S in 30 ul chitinase (1 µg/µl), incubated 

for 5 min, and centrifuged 10,000 rpm for 20 sec.  Pellet was R/S in 10 µl Taxol (100 

µM in (M9 + 1% EtOH); Oregon Green 488 paclitaxel Molecular Probes) or vehicle 

(M9 + 1% EtOH) and incubated on a microscope slide for 4 min.  A coverslip was 

placed on the slide and slight pressure was applied followed by 1 min incubation to 

facilitate Taxol entry.  Slides were then placed on a metal plate chilled with dry ice and 

immunostained as above. 

 

Image Analysis/Immunoquantitation 

 Immunofluorescent images were acquired on a Nikon 2000U inverted 

microscope equipped with a Photometrics Coolsnap HQ camera.  Metamorph software 

was used for image acquisition.  Z-sections were acquired at 0.2 µm steps using a 

60X/1.49 NA objective.  Z stacks were projected and deconvolved for 10 iterations using 

Autodeblur (Autoquant Media Cybernetics, Bethesda, MD).  For immunoquantitation of 
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pICP-1 levels, deconvolved images were imported into Imaris x64 software (Bitplane, 

St. Paul, MN).  3D isosurfaces were generated based on minimal threshold values within 

the experimental set, and corresponding sum voxel intensity values were collected for 

each embryo within the data set.  Since cyb-3(RNAi) embryos are defective in meiosis II 

and have increased DNA content, the ratio of the sum intensity values of (pICP-1/DAPI) 

was computed and used for quantitative analysis.   

 

Live Imaging 

 Embryos from control and RNAi-treated (by feeding or dsRNA microinjection) 

animals were mounted on 2% agarose pads and imaged using a spinning disk confocal 

(Perkin Elmer, Waltham, MA) attached to a Nikon TE2000U inverted microscope.  

Images were acquired using an ORCA-ER digital camera (Hamamatsu, Bridgewater, 

NJ) and a 60X 1.45 NA Plan Apo VC lens.  Ultraview software (Perkin Elmer) was used 

to control the confocal, microscope, and camera.  Images from JS967 embryos were 

taken at 15 sec intervals while 30 sec intervals were generated for all other strains; Z-

sections were 1 µm. 

 

Immunoprecipitation and Western Analysis 

 Gravid N2 C. elegans hermaphrodites treated with control or cyb-3(RNAi) were 

subjected to the alkaline hypochlorite method to isolate embryos (151).  Embryos were 

briefly washed in PBS and resuspended (R/S) in lysis buffer (PBS, 20mM HEPES, 1% 

NP-40, 50 µM #-glycerophosphate, 1 mM Na3VO4, 1 mM dithiothreitol [DTT], 1 mM 

EDTA, 1 mM PMSF + complete protease inhibitors (Roche Diagnostics, Indianapolis, 

IN) and sonicated 3 times over ice for 30 sec each.  Following centrifugation at 12,000 

rpm for 10 min, the clarified lysates were immediately used for immunoprecipitation.  A 

1/10 volume of Protein G-Sepharose beads (GE Healthcare, Piscataway, NJ) was added 

to the lysates and rocked at 4°C for 1 hr to preclear the extracts.  The supernatant was 

isolated after a brief low-speed spin to pellet the beads.  Protein concentration was 

determined by Bradford assay (Bio-Rad, Hercules, CA). 

 For immunoprecipitations, 500 µg embryo extract was incubated with 3 µl CYB-

3 antibody (270) O/N at 4°C.  1 µg GFP antibody (Invitrogen, Eugene OR cat no 
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A11122) was used for GFP::DHC-1 immunoprecipitation.  50 µl protein G-Sepharose 

beads (in a 50:50 slur) were added and the extract incubated at 4°C for an additional 2 

hr.  The beads and isolated immunocomplexes pelleted via low-speed centrifugation and 

washed four times in lysis buffer without NP-40.  Samples were separated by SDS-

PAGE, transferred to nitrocellulose, and the membranes probed with the CYB-3 

antibody (1:1000) or !-tubulin antibody (1:3000).  Western analysis was performed as 

previously described (151). 
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VITA 

 

 Early childhood life was a challenge from the start for me, being born two 

months premature and weighing 3lbs 6oz.  However, I quickly gained weight and 

showed no sign of permanent complications due to my premature birth (at least 

outwardly LOL).  I was a sensitive child that loved animals and was brought up in a 

family that valued education, both academically and musically.  My mother was a music 

teacher and taught me piano at an early age.  However, I quickly became aware of my 

talent with singing and began concentrating on learning appropriate vocal technique in 

my early teenage years.  I also succeeded in school, hardly ever getting less than an “A” 

in all subjects.  Throughout my life, however, was an absence of parental figures, 

especially a father.  My mother and father divorced when I was a year old as he was 

unwilling to work to support his family and was an alcoholic.  So, my mother, brother, 

and I moved in and out of my grandparent’s house (maternal side).  When not living 

with my grandparents, we lived in trailers.  Luckily, my grandparents were terrific 

people who supported me and ingrained the value of education in me.  However, the 

disparity between what I felt inside as my unlimited potential as an intelligent and 

talented person maturing into adulthood and the confinement of the outside world due to 

financial difficulties was very distressing to me.  Also, my family taught me that people 

are untrustworthy and they did not allow me the physical or mental freedom to get close 

to anyone.  I was basically “secluded” my entire childhood until I graduated high school 

in 1996 at which time a swift onset of depersonalization disorder kicked in and has 

remained with me today (although the “symptoms” are nearly non-existent and lie 

somewhere in the background). 

 Many people may have acted out in violence or opposition to a childhood full 

of disappointments.  However, I must have made the decision early in life to learn 

subjects that interested me (i.e. Science, Math, and Music), focus on but then forget 

material that I could care less about (i.e. History), and disconnect at some level from the 
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daily confusion that was my childhood.  I graduated in the top 20 students of my high 

school class of over 400, was a member of the National Honors Society, Who’s Who 

Among American High School Students, and Tri-M Music Honor Society.  I was also 

involved in chorus and musical theater during high school, often having the lead male 

role in musicals… I guess those gay genes were my saving grace!  After high school I 

enrolled at a local college (Stockton College) due to financial difficulties with an 

intended major in psychology and minor in music.  Chris Narcisco entered my life full-

time when I started college (I had known him in high school when I was convinced that 

he had stolen his brand new Nissan Maxima from an elderly woman at the nursing home 

he had worked at) and he took me under his wing to guide me in the right direction.  If a 

God exists, It brought Chris and I together at that time in my life to show me true love 

and support.  Turns out, he was and remains a very hard worker and did not mug an 

elderly woman after all! :)  After two years at the local college, I decided that obtaining 

student loans and getting a better education at a higher accredited university (Rutgers) 

was a necessity due to the limitations of the local college.  The Rutgers biology 

department was fantastic, and many of my classes centered on neuroscience.  I changed 

my major to Biology, with a minor in Psychology.  Also, I was fortunate to join one of 

the choruses at Rutgers and enrolled in vocal training with several music professors.  I 

entered Dr. Bonnie Firestein’s lab toward the end of my education at Rutgers to obtain 

lab experience.  I was so fortunate to have contacted her at that time since she had just 

started her lab in the neuroscience department.  The hands-on laboratory training she 

gave offered me the rare opportunity to work directly with an experienced scientist. 

 I am proud to admit that I am the first person in my family to obtain an 

advanced degree beyond a Bachelor’s degree.   Although my mother’s B.A. was in early 

childhood education, other than teaching music to children she never capitalized on her 

degree.  My grandmother obtained her B.A. in library science around the age of 50 and 

was a librarian for many years.  Lastly, I have legally changed my last name within the 

past year to my grandmother’s maiden name (Deyter) in honor of her memory and for 

personal gratification. 

 

Virtual address:  gmdeyter@gmail.com 


