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Figure 25. Dominant negative Stat3 inhibits Stat3 activation in MDA959 mouse 

lung tumor cells. MDA959 tumor cells transfected with vector or Stat3(Y705F) 

were starved for 48 hours then extracted and analyzed by western blotting for 

the indicated proteins. Flag antibody was used to detect the dominant negative 

Stat3(Y705F). 
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Figure 26. Dominant negative Stat3 increases starvation-induced apoptosis in 

MDA959 mouse lung tumor cells.  A, MDA959 cells transfected with vector or 

Stat3(Y705F) were cultured in MDEM/F12 medium without FBS for 48 hours, 

then cells were double stained with PI and AnnV-FITC and analyzed for 

apoptosis by flow cytometry. Results of one of the triplicates is presented. B, 

the mean ± SD of three independent experiments in panel A was shown in bar 

graph. P value were calculated using Student T-test and * means P < 0.05.   

 

 

 

 

100

101

102

103

104

100100

101101

102102

103103

104104

AnnV FITC

100 101 102 103 104100100 101101 102102 103103 104104

100 101 102 103 104100100 101101 102102 103103 104104 100 101 102 103 104100100 101101 102102 103103 104104

100 101 102 103 104100100 101101 102102 103103 104104
100

101

102

103

104

100100

101101

102102

103103

104104

0

40

80

0

40

80

PI
C

ou
nt

s

9.8%

1.4%

11.2%

21.6%

3.8%

25.4%

V Y705F

0

10

20

30

V Y705F

A
po

pt
ot

ic
 c

el
ls

 (%
)

*

11.0

24.2

A B
MDA959

MDA959



 - 67 -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Dominant negative Stat3 inhibited colony formation of MDA959 

mouse lung tumor cells.  A, MDA959 tumor cells transfected with vector or 

Stat3(Y705F) were suspended in Matrigel and cultured for two weeks to assay 

for colony formation ability. Photomicrographs of cultures at high magnification 

of one experiment were showed. B, colonies in three wells (each cell line) in 

panel A were counted and the data are presented in bar graph as mean ± SD 

colonies/well. P value were calculated using Student T-test and * means P < 

0.05.   
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tumor cells after transfected with the dominant negative Stat3 (Y705F). These 

data indicate that persistent Stat3 activation is required for the resistance to 

starvation-induced apoptosis in MDA959 tumor cells. Moreover, we found that 

MDA959 tumors cells expressed the dominant negative Stat3 (Y705F) formed 

less colonies in Matrigel than cells expressed the control vector (Fig. 27A). The 

decrease was statistically significant and more than 3 folds (Fig. 27B). These 

data indicate that persistent Stat3 activation is also required for the increased 

colony formation in MDA959 tumor cells. 

 

4.13 AG490 increases starvation induced apoptosis and decreased colony 

formation in Gprc5a-/- normal airway epithelial cells 

 We have shown that AG490, an inhibitor of JAK, completely inhibited 

Stat3 activation in Gprc5a-/- cells (Fig. 14). Thus, we also examined whether this 

small molecular inhibitor can reverse the transformed phenotypes in Gprc5a-/- 

cells. As seen in Fig. 28A and 28B, AG490 treatment dramatically increased the 

starvation induced apoptosis in Gprc5a-/- cells. The starvation induced 

apoptosis rate increased from 10.6% to 38.1% in Gprc5a-/- cells after treatment 

with AG490. Meanwhile, we also found AG490 treatment significantly inhibited 

the colony formation ability of Gprc5a-/- cells in Matrigel (Fig. 29A and 29B). 

These data indicate that using small molecular inhibitor of Stat3 signaling also 

can reverse the transformed phenotypes in Gprc5a-/- cells. 
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Figure 28. Inhibition of Stat3 activation using AG490 increases starvation 

induced apoptosis in Gprc5a-/- normal airway epithelial cells. A, Gprc5a-/- cells 

were treated with AG490 (30 μM) or DMSO in K-SFM for 48 hours, then cells 

were double stained with PI and AnnV-FITC and then analyzed  for apoptosis 

by flow cytometry. Results of one of the triplicates is presented. B, the mean ± 

SD of three independent experiments in panel A was shown in bar graph. P 

value were calculated using Student T-test and * means P < 0.05.   
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Figure 29. Inhibition of Stat3 activation using AG490 decreases colony 

formation of Gprc5a-/- normal airway epithelial cells. A, Gprc5a-/- cells were 

suspended in Matrigel with AG490 (30μM) or DMSO and analyzed for colony 

formation over two weeks. Photomicrographs of cultures at high magnification 

of one experiment were showed. B, colonies in three wells (each cell line) in 

panel A were counted and the data are presented in bar graph as mean ± SD 

colonies/well. P value were calculated using Student T-test and * means P < 

0.05.  
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4.14 AG490 increases starvation induced apoptosis and decreases colony 

formation in MDA959 lung tumor cells 

 We have shown that AG490, an inhibitor of JAK, completely inhibited 

Stat3 activation in MDA959 tumor cells (Fig. 20A). Thus we examined whether 

inhibition of Stat3 by this small molecular inhibitor can reverse the transformed 

phenotype in MDA959 tumor cells. As seen in Figs. 30A and 30B, AG490 

treatment significantly increased the starvation induced apoptosis in MDA959 

tumor cells. The starvation induced apoptosis rate increased from 14.3% to 

43.9% in MDA959 tumor cells after treated with AG490. Meanwhile, we also 

found AG490 treatment dramatically inhibited the colony formation of MDA959 

tumor cells in Matrigel (Fig. 31A and 31B). These data indicate that using small 

molecular inhibitor of Stat3 signaling also can reverse the transformed 

phenotypes in MDA959 tumor cells. 

 

4.15 Discussion 

 The relative resistance of Gprc5a-/- normal airway epithelial cells to 

starvation-induced apoptosis compared to Gprc5a+/+ normal airway epithelial 

cells suggests increased self-sufficiency in growth signals, enhanced ability to 

evade apoptosis or both (Hanahan and Weinberg, 2000). The increased 

expression of anti-apoptotic Stat3 target genes including Bcl-XL, Cryab, Hspa1a, 

and Mcl1 in the Gprc5a-/- cells is a likely explanation for their relative resistance 

to apoptosis. Because Stat3 activation has been reported to play important  
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Figure 30. Inhibition of Stat3 activation using AG490 increases starvation 

induced apoptosis in MDA959 mouse lung tumor cells. A, MDA959 cells were 

treated with AG490 (30 μM) or DMSO in DMEM/F12 medium without FBS for 

48 hours, then cells were double staining with PI and AnnV-FITC and then 

analyzed  for apoptosis by flow cytometry. Results of one of the triplicates is 

presented. B, the mean ± SD of three independent experiments in panel A was 

shown in bar graph. P value were calculated using Student T-test and * means 

P < 0.05.   
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Figure 31. Inhibition of Stat3 activation using AG490 decreases colony 

formation of MDA959 mouse lung tumor cells. A, MDA959 cells were 

suspended in Matrigel with AG490 (30μM) or DMSO and analyzed for colony 

formation over two weeks. Photomicrographs of cultures at high magnification 

of one experiment are showed. B, colonies in three wells (each cell line) in 

panel A were counted and the data are presented in bar graph as mean ± SD 

colonies/well. P value were calculated using Student T-test and * means P < 

0.05.  

DMSO AG490

0

50

100

150

200

250

300

DMSO AG490
*C

ol
on

y 
nu

m
be

r /
 w

el
l

MDA959

MDA959

A

B



 - 74 -

 

roles in both mouse and human lung cancer development (Gao et al., 2007; Li 

et al., 2007) and these increased anti-apoptotic genes in Gprc5a-/- cells were 

Stat3 targeted genes, we examined the status of Stat3 activation in our cells 

and found that Stat3 signaling pathway was activated in Gprc5a-/- cells to a 

much higher level than in Gprc5a+/+ cells. Previous reports have shown that the 

EGFR signaling activated Stat3 and mediated growth in tumor cells (Akca et al., 

2006; Colomiere et al., 2009; Gao et al., 2007; Vigneron et al., 2008). However, 

the Stat3 activation in Gprc5a-/- normal airway epithelial cells was independent 

of exogenous EGF and EGFR signaling but was dependent on autocrine Stat3 

activator(s) released by both Gprc5a+/+ and Gprc5a-/- cells.  

 Further studies using the Jak/Stat3 inhibitor AG490 demonstrated that 

Jak activity is required for Stat3 activation in Gprc5a-/- cells, and identified Lif, a 

member of the Il-6 family cytokines, as the autocrine mediator of Stat3 

activation in the Gprc5a-/- cells. Previous reports have shown that human 

carcinoma cell lines including lung cancer produce Lif (Kamohara et al., 1994) 

and that Lif functions as an autocrine or paracrine growth factor in breast, 

pancreas and glioblastoma tumor cells (Kamohara et al., 2007; Kellokumpu-

Lehtinen et al., 1996; Penuelas et al., 2009; Quaglino et al., 2007). Lif also 

plays important roles in tumor metastasis (Maruta et al., 2009; Wysoczynski et 

al., 2007). Our studies have shown that while both Gprc5a+/+ and Gprc5a-/- cells 

produce and release Lif, their response to Lif was different insofar as Lif 

induced a persistent Stat3 activation in the Gprc5a-/- cells but only a transient 
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activation of Stat3 in the Gprc5a+/+ cells. The data is consistent with the 

previous report that transformed bronchia epithelial cells have increased stat3 

activation induced by LIF (Loewen et al., 2005). This difference in Stat3 

activation may explain the higher levels of the anti-apoptotic genes and proteins 

and the partial resistance of the cells to starvation. Moreover, we also found 

that Stat3 was constitutively activated by autocrine Lif in MDA959 lung tumor 

cells suggesting that Lif mediated Stat3 activation happened in both 

premalignant and malignant cells. 

 The importance of Stat3 activation for the expression of the transformed 

phenotype in Gprc5a-/- normal airway epithelial cells and in MDA959 tumor cells 

was demonstrated by the finding that blocking Stat3 activation by dominant 

negative Stat3(Y705F) or by AG490 increased the sensitivity of both cell lines to 

starvation-induced apoptosis and decreased their colony forming potential. 

Therefore, we propose that persistent Stat3 activation induced by autocrine Lif 

in Gprc5a-/- cells and MDA959 tumor cells may play important roles for the 

development of lung cancer in the Gprc5a-/- mice. This possibility is also 

supported by the report that transgenic mice overexpressing constitutively 

activated Stat3 in alveolar type II epithelial cells develop spontaneous lung 

adenocarcinomas (Li et al., 2007), which suggests that Stat3 activation alone 

can lead to lung carcinogenesis. The relevance of the findings with mouse cells 

to human lung cancer is indicated by the findings that STAT3 is persistently 

activated by chronic stimulation of JAK by cytokines in a variety of human 

tumors including lung tumors (Bromberg et al., 1999; Hedvat et al., 2009). 
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Further, STAT3 target genes have been proposed as biomarkers for human 

chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma 

diagnosis and prognosis (Qu et al., 2009). 

 We have shown that autocrine Lif is the Stat3 activator in Gprc5a-/- cells 

and MDA959 tumor cells. These data were mostly based on studies of cells 

cultured in vitro. To further investigate the important roles of autocrine Lif in lung 

carcinogenesis of Gprc5a-/- mice in vivo, it would be worthwhile to generate 

Gprc5a-/-Lif-/- double knockout mice by crossing the Gprc5a-/- mice with Lif-/- 

mice (Escary et al., 1993; Stewart et al., 1992) and examine whether the 

Gprc5a-/-Lif-/- mice have decreased lung tumors compared with the Gprc5a-/-

Lif+/+ mice. To examine the important roles of persistent Stat3 activation in lung 

carcinogenesis of Gprc5a-/- mice in vivo, we suggest to generate Gprc5a-/-Stat3-

/- double knockout mice by crossing the Gprc5a-/- mice with lung specific Stat3-/- 

mice (Hokuto et al., 2004; Kida et al., 2008) and investigate whether the 

Gprc5a-/-Stat3-/- mice have decreased lung tumors compared with the Gprc5a-/-

Stat3+/+ mice. 
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CHAPTER 5 THE PERSISTENT STAT3 ACTIVATION IN GPRC5A-/- CELLS 

IS THE RESULT OF REDUCED SOCS3 PROTEIN 

 

5.1 Socs3 protein level decreased in Gprc5a-/- normal airway epithelial 

cells compared with Gprc5a+/+ cells 

 Stat3 activation induced by Lif was transient in Gprc5a+/+ cells but 

persistent in Gprc5a-/- cells suggesting that Gprc5a-/- cells have defects in 

controlling the Lif/Stat3 signaling. To explore this further, we examined the level 

of Socs3, a Stat3 induced protein that functions as a negative feedback inhibitor 

of the Stat3 activation induced by various cytokines (Croker et al., 2003; Lang 

et al., 2003; Nicola and Greenhalgh, 2000; Yasukawa et al., 2003). Although we 

did not observe a large difference in the mRNA level of Socs3 between 

Gprc5a+/+ and Gprc5a-/- cells (Fig. 32A), we found that the level of Socs3 protein 

was greatly reduced in Gprc5a-/- cells compared to Gprc5a+/+ cells (Fig. 32B). 

These data suggest that the level of Socs3 is regulated at the post 

transcriptional level. Previous reports have shown that Socs3 protein can be 

degraded through the proteasome pathway (Haan et al., 2003; Sasaki et al., 

2003; Zhang et al., 1999). To determine whether the decreased Socs3 protein 

in Gprc5a-/- cells was caused by increased proteasome mediated degradation, 

we treated cells with the proteasome inhibitor MG132. We found that MG132 

treatment did not increased the protein level of Socs3 in Gprc5a-/- cells and also 

did not change the protein level of Socs3 in Gprc5a+/+ cells (Fig. 33), suggesting 

the Socs3 
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Figure 32. Decreased Socs3 protein level in Gprc5a-/- normal airway epithelial 

cells compared with Gprc5a+/+ cells. A, Gprc5a+/+ and Gprc5a-/- normal airway 

epithelial cells were cultured in K-SFM medium supplemented with EGF and 

BPE for 24 hours, and then cells were harvested and analyzed for Socs3 

mRNA level using QPCR. B, Gprc5a+/+ and Gprc5a-/- normal airway epithelial 

cells were cultured in K-SFM medium supplemented with EGF and BPE for 24 

hours, and then cells were harvested and analyzed for protein level of Socs3 by 

western blotting. 
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Figure 33. Decreased Socs3 protein level in Gprc5a-/- normal airway epithelial 

cells is not caused by increasing proteasome dependent degradation. Gprc5a+/+ 

and Gprc5a-/- normal airway epithelial cells were treated with 10 μM MG132 for 

the indicated times, and then the cells were harvested and analyzed for protein 

level of Socs3 by western blotting. 

 

 

 

 

 

 

Socs3

Actin

MG132 : 0 15 30 60 18
0

36
0

0 15 30 60 18
0

36
0

-/- +/+Gprc5a :

minute



 - 80 -

protein is not regulated by proteasome mediated degradation in Gprc5a+/+ and 

Gprc5a-/- cells. 

 

5.2 Restoration of SOCS3 expression in Gprc5a-/- normal airway epithelial 

cells inhibited Stat3 activation 

 To confirm that the persistent Stat3 activation of Stat3 in Gprc5a-/- cells 

was due to a decrease of Socs3, we restored the expression of SOCS3 into 

Gprc5a-/- cells by transfection with a SOCS3-HA expression vector. As can be 

seen in Fig. 34A, the expression of SOCS3-HA was confirmed by 

immunoblotting using HA antibody. We found that the over-expression of 

SOCS3 decreased the persistent activation of Stat3 in Gprc5a-/- cells as 

indicated by the reduced level of tyrosine phosphorylated Stat3 (Fig. 34A). To 

investigate whether over-expression of SOCS3 will change the response to Lif 

stimulation, we treated the cells with exogenous Lif. As shown in Fig. 34B, 

Gprc5a-/- cells expressing SOCS3 exhibited reduced response to exogenous Lif 

stimulation, which is similar to Gprc5a+/+ cells. These data strongly indicate that 

decreased Socs3 protein due to loss of Gprc5a tumor suppressor leads to the 

prolonged response to Lif and persistent activation of Stat3 in Gprc5a-/- cells. 
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Figure 34. SOCS3 inhibits Stat3 activation in Gprc5a-/- normal airway epithelial 

cells. A, Gprc5a-/- cells transfected with vector or SOCS3-HA were starved for 

48 hours then extracted for western blotting analysis of the indicated proteins. B, 

Gprc5a-/- cells transfected with vector or SOCS3-HA were starved in fresh K-

SFM for one hour, then treated with exogenous Lif (1000 unit/ml) for the 

indicated times. The cells were analyzed for phosphorylated and total Stat3 by 

western blotting. 
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5.3 GPRC5A increases SOCS3 protein in co-transfected 293T cells 

 The above data suggested that Gprc5a increased Socs3 protein by  

post-transcriptional regulation. To determine whether human GPRC5A also 

increase SOCS3 protein level, we co-transfected SOCS3 expression vector 

with GPRC5A expression vector in 293T cells. We found that SOCS3 protein 

level increased in cells co-transfected with GPRC5A compared to control vector, 

strongly indicating that GPRC5A may increase SOCS3 protein through post-

transcriptional regulation (Fig. 35). 

 

5.4 GPRC5A stabilizes SOCS3 protein 

 We have shown that SOCS3 protein level was higher in GPRC5A 

expressing cells. We propose that it may be through translational regulation or 

through regulating the stability of the SOCS3 protein. To determine whether 

GPRC5A stabilized SOCS3 protein, we co-expressed SOCS3 with GPRC5A 

and treated the cells with cycloheximide, an inhibitor of protein synthesis. As 

shown in Fig. 36A and 36B, SOCS3 protein degraded more slowly in cells co-

expressing GPRC5A than in cells co-transfected with control vector. The half 

life of SOCS3 increased when co-expressed with GPRC5A relative to co-

transfected with control vector (Fig. 36B). These data indicate that GPRC5A 

increases SOCS3 protein level through regulating the SOCS3protein stability 

and half-life. 
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Figure 35. GPRC5A increased SOCS3 protein level in 293T cells. 293T cells 

were transfected with expression vectors of SOCS3 tagged with Flag, GPRC5A 

tagged with Myc as indicated and cultured for 48 hours. The cells were then 

harvested and analyzed for protein levels of SOCS3, GPRC5A and Actin by 

western blotting. 
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Figure 36. GPRC5A stabilizes SOCS3 protein in 293T cells. A, 293T cells were 

transfected with expression vectors of SOCS3 with Flag tag and vector control, 

or SOCS3 with Flag tag and GPRC5A with Myc tag and cultured for 48 hours. 

Cells were then treated with cycloheximide (CHX) at 20 μM for the indicated 

times then harvested and analyzed for protein levels of SOCS3, GPRC5A and 

Actin by western blotting. B, the X-ray films (panel A) were scanned and the 

bands were quantified using Quantity One software. The intensities 

(percentage) were calculated by comparing to the 0 hour point. The 0 hour point 

is 100%. 

SOCS3
+

Vector

SOCS3
+

GPRC5A

CHX : 0 1 3 6 9 hour
293T

IB:Flag(SOCS3)

IB:Flag(SOCS3)

IB:Actin

IB:Actin

IB:Myc(GPRC5A)

IB:Myc(GPRC5A)

A

0

20

40

60

80

100

3 6 9 12
In

te
ns

ity
 

(P
er

ce
nt

ag
e)

Time (Hour)

SOCS3+Vector
SOCS3+GPRC5A

B



 - 85 -

5.5 SOCS3 co-localizes and interacts with GPRC5A in 293T cells 

 Next, we investigated the locations of SOCS3 and GPRC5A when co-

expressed in 293T cells. We fused SOCS3 with red fluorescence protein DsRed 

and GPRC5A with green fluorescence protein AcGFP1 and co-expressed them 

in 293T cells. As seen in Fig. 37, SOCS3 co-localized with GPRC5A-AcGFP1 

fusion protein but not with AcGFP1 protein, indicating that SOCS3 co-localized 

with GPRC5A protein. The co-localization of SOCS3 and GPRC5A suggested 

that SOCS3 may interact with GPRC5A, which may regulate SOCS3 

stabilization. To determine whether SOCS3 interacts with GPRC5A, we co-

expressed SOCS3 with flag tag and GPRC5A with myc tag in 293T cells and 

performed immunoprecipitation. We found that GPRC5A was associated in the 

SOCS3 protein complex immunoprecipitated using anti-flag antibody, whereas 

the normal IgG did not pull down either SOCS3 or GPRC5A (Fig. 38).  

 

5.6 Discussion 

 The Stat3 activation induced by autocrine Lif was transient in Gprc5a+/+ 

normal airway epithelial but was persistent in Gprc5a-/- cells, suggesting that 

Gprc5a-/- cells may lose some negative feedback inhibitors of the Lif/Stat3 

signaling. Following that, we found that Socs3 protein, a well known inhibitor of  

Stat3 signaling, was decreased in the Gprc5a-/- cells compared to Gprc5a+/+ 

cells which may explain the persistent Stat3 activation induced by autocrine Lif. 
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Figure 37. GPRC5A colocalizes with SOCS3 protein in 293T cells. 293T cells 

were transfected with expression vectors of SOCS3 with DsRed tag and 

GPRC5A with AcGFP tag, or SOCS3 with DsRed tag and AcGFP alone. After 

culturing for 48 hours, cells were fixed, stained for nuclei using DAPI and 

analyzed by using Olympus confocal microscope. 
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Figure 38. GPRC5A interacts with SOCS3 protein in 293T cells. The cells were 

transfected with expression vectors of SOCS3 with Flag tag and GPRC5A with 

Myc tag. After culturing for 48 hours, cells were harvested and cell lysates were 

subjected to immunoprecipitation using Flag antibody or normal IgG. The 

protein complexes were analyzed by western blotting. 
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Previous study showed that SOCS3 was silenced by promoter 

hypermethylation in human head and neck cancer cells and lung cancer (He et 

al., 2003; Weber et al., 2005). However, we found that the reduction of Socs3 

protein in Gprc5a-/- cells was regulated through post-transcriptional level since 

the mRNA level of Socs3 were even somewhat higher in Gprc5a-/- cells 

compared with Gprc5a+/+ cells, which may be explained by the fact that Socs3 

is also a Stat3 targeted gene. Thus, Socs3 level may be down-regulated by 

different pathways including transcriptional or posttranscriptional regulation in 

lung cancer cells.  It has been reported that SOCS3 protein may be degraded 

through the proteasome pathway (Haan et al., 2003; Sasaki et al., 2003). 

However, the proteasome inhibitor MG132 did not alter the Socs3 protein level 

in Gprc5a-/- cells and Gprc5a+/+ cells, consistent with a previous report that wild 

type SOCS3 was degraded through a proteasome-independent pathway  

(Babon et al., 2006). The degradation pathway of wild type SOCS3 and the 

mechanism by which GPRC5A stabilized SOCS3 require further investigation, 

which is out of the scope of this thesis. 

 In summary, we demonstrated a potential mechanism involving Stat3 

activation by which Gprc5a functions as a lung-specific tumor suppressor. In 

Gprc5a+/+ airway epithelial cells (Fig. 39), Socs3 protein is stabilized by Gprc5a 

and negatively regulates the autocrine Lif-induced Stat3 activation leading to a 

transient Stat3 activation in response to the autocrine Lif. The Stat3 regulated 

anti-apoptotic genes are then expressed at a low level and the Gprc5a+/+ airway 

epithelial cells are  
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Figure 39. Stat3 signaling in Gprc5a+/+ cells. In Gprc5a+/+ cells, Socs3 protein 

was high through Gprc5a-mediated stabilization. The autocrine Lif induced 

Stat3 activation was transient and inhibited by Socs3, leading to low expression 

of anti-apoptotic proteins like Bcl-XL, Cryab, Hspa1a and Mcl1. Thus, the 

Gprc5a+/+ cells were more sensitive to starvation induced apoptosis and grew 

dependent on anchorage. 
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Figure 40. Stat3 signaling in Gprc5a-/- cells. In Gprc5a-/- cells, Socs3 protein 

level is much lower than in Gprc5a+/+ cells due to loss of stability. The autocrine 

Lif induced a persistent activation of Stat3 because of the low level of Socs3, 

the negative feedback inhibitor of the Lif/Stat3 signaling. The persistent Stat3 

activation increased the expression of anti-apoptotic genes including Bcl-XL, 

Cryab, Hspa1a and Mcl1, leading to increased survival, acquisition of 

anchorage independent growth in Gprc5a-/- cells, and lung tumorigenesis in 

Gprc5a-/- mice.  
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more sensitive to starvation induced apoptosis and their growth is anchorage-

dependent. In Gprc5a-/- airway epithelial cells (Fig. 40), Socs3 protein is lower 

than in Gprc5a+/+ cells due to the loss of Gprc5a and the autocrine Lif/Stat3 

pathway is hyper-activated. The Gprc5a-/- airway epithelial cells have a 

prolonged response to autocrine Lif which causes a persistent activation of 

Stat3, leading to the high expressing these Stat3 targeted anti-apoptotic genes 

including Bcl-XL, Cryab, Hspa1a and Mcl1. The Gprc5a-/- airway epithelial cells 

exhibit increased survival and anchorage-independent growth and behavior like 

transformed cells which contributes to the development of spontaneous lung 

tumors in Gprc5a-/- mice. 
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CHAPTER 6 DISCUSSION 

 

6.1 New and unique mouse model of lung cancer 

 Human lung cancer is a dreadful disease causing ~30% of cancer death 

every year. The development of mouse models bearing lung tumors will likely 

bring in additional insights into the pathophysiologic perturbations of lung 

cancer; provide more targets for developing therapy drugs and serve as a good 

in vivo screen system for compounds against lung cancer. Several mouse 

models of lung cancer have been generated using genetic methods by knocking 

in oncogenes like mutant EGFR, mutant Kras and constitive activated Stat3 or 

by knocking out tumor suppressors like p53.  However, p53 tumor suppressor 

knockout mutant animals succumb to other tumors like lymphomas and 

sarcomas in early stage, precluding the development of lung cancer, although 

knockout mutant animals are not embryonic lethal like other tumor suppressor 

Rb-1 and WT-1. Our Gprc5a knockout mutant mouse model is a unique lung 

cancer model since that deletion of Gprc5a, a single tumor suppressor gene, is 

sufficient to mimic the human lung cancer phenotype in the mouse. Moreover, 

Gprc5a functions as a lung-specific tumor suppressor because it is primary 

expressed in mouse lung tissue and no other organs developed tumors in 

Gprc5a-/- mice.  

 Human lung cancer patients are usually diagnosed at advanced stage 

with metastasis diseases, which are important reason for lung cancer death. 

Gprc5a is not a metastasis inhibitor since Gprc5a-/- mice do not show 
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metastasis at later stage so that we can not work on lung cancer metastasis just 

on the Gprc5a-/- mice. However, we can investigate the mechanisms of other 

factors which have effect on lung cancer metastasis using the combination of 

Gprc5a-/- mutant mice with other transgenic mice. It has been reported that 

combination of mutant p53 with Kras mutant or combination of knockout LKB 

with Kras mutant increased lung cancer metastasis. It is unknown that whether 

mutant p53 or knockout LKB affecting lung cancer metastasis needs the 

specific background on Kras mutant. To address this question, we can generate 

Gprc5a and p53 double mutant mice or Gprc5a and LKB double mutant mice to 

investigate whether mutant p53 or knockout LKB will increase the lung cancer 

metastasis on the Gprc5a-/- background mice. We believe that Gprc5a knock 

out model is better than the Kras model because Gprc5a is primary expressed 

in lung while Kras is expressed in variety tissues so that it will have less none 

specific effects. 

 

6.2 Translational use of Gprc5a-/- lung cancer mouse model 

 Gprc5a-/- mice spontaneously develop lung inflammation and lung 

adenocarcinoma and tobacco-specific carcinogen NNK not only accelerated the 

tumorigenesis but also increased the multiplicity of lung tumors, thus this model 

will be useful for screening and testing drugs for the prevention and therapy of 

lung cancer. Gprc5a function as a protector of tobacco carcinogen induced lung 

cancer and may also serve as a predict marker for lung tumor development of 

smoking people since hundred percentage of Gprc5a-/- mice developed lung 
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tumors when treated with NNK compared with none of Gprc5a+/+ mice 

developed lung cancer. Smoking people with low or none expression of 

GPRC5A will be at higher risk of development of lung cancer relative to 

smoking people with normal expression of GPRC5A.  

 Our finding that Stat3 is persistently activated in Gprc5a-/- normal and 

malignant airway epithelial cells suggests Stat3 inhibitors like Stat3 decoy 

composing of a double-stranded oligonucleotide which corresponded closely to 

the Stat3 response element  may be used to treat lung cancer patient with low 

expression of GPRC5A.  We can also target the upstream of Stat3 activation 

using JAK inhibitors, dominant negative LIF protein and cell permeable SOCS3 

recombinant protein. Gprc5a suppress Stat3 activation by stabilization of Socs3 

protein so that we can identify the domain or small peptides from Gprc5a which 

stabilize Socs3 and will also be good drug for lung cancer treatment. 

 In summary, Gprc5a knockout mice are new and unique mouse model 

for lung cancer providing new targets like LIF and stratagem for lung cancer 

treatment. This model will be a useful tool to study the mechanism of lung 

cancer development and lung cancer metastasis.  
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