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ABSTRACT 

Objective: The PEM Flex Solo II (Naviscan, Inc., San Diego, CA) is currently the 

only commercially-available positron emission mammography (PEM) scanner. This 

scanner does not apply corrections for count rate effects, attenuation or scatter during 

image reconstruction, potentially affecting the quantitative accuracy of images. This work 

measures the overall quantitative accuracy of the PEM Flex system, and determines the 

contributions of error due to count rate effects, attenuation and scatter. 

Materials and Methods: Gelatin phantoms were designed to simulate breasts of 

different sizes (4 – 12 cm thick) with varying uniform background activity concentration 

(0.007 – 0.5 μCi/cc), cysts and lesions (2:1, 5:1, 10:1 lesion-to-background ratios). The 

overall error was calculated from ROI measurements in the phantoms with a clinically 

relevant background activity concentration (0.065 μCi/cc). The error due to count rate 

effects was determined by comparing the overall error at multiple background activity 

concentrations to the error at 0.007 μCi/cc. A point source and cold gelatin phantoms 

were used to assess the errors due to attenuation and scatter. The maximum pixel values 

in gelatin and in air were compared to determine the effect of attenuation. Scatter was 

evaluated by comparing the sum of all pixel values in gelatin and in air. 

Results: The overall error in the background was found to be negative in 

phantoms of all thicknesses, with the exception of the 4-cm thick phantoms (0%±7%), 
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and it increased with thickness (-34%±6% for the 12-cm phantoms). All lesions exhibited 

large negative error (-22% for the 2:1 lesions in the 4-cm phantom) which increased with 

thickness and with lesion-to-background ratio (-85% for the 10:1 lesions in the 12-cm 

phantoms). The error due to count rate in phantoms with 0.065 μCi/cc background was 

negative (-23%±6% for 4-cm thickness) and decreased with thickness (-7%±7% for 12 

cm). Attenuation was a substantial source of negative error and increased with thickness 

(-51%±10% to -77% ±4% in 4 to 12 cm phantoms, respectively). Scatter contributed a 

relatively constant amount of positive error (+23%±11%) for all thicknesses. 

Conclusion: Applying corrections for count rate, attenuation and scatter will be 

essential for the PEM Flex Solo II to be able to produce quantitatively accurate images. 
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CHAPTER 1 – INTRODUCTION 

 

Breast cancer is by far the most commonly diagnosed non-skin cancer in women 

in the United States, and it is the second most fatal cancer in that population. It was 

estimated that 192,370 new cases of breast cancer would be diagnosed in women in the 

United States in 2009, and that 40,170 women would die from the disease(1)(1) (1). It has 

been shown that the mortality due to breast cancer varies with stage at the time of 

diagnosis (2). Between 1999 and 2006, the 5-year relative survival of patients diagnosed 

with localized disease was 98%. This decreased to 84% in patients whose disease had 

spread to regional lymph nodes, and to 23% in patients with metastatic disease. Early 

detection of breast cancer is clearly vital to improving survival by allowing intervention 

during earlier stages of disease. Additionally, early detection and accurate diagnosis may 

afford patients more treatment options, such as breast conserving surgery (lumpectomy 

vs. mastectomy) and less aggressive adjuvant chemotherapy (3). 

Mammography is now the primary imaging modality for breast cancer screening 

and its widespread use is responsible for reducing the mortality of breast cancer (4, 5).  

As with any test, mammography has certain limitations, particularly lower sensitivity in 

women with dense breasts and low positive predictive value (PPV) overall (6). Other 

disadvantages of mammography include exposure to ionizing radiation and patient 

discomfort. Using adjunct imaging modalities (e.g. ultrasound, MRI and functional 

imaging) in combination with mammography improves the sensitivity of breast cancer 

screening compared with mammography alone (7, 8). The benefits and limitations of 
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mammography and some common adjunctive modalities for imaging breast cancer are 

discussed below. 

   

Mammography 

 Mammography is the application of projection radiography to breast imaging. The 

radiographic appearance of normal breast tissue and cancers in the breast was first 

studied ex vivo in the 1910s (9) and clinical investigations with mammography in the 

United States were reported in 1930 (10). The diagnostic value of mammography was not 

recognized until the early 1950s but still was not used by most radiologists into the 1960s 

because of technical difficulties and limitations ,in addition to its lack of reliability and 

reproducibility (11). Owing to advances in mammography since then, multiple large, 

randomized clinical trials have shown that mammography screening substantially reduces 

the mortality of breast cancer through early detection and intervention (4, 5). Such results 

inspired the American Cancer Society (ACS) to recommend that women who are over the 

age of 40 years and have an average risk of developing breast cancer receive annual 

screening mammograms (3). 

Mammography has become the primary imaging modality for breast cancer 

screening because of its high sensitivity, and it plays an important role in diagnosis. 

Although the sensitivity is high overall, it varies with breast compositions and it is lower 

in dense breasts (6, 12). Digital mammography has slightly better sensitivity than film-

screen mammography in certain subgroups, particularly women with heterogeneously 

dense or very dense breasts (13, 14). Regardless of detector type, one weakness of 

mammography is the 2D nature of projection imaging, because overlying tissue can 
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obscure or mask lesions. Also, the specificity and PPV are low (4, 6), leading to many 

unnecessary diagnostic procedures such as additional mammographic views, fine needle 

aspirations or ultrasound-guided core biopsies. Fortunately, there are other diagnostic 

modalities that do not share the same limitations as mammography.  

   

Breast Ultrasound  

With respect to breast imaging, one advantage of ultrasound (US) is that lesions 

are not obscured by overlying tissue. Also, US does not expose the patient to ionizing 

radiation. US is commonly used to characterize suspicious lesions found with 

mammography, or when palpable masses are not visible in mammograms (15). US can 

easily differentiate between fluid-filled cysts and solid nodules (16) and using strict 

criteria such as the BI-RADS lexicon has allowed some solid nodules to be classified as 

benign or malignant with US (17, 18). If lesions cannot be ruled out as benign, US is also 

useful for guiding needle core biopsies without unnecessarily exposing patients to 

ionizing radiation. In addition to its roles in diagnosis and follow-up, US could be a 

useful adjunct to mammography for breast cancer screening, particularly in dense breasts 

(6, 7). While US cannot easily detect microcalcifications indicative of DCIS (19), early 

stage, node-negative cancers have been discovered with US (20-24). Thus, the use of 

adjunct US for breast cancer screening increases the sensitivity of detecting breast cancer 

to earlier stage cancers than mammography alone. Whereas the sensitivity is greater, the 

reported specificity and positive predictive value (PPV) are often lower because many of 

the additional findings are benign. The low specificity and high false positive rate are two 

reasons US screening has not been widely adopted as a standard procedure. 
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Breast MRI 

Magnetic resonance imaging (MRI) can acquire volumetric images, eliminating 

the problem of overlying tissue. Ionizing radiation is also not of concern in MRI. Like 

US, MRI is commonly used to follow up on suspicious mammographic findings. Breast 

MRI is useful for determining whether diagnosed breast cancers have spread beyond 

what is indicated with mammography or US, e.g. multifocal or multicentric disease, 

nodal involvement or chest wall invasion (15). Breast MRI can also detect cancers which 

are mammographically and clinically occult (25) and it may used to guide biopsies of 

breast lesions (26). Due to its high sensitivity, breast MRI is suggested by the ACR as an 

adjunct to mammography for screening of certain high-risk women (3). However, many 

benign lesions and even normal breast tissue can be mistaken for cancer, leading to very 

low specificity of this modality (25, 27). 

 

Functional Breast Imaging 

Functional imaging is yet another tool available for imaging breast cancer with 

the advantage of supplementing the anatomical imaging modalities with information 

about the disease state. Overlying tissue is less likely to obscure lesions, though it might 

reduce the signal. Conventional nuclear medicine modalities vary in their sensitivities to 

breast cancer due to the resolution of conventional systems, but they have higher 

specificity than anatomical modalities (8).  High-resolution imaging devices are under 

investigation and have improved detection sensitivity in small tumors. 
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 Scintimammography 

 Scintimammography is a functional imaging technique that commonly uses 

99m
Tc-methoxyisobutylisonitrile (

99m
Tc-sestamibi) to image breast cancer (8). 

99m
Tc-

sestamibi concentrates in breast cancers (28) due to an increase in blood flow, number of 

mitochondria, membrane hyperpolarization in the tumor or expression of the multidrug 

resistance gene (29-32).  Patients are imaged prone with the breast pendant and 

uncompressed (8). Scintimammography has good overall sensitivity and specificity to 

breast cancer (33, 34). The resolution of conventional gamma cameras limits the 

sensitivity of scintimammography to tumors smaller than 5 mm and it is more useful for 

imaging palpable primary breast cancers than non-palpable ones (28).  

 

 Molecular Breast Imaging/Breast-Specific Gamma Imaging 

 Molecular Breast Imaging (MBI) and Breast-Specific Gamma Imaging (BSGI) 

acquire images of 
99m

Tc-sestamibi with small gamma cameras dedicated to breast 

imaging (35). These systems use mild compression to immobilize the breast and decrease 

the amount of attenuating tissue between lesions and the detector, can be positioned much 

closer to the breast and have much better spatial resolution, thus offering better sensitivity 

to small tumors than conventional gamma cameras. Studies at the Mayo clinic have 

shown that MBI has similar sensitivity to breast MRI (35). It also detected 2- to 3-times 

more cancers in dense breasts than mammography, and with slightly better specificity. 
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 Breast PET 

 Another functional imaging modality is positron emission tomography (PET), 

which has the advantage of quantifying activity concentration. PET is most commonly 

performed with the radiopharmaceutical 2-[
18

F]-fluoro-2-deoxy-D-glucose (FDG), a 

glucose analog which is trapped in metabolically active cells (36). Cancer cells typically 

have a higher metabolic rate than normal tissue, resulting in greater FDG uptake in 

malignancies. The quantitative nature of PET allows accurate diagnosis or staging of 

advanced breast cancers (37, 38) as well as monitoring of treatment response (39, 40). 

The resolution of conventional scanners limits the sensitivity of PET to tumors greater 

than 5-10 mm.  

 

 Positron Emission Mammography 

To overcome the limitations of whole body PET scanners for imaging breast 

cancer, Thompson, Murth, Weinberg and Mako (41) designed a dedicated scanner with a 

more optimal geometry for high detector efficiency and high resolution. The original 

positron emission mammography (PEM) scanner used dual-head opposing planar 

coincidence detectors between which a breast could be immobilized with mild 

compression. Several PEM systems with variations of Thompson’s configuration have 

been investigated since at least the early 2000s (42-47). 

Using dedicated detectors very close to or in contact with the breast being imaged 

is extremely advantageous in two ways. First, these systems have greater geometric 

efficiency due to the large solid angle subtended by the detectors. Thus, the detection 

efficiency is on the order of two orders of magnitude greater than whole body 3D PET 



7 

 

scanners (48). The compression used by most systems reduces attenuation, which also 

increases the detection efficiency. Second, the small distance between the detectors 

reduces blurring due to noncolinearity to less than 0.25 mm—much smaller than a 

pixel—for even a 10 cm thick breast (49). Employing small crystals in this detector 

configuration further improves the resolution over whole-body PET scanners (< 2.5 mm 

vs. > 4 mm FWHM) (7, 41, 43, 45, 50).  

These impressive performance characteristics allow PEM to detect breast cancer 

earlier than conventional PET, including in situ cancers (45, 50, 51). In addition to high 

sensitivity, PEM has high specificity (50, 52). Other benefits of PEM include correlation 

with x-ray mammograms by incorporating both imaging devices into one system, as well 

as image-guided biopsies (53). While PEM is very useful for detecting breast cancer, 

accurate diagnosis and staging with PEM will require systems to accurately quantify 

radiotracer uptake. 

There is currently only one commercially-available PEM scanner, the PEM Flex 

Solo II (Naviscan, Inc., San Diego, CA). This system is described in Chapter 2, but 

briefly, it uses opposing planar coincidence detectors between which a patient’s breast is 

immobilized during scans with mild compression (48, 54). Corrections such as for dead 

time, randoms, attenuation and scatter are not currently applied on the PEM Flex. While 

this scanner is very good at detecting disease (50), accurate diagnosis and staging based 

on radiotracer uptake will require the system to be quantitatively accurate.  

The purpose of this thesis is to evaluate the quantitative accuracy of the PEM Flex 

Solo II, and to determine the contributions of error from count rate effects, attenuation 

and scatter. As a benchmark for accuracy, the Positron Emission Response Criteria In 
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Solid Tumors (PERCIST) suggests that treatment response of a tumor is indicated by 

PET if SUV decreases by 30% (55).  

 

 

Hypothesis and Specific Aims 

 Hypothesis: The total quantitative error of images acquired with the PEM Flex 

Solo II is greater than 30%, due in part to count rate effects, attenuation and scatter. 

 This hypothesis was tested using the following specific aims: 

1) Measure the total quantitative error in breast phantoms of multiple sizes, with 

uniform background and embedded cysts and lesions of different lesion-to-

background ratios 

2) Determine the error due to count rate effects 

3) Determine the error due to attenuation 

4) Determine the error due to scatter 

  

Figure 1.1: The Naviscan PEM Flex Solo II positron 

emission mammography scanner (Left). The detector 

heads inside the compression paddles (Right). 
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CHAPTER 2 – MATERIALS AND METHODS 

 

PEM Flex Solo II 

 

System Configuration 

The PEM Flex Solo II scanner utilizes a scanning, dual-headed coincidence 

detector to produce limited-angle tomographic (LAT) images. The detectors are mounted 

on an articulating arm which allows images to be acquired in any orientation, e.g. 

craniocaudal and mediolateral. The lower (support) paddle is fixed to the arm while the 

upper (compression) paddle is adjustable to provide mild compression (15 lbs of force) 

and can be moved up to 20 cm from the support paddle.  

The detectors are housed inside 16.8 × 6.2 × 5.5 cm
3
 enclosures which scan 

synchronously across the FOV in the x-direction during acquisitions. The enclosure is 

light-tight and EMI-tight. Additionally, the enclosure is 95% tungsten on 5 sides to shield 

the detectors from radiation outside the FOV. The entrance window is 1-m thick 

aluminum to maximize transmission of annihilation photons from within the FOV. Each 

detector head houses a 2 × 6 matrix of detector modules, each of which comprises a 

crystal array, a reflective light guide and a position-sensitive photomultiplier tube 

(PSPMT). Individual crystals (2 × 2 × 12 cm
3
) of LYSO are packed in 13 × 13 arrays 

with a crystal pitch of 2.1 mm. 

 

Data Flow 

During acquisition, PMT signals are tested for coincidence with a coincidence 

timing window of 6 ns. List data for coincident events include a time stamp and 32 ADC 
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values. A delayed coincidence window of about 100 ns is used to estimate random 

events, which are written to their own list file but not used to correct for randoms. 

Table 2.1: Typical Clinical PEM Protocol 

Acquisition 

Views Mediolateral and craniocaudal of 

affected breast(s) 

Field-of-view (x-y plane) 24 × 16.8 cm
2
 (maximum) 

FOV (z-direction) Patient dependent (up to 19 cm) 

Compression force ≤ 15 lbs 

Scan duration Variable (typically 10 min) 

Reconstruction 

Coincidence timing window 6 ns 

Energy window 350 – 750 keV 

Acceptance angle 25 crystals. Angle varies with 

paddle separation 

Algorithm Iterative 3D Maximum Likelihood 

Expectation Maximization 

Number of iterations 5 

Corrections Detector normalization, geometric 

efficiency. NO corrections for 

randoms, dead-time, attenuation, 

scatter or intrascan decay 

Reconstruction time Depends on number of counts 

(typically < 15 min) 

Images 

Image matrix 136 × 200 

Pixel size 1.2 × 1.2 mm
2
 

Resolution 2.4 mm FWHM 

Number of slices 12 

Slice thickness 1/12
th

 detector separation 

Units μCi/cc or PEM Uptake Value 

(PUV) 

 

The ADC values are used subsequently to identify the coordinates and energy of 

each event during rebinning, at which point an energy window is applied. The default 

lower and upper level discriminators (LLD and ULD) are 350 and 750 keV, respectively. 

Coincident events within the energy window are rebinned into a 4D histogram and 

written to a decode file which is used for reconstruction. 
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Images are reconstructed from data in the decode file using an iterative, 3D 

maximum-likelihood expectation maximization (MLEM) algorithm. In standard clinical 

mode 5 iterations are used to reconstruct 24 evenly-spaced image planes. The slice 

thickness is equal to 1/24
th

 of the detector separation. The maximum acceptance angle is 

determined by crystal separation and detector separation. In the x-direction the crystal 

separation is physically limited by the width of the detector heads (5.5 cm, or 26 crystal). 

There are 78 crystals in the y-direction, but the default constraint on acceptance angle is 

the same as in the x-direction. 

The PEM Flex system currently applies no corrections for count rate effects, 

attenuation or scatter. Corrections which are performed are detector normalization and 

decay correction to injection time (only for PUV images). No corrections are applied for 

intrascan decay, which is 8.7% over 10 minutes for 18F. 

Rebinning and reconstruction begin during acquisition and partially reconstructed 

images are displayed. List data are rebinned in approximately one-minute ―chunks‖ from 

which images are reconstructed independently of other chunks. After each chunk is 

reconstructed, the new image is merged with all previously reconstructed chunks.  

 

System Characterization 

Measurements characterizing the system performance have been reported by 

others (45), including the manufacturer (48). With the paddles separated by 9 cm, the 

resolution was about 2.4 mm in-plane and more than 9 mm in the direction perpendicular 

to the detectors. The total sensitivity was found to be 0.16 cps/Bq using a point source in-

air with the paddle separation set to 5 cm. The scatter fraction using a line source in a rat 

phantom was 13%. Uniformity in images of a 5-ml intravenous saline bag with 18F-FDG 
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was reported to be 6% by one group (45). Linearity and NECR were also evaluated as 

well as recovery coefficients for objects as small as 1 mm.  

 

Specific Aim 1: Total Quantitative Error 

 

 Gelatin Breast Phantoms 

 To measure the overall quantitative error of the PEM Flex Solo II (described in 

the Introduction), phantoms were needed which satisfied several criteria. While the SUV 

in breasts varies with tissue type (56), a uniform background activity concentration 

(hereafter referred to as background) is more reproducible than a heterogeneous 

distribution and it reduces measurement uncertainty. Further, the actual background in 

phantoms should be representative of that observed clinically. Breast cancers exhibit a 

range of lesion-to-background ratios (LBR) and cysts with no uptake may also be present, 

thus multiple LBRs and cysts needed to be simulated. The linear attenuation and scatter 

coefficients of the phantoms needed to be comparable to breast tissue at 511 keV. In 

addition to the radiological properties of the material, the size and shape of an object may 

influence how much attenuation and scatter contribute to the error. Thus, a range of sizes 

was needed as well as a shape similar to that of a breast under mild compression between 

the detector paddles. 

An alternative to water which has previously been used to construct PEM 

phantoms is gelatin (44, 57). Gelatin is well-suited for breast phantoms in part because, 

like water, the background and size are arbitrary. In addition, gelatin can be made in an 

arbitrary shape, and simulated lesions and cysts can be positioned anywhere inside the 
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phantoms without introducing other materials such as hollow plastic spheres. Also, as 

noted below, the linear attenuation coefficient of the gelatin was within 1.5% of those of 

water at diagnostic energies. This difference should be negligible at 511 keV, thus gelatin 

was assumed to be radiologically similar to breast tissue at 511 keV (Table 2.2). 

 

Table 2.2: Linear Attenuation Coefficients of Water and 

Breast Tissue 

 

Material 

Total 

μ (cm
-1

) 

Compton 

μ (cm
-1

) 

Breast Tissue (ICRU-44) 0.0973 0.0971 

Water 0.0959 0.0956 

Percent Difference -1.4% -1.5% 

 

The elemental composition and density (1.02 g/cm
3
) of 

breast tissue comprising 50% adipose and 50% glandular 

tissue reported in ICRU 44 were entered into XCOM (58) 

to calculate the mass attenuation and incoherent (Compton) 

scattering coefficients, from which the linear coefficients 

were calculated. The coefficients for water were also 

calculated in XCOM using the elemental composition of 

H2O. 

 

 

The phantoms used to measure the overall quantitative error comprised stackable, 

semicircular slabs of gelatin with uniform background and gelatin cysts and lesions. The 

background activity concentration was chosen to be 0.065 μCi/cc (2590 Bq/ml), to 

approximate the background in normal breast tissue during conventional PET scans 

(Table 2.3). Each phantom contained either two cysts and two 2:1 lesions, or two 5:1 and 

two 10:1 lesions (Figure 2.1a) fully embedded in the middle layer, for a total of four 

objects in each phantom. The objects were spaced to minimize the signal each would 

contribute to measurements in the others and in the uniform background. The slabs were 

easily reproducible, could be stacked to the desired heights (4, 6, 8, 10 and 12 cm), and 
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the profile of each phantom resembled the shape of a breast compressed between the 

detectors (Figure 2.1b). 

 

Table 2.3: Estimated Background Activity Concentration 

in Normal Breast Tissue 

Injected Dose (59) 15 mCi 

Patient Mass (60) 74 kg 

Uptake Time (55) 60 min 

SUV (61) 0.49 

Activity Background Concentration 0.067 

 

 

To make the phantoms, first gelatin mix (Kroger, Cincinnati, OH) was dissolved 

per the manufacturer’s instructions in enough water to make the background lesions and 

cysts for one phantom. The objects to be embedded—either cysts and 2:1 lesions, or 5:1 

and 10:1 lesions—were made first with 100 ml of the gelatin solution for each type of 

object. Food dye was added to distinguish the objects from each other and activity was 

added to yield the necessary LBRs. The solution for each type of object was poured into 

separate 10 × 1.5 cm Petri dishes (BD Biosciences, Bedford, MA) and allowed to solidify 

in a freezer at -20°C. The dishes were removed after about 10 minutes, before the gelatin 

Figure 2.1: Gelatin breast phantoms. A) Simulated lesions 

and cysts were completely embedded in the middle slab of 

each phantom. B) Slabs were stacked to 4, 6, 8, 10 and 12 

cm and resembled a breast compressed between the 

detector paddles. C) An assembled phantom positioned on 

the scanner. 

A B C 
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froze. The end of a 60-cc syringe was cut off and the edge around the open end was 

sharpened to be able to cut 3-cm diameter cylinders out of each dish. At 1.5 cm tall, the 

lesions and cysts were sufficiently large to avoid partial volume effects, even in the 

largest phantoms. Two of each type of object were positioned in a 20-cm diameter, 

disposable plastic plate (Kroger, Cincinnati, OH). The plates were clear so the objects 

could be placed according to a printed template underneath the plate. The arrangement 

was intended to allow multiple measurements for each type of object in each phantom 

while minimizing the signal the lesions would contribute to each other and to the 

background.  

18F-FDG was then added to the rest of the gelatin solution and mixed well to 

yield a uniform background activity concentration (AC). The background gelatin was 

poured into several disposable plastic plates and allowed to solidify in a freezer. The 

plates were removed after about 20 minutes, before the gelatin froze. The remainder of 

the background gelatin was allowed to cool to room temperature before pouring it into 

the plate with the lesions and cysts, which were kept in a refrigerator in the meantime. 

This prevented the objects from melting and dissolving into the background. The 

background gelatin was deep enough to cover the lesions and cysts so they were fully 

embedded in the slab. As mentioned, each phantom contained for objects—either two 

cysts and two 2:1 lesions, or two 5:1 and two 10:1 lesions.  

Once solid, the slabs of gelatin were cut into two pieces. The bottoms of the plates 

were flat and the edges were sloped such that the profile of the assembled phantoms 

resembled a breast compressed between the detector paddles (Figure 2.1b). Prior to 

scanning the phantoms, each slab was placed in a 1-gallon Ziploc® bag (S.C. Johnson & 
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Son, Inc., Racine, WI) to facilitate handling and to avoid radioactive contamination in 

case any gelatin broke off. 

To confirm that the phantoms were radiologically similar to water, the average CT 

number was measured in 3 separate 10-cm phantoms. Each phantom was centered on the 

patient table of a GE Discovery PET/CT scanner (Waukesha, WI) with the slabs aligned 

transaxially. CT scans (120 kV, 300 mA 3.75 mm image thickness, pitch = 1, standard 

reconstruction algorithm) were acquired and a large ROI drawn in the middle layer of 

each. The average pixel value was approximately 15 Hounsfield Units, representative of a 

1.5% greater attenuation coefficient than water for a diagnostic beam. It is expected that 

this difference is negligible at 511 keV so the gelatin phantoms were assumed to be 

radiologically similar to breast tissue at that energy. 

  

Phantom Scans 

Three phantoms of each thickness (4, 6, 8, 10 and 12 cm) were scanned on the 

PEM Flex system following a schedule which was intended to be efficient. Phantoms of 

multiple thicknesses were assembled from each batch of gelatin and scanned serially in 

order of decreasing thickness. For instance, 10-, 8- and 6-cm thick phantoms were made 

from a single batch of gelatin. Similarly, 12-cm and 4-cm thick phantoms were made 

from one batch of gelatin. Thus, a total of 30 scans (3 scans × 5 thicknesses × 2 sets of 

objects) were acquired with 6 batches of gelatin. Due to interscan decay, the background 

activity of each phantom was within 15% of the nominal background (0.065 μCi/cc).  
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 Calculation of Total Quantitative Error 

Images were reconstructed with the standard clinical protocol (Table 2.1) and 

evaluated on the scanner GUI in units of μCi/cc. Region of interest (ROI) measurements 

were made in the plane at the level of the lesions and cysts. The mean pixel values were 

measured in 1-cm
2
 ROIs in the uniform region of the background and in the cysts. A large 

ROI was drawn around each lesion and the maximum pixel value measured. The 

maximum pixel value was chosen to evaluate the lesion error because the maximum 

standardized uptake value (SUV) is the most commonly reported metric to assess tumors 

with PET (55). The error in the background and lesions was calculated as the percent 

difference between the ROI measurements and the true values (Equation 2.1)  

 %Error = 100×(ACROI – ACTrue)/ACTrue 2.1 

where ACROI is either the mean pixel value in the background or the maximum 

pixel value in the lesions and ACTrue is the respective known activity concentration in 

each. 

 The error in the cysts could not be calculated using Equation 2.1 because dividing 

by the true activity concentration (0 μCi/cc) would be undefined. Instead, the contrast 

error in the cysts (Equation 2.2) was calculated from the mean pixel value in a 1-cm
2
 

ROI.  

 %Contrast ErrorCysts = 100×[(ROIBkg– ROICyst)/True Bkg - 1] 2.2 

where ROIBkg is the measured background, ROICysts is the mean pixel value in each cyst, 

and True Bkg is the known activity concentration in the background. 
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Specific aim 2: Error due to Count Rate 

 

To evaluate the count rate behavior of conventional PET scanners, phantoms are 

commonly made with very high uniform background activity of a short-lived 

radioisotope (e.g. 
18

F) and scanned over the course of several half-lives. At very low 

count rates the net count rate is approximately equal to the true event rate because dead 

time and randoms are minimal. Therefore the ideal true count rate at all activities is 

estimated by linear extrapolation from the net count rates for the lowest amounts of 

activity (62). 

This approach was adopted to measure the error in images due to count rate. The 

error was measured in images of breast phantoms with multiple levels of radioactivity. 

The error in the lowest activity phantoms was used as a reference to calculate the error 

contributed by count rate alone at higher background activity concentrations.  

 

 Phantom Scans 

The phantoms made to measure the total quantitative error (Specific Aim 1) were 

also used to measure the error due to count rate. The phantoms which had uniform 

background AC of 0.065 μCi/cc at the time of the first scan and were scanned multiple 

times while they decayed to 0.007 μCi/cc. It was subsequently decided that the error in 

phantoms with higher backgrounds should be evaluated, so one additional phantom of 

each thickness was made with an initial background of 0.5 μCi/cc and scanned multiple 

times until they had decayed to 0.065 μCi/cc. The actual background activity 

concentrations at the times of the scans were 0.5, 0.25, 0.125, 0.065, 0.044, 0.032, 0.010 
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and 0.007 μCi/cc. A total of 190 scans were acquired for this specific aim, including the 

30 scans acquired to evaluate the total quantitative error. 

  

 Calculation of Error 

The error in the background and lesions was calculated as described for Specific 

Aim 1 for each phantom at every background activity concentration. The error at the 

lowest concentration (0.007 μCi/cc) was assumed to have minimal contribution from 

count rate effects and was used for comparison with the error at higher activities. The 

difference in error in each phantom at high background AC and 0.007 μCi/cc background 

AC was assumed to be due to count rate effects at each activity level. A surface plot was 

generated showing how the error due to count rate varies with background AC and 

phantom thickness. Additionally, the error due to count rate in lesions was plotted for 

phantoms with 0.065 μCi/cc background AC. 

 To validate the results obtained with phantoms, an additional experiment was 

performed whereby the effect of count rate was evaluated in the absence of attenuation 

and scatter. A thin film of gelatin was prepared with 18F-FDG in a 15-cm diameter Petri 

dish and scanned multiple times while it decayed. The gelatin was centered in the FOV 

halfway between the paddles which were separated by 4 cm for each scan. The initial 

activity concentration (6.8 μCi/cc) was chosen to yield the same count rate as was 

observed in the 4-cm phantoms with 0.065 μCi/cc background. During each subsequent 

scan, the count rate from the film was equal to the count rate during one of the scans of 

the 4-cm phantoms. A large ROI was drawn in images of the film and the mean pixel 

values at each count rate were normalized to the mean pixel value measured at the lowest 
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count rate. For comparison, the mean pixel values in the background of 4-cm phantoms at 

each activity concentration were also normalized to the mean in the phantoms at the 

lowest activity. The relative signals of the film and phantoms were plotted against count 

rate and compared. The uncertainty of the film measurements was estimated from the 

standard deviations of pixel values in each ROI. The uncertainty of the phantom 

measurements was estimated from the standard deviations of the mean ROI 

measurements in the phantoms. 

 

Specific Aim 3: Error due to Attenuation 

One of the most important corrections for accurate quantitation with PET is for 

attenuation. Prior to hybrid PET/CT scanners, coincidence transmission scans were 

commonly used for this purpose. The technique uses two sinograms which are acquired 

while a positron-emitting rod source (e.g. Germanium-68) is rotated around the FOV 

(62). A reference, or blank, sinogram is acquired with nothing in the FOV and a 

transmission sinogram is acquired with the patient in the FOV. Only coincidence events 

which are collinear with the known location of the line source are counted in either scan 

because all others must be due to randoms or scatter. The attenuation along each LOR is 

calculated by comparing the count rates in the transmission sinogram to the count rates in 

the reference sinogram. A similar approach was used to measure the error due to 

attenuation on the PEM Flex system. However, because the goal of this work was to 

measure the error in images, measurements were based on reconstructed images rather 

than projection data. 
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 Point Source Transmission Scans 

Blank and transmission scans of a point source were acquired to evaluate the error 

due to attenuation in gelatin breast phantoms of multiple sizes. A low activity point 

source was rigidly attached to the center of the bottom paddle and scanned with cold 

(non-radioactive) gelatin stacked on top of it and again with nothing in the FOV. It was 

assumed that the differences in the maximum pixel values in images acquired in gel and 

in air at the same paddle separation were primarily due to attenuation and source activity, 

as argued in the Discussion. The maximum pixel values were normalized to activity and 

compared to calculate the error due to attenuation. 

 A point source of approximately 20 μCi was centered on the bottom paddle of the 

PEM Flex scanner and taped in place (Figure 2.2). The low activity was chosen to 

minimize dead time and randoms. Even though the point source was smaller than a pixel 

(1.2 × 1.2 × 1.2 mm
3
), partial volume effects (PVE) were not considered important 

because only relative measurements were being made. Further, it was assumed that PVE 

would be the same for scans acquired with the same detector separation as long as the 

source did not move with respect to the paddles between scans. 

A series of scans was acquired with cold gelatin breast phantoms of different 

thicknesses assembled on top of the source. The phantom scans were acquired in order of 

decreasing thickness (12, 10, 8, 6 and 4 cm) in order to help maintain similar count rates 

during all scans. Data were acquired for 10 minutes while the detectors translated across 

the entire FOV with the paddles set to the thickness of each phantom. Air scans were 

subsequently performed with the detector paddles separated by each of the same 

distances, in order of decreasing separation. The source was allowed to decay before the 
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first air scan to ensure the count rate in air was similar to that in the gel scans. This 

experiment was performed three times for a total 30 separate scans.  

 

 

 Calculation of Error 

Images were reconstructed with the standard clinical protocol (Table 2.1) and 

evaluated on the scanner console in units of μCi/cc. The maximum pixel value in the 

plane corresponding to the point source was measured for each set of images. The 

maxima were normalized to the source activity at the time of each scan because images 

displayed in units of μCi/cc are not decay-corrected. For each phantom, the error due to 

attenuation was calculated from the percent difference was calculated between the 

normalized maxima in gel and in air at the same paddle separation (Equation 2.3). The 

results from three experiments were averaged and plotted versus thickness. 

 %ErrorAttenuation = 100×(Max’Gel – Max’Air)/Max’Air  2.3 

 

 

Figure 2.2: Reference (left) and transmission (right) scans of a point source for 

measuring the error due to attenuation. 

4 – 12 cm Cold Gelatin 

Transmission Scan 

18
F-FDG Point 

Source 

Reference Scan 

Detector 

Heads 
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Specific Aim 4: Error due to Scatter 

A method for evaluating scatter in sinograms (63) was modified and used used to 

measure the error due to scatter in images. Their setup involved a line source which was 

scanned in air and in a water-filled phantom. Three sinograms were produced: gair from 

the scan in air; gwater from the scan in water; and gatten, which was the calculated 

attenuation introduced by the water for each projection bin. The total counts in the water 

were found by integrating gwater and the true counts in water were estimated by 

integrating the product gatten×gair. The estimated true counts were subtracted from the 

total counts in water, the difference being the counts due to scatter. The scatter fraction 

was the ratio of this difference and the total counts from the water scan (Equation 2.4):  

 SF = [(Σgwater – Σgair×gatten)/Σgwater] 2.4 

 The method used by Bailey and Meikle was modified and applied to images from 

the PEM Flex system. First, a point source was used instead of a line source. The source 

was scanned with and without gelatin phantoms in the FOV. Second, rather than 

integrating projection data to calculate counts, pixel values were summed to calculate the 

total activity within the image volumes. The sum of pixel values with gelatin were 

compared to the sum without, and the error due scatter was estimated.  

 

 Point Source Transmission Scans 

The error due to scatter was measured in the same image sets as were used for 

calculating the attenuation error. To reiterate, a point source was centered on the bottom 

paddle and scanned with 4 – 12 cm of cold gelatin on top of it. The paddles were set to 

the thickness of each phantom for the scans.  Scans without gelatin were acquired at each 
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of the same paddle separations.  

 

 Calculation of Error 

An ROI was drawn around the entire FOV in one image from each scan and 

propagated to all slices. The scanner console reports the sum of values in an ROI as the 

total activity (μCi) in the region (the product of activity concentration in μCi/cc and ROI 

volume in cm
3
). The total activity measured in each image volume was normalized to the 

actual activity of the source at the time of each scan. The total activity (or signal) in 

gelatin was assumed to differ from that in air for two primary reasons: attenuation and 

scatter. The signal expected due to attenuation was estimated by artificially attenuating 

the total activity measured in air at the same paddle separation. While Bailey and Meikle 

calculated the attenuation from the path length of water in each bin of their water 

sinograms, the effective attenuation for this work was taken from the results from the 

attenuation measurements described in Specific Aim 3. The signal due to scatter was 

calculated by taking the difference between the total signal in gelatin and the estimated 

signal due to attenuation at the same thickness. The error due to scatter was determined 

from the ratio of the signal due to scatter and the total activity in air (Equation 2.5), 

 %ErrorScatter = 100×(TotalGel – TotalAir×Attenuation)/TotalAir  2.5 

where TotalGel is the total activity measured in gelatin, TotalAir is the total activity 

measured in air and Attenuation is the relative signal expected due to attenuation. 
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CHAPTER 3: RESULTS 

 

Specific Aim 1: Total Quantitative Error 

The total quantitative error in the uniform background and embedded lesions in 4 

– 12 cm thick gelatin breast phantoms is plotted in Figure 3.1 where the error bars 

indicate 1 standard deviation of three measurements. The error in the uniform background 

was negative for virtually all thicknesses, with the exception of the 4-cm thick phantom 

in which the average background error was 0±7%. The background error increased (i.e., 

became more negative) with thickness.  

The error in lesions was negative for all thicknesses and LBRs and it was much 

greater than the background error. As in the background, the error in the lesions increased 

with phantom thickness and it also increased non-linearly with LBR. The contrast error of 

the cysts was greater contrast than the error in any of the lesions. 

PEM images from gelatin breast phantoms of each thickness are displayed in 

Figure 3.2 with the same window width and level. The signal in the background, lesions 

and cysts decreased with thickness, as well as the contrast of the lesions and cysts. A 

broad band of enhancement is visible along the chest wall edge of the FOV (top) in the 4 

cm phantoms and it decreases in severity with phantom thickness. This artifact is also 

visible but much less conspicuous in clinical images of breast compressed to 6 cm or less. 

The manufacturer is aware of the artifact and does not have an explanation or a correction 

for it. The 5:1 and 10:1 lesions in a uniform background of 0.065 μCi/cc are visible in all 

12 images from one 12-cm thick phantom (Figure 3.3). The pixels near the edges of the 
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FOV are very noisy compared to the central FOV, particularly the first row of pixels 

along the chest wall edge (Figures 3.2 and 3.3). 

 

 

Figure 3.2: Images of lesions and cysts in gelatin breast phantoms of each thickness 

with 0.065 μCi/cc background AC. Images are displayed with the same window 

width and level (14,000/7,000 Bq/ml). 

Figure 3.1: The total quantitative error in images of 4, 6, 8, 10 and 12-

cm thick gelatin breast phantoms with simulated cysts and lesions of 

different lesion-to-background ratios (2:1, 5:1, 10:1). 
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Specific Aim 2: Error due to Count Rate 

A surface plot of the count rate error in the uniform background (Figure 3.4) 

shows that the count rate contributed large negative errors for virtually all activity levels 

evaluated. The error due to count rate increased with background activity concentration, 

and decreased with thickness.  

Figure 3.3: All 12 PEM images (1-cm thick) of a 12-cm thick phantom with 5:1 and 

10:1 lesions in a uniform background AC of 0.065 μCi/cc.  

Run 1167 
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The count rate error in lesions of the phantoms with 0.065 μCi/cc background is 

also plotted for comparison with the count rate error in the uniform background (Figure 

3.5). At this activity the 2:1 lesions had more error due to count rate than the background 

for some phantom thicknesses but it did not change monotonically. The count rate error in 

lesions decreased with respect to thickness in the 5:1, and remained relatively constant 

with thickness in the 10:1 lesions. The count rate error in lesions decreased non-linearly 

with LBR for all thicknesses.  

 The mean signal in images of a thin film of gelatin scanned multiple times as it 

decayed was normalized to the signal at the lowest activity and plotted as a function of 

count rate. The mean signal in the background of 4-cm phantoms was also normalized to 

Background 

(μCi/cc) 

Thickness 

(cm) 

%
E

rr
o
r 

Error due to Count Rate 

Figure 3.4: Error due to count rate in uniform background of phantoms with varying 

background AC and thickness. 
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the signal at the lowest activity and plotted. The normalized signal in the film follows the 

same trend with count rate as the normalized signal in 4-cm phantoms. 

 

 

Specific Aim 3: Error due to Attenuation 

The error due to attenuation is plotted in Figure 3.6 with error bars indicating the 

standard deviation of three measurements. For comparison, the black curve is the 

percentage of signal loss expected due to narrow-beam attenuation of 511 keV photons in 

water (μ = 0.096 cm
-1

).  

The error due to attenuation was negative and large for all thicknesses, and it 

increased with thickness (from -51±10% to -77±4% at 4 and 12 cm, respectively). The 

measured error was greater than the relative signal loss calculated for narrow-beam 

attenuation.  

Figure 3.5: Error due to count rate in lesions and background of 

phantoms with 0.065 μCi/cc background AC 
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Specific Aim 4:Error due to Scatter 

The total activity measured in gelatin was greater than what would be measured 

from attenuated true LORs alone. The additional activity due to scatter was found to be a 

relatively constant fraction of the total activity in air (Figure 3.7). 

Figure 3.6: The measured error due to attenuation with the percent signal loss expected 

due to attenuation of 511 keV photons in the given thicknesses (D) of water. 
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Figure 3.7: Error due to scatter. Error bars indicate the standard deviation of three 

independent measurements. 

Error due to Scatter 

Phantom Thickness (cm) 

%
E

rr
o
r 



32 

 

CHAPTER 4 – DISCUSSION AND CONCLUSIONS 

 

As is true for conventional PET, PEM has many competing sources of 

quantitative error including, but not limited to, count rate effects (e.g. dead-time, random 

coincidences, pulse pile-up), attenuation and scattered photons. The results suggest 

additional sources of error. 

 

Specific Aim 1: Total Quantitative Error 

The competitive nature of the individual errors resulted in good agreement (0±7% 

error) between the measured and known activity concentration in the background of 4-cm 

phantoms (Figure 3.1). The background error in thicker phantoms was negative and 

increased with thickness (Figure 3.1), as is visually evident in Figure 3.2. This trend is 

consistent with the fact that signal decreases due to attenuation with increasing thickness, 

thus contributing negatively to the total error. Attenuation is not corrected for on the PEM 

Flex Solo II and its impact on images is evaluated in Specific Aim 3. 

 The error in the lesions of all LBRs is greater than the error in the background and 

it increases with LBR. This behavior indicates an additional source of quantitative error 

which is not apparent in the uniform background: limited-angle tomography (LAT). The 

effect of LAT on quantitation has been calculated by Murthy, Aznar, Thompson, Loutfi, 

Lisbona and Gagnon (64) and their formulation (Equation 4.1) can be rearranged to show 

that the error in measured lesion AC is inversely proportional to LBR.  

 
Measured True

D dd
LBR LBR

D D
 

4.1 

where LBRMeasured is the measured LBR, LBRTrue is the true LBR, d is the lesion 
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dimension perpendicular to the detectors and D is the phantom thickness. 

In LAT, many projection angles are missing and cannot be used to constrain 

activity along existing LORs. Thus, LAT mispositions signal along LORs, essentially 

smearing objects in images perpendicularly to the detectors. The signal lost from lesions, 

which is represented by the first term in Equation 4.1, is misplaced in other planes, 

making the lesions visible throughout most or all of the other image planes (Figure 3.3). 

This loss of signal from the lesions explains why the error is greater in lesions than in the 

background. Another interesting aspect of the lesion error is that it increases non-linearly 

with. This behavior of the lesion error is also partially attributable to LAT, because while 

much signal is removed from the lesions, some signal is added back from spill-over, as 

well as from scatter and randoms. The second term in Equation 4.1 represents the effect 

of spillover. Similarly, the signal in the cysts is due to mispositioned signal from spill-

over, in addition to scatter and randoms, which explains the loss of contrast.  

 The breast phantom images in Figure 3.2 visually demonstrate a loss of signal in 

the background, lesions and cysts, consistent with the increasingly negative error shown 

in Figure 3.1. Additionally, the images exhibited artifacts which could further affect the 

quantitative accuracy. First, the bright band along the chest wall edge (top) of the FOV 

(Figure 3.2) caused measurements there to be higher than farther inside the FOV. These 

measurements were excluded from the results reported here. This artifact is likely due to 

different dead-time in the detector modules along that edge compared to modules farther 

inside the FOV. The count rate was probably lower in those modules for two reasons. 

First, there was no activity outside the FOV, so there were fewer single events to induce 

dead time. However, this artifact is visible in clinical images of patients’ breasts even 
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though there is activity in normal tissues outside the FOV during patient scans. Second, 

to a lower singles rate, detector modules near the edge of the FOV might experience 

lower coincidence processing time. The modules near the edge of the FOV will detect 

photons in coincidence with fewer modules in the opposing detector than will the 

modules near the center. With fewer coincident prompts and decreased coincidence 

processing time, the modules near the edges detect a greater fraction of LORs between 

modules at the edge of the FOV, hence greater signal in this region.  

 Another artifact is the noise around the edges of the FOV. Relatively few events 

can be detected along LORs in these two regions for different reasons. Along the top 

edge, LORs which contribute signal to the topmost row of pixels are confined to a single 

plane perpendicular to the detectors. This reduces the number of events which can 

contribute to a voxel in that plane and increases the noise, which is amplified by 

correcting for geometric efficiency. Near the left and right ends of the phantom, LORs are 

not constrained to a single plane, rather the translation of the detectors results in less time 

spent collecting data along each LOR. Fewer events in these two regions result in lower 

sampling statistics than farther inside the FOV, hence greater noise.  

 

Specific Aim 2: Error due to Count Rate 

 The phantoms used to measure the overall quantitative error were scanned 

multiple times while they decayed from 0.05 μCi/cc to 0.007 μCi/cc. The background 

error at each background activity was compared to the error with the lowest background 

and the difference was attributed to the error introduced by count rate. 

The negative error contributed by the count rate (Figure 3.4) is primarily due to 
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increased dead time, which reduces the fraction of all events which are counted. The fact 

that the count rate error decreases with thickness is easily explained by another source of 

error, attenuation. The greater total activity in thicker phantoms was more than 

compensated for by exponential attenuation, which resulted in fewer total events being 

collected in thicker phantoms.  Thus, dead time and error due to count rate decrease with 

phantom thickness. 

It is interesting that the error due to count rate in lesions is different than in the 

background. This could be due in part to the fact that the count rate varies as the detectors 

pass of the lesions, although the error due to count rate would be expected to increase 

over the lesions due to the higher count rates. The opposite was observed which might 

actually be another result of LAT. Murthy’s formulation (Equation 4.1) again can be used 

to predict that the count rate error in lesions is inversely proportional to LBR. The reason 

is that at least some of the signal in lesions is due to spillover from the background, and 

by extension the error in the lesions depends on the error in the background. A change in 

the background error due to count rate will have a relatively smaller effect on the lesions.  

 

Specific Aim 3: Error due to Attenuation 

The maximum pixel values in images of a point source scanned in air and in 

gelatin were used to measure the error due to attenuation, similarly to blank and 

transmission scans used for attenuation correction of conventional PET scans. The 

argument for using the maximum pixel values is as follows. Blurring due to non-

collinearity is on the order of 0.22% of the detector separation (Cherry, Sorenson, Phelps 

2003), which is smaller than the point source (~1 mm
3
), even for the largest paddle 
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separation on the PEM Flex scanner (0.44 mm blurring with 20 cm paddle separation). 

Therefore, all true LORs can be assumed to intersect the point source. Because the point 

source was smaller than a pixel (1.2 × 1.2 × 1.2 mm
3
), the maximum pixel value 

corresponded to the approximate location of each source. Scattered photons, by 

definition, will necessarily result in misplaced LORs. Only small angle scatter, which 

comprises a small fraction of scatter, will contribute signal to the maximum pixel value. 

Randoms can be assumed to be negligible at sufficiently low count rates so essentially no 

random LORs will intersect the maximum pixel value. Thus, the maximum pixel value 

would contain signal primarily due to true LORs, with minimal signal from scatter and no 

signal due to randoms. Comparing the decay-corrected maximum pixel value of the point 

source in gelatin to that in air is a valid way to estimate the error due to attenuation.  

The error due to attenuation was negative and increased with thickness (Figure 

3.5), as expected. However, the magnitude of the error was greater than the relative signal 

loss expected due to narrow beam attenuation of 511 keV photons by water (Figure 3.5). 

This is due to the attenuation of signal from oblique LORs, which experience longer path 

lengths in the phantoms and thus more attenuation. The attenuation along the most 

oblique LORs was calculated for each thickness, as described in Figure 4.1, and the 

relative signal loss was plotted along with the measured data (Figure 4.2). The results 

indicate that the effect attenuation has on the most oblique LORs is greater than the 

measured error. This is consistent because the LORs acquired have a distribution of 

angles, and most are between the direct and the most oblique LORs. 
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Figure 4.2: The signal loss due to attenuation along the most oblique LORs. Also 

plotted are the percent signal loss expected due to attenuation of 511 keV photons in 

the given thicknesses (D) of water, and the measured error due to attenuation. 

y = 100×(1 – e-μD) 

Error due to Attenuation 

Phantom Thickness (cm) 

%
E

rr
o
r 

Measured 

Error 

 

Narrow-beam 

Signal Loss 

 

Signal Loss 

along most 

Oblique 

LORs 

Figure 4.1: Path length and attenuation of oblique LORs. Both depend on angle of 

incidence. The maximum path length is the hypotenuse (H) of the right triangle with 

one side equal to the detector separation (D) and the base (d') equivalent to a crystal 

separation of 25 in the x- and y-directions. 
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Specific Aim 4: Error due to Scatter 

 The error due to scatter was investigated with images of a point source scanned 

with and without cold gelatin breast phantoms on top of it. The total signal in the 

reconstructed image volumes was measured and the results from Specific Aim 3 were 

used to estimate the signals due to attenuation and scatter, from which the error due to 

scatter was calculated. 

 Scatter introduced a somewhat large (23%) positive error, which is expected. 

What may seem counterintuitive is that the error due to scatter was relatively independent 

of phantom thickness. This may be unexpected because, as is well known, the scatter 

fraction in conventional PET increases with patient size (59). The results are actually 

consistent with this fact because the total signal from larger phantoms or patients 

decreases due to attenuation. Thus, a constant signal due to scatter (which would yield a 

constant error) would represent a greater fraction of the total signal.  

The reasons scatter contributes a relatively constant signal with phantom 

thickness may not be immediately obvious, but it can be explained from first principles, 

as illustrated in Figure 4.3. Thicker phantoms (and patients) scatter a greater number of 

photons, according to Equation 4.2.  

 S = 1 – exp(-σD) 4.2 

where S is the total fraction of photons which are scattered, σ is the Compton 

scatter coefficient (0.0956 cm
-1

), and D is the phantom thickness. If all of the scattered 

photons were measured, the signal due to scatter would actually increase. This is not the 

case, however, because the scattered photons are themselves attenuated. If one assumes 

for the sake of argument that scattered photons experience the same attenuation as 511 
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keV photons, then the net signal measured from scatter (Equation 4.3) can be 

approximated from the product of Equation 4.2 and the exponential attenuation for the 

given thickness.  

 S’ = exp(-μD)[1 – exp(-σD)] 4.3 

 where S’ is the net signal due to scattered photons which undergo attenuation, and 

μ is the linear attenuation coefficient of 511 keV photons in water (0.0959 cm
-1

). 

Equation 4.3 overestimates the net signal due to scatter because photons lose energy 

when scattered (65). Thus, the linear attenuation coefficient of scattered photons is higher 

than 511 keV photons (17% higher for the lower level discriminator, 350 keV). 

Nevertheless, the plot of Equation 4.3 in Figure 4.3 shows that this approximation 

exhibits the behavior observed. Specifically, the net signal due to scatter does not change 

monotonically between 4 and 12-cm of water. This approximation is also consistent with 

the measurements of Watson, Case, Bendriem, Carney, Townsend, Eberl, Meikle and 

Difilippo, (59) who showed that counts due to  scatter actually decrease with patient 

mass, as is indicated in the figure for thicknesses corresponding to the sizes of human 

patients (>24 cm). 
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The sum of these measured sources of error is not equal to the total error 

measured for any thickness, in the lesions or background, suggesting that other sources of 

error exist. For example, the effect of LAT was observed in lesions and cysts but it was 

not quantified by this work. Another source of error may be detector normalization. The 

relative efficiency of a crystal pair is affected, in part, by the effective area of the crystals 

and the maximum path lengths photons can travel in them, as well as shielding by 

intervening crystals. All of these factors depend on crystal separation and paddle 

separation, however data for detector normalization of the PEM Flex system are acquired 

at only one paddle separation (15 mm). Thus, the normalization performed may not be 

accurate at paddle separations other than 15 mm. 

 

Figure 4.3: Signals due to attenuation and scatter 
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Limitations 

There are some limitations to these experiments. Perhaps the most significant is 

the lack of activity outside the FOV for evaluation of the total quantitative error and 

count rate. Uptake in normal tissue would contribute many singles events, leading to 

increased randoms rate, as well as some scatter. This effect has been shown to decrease 

lesion contrast in other PEM systems (66) by increasing the background signal, 

particularly close to the chest wall edge of the FOV.  The effect of activity outside the 

FOV on quantitation would probably be to artificially increase the signal due to randoms 

and scatter. Considering the large negative errors measured, this would have artificially 

reduced the error measured in most cases, and perhaps resulted in positive total error in 

the background of 4-cm phantoms with 0.065 μCi/cc. By omitting activity outside the 

FOV, dead time was the dominant count rate effect which contributed to the error.  

This work used lesions of one size which were confined to one height between the 

detectors. However, the measured AC has been shown to vary with lesion size in addition 

to breast thickness (44, 45, 53). LAT affects the error in lesions of all sizes (67) while 

partial volume effects (PVE) are known to contribute to the error in small lesions (45). It 

has also been shown that the mean and maximum pixel values in identical spheres are 

higher near the detector face and near the chest wall edge of the FOV (45). In this work 

differences in background, lesion and cyst measurements were observed near the chest 

wall edge of the FOV; however, these measurements were not included in the analysis. 

Future investigations into the absolute quantitative accuracy of the PEM Flex system 

should include lesions of multiple sizes, at different heights between the detectors and at 

various distances from the edges of the FOV.  
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It is impossible to acquire images without some dead-time, so the error measured 

due to count rate may have been affected by dead-time in the reference images. Perhaps a 

way to compensate for this problem would be to extrapolate the total error in low activity 

phantoms to a background AC. Alternatively, Monte Carlo simulations could calculate 

the errors contributed by all count rate effects (dead-time, randoms and pulse pile-up.)  

Since position has an impact on measurements, the location of the point source 

used to evaluate attenuation and scatter may also have biased the results. Ideally, scans 

could be performed with a source positioned at an arbitrary height between the detectors 

to test this. If that were done, however, it would be impossible to acquire gel scans and 

air scans without disturbing the source. Due to the size of the point source compared to a 

pixel, partial volume effects would change if the source moved between scans, 

introducing a great deal of uncertainty. Also regarding the attenuation measurements, 

small-angle scatter must contribute some signal to the pixel containing the point source. 

This contribution is expected to be small, but Monte Carlo simulations may be useful to 

validate this assumption and corroborate these results. 

It was assumed that the maximum pixel value was primarily affected by 

attenuation, and that scatter contributed signal everywhere else in the image volumes. In 

reality, some small angle scatter certainly contributed to the maximum pixel value, 

potentially biasing the measurements of attenuation which were used in calculating the 

error due to scatter. However, the results of the attenuation experiments were consistent 

with what should be expected for oblique LORs, lending support to this assumption. As 

with the attenuation measurements, the amount of scatter measured might have varied if 

the source were at different heights between the detectors. Such measurements would be 
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ideal, but removing the gelatin without disturbing the source would not be practical. If the 

source were to move between corresponding gelatin and air scans, differences in PVE 

could have a large impact on the attenuation measurements. Rigidly fixing the point 

source in place with tape on the bottom paddles was the best way to prevent motion and 

minimize differences due to PVE. Not controlling the count rate between scans is another 

limitation because scatter fraction increases slightly with count rate (68). Even if the 

coincidence prompt rate were kept constant (i.e. by varying the source activity), the event 

rate in the detector closest to the point source would inevitably vary with the source 

activity. Considering these limitations, the most accurate way to quantify the effects of 

scatter and attenuation would be with Monte Carlo simulations.  

 

Future Work 

Further investigations should include scans with activity outside the FOV to 

simulate the rate of randoms from uptake in normal tissue. Lesions of different sizes 

should be included and they should be evaluated at multiple locations within the FOV. 

The errors due to attenuation and scatter should be evaluated at multiple locations within 

the FOV. 

Considering the difficulties in isolating the individual sources of error, the most 

accurate way to quantify the effects of count rate effects, scatter and attenuation may be 

to use Monte Carlo simulations.  
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Conclusions 

The total quantitative error of the PEM Flex Solo II has been shown to be quite 

large in the uniform background, lesions and cysts in gelatin breast phantoms of different 

thicknesses. This system shares many sources of quantitative error with conventional 

PET scanners, including count rate effects, attenuation and scatter. In addition, the planar 

LAT reconstruction further degrades the quantitative accuracy in lesions and cysts. 

The total error increases negatively with increasing phantom thickness. The error 

in lesions also increases non-linearly with LBR, probably due to LAT. The effects of LAT 

on lesion error are important if the ultimate goal of the PEM Flex Solo II is accurate 

quantitation to facilitate diagnosis of lesions. 

The overall error is greatly affected by the count rate, even at clinically relevant 

background activity concentration and LBRs. The count rate error is different in lesions 

and background, due to the contribution of signal to the lesions from the background; 

another effect of LAT. The count rate performance of the PEM Flex scanner will need to 

be thoroughly characterized and corrections for dead time and randoms will need to be 

developed in order to improve the quantitative accuracy of this system. 

The error due to attenuation by even small breasts is quite large, and it increases 

with thickness. This error is heavily weighted by oblique LORs with longer path lengths 

than direct LORs. Attenuation is clearly a substantial source of error for which 

corrections need to be employed on the PEM Flex system. Monte Carlo investigations 

may be necessary for developing and evaluating accurate corrections for attenuation to 

account for small angle scatter, count rate effects, and location within the image volume. 

The attenuation correction algorithm should be performed on projection data rather than 
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image data, due to the dependence of attenuation along LORs and angle of incidence.  

Scatter introduced a substantial positive error which appeared to be independent 

of thickness. Corrections for scatter will be essential for the PEM Flex Solo II to be 

quantitatively accurate. Monte Carlo investigations may also be necessary to evaluate and 

develop corrections for scatter, for the same reasons as mentioned above. 

Despite the limitations of this study, the hypothesis has been shown to be true for 

most of the phantom and lesion sizes evaluated. The quantitative error in images of the 

PEM Flex Solo was greater than 30% in lesions with a 5:1 LBR or greater in 4 to 12-cm 

thick breast phantoms, and in lesions with a 2:1 LBR in 6 to 12-cm thick phantoms. The 

total quantitative error was influence largely by the effects investigated by each specific 

aim. Count rate, attenuation and scatter each contributed substantial amounts of error. 

LAT was also indicated as a major source of error in lesions, but was not specifically 

investigated as part of this thesis. 

While this system has been used to detect early stage breast cancers with high 

sensitivity and specificity, its diagnostic capabilities will be limited by its low 

quantitative accuracy. Corrections for count rate, attenuation and scatter are routinely 

applied in conventional PET imaging and should be adapted to the planar geometry used 

by the PEM Flex Solo II. LAT, as well as other sources of error (e.g. detector 

normalization), will continue to be an obstacle to accurate quantitation with this system. 
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