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DISCUSSION 

EphA2 plays an important role in pancreatic cancer progression. EphA2 protein 

levels have been reported to be highly expressed in pancreatic cancer tissue samples (99). 

However, this is the first study to show that this elevation of EphA2 is related to regulation 

by Ras acting specifically through MEK2. We did not find any evidence for a role of p53 in 

EphA2 expression in pancreatic cancer cells. Rather, the current results suggest that c-Jun, 

down-stream from Ras/MEK2/ERK is the likely transcription factor. Additionally, we 

demonstrate that despite the presence of constitutively active mutant K-Ras, EphA2 

expression is still influenced by activity within this pathway which can be elevated by EGF 

receptor activity and inhibited by PEA-15 expression levels. 

The loss of the tumor suppressor p53 is common in cancers including pancreatic 

tumors of which at least 50% possess inactivating mutations in p53 (30). However, nearly 

all pancreatic tumors have been found to express high levels of EphA2 (99). Therefore, it 

was not surprising to observe that pancreatic tumors developed in mutant Ras-induced 

mouse models possessed elevated levels of EphA2 whether or not p53 was deleted. This 

observation is similar to that of Meritt and colleagues who found that EphA2 expression in 

tissues from ovarian cancer patients was actually elevated in the presence of inactivating 

mutations in p53 (179).  Taken together, it seems unlikely that p53 is a major factor in the 

elevated levels of EphA2 observed in pancreatic cancer. 

Another major pathway that is important in pancreatic cancer is mutant K-Ras. K-

Ras mutations occur in more than 90% of pancreatic cancers compared to only 25%-30% in 

other adenocarcinomas (30). K-Ras mutations are found in early preneoplastic lesions and 
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are regarded as one of the earliest and most central mutations in pancreatic cancer (60). 

Moreover, mutant K-Ras alone in pancreatic acini is enough to induce development of 

pancreatic cancer and the efficiency of cancer development is dependent on Ras activity 

levels (50). Likewise, silencing of K-Ras in pancreatic cancer cells decreases their capacity 

to form tumors (61). Oncogenic K-Ras has been extensively studied and is known to signal 

through multiple intracellular pathways with different effectors, of which the most studied 

are: Raf-MAPK, PI3K-Akt, PLC�, and Ral (62). In the current study we observed that Ras 

activity had a major influence on EphA2 expression.  

Specifically, we observed that the MAPK pathway dynamically influenced the levels 

of EphA2 in pancreatic cancer cells. When mutant K-Ras was silenced in pancreatic cancer 

cells in the current study, we noted a marked reduction in phospho-ERK but not phospho-

Akt which correlated with a decrease in EphA2 expression. These data suggest that the ERK 

pathway is more sensitive to changes in Ras activity levels and is more likely to be involved 

in the regulation of EphA2. The role of the MAPK pathway in EphA2 regulation has 

previously been suggested in studies of lung and breast cancer (106, 107). 

Down-stream effectors of K-Ras in the MAPK pathway include MEK1 and MEK2. 

Our studies indicate that MEK2 is specifically involved in the regulation of EphA2 levels. 

Although MEK1 and MEK2 have long been thought of as redundant proteins, recent studies 

showed that the signaling through these proteins is different and quite complicated. The 

differences between MEK1 and MEK2 were clearly observed in mouse gene knock-out 

studies. MEK1-null mice die in embryogenesis due to placental malformation, in spite of the 

presence of fully functional MEK2 (67). On the other hand, MEK2-null mice develop 

normally and do not show change in phenotype (66). MEK1 and MEK2 are also different in 
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2 conserved regions: N-terminal ERK binding domain and proline-rich regulatory region 

(PR). In this study, we observed that silencing MEK2, but not MEK1, decreased EphA2 

expression. This data was not a result of total intracellular MEK1/2 levels, because MEK1 

protein levels were higher than MEK2 levels. It was previously reported by Skarpen and 

colleagues that MEK1 and MEK2 influence intracellular localization of phospho-ERK. In 

their study they also demonstrated that MEK1 signaling largely influences cell proliferation, 

while MEK2 affects cell survival (68). Therefore, MEK2 regulation of EphA2 is consistent 

with the previously reported role of EphA2 as a protein involved in cell survival, but not 

proliferation (87, 111, 112, 126). 

Down-stream from MEK2, ERK activation was found to correlate with EphA2 

expression. ERK can act either in the cytoplasm or in the nucleus of cells. We observed that 

PEA-15, which possesses nuclear export sequence and upon binding confines ERK to the 

cytoplasm, significantly decreased EphA2 expression despite the presence of active Ras. 

PEA-15 has been shown to abolish phospho-ERK nuclear activity (74, 176). Our data 

suggests that EphA2 is regulated in part by the nuclear activity of ERK. In support of our in 

vitro studies, we also observed that PEA-15 mRNA levels were inversely correlated to 

EphA2 mRNA in K-Ras driven pancreatic cancer models. Since EphA2 expression is 

correlated to an aggressive phenotype, PEA-15 may be protective in pancreatic cancer. In 

support of this hypothesis, PEA-15 has been demonstrated to be protective in ovarian and 

breast cancers (75, 76, 180, 181). These are the first data linking PEA-15 and EphA2 

expression and the first indicating a role of PEA-15 in pancreatic cancer. In the future it will 

be of interest to explore whether PEA-15 expression is correlated with improved pancreatic 

cancer patient survival.  
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In this study, we found that in a subset of pancreatic cancer cell lines possessing 

mutant K-Ras EGFR targeting decreased Ras-MAPK pathway activity, as evidenced by 

decreased ERK phosphorylation. Likewise, EGF was able to activate the pathway in many 

of the cell lines (data not shown). These data indicate that this pathway is not necessarily 

maximally stimulated by the presence of mutant K-Ras in pancreatic cancer cells. It is well 

known that the amplitude of intracellular Ras-MAPK signaling is not only dependent on Ras 

enzymatic activity but also on its intracellular location and the presence of other factors, for 

example the proximity and abundance of scaffold proteins, such as KSR (65, 182, 183). 

Importantly, EGFR targeting also decreased EphA2 expression in the cells which showed 

effects on MAPK signaling. These data suggest that EphA2 levels are an indication of the 

overall activity of the MAPK pathway in pancreatic cancer cells and that the presence of 

activating mutations in K-Ras are not sufficient for maximal induction.  

EGFR and its multiple ligands are highly expressed in pancreatic cancer and their 

expression has been correlated to an increase in tumor aggressiveness (184, 185). EGFR 

targeting therapies have been approved for multiple cancer types. Unfortunately, a 

randomized Phase III study in colorectal cancer demonstrated that tumors possessing K-Ras 

mutations are resistant to a therapy of anti-EGFR antibody, panitimumab (71, 72). However, 

in another large Phase III trial, the EGFR inhibitor, erlotinib, in combination with 

gemcitabine conferred a modest increase in survival over gemcitabine treatment alone in 

pancreatic cancer (73). Based on these results, the FDA approved erlotinib for treatment of 

locally advanced, unresectable, or metastatic pancreatic carcinoma. Our data supports that in 

a subset of pancreatic cancers inhibition of EGFR regulates down-stream components of the 

ERK pathway and ultimately results in a decrease in EphA2 expression. Therefore, it may 
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be possible to the use the influence of EGFR inhibitors on EphA2 levels as an indicator of 

the effectiveness of these drugs on individual patients. 

Currently, biomarkers able to predict the clinical outcome of anti-EGFR therapy are 

an active area of research (186). It has been reported that pancreatic cancer patients that 

have a cutaneous rash after erlotinib treatment respond better to the therapy. The origin of 

rash and its relationship to EGF receptor is not clear and is being investigated. Our data 

suggest that EphA2 may be a good marker of anti-EGFR sensitivity. Not surprisingly, the 

cancer cell lines that responded by decreasing EphA2, have been previously shown to 

decrease proliferation and tumor growth in response to Iressa (187). Since EphA2 is a 

surface receptor, it may be possible develop imaging approaches to assess changes of 

receptor expression levels in pancreatic cancer patient in response to the anti-EGFR therapy. 

AP-1 transcription factor is a homo- or heterodimer made up of members of Jun 

family proteins (c-Jun, JunB, JunD) or a combination of Jun and one of the members of the 

Fos (eg, c-Fos, Fra-1), ATF (eg, ATF2), and the least studied Maf families (188, 189). AP-1 

plays an important role in oncogenesis in different cancers (189). In pancreatic cancer, high 

AP-1 activity is regulated by ERK, JNK and Akt pathways (178, 190, 191). Also, AP-1 

promotes anchorage dependent and independent growth of pancreatic cancer cells (190). In 

this study, we demonstrated that silencing of c-Jun decreases EphA2 expression, although 

the exact relationship between c-Jun and EphA2 remains to be characterized. 

RSK is a well established effector of ERK and is responsible for 20% of ERK-

regulated changes in mRNA (192). P90RSK family consists of four members, RSK1, RSK2, 

RSK3 and RSK4 (193). These proteins have been found to regulate important hallmarks of 
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oncogenesis, such as cell differentiation, survival, growth and motility (192, 193). We have 

observed that EphA2 mRNA levels decrease with the inhibition of RSK. Moreover, RSK 

has been shown to regulate expression and stability of two subunits of AP-1, c-Fos and Fra1 

(192, 193). Further studies showed that 23% of RSK-induced transcription is regulated by 

Fra-1 (192). Therefore, it is possible that both RSK inhibition and c-Jun silencing decreases 

the activity of AP-1, thereby decreasing EphA2 transcription. In addition to Fra-1, RSK also 

regulates activity of the transcription factor CREB1 and its cofactors p300 and CREB 

binding protein (CBP) (193). Interestingly, a heterodimer Jun/ATF2 forms a CREB response 

element binding protein (CRE-BP), which can also bind to the same DNA sequences as 

CREB and initiate transcription (188). Therefore, there are several potential points of 

interaction between RSK and Jun that may be further investigated. 

In summary, we observed that EphA2 levels are influenced by activity in the 

Ras/MAPK pathway.  In fact, EphA2 levels are an indicator of overall activity within this 

pathway. Specifically, we found that MEK2 activation of nuclear phospho-ERK was 

required for EphA2 expression. These studies provide new insights into the regulation of 

EphA2 in pancreatic cancer and have identified new components of the regulatory system 

including MEK2 and PEA-15. This information may be useful for the development of 

prognostic tests and the identification of new targets for therapies aimed at pancreatic 

cancer. 
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SUMMARY 

Pancreatic cancer is the 4
th

 leading cause of cancer related death in the US. The high 

mortality is believed to be caused by lack of early detection and therefore presence of 

advanced metastatic disease at the time of diagnosis. However, in rare cases when pancreatic 

cancer is diagnosed early with seemingly resectable tumor, 80% of patients will still die 

within 5 years of tumor resection due to tumor recurrence or presence of metastasis. 

Gemcitabine is the first-line therapy, but objective tumor response rate is low. Therefore, 

intervention that can increase pancreatic cancer diagnosis, prevent incidence of new 

metastasis, arrest tumor growth and/or reduce tumor burden will have tremendous impact on 

patient prognosis. 

This dissertation is an attempt to bring the pancreatic cancer research field closer to 

achieving all of these goals. The hypothesis of the dissertation was that EphA2 is regulated 

by oncogenic Ras and may be an important therapeutic target for the treatment of pancreatic 

cancer. 

To address this hypothesis, I first confirmed the finding by Mudali et al. that EphA2 

is overexpressed specifically in pancreatic cancer, as compared to normal pancreas and 

chronic pancreatitis (99). Therefore, EphA2 receptor may potentially serve as a marker of 

pancreatic cancer. Since EphA2 is a transmembrane protein, it may be available for antibody 

or a peptide binding. Imaging agent conjugated to an antibody against EphA2 may permit 

physicians to detect high expression of this receptor in the human body, therefore allowing 

early pancreatic cancer detection. Also, soluble EphA2 receptor has been detected in plasma 

and serum of pancreatic cancer patients (194). The idea of EphA2 as a biomarker of 
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pancreatic cancer is currently being explored and has been presented at the recent meeting of 

American Association of Cancer Research (194).  

To explore the biological role of EphA2 receptor in pancreatic cancer, I silenced 

EphA2 and observed increase in pancreatic cancer cell apoptosis. Also, combination of 

EphA2 and gemcitabine had a stronger cytotoxic effect than either treatment alone and 

successfully reduced the number of gemcitabine-resistant pancreatic cancer cells. I further 

demonstrated that in gemcitabine-resistant orthotopic mouse model, EphA2 silencing 

arrested tumor growth of MiaPaca-2 pancreatic cancer cells. In another orthotopic model, I 

examined systemic delivery of siRNA, coated in neutral DOPC liposomes, to an established 

orthotopic tumor. I observed significant reduction of EphA2 protein, which was comparable 

to the reduction observed in vitro. Moreover, silencing of EphA2 receptor sensitized 

orthotopically growing gemcitabine-resistant MPanc96 cells to gemcitabine treatment, 

causing decreased tumor mass and reduced the number of liver and lung metastasis. These 

results suggest that targeting of EphA2 either alone or in combination with gemcitabine may 

be a useful approach in treatment of pancreatic cancer. It may help overcome a prevalent 

problem of gemcitabine resistance and improve patient survival by decreasing tumor growth 

and metastasis. 

In the second aim of this dissertation, I explored the link between mutant K-Ras and 

EphA2 expression. I demonstrated that K-Ras regulates EphA2 transcription through 

activation of MEK2 and phosphorylation of ERK. I further implicated AP1 as a transcription 

factor that may be responsible for EphA2 regulation. Considering the importance of EphA2 

in pancreatic cancer biology, exploration of the mechanisms of EphA2 regulation may 

reveal new points of intervention in treatment of this disease.  
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In addition, this study addresses a question of Ras-MAPK pathway modulation in the 

presence of constitutively active mutant K-Ras and demonstrates that inhibition of EGFR 

receptor activity translates into a decrease of ERK phosphorylation and reduction of EphA2 

expression in a subset of pancreatic cancer cell lines. EGFR therapy has proven to be 

beneficial, although slightly, in pancreatic cancer patients. It is possible that among the 

patients that do not show any response to anti-EGFR therapy, there is a small population that 

may have clinically significant response. Changes in EphA2 level correlates strongly to the 

changes in MAPK pathway activity, and therefore, a decrease in EphA2 may be used as a 

good marker of a positive response to anti-EGFR therapy. Identification of patients that 

respond to an anti-EGFR therapy can significantly improve their prognosis and prevent 

unnecessary expensive treatment of nonresponsive patients, thereby decreasing potential 

toxicity and medical cost. 

Similarly, I implicated PEA-15 as an endogenous protein that may be responsible for 

regulation of MAPK pathway activity in pancreatic cancer. I also demonstrated that in K-

Ras driven mouse models of pancreatic cancer expression of PEA-15 is inversely related to 

the expression of EphA2. These results indicate that PEA-15 is another important regulatory 

input of Ras-MAPK pathway that can be utilized as a potential point of therapeutic 

intervention. 

In conclusion, this work demonstrates that EphA2 is highly and specifically 

expressed in pancreatic cancer, as compared to normal pancreas and chronic pancreatitis. It 

is regulated by K-Ras - MEK2 - ERK pathway, likely by employing AP1 transcription 

factor, and/or RSK. Moreover, silencing of EphA2 sensitizes chemoresistant cells to 
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gemcitabine and in combination with gemcitabine treatment decreases pancreatic cancer 

growth and metastasis. 
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FUTURE DIRECTIONS 

How is EphA2 promoter regulated? 

Despite the importance of EphA2 receptor in multiple cancers, the promoter of this 

protein is not well characterized. In this dissertation, several potential mechanisms of EphA2 

transcriptional regulation were implicated; however, no direct link between any transcription 

factor and EphA2 was established.  

Based on our observations in this study, AP-1 and CREB are suspected to be 

transcription factors regulating EphA2, although CREB involvement has not been 

confirmed. Interestingly, computer analysis of EphA2 promoter revealed that there AP-1 

binding consensus sequences at ~300, 500 and 1000 bp upstream from the transcription 

initiation site (JASPAR and IFTI databases). Also, there are two CRE sites in EphA2 

promoter ~700 and 100 bp upstream from the transcription initiation site (JASPAR and IFTI 

datasets). A CRE site ~100 bp upstream is conserved among species and is likely to be 

functionally relevant. 

In a pilot experiment, a segment possessing ~1,800 bp upstream of EphA2 

transcription initiation site was cloned into a pGL3 promoterless luciferase vector. 

Pancreatic cancer MPanc96 cells were transfected with this lucferase reporter and stimulated 

with EGF. As shown in Figure 4.1, we observed expected induction of luciferase acitivity, 

proving that this segment is sufficient to demonstrate EGF-mediated induction of EphA2. 

Further digestion of the promoter region, using restriction enzyme should provide us with a 

better understanding of the exact promoter sequence involved in EGF-mediated EphA2 

induction. Also, this study provided enough evidence to perform a chromatin precipitation 
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(ChIP) of Jun in order to demonstrate the direct binding to the promoter at the suspected 

regions. 
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How does TNFαααα regulate EphA2 expression? 

Presence of inflammatory stroma, called desmoplastic reaction, is a known feature of 

PDAC. The relationship between desmoplastic reaction and cancer is unclear, but it is 

known that chronic inflammation in the pancreas, such chronic or familial pancreatitis, can 

often lead to development of pancreatic cancer (30). The stroma of pancreatic cancer 

possesses a number of inflammatory cells, such as macrophages, mast cells and lymphocytes 

(195). These cells secrete various proinflammatory cytokines, such as IL-6, IL-10, IL-8, and 

IL-1RA, which have been found in higher levels in pancreatic cancer patients (196).  

TNFα was also found to be at higher levels in pancreatic cancer patients and has 

been associated with cancer stage and cachexia (197). In addition to stromal cells, TNFα is 

also secreted by pancreatic cancer cells themselves (198, 199). This cytokine increases 

pancreatic cancer cell resistance to chemotherapy in vitro (199), and in vivo, it increases 

tumor growth and metastasis (198).  

A pilot study was performed, which showed that treatment of MPanc96 pancreatic 

cancer cells with TNFα leads to increased expression of EphA2, however, the exact 

mechanism mediating this effect is unknown (Figure 4.2). This experiment contradicts 

previously published findings (200), although the discrepancy may reflect the difference 

between the cell lines. Interestingly, TNFα stimulates the activity of a number of 

intracellular pathways, including MAPK and JNK, both of which activate AP-1 transcription 

factor (201). Inhhibition of this pathway decreased total TNFα-induced EphA2 levels, but 

did not prevent induction of EphA2 over MAPK/JNK inhibited controls (Figure 4.2.) 
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How does EGF regulate MAPK pathway activity in the presence of constitutively 

active K-Ras? 

Being a central player in pancreatic cancer development, oncogenic K-Ras has long 

been immune to therapeutic modulation. Therefore, our observation that inhibition of EGFR 

activity decreases MAPK pathway activity is very important and needs further investigation. 

Seufferlein and colleagues made a similar observation, demonstrating that stimulation of 

pancreatic cancer MiaPaca-2 and Panc-1 cells causes increase in H-Ras translocation to the 

cell membrane, increase in ERK phosphorylation and induction of AP-1 and RSK activity 

(191). However, effect of TGFα on K-Ras expression level has not been shown. 

Serendipitously, we discovered that in MPanc96 and L3.6pl Ras protein expression 

level changes in response to EGFR activity. Briefly, to assess EGF effect on phospho-ERK 

in pancreatic cancer cells, MPanc96 and L3.6pl, either pre-treated or not with Iressa (10µM, 

1 hr), were stimulated with EGF (20 nM) or PBS for 20-30 minutes. Protein was collected 

and WB was performed for pERK, Ras and tubulin (Figure 4.3A). As shown in Figure 4.3B, 

phospho-Erk levels changes as expected with a strong induction by EGF and almost 

complete block with Iressa. However, in L3.6pl increase in Ras level was observed with 

EGF treatment, which was completely blocked with Iressa (Figure 4.3C, left). In MPanc96, 

no increase in Ras was observed in response to EGF, however, Ras levels were decreased 

with Iressa treatment (Figure 4.3C, right). Since the experiment was set up to investigate the 

effect of EGF on Erk phosphorylation, the duration of EGF stimulation was very short, 

potentially diminishing the effect of EGF on Ras protein level. On the other hand, the short 
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duration of EGF stimulation also indicates that EGF-mediated Ras expression is unlikely to 

be transcriptional, but rather post-transcriptional (increasing RNA stability) or post-

translational (increasing Ras protein stability). Nevertheless, EGF induction of Ras 

expression needs to be investigated further. 
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