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Figure 14. Sequenced junctions of the Z-DNA-induced mutants from the RecB- 

strain. (A) Examples of sequencing data from the small-scale deletions in the Z-DNA-

induced mutants from the RecB- cells. The ‘M’ represents the Z-DNA-induced mutants 

and the ‘WT’ represents the wild-type Z-DNA-forming sequence. (B) Examples of 

sequencing data from the large-scale deletions in the Z-DNA-induced mutants from the 

RecB- cells. The spaces between the lines were deleted from the Z-DNA-forming 

plasmid sequence. The letters at the end of each line represents the microhomologies. 

(Adapted from Kha et al., 2010) 
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The functional NHEJ system, and not Ku or LigD individual activity, is involved in 

the Z-DNA-induced large-scale deletions 

 The multi-domain Mt-LigD protein is an essential partner in the “two-component” 

Mt-NHEJ system. On the C-terminus of Mt-LigD there is a ligase domain, while the 

polymerase domain resides at the N-terminus, and in between there is a nuclease 

domain that has 3’ to 5’ exonuclease activity (3, 68-71). The multiple activities of Mt-

LigD raises the question of whether there is a single protein activity that could, rather 

than NHEJ activity as a whole, cause the large-scale deletions seen in the Z-DNA-

induced mutants in Ara+ cells. Also in question is the Mt-Ku homodimer, which binds to 

DNA breaks and can also alter the type of DSB repair implemented in processing the 

DSBs depending on other repair factors available (LigD or LigC, etc) (3, 55, 68, 104, 

105). Therefore, to sort out whether the NHEJ pathway or the individual components, 

Mt-Ku or Mt-LigD proteins, are responsible for the large-scale deletions in the Z-DNA-

induced mutants, the Z-DNA-forming plasmid was transformed into the Mt-Ku only and 

Mt-LigD only strains to calculate and compare the Z-DNA-induced mutation frequencies 

and spectra to those found in cells containing both Mt-Ku and Mt-LigD. These particular 

strains only express the individual components, whether Mt-Ku or Mt-LigD, which 

makes them insufficient in the full Mt-NHEJ activities seen in the RecA-, RecB- and 

WT/NHEJ+ strains after L-arabinose induction.    

 In the absence of Mt-Ku in the wild-type E.coli cells, the Z-DNA-induced 

mutation frequency was ~17 x10-4, which was the same Z-DNA-induced mutation 

frequency for the WT strain before L-arabinose was supplemented into the LB (Figure 

15A and 9A). The introduction of Mt-Ku into the wild-type E.coli cells produced a Z-

DNA-induced mutation frequency of ~32 x10-4 (Figure 15A). The difference in mutation 

frequencies in the Mt-Ku only strain was not significantly different from the uninduced 

cells (p value = 0.16). Similarly, in the cells that only expressed Mt-LigD, the Z-DNA-

induced mutation frequency was not significantly altered from ~21 x10-4, without Mt-

LigD induction, to ~17 x10-4, with Mt-LigD induction (Figure 15C). Our data is in 

agreement with previous results that showed that the Mt-LigD nuclease activity is not 

involved in processing DNA breaks independently, and that Mt-Ku works with Mt-LigD 

as the two-component NHEJ repair system (3, 106).   
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Figure 15. Z-DNA-induced and spontaneous mutation frequencies and spectra in 

Mt-Ku only and Mt-LigD only bacterial strains. (A) Z-DNA-induced and pUCON-

induced (i.e. spontaneous) mutation frequencies in Mt-Ku only cells in the presence (Mt-

Ku+) or absence (Mt-Ku-) of the Mt-Ku protein. (B) The pUCG14 mutant spectrum after 

EagI and BssSI digestion and separation of the seven fragments by agarose gel 

electrophoresis from Mt-Ku+ cells. (C) Z-DNA-induced and pUCON-induced mutation 

frequencies in Mt-LigD only cells in the presence (Mt-LigD+) or absence (Mt-LigD-) of 

the Mt-LigD protein. (D) The pUCG14 mutation spectrum after EagI and BssSI digestion 

and separation of the seven fragments by agarose gel electrophoresis from Mt-LigD+ 

cells. There are >70,000 colonies in each group and the error bars indicate the standard 

deviation of three separate experiments. The arrows refer to the Z-DNA-forming 

fragments; “C“ labels the control plasmid; and “M” labels the size standard marker. 

(Adapted from Kha et al., 2010) 
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 Moreover, the types of mutants induced by Z-DNA in both of the Mt-Ku only and 

Mt-LigD only strains were consistent with the inability of the individual proteins to 

process the DSBs. The mutations were small-deletions within the CG(14) repeat (20 

small-scale deletion mutants/20 total mutants; Figure 15B and 15D), as also seen prior 

to Mt-Ku or Mt-LigD expression in the wild-type E.coli cells (20 small-scale deletion 

mutants/20 total mutants; data not shown). Regardless of the Mt-Ku or Mt-LigD 

expression status, the Z-DNA-induced mutation frequencies and spectra were 

unaltered. It is indeed the entire NHEJ system, rather than either Mt-Ku or Mt-LigD 

alone that is responsible for generating the large-scale deletions on the Z-DNA-forming 

plasmids in the modified bacterial E.coli cells.    

 There are other potential factors in addition to the traditional HR and NHEJ 

components, which may be involved in non-B DNA-induced genomic instability in our 

study. In vivo, there are other DSB repair mechanisms that are not directly categorized 

under HR or NHEJ, such as the alternative RecFOR homologous recombination 

pathway in prokaryotes that is also available and independent of the RecBCD function 

in HR (89). As noted from our assays, there highly accurate DNA end rejoining of 

“sticky-ended” DSBs generated from EcoRI digestion, suggesting a direct ligation of the 

DSBs could also be involved. Interestingly, repair of the “blunt-ended” DSBs resulting 

from EcoICRI digestion occurred in a more mutagenic fashion (more than 60% of the 

recovered mutants had a mutation on the lacZ gene 4-bp from the targeted DSB; data 

not shown). There are also recent new findings of an end-joining repair mechanism in 

E.coli that has not been characterized prior to this study (107). This mechanism is 

different than canonical NHEJ, and is dependent on ligase-A activity. Nonetheless, the 

efficiency levels of these processes (identified or as yet unidentified) may not be as high 

as in the HR or NHEJ pathway and they contribute a very minor role for processing the 

DSBs, as is evident by the reduced amount of colonies after the linearized plasmids 

were transformed into the RecA-/RecB- strains without Mt-NHEJ induction compared to 

the cells that are proficient in RecBCD and RecA or the cells that had the Mt-NHEJ 

proteins present.   

 When NHEJ and HR are both available, there can be competition for the DSB 

intermediates, as previously reported (108). Even so, this is not seen in the processing 

of the Z-DNA-induced DSBs when both DSB repair systems were made available, as in 

the modified E.coli cells that contained the Mt-NHEJ proteins. If NHEJ was not present, 
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such as in the wild-type E.coli cells, then the repair of the Z-DNA-induced DSBs may be 

shunted to the HR pathway or to other available pathways (Figure 16), resulting in 

accurate ligation of small deletion/expansions in the repetitive sequences. And although 

the novel expression of Mt-Ku and Mt-LigD in E.coli cells can be sufficient for the 

initiation of processing broken DNA ends and the ligation of the DSB strands in a NHEJ-

like fashion, different repair outcomes can be produced when these proteins are 

expressed in various genetic backgrounds; indicating that the host E.coli cell proteins 

can assist with the repair processes (3, 55, 106). Additionally, independent of DSBs 

and/or their repair processing, there can also be contractions or expansions within the 

CG(14) repeats via slippage events during DNA replication (1), which can overshadow 

the small-scale deletions or expansions resulting from DSB repair. Thus, the 

contribution of NHEJ proteins in Z-DNA-induced mutagenesis could be underestimated 

in our system. 
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Figure 16. Proposed model for the role of double-strand repair pathways in 

processing of Z-DNA-induced DSB. (A) HR, NHEJ, and other processes, such as 

direct ligation of DNA breaks, may participate in the processing of Z-DNA-induced 

DSBs. (B) In mammalian cells, where NHEJ is available, large-scale deletions are 

prevalent after the Z-DNA-induced DSBs are processed by that mechanism. (C) 

However, in E.coli, where NHEJ is absent, the HR pathway largely repairs the DSBs 

and this may produce small expansions/contractions within the repeat because of 

misalignment events. (Adapted from Kha, et al., 2010)  
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NHEJ does not affect H-DNA-induced mutagenesis in modified E.coli 

Previous results in our laboratory demonstrated that Z-DNA is mutagenic in both 

mammalian cells and bacterial cells, while H-DNA is only mutagenic in mammalian cells 

and not in wild-type E.coli (1, 2). This quite stable, non-mutagenesis characteristic of H-

DNA in bacteria may possibly be due to the lack of an error prone NHEJ pathway in 

E.coli cells. In addition, since the H-DNA-forming sequence tested in this study was not 

a simple repetitive sequence, there is a greater possibility for an accurate alignment of 

the invading stand into the homologous template during HR, which would not result in 

small expansions or deletions, allowing for error-free repair of H-DNA-induced DSBs. 

Therefore, the H-DNA-induced mutagenesis was re-evaluated in modified E.coli that 

express the Mt-NHEJ proteins to mimic a similar DSB repair situation in bacteria as in 

mammalian cells.  

As previously found for our Z-DNA studies described above, the addition of the 

inducible factor, L-arabinose, to the LB culture for induction of Mt-NHEJ protein 

expression did not influence the spontaneous or H-DNA-induced mutation frequencies 

in WT E.coli cells (Figure 17). The low mutation frequencies of the H-DNA-forming 

sequences, which were all below 1 x10-4, validates previous observations that H-DNA is 

not mutagenic in wild-type E.coli cells (Figure 17) (2). And similar to the Z-DNA-induced 

genetic instability study, the H-DNA-induced genetic instability was evaluated in most of 

the same strains listed in Table 1, except for the Mt-Ku only and Mt-LigD only strains. In 

the RecA- and WT/NHEJ+ strains that have the Mt-NHEJ expression vectors, very 

similar mutation frequencies were found between the H-DNA and control plasmids. In 

both strains, there were consistently low mutation frequencies that had no significant 

differences when Mt-NHEJ is expressed (Figure 18 and 20). In the RecA- cells, the 

mutation frequencies remained low, before and after Mt-NHEJ induction, with all 

frequencies below ~1 x10-4 (for both U and Y-direction; Figure 18). The combined 

average mutation frequencies of the two H-DNA-forming sequences (U and Y-direction) 

were at ~2 x10-4, before Mt-NHEJ induction, and ~1.8 x10-4, after Mt-NHEJ induction in 

the WT/NHEJ+ strain (Figure 20). This lack of an effect of NHEJ on H-DNA-induced 

genetic instability is further confirmed through characterization of the mutants. The 

restriction and sequencing analyses of a few available spontaneous control plasmid 

pUCON-induced mutants and H-DNA-induced mutants showed that the types of 

mutations consisted of a mixture of small-scale and large-scale deletions when Mt-
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NHEJ was not induced and when Mt-NHEJ was induced, for both plasmids (data not 

shown).  

In the RecB- cells, there was a significant increase in both the H-DNA and 

pUCON-induced (i.e. spontaneous) mutation frequencies when Mt-NHEJ was 

expressed, which is similar to the Z-DNA-induced genetic instability results from the 

RecB- strain (Figure 19). The mutation frequencies for the H-DNA-forming sequences, 

prior to Mt-NHEJ induction, were averaged to ~1 x10-4 (for both U and Y-directions; 

Figure 19). Following Mt-NHEJ induction, the H-DNA-induced mutation frequencies had 

a ~5 and a half-fold increase (p-value < 0.01; Figure 19). This ~5 and a half fold 

increase after NHEJ expression, however, is not H-DNA specific, because the pUCON-

induced mutagenesis is also increased by the same fold after Mt-NHEJ induction (p-

value < 0.01; Figure 19). Clearly, the data for the H-DNA-forming sequences strongly 

indicates that H-DNA is not mutagenic in bacteria cells, regardless of the expression of 

NHEJ.  

There are several possible factors that may come into play for this lack of H-

DNA-induced mutagenesis in the modified E.coli. Unlike the Z-DNA-induced 

mutagenesis results, the types of mutants found and mutation frequencies of the H-

DNA-forming sequences were nearly identical to the control plasmid pUCON-induced 

mutation frequencies and spectra (Figure 18-20). In the RecB-deficient strain, the 

mutation frequencies for both the control plasmid pUCON and H-DNA-forming plasmid 

increased when Mt-NHEJ was induced (NHEJ+; Figure 19). With this increase in the 

number of mutants, there was also an increase in the ratio of large-scale deletions in 

the spontaneous and H-DNA-induced mutants when NHEJ was available (data not 

shown), which we believe is due to the error-prone NHEJ repair of spontaneous DSBs 

generated in bacteria. The characterization of the spontaneous and H-DNA-induced 

mutants in the other strains, with and without Mt-NHEJ, showed a mix of point 

mutations and large-scale deletions for all the strains studied (data not shown), 

suggesting that the sequences that can form H-DNA structures were stable in bacterial 

cells, and the spontaneous mutations included a low level of large-scale deletions, 

probably as a result of nuclease digestion and re-ligation. 
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Figure 17. The inducible factor, L-arabinose, does not affect H-DNA-induced 

mutagenesis per se. L-arabinose (Ara+), the inducible factor of the Mt-NHEJ proteins, 

did not effect the mutation frequencies of the control plasmid and H-DNA plasmid in 

wild-type (WT) E.coli cells that do not have the Mt-NHEJ expressing system. There are 

>100,000 colonies in each group and the error bars indicate the standard deviation of 

three separate experiments.  
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Figure 18. Spontaneous and H-DNA-induced mutation frequencies from the RecA- 

strain. This graph shows the spontaneous and H-DNA-induced mutation frequencies in 

the RecA- strain in the presence (NHEJ+) or absence (NHEJ-) of the Mt-NHEJ proteins. 

There are >100,000 colonies in each group and the error bars indicate the standard 

deviation of three separate experiments. 
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Figure 19. Spontaneous and H-DNA-induced mutation frequencies from the RecB- 

strain. This graph shows the spontaneous and H-DNA-induced mutation frequencies in 

the RecB- strain in the presence (NHEJ+) or absence (NHEJ-) of the Mt-NHEJ proteins. 

There are >100,000 colonies in each group and the error bars indicate the standard 

deviation of three separate experiments. 
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Figure 20. Spontaneous and H-DNA-induced mutation frequencies from the 

WT/NHEJ+ strains. This graph shows the spontaneous and H-DNA-induced mutation 

frequencies in the WT/NHEJ+ strain in the presence (NHEJ+) or absence (NHEJ-) of 

the Mt-NHEJ proteins. There are >100,000 colonies in each group and the error bars 

indicate the standard deviation of three separate experiments. 
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Summary 

We studied the roles of NHEJ and HR on non-B DNA-induced genetic instability 

by determining the Z-DNA and H-DNA-induced mutation frequencies and mutant 

characterization in modified E.coli strains with proficiencies and/or deficiencies in NHEJ 

(Ku/LigD) and HR (RecA/RecB). To summarize, in exploring for possible explanation(s) 

for the different non-B DNA-induced mutagenesis patterns between mammalian cells 

versus bacterial cells, our results suggested that, if made available, NHEJ can repair 

the spontaneous and non-B DNA-induced DSBs in a mutagenic manner. 

Previous Z-DNA and H-DNA-induced mutagenesis results revealed that the non-

B DNA structures, which induced DSBs, had higher mutation frequencies and larger 

deletions in the mutants generated in mammalian cells versus those generated in E.coli 

cells (1, 2). NHEJ is presumably the more error-prone pathway compared to the HR 

pathway. The generation of inaccurate repair products via NHEJ is specifically reflected 

in the types of Z-DNA-induced mutants found when both the M.tuberculosis NHEJ 

proteins, Mt-Ku and Mt-LigD, were supplemented together into the modified E.coli cells 

that had varying proficiencies of HR (RecA/RecB). The statistically significant increase 

in large-scale deletions in the Z-DNA-induced mutants was visually apparent in the 

mutation spectra and was confirmed in the sequencing analyses of the Z-DNA-induced 

mutants recovered from the modified E.coli strains that contained functional NHEJ 

(Figure 11-13). Moreover, when the Mt-Ku and Mt-LigD proteins were expressed 

individually in the Mt-Ku only and the Mt-LigD only strains, respectively, there was a 

lack of large-scale deletions in the Z-DNA-induced mutants (Figure 15). The type of Z-

DNA-induced mutants found in those strains was more similar to the types of Z-DNA-

induced mutants found in wild-type E.coli that does not contain a NHEJ mechanism 

(Figure 9) or the modified E.coli cells that had no NHEJ induction (NHEJ-; Figure 11-

13). Therefore, without complete NHEJ function or availability, the types of Z-DNA-

induced mutants that were detected predominantly consisted of small-scale deletions. 

And when NHEJ was induced in the modified E.coli cells, the types of Z-DNA-induced 

mutants shifted from small-scale deletions to large-scale deletions, similar to those of Z-

DNA-induced mutants in mammalian cells that contain endogenous NHEJ (1, 4).  

 The types of Z-DNA-induced mutants were dependent on the available DSB 

repair pathway, going from 2% large-scale deletions/rearrangements in total mutants to 

24% large-scale deletions when NHEJ became available. The Z-DNA-induced mutation 
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frequencies, however, generally remained the same with or without induction of the 

NHEJ pathway (4). The Z-DNA-forming sequence consistently induced high levels of 

mutations in different E.coli strains, either with or without NHEJ and/or HR pathways, 

and the presence of NHEJ did not significantly change the Z-DNA-induced mutation 

frequencies in the bacterial cells (Figure 9, 11-13, 15). Only when NHEJ became 

available in E.coli, did the detection of large-scale deletions and rearrangements on the 

Z-DNA plasmid show a significant increase, suggesting that NHEJ repair is involved in 

the large-scale deletion and rearrangements caused by this non-B DNA structure, which 

increases our mechanistic understanding of non-B DNA-induced genetic instability in 

various species.  

The H-DNA-induced mutagenesis frequencies remained stable and were not 

altered in the presence or absence of NHEJ or HR in the newly modified E.coli cells 

(Figure 17-20). The H-DNA mutagenesis induced in bacterial cells versus mammalian 

cells continued to be different, even after the effort to gap the bridge between the two 

cell-types, with the addition of Mt-NHEJ into the bacterial E.coli cells. The H-DNA 

mutation frequencies were consistently at the same level as spontaneous mutations in 

the modified E.coli cells, before and after NHEJ was induced (Figure 17-20). Since the 

H-DNA-induced mutation frequencies and spectra followed that of the control plasmid 

pUCON, more studies of other repair pathways and other factors involved with this non-

B DNA structure are warranted. In general, extended studies to further clarify the 

mechanisms of DNA structure-induced genetic instability are needed to broaden our 

understanding of how DNA structure influences human diseases, genetic instability, and 

evolution. 
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CHAPTER III: FUTURE DIRECTIONS 
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III.I FUTURE DIRECTIONS 

  Studying the relationship between DSB repair pathways and non-B DNA-

induced genetic instability revealed important qualitative roles of NHEJ and HR on the 

repair of non-B DNA-induced DSBs, specifically finding the mutagenic role of NHEJ in 

producing the Z-DNA-induced large-scale deletions as seen in mammalian cells. Since 

the discovery of the B-DNA double helical confirmation by Watson and Crick over 50 

years ago (5), several other types of DNA structure have been identified and 

characterized. These alternative DNA structures seem to play functional roles in the 

cell, as we have demonstrated here. The work described in this thesis may provide a 

peephole into further studies on the functional role of DNA structure. 

As stated before, there are other factors that could help further explain the 

difference in the non-B DNA-induced mutagenesis found in mammalian cells versus 

bacterial cells that was not elucidated in this study. For example, there are other DNA 

binding proteins, in addition to RecA, that can contribute to the differences in non-B 

DNA-induced mutagenesis between mammalian cells and bacterial cells. Some of 

these DNA binding proteins are involved in other DNA repair mechanisms that are 

different from the DSB repair pathways, NHEJ and HR, such as the nucleotide excision 

repair (NER) and the mismatch repair (MMR) mechanisms. Specifically, like RecA, 

which binds preferentially to the Z-DNA structure over the B-DNA structure (21), 

unpublished chromatin immunoprecipitation results from our laboratory showed that 

antibodies against the XPA and MSH2 proteins, which are involved in NER and MMR, 

respectively, were also enriched at Z-DNA-forming sequences compared to the B-DNA 

control sequence (6). Thus, other DNA repair mechanisms, such as NER and MMR, 

and not solely NHEJ and HR, could also have roles in non-B DNA-induced genetic 

instability. Indeed, studies form our laboratory of non-B DNA-induced mutagenesis in 

the absence of functional NER and MMR have revealed a role for XPA and MSH2 in the 

process (6). It would also be interesting to determine potential crosstalk involved 

between the repair pathway components, in relation to the non-B DNA-induced genetic 

instability.   

To further assess the roles of DSB repair pathways on DNA structure-induced 

genetic instability, there are further in depth studies that would allow the expansion of 

this particular study and will be proposed as followed. To further support to the idea that 

the NHEJ pathway did indeed cause the types of large-scale deletions in the Z-DNA-
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induced mutants found from mammalian cells, we could examine mammalian cells with 

deficiencies in NHEJ. Results from these kinds of studies may be relevant to genetic 

instability and human disease. 

The use of E.coli cells allowed for an easy first approach to characterize 

differences in some of the DSB repair components between mammals and bacteria and 

allowed us to determine that NHEJ is important in DNA structure-induced mutagenesis. 

However, direct comparisons between species cannot be made due to differences in 

the NHEJ and HR systems in various organisms. As stated, the RecA protein in the 

prokaryotic HR pathway has some differences in its activity compared to the 

mammalian homolog Rad51 (21, 96). Both of the DSB repair pathways in mammalian 

cells are indeed more complex compared to the prokaryotic DSB repair pathways. A 

better observation on the role of DSB repair pathways in non-B DNA-induced genetic 

instability could be done in mammalian cells that are deficient in NHEJ repair.  

We could introduce non-B DNA plasmids that are able to replicate within these 

NHEJ-deficient cells and study their non-B DNA-induced mutagenic potential. A good 

collaborative candidate would be Dr. Chengming (Ben) Zhu, whose laboratory is in the 

Department of Immunology at the University of Texas M.D. Anderson Cancer Center, 

who studies mouse models with NHEJ-deficiencies in ligase IV (Lig 4-/-) and a 

hypomorphic mutation in p53, p53R172P, that is not embryonic lethal and does not 

develop lymphomagenesis (109, 110). We have obtained the mouse embryonic 

fibroblasts (MEFs) from Dr. Zhu and future work with these cells is planned. In addition, 

these mouse models that have knockouts in NHEJ components could be crossed with 

our mouse models that carry the non-B DNA sequences in their chromosomes (31). 

The NHEJ-deficient mouse models could help solidify the association of NHEJ with the 

large-scale deletions in the Z-DNA-induced mutants from mammalian cells and mice. 

We speculate that without the components of NHEJ, there may be a shift from large-

scale deletions to small-scale deletions in the Z-DNA (or other non-B DNA)-induced 

mutants, corroborating our results from the modified E.coli cells with no NHEJ induction 

or the incomplete NHEJ induction (Ku-only and LigD only strains).  

The NHEJ-knockout mouse model study would also re-evaluate the cause for 

the high rate of Z-DNA and H-DNA-induced mutation frequencies found in mammalian 

cells (1, 2). It will be interesting to see if the high levels of Z-DNA and H-DNA-induced 
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mutagenesis would remain when in a repair environment that is more similar to bacterial 

E.coli cells, which do not contain NHEJ. 

In addition to the use of mouse models to study DSB repair pathways in non-B 

DNA-induced genetic instability, we could also study non-B DNA-induced genetic 

instability in human cells with small interfering RNA (siRNA) that knockdown NHEJ 

factors (or HR factors) as well. In a recent study, Fattah et al. used recombinant adeno-

associated viral knockout vectors (rAAV) to produce isogenic human somatic cell lines 

that were deficient in the NHEJ components (Ku, DNA-PKcs, XLF, and LIGIV) (104). 

These cells could prove useful to our laboratory for further studies. In addition to 

observing the effects of the NHEJ knockouts in their study, they also observed the role 

of ‘alternative’ NHEJ pathway (A-NHEJ) in DSB repair.  

With the preliminary identification of an alternative back-up NHEJ (A-NHEJ or B-

NHEJ) in higher eukaryotes that uses DNA ligase III, poly(ADP-ribose) polymerase-1 

(PARP-1) and histone H1 (111), we could determine if the non-B DNA-induced DSBs 

could be shunted into this sub-pathway, which would allow an update of our current 

model in Figure 16, and further categorized or branch out the model into the ‘classical’ 

NHEJ (C-NHEJ) and A-NHEJ/B-NHEJ pathways. Similar to the possibility of other 

repair processes (NER, MMR) in the mammalian cells that could affect non-B DNA-

induced genetic instability, a possible next step for this study could be to elucidate the 

contribution of the NER and MMR pathways in conjunction with A-NHEJ/B-NHEJ 

pathway, and/or competition with the classical NHEJ and HR pathways in non-B DNA-

induced genetic instability in mammalian cells. Although recent discoveries of an end-

joining (A-EJ) repair mechanism in E.coli cells may be different from the A-NHEJ found 

in eukaryotes, preliminary studies can be done in the bacterial cells as well for 

comparisons with our results in bacterial systems (107). 

Building from this study, with the use of MEFs, NHEJ-deficient mice models, and 

siRNA or rAAV knockout of NHEJ in human cells to extend our findings, we could shed 

a greater light into the peephole of studying the role of the DSB repair pathways in non-

B DNA-induced genetic instability. This will help further our understanding of DNA 

structure-induced genetic instability, evolution and human diseases; with the long-term 

goal of improving or developing targeted treatments for diseases that are linked to DNA 

structure-induced genetic instabilities. In fact, G.M. Zaunbrecher et al. have initiated 

attempts for improving gene-targeting by trying to affect the ratio of HR to NHEJ for the 
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enhancement of extra chromosomal recombination in somatic cells (112). Reaching 

new frontiers may mean crossing these two areas of research, which could give birth to 

creative and beneficial genetic tools.   
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