






 101 

3.19 shows the percentage of cells classified as clockwise, counterclockwise, 

appear, disappear, or ambiguous for each region.  The distributions of cell 

responses were significantly different for the four regions (Figure 3.19; chi-

square; p < 0.001).  

3.3 Conclusions 

 The present study examined the flow of information through the 

hippocampal formation by comparing how the input representations (DG, LEC, 

and MEC) and output representations (CA3) changed between a familiar and 

cue-altered environment.  Three striking findings were reported.  First, there was 

a dissociation between the information the hippocampal formation received from 

the MEC and LEC.  The MEC representation was controlled by global cues, 

whereas the LEC representation was influenced by the local cues despite 

individual LEC cells conveying a weak spatial signal (Yoganarasimha et al., 

2010;Hargreaves et al., 2005) (Figure 3.4).  Second, the DG population response 

appeared to change more than the MEC and LEC input representations, 

suggesting that DG performs pattern separation on its inputs to decrease the 

redundancy amongst incoming information and then outputs patterns that overlap 

less than the inputs.  However, when looking at individually recorded ensembles, 

there were no considerable differences detected in the number of significant 

mean vectors between the four regions.  This cast doubt on the theory that DG is 

performing pattern separation.  Finally, the CA3 representation remains more 

constant between familiar and cue-altered environments than the representations 

of its primary input structures.  This finding is consistent with longstanding 

computational models proposing that CA3 is an associative memory system 

performing pattern completion in order to recall previous memories from partial 

inputs.  For a detailed discussion see Chapter 4. 
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Figure 3.19.  Categorical Response of Individual Cells to Mismatch Session.  
Pie charts showing the percentage of CA3, DG, LEC, and MEC cells that were 
classified as clockwise, counterclockwise, appear, disappear, or ambiguous.
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spike waveforms of units above a threshold of 30-70 µV were sampled for 1 ms 

at 32 kHz, whereas LFPs were continuously sampled at 1 kHz.  The rat’s 

momentary position was tracked with an overhead camera recording a circular 

array of light emitting diodes (red and blue) positioned over the head of the rat 

and a 13 cm extension behind the head with additional diodes (green) at 30 Hz.  

The tetrodes targeting DG and CA3 were independently advanced by 

small increments everyday for approximately three weeks.  Units appearing and 

disappearing in conjunction with the changing patterns in LFP activity were used 

to assess the movement of tetrodes.  After entering the CA1 layer, positioned 

approximately 400 µm deeper than the cortical layer 6, tetrodes were advanced 

at ~40-148 µm (the larger movements occurred after leaving CA1) each day for 

an additional 300 µm.  For tetrodes targeting DG, advancement was significantly 

reduced to 10-20 µm per day once gamma activity and dentate spikes in the LFP 

were detected (Bragin et al., 1995b;Bragin et al., 1995a).  These signals 

suggested that tetrodes were encroaching upon the granule layer of the dentate 

gyrus.  Once units were detected during sleep, recordings were performed as the 

animal circumnavigated a track and foraged in an open field.  A tetrode was no 

longer advanced after it detected units that fired on the track or open-field (see 

below).  Any tetrode only detecting cells that were considered inactive during 

behavior were advanced by 10 µm.  This continued until at least five putative DG 

cells were simultaneously detected that fired during behavior and then tetrodes 

were no longer moved while the double rotation experiments were conducted.  

For rats 227 and 232, DG tetrodes that did not detect cells during the experiment 

were advanced by 10 µm each day.  For tetrodes targeting CA3, tetrodes were 

daily advanced by ~50 µm in an attempt to enter the CA3 layer at the same time 

as DG units were detecting cells.  For the entorhinal cortex, each tetrode position 

was estimated from the total distance it was advanced after entering the brain.  

The number of times each tetrode passed through a region with multiple units 

and a region that was relatively quiet as well as the changing patterns in LFP 

activity provided additional insight.  The presence of theta rhythm in the LFP and 

units with grid cell activity indicated that tetrodes were in the MEC area.  After 
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each day of recording, tetrodes were advanced ~150 µm to sample different cells 

across the multiple days of recording.  Experiments concluded, after all tetrodes 

stopped detecting cells, which indicated that tetrodes were in Layer I.  For MEC, 

theta phase reversal also suggested when tetrodes were in Layer I (Alonso and 

Garcia-Austt, 1987b;Alonso and Garcia-Austt, 1987a).  Final recording site 

localization was determined using histological analysis (see below). 

3.4d Unit Isolation  

Multiple waveform characteristics (i.e., spike amplitude peak, area under 

the waveform, and valley depth) recorded simultaneously on the four wires, 

located in slightly different positions, were used to isolate single-units offline with 

an interactive software program that was designed in-house.  A cell’s isolation 

quality was rated 1 (very good) to 5 (poor) depending on the distance each 

cluster was separated from other clusters and from background noise.  Cluster 

isolation was judged prior to examining any of the behavioral firing correlates of 

the cells.  All cells rated as fair or better (categories 1, 2, and 3) were potentially 

included in all analyses (see Data Analysis for specific inclusion criteria).  Cells 

that fired 20 spikes or more in one track session and had a mean firing rate < 10 

Hz were considered active excitatory cells.   

3.4e Data Analysis 

To create ratemaps, a ratio of the number of times a cell fired and the total 

time the rat spent in each pixel (~2.29 cm2) of a 64 x 48 grid was calculated.  For 

rats 227 and 232, each square pixel was ~2.61 cm2 because the distance 

between the camera and track was ~46 cm shorter than for every other rat.  Each 

bin of the two-dimensional ratemap was smoothed using an adaptive binning 

algorithm and the cell’s spatial information score was computed (see (Skaggs et 

al., 1996).  All analyses were performed on data that excluded off track firing by 

filtering the data to include only spikes occurring within the outside (~76 cm) and 

inside (~56 cm) diameters of the track.  Circular, two-dimensional data were 

linearized and every cell’s mean firing rate was calculated for every one degree 
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of the track.  The linearized firing rate maps were smoothed using a Gaussian 

smoothing algorithm. 

Spatial population correlation matrices were created by constructing 

population firing rate vectors at each of the 360 locations on the track for any cell 

that fired more than 20 spikes in either of the two sessions being correlated and 

that had a mean firing rate less than 10 Hz.  The firing rate vectors for each bin of 

the standard session were correlated to the firing rate vectors for each bin of 

either the mismatch session or the next subsequent standard session using a 

Pearson product-moment correlation.  This produced a 360 x 360 correlation 

coefficient matrix that was partitioned into regions associated with clockwise or 

counterclockwise rotations.  A band of high correlation located in either region 

shows that the population of cells rotated their firing location coherently in the 

corresponding direction.  To quantify the location of each band, the average of 

the correlations was calculated for each diagonal of the correlation matrix.  

Briefly, the correlations along the central diagonal of the correlation matrix were 

averaged and then the correlation matrix was circularly shifted by one degree to 

the left.  Determining the mean correlation along the diagonal and circularly 

shifting the correlation matrix continued until the correlation matrix was shifted 

360 degrees and returned to the original position.  For every region and 

mismatch angle, the greatest mean correlation and the corresponding angle were 

determined for all STD versus STD and STD versus MIS matrices.  To show that 

the location of the peak correlations did not occur by chance at either the amount 

that the local or global cues were rotated, the linearized mismatch session 

ratemaps were randomly shifted by a minimum of 5 degrees for every cell.  

Population firing rate vectors were created from the randomized data and 

correlated to the population firing rate vectors from the preceding standard 

session.  The mean correlations surrounding the amount of each rotated cue set 

(±10 bins) was calculated for correlation matrix created from the shuffled data.  

This procedure was repeated 1000 times and the location of the peak of the 

actual data was considered significant at the p < .01 level if less than 10 of the 



 110 

mean correlations from the shuffled data were greater than the score from the 

unshuffled data.  

For every cell that fired more than 20 spikes in both the standard and 

mismatch sessions and had a mean firing rate lower than 10 Hz, the amount that 

each cell’s firing location shifted was calculated.  The linearized ratemap in the 

standard session (STD) was compared to the linearized ratemap for the 

mismatch session and quantified via a Pearson product-moment correlation.  

After shifting the mismatch session ratemap by 5°, it was again compared to the 

standard session ratemap by calculating the similarity between the two ratemaps.  

These comparisons continued until the mismatch ratemap was shifted back to 

the original position.  The amount of the shift producing the highest Pearson 

product-moment correlation indicated the degree that the firing location was 

rotated.  When the correlations were the highest for the bins between 5 and 175 

degrees or 185 to 355 degrees, it suggested that the place fields followed the 

distal or local cues, respectively.  For each separate region, 2 or more 

simultaneously recorded cells, active in both the standard and mismatch 

sessions, were considered part of an ensemble.  For the concurrently recorded 

DG and CA3 ensembles, at least 2 cells from both regions (minimum of 4 cells) 

needed to be active in both the standard and mismatch sessions for inclusion in 

the analysis.  

3.4f Histological Procedures   

After an additional nine to fourteen experiments in the DG/CA3 recorded 

rats or the last double rotation experiment in entorhinal cortex recorded rats, 

marker lesions were performed on a subset of tetrodes (10 µA of positive current 

for 10 seconds).  Lesions were used to help identify tracks during histological 

reconstruction.  The following day, rats were euthanized with formalin perfused 

through the heart.  This procedure was slightly altered for rats 227 and 232, since 

they were euthanized immediately after the last double rotation experiment 

without hippocampal lesions.  Brains were coronally sliced (40 µm) with a 
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freezing microtome, placed on glass microscope slides, and stained with Cresyl 

Violet.  Images of sections were captured with a moticam 2000 camera (Motic 

Instruments Inc., Richmond, BC, Canada) or IC Capture DFK 41BU02 camera 

(The Imaging Source, Charlotte, NC, USA) that was attached to a Motic SMZ-

168 stereo scope and saved as high resolution JPEG files on a Dell computer.  

Electrode tracks and the tetrode that generated them were identified and 

assigned to an anatomical layer depending on the region where the track 

stopped.  For entorhinal cortex, the tetrode location during each experimental 

session was assigned to a specific layer based on reconstructing the depth of the 

tetrode track and assuming that the histological processing caused the neural 

tissue to shrink by a factor of 15%. 
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CHAPTER 4 GENERAL DISCUSSION 

 

4.1 Recap of Findings 

The current investigations have addressed the flow of information through 

the hippocampal formation and provided evidence for the theoretical concepts of 

pattern separation and pattern completion as mechanisms for storing and 

recalling memories.  The initial study characterized the in vivo spatial firing 

properties for cells in the dentate gyrus (chapter 2) and the second study focused 

on the possible computations that neurons in the DG and CA3 subfields 

performed to encode and recall memories (chapter 3).  Furthermore, a 

dissociation between two primary cortical inputs to the hippocampal formation 

was made in the third chapter, which showed that the MEC carried information 

about the global cue rotation, and the LEC carried information pertaining to the 

local cue rotation.   

4.2 Hippocampal Circuitry 

The neural architecture of the hippocampal formation is well suited for 

information storage and recall.  The DG and CA3 subfields receive direct input 

via the perforant pathway (Witter, 1993;Witter and Amaral, 2004) from layer II of 

the entorhinal cortex (MEC and LEC).  Cells in the entorhinal cortex (~300,000) 

make contact with an expanded number of granule cells (~1,000,000) in the 

dentate (Amaral et al., 1990;Henze et al., 2000), which might permit neuronal 

activity patterns to be differentiated by redistributing overlapping neural activity 

from a smaller cell population in the entorhinal cortex into nonoverlapping activity 

in a much larger granule cell population (Marr, 1971;McNaughton and Morris, 

1987;Rolls and Treves, 1998).  After transforming perforant path input, the 

dentate mossy fiber projections are in a position to influence the activity of both 

CA3 pyramidal cells (~300,000) and mossy cells (~30,000) in the dentate 

polymorphic cell layer (Witter and Amaral, 2004;Morgan et al., 2007).  It is 
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estimated that a granule cell can influence 14-28 pyramidal cells, yet each 

pyramidal cell receives contact from 50 granule cells (Witter and Amaral, 2004).  

Both the perforant path and mossy fibers innervate CA3, but the largest number 

of synapses results from recurrent collaterals of pyramidal cells themselves 

(Ishizuka et al., 1990;Li et al., 1994).  Due to the Hebbian plasticity that couples 

coactive elements of a neuronal population, this circuitry theoretically permits the 

completion of the whole representation when a few neurons of the original set 

are activated (McNaughton and Morris, 1987).  The primary efferents from CA3 

(the Schaffer collaterals) project to CA1, but an additional feedback projection 

from CA3 pyramidal cells to hilar mossy cells exists, although it is less studied 

than the feedforward projection (Scharfman, 1994).  In theory, the location of the 

mossy cells in the hippocampal circuitry is ideally suited to regulate the flow of 

information through the circuit because mossy cells are believed to disynaptically 

inhibit the output of nearby granule cells (Scharfman et al., 1990).  However, 

direct evidence of mossy cells inhibiting nearby granule cells is lacking.  The 

feedback projection and recurrent circuitry in the dentate complicates the 

simplistic trisynaptic loop model. 

4.3 Theories of Hippocampal Function 

The anatomical connections of the hippocampus as well as the 

convergence and divergence ratio of different cell types have lead to many 

theoretical models proposing that memory storage depends on an 

autoassociative attractor network and suggested that each hippocampal subfield 

has a different function.  In theory, the hippocampus stores and recalls memories 

by implementing two competitive, yet complementary processes (Hopfield, 

1982;Marr, 1971;Tsodyks, 1999).  Pattern completion can reproduce a previously 

stored output pattern from a partial or degraded input pattern (Marr, 

1971;Guzowski et al., 2004;McNaughton and Morris, 1987), and many models 

suggest that the CA3 region of the hippocampus is responsible for this 

phenomenon via its recurrent collaterals (Marr, 1971;McNaughton and Morris, 

1987;Treves and Rolls, 1994).  In contrast, pattern separation decreases 
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redundancy among incoming information and then outputs patterns that overlap 

less than the inputs, which in theory could be performed in the dentate gyrus 

(McNaughton and Nadel, 1990;McNaughton and Morris, 1987;Treves and Rolls, 

1992;Rolls and Treves, 1994;Guzowski et al., 2004;Rolls and Kesner, 2006).  In 

many models that implement pattern separation, expansion recoding plays a 

central role in permitting neuronal activity patterns to be differentiated by 

redistributing overlapping neural activity from a smaller population of cells into 

nonoverlapping activity in a much larger granule cell population (Marr, 

1971;McNaughton and Morris, 1987;Rolls and Treves, 1998).  

4.4 Potential Mechanism for Memory Recall in CA3  

Behavioral evidence supporting the hypothesis that CA3 is necessary for 

pattern completion came from Gold and Kesner (2005) in a study that showed 

that chemically ablating CA3 decreased the ability of rats to find a reward 

location after reducing the number of available cues.  Complementing the 

behavioral evidence, Nakazawa and colleagues (2002) found that mice lacking 

NMDA-receptors in CA3 showed behavioral deficits in a Morris water maze and 

that CA1 place cells showed a reduction in firing rate and place field size 

compared to wild-type mice when ¾ of the extramaze cues were removed.  

Another experiment performed by Lee et al. (2004b) involved rotating distal and 

local cues in opposite directions, which created a mismatch at each point on a 

track between the sensory input provided from the distal and proximal cues, and 

found that location-specific firing of CA3 cells maintained similar patterns of 

activity in both conditions (i.e., CA3 performed pattern completion compared to 

CA1).  These experimental results lend credibility to the theory that CA3 performs 

pattern completion, but lack the crucial test directly showing that the output of 

CA3 changes less than the primary inputs.  To date, few studies have directly 

compared the output representation of CA3 with the input representations from 

DG, LEC, and MEC, but instead all previous studies have made assumptions as 

to how the manipulations may have effected each input representation.      
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When simultaneously recording DG and CA3, we were able to replicate 

the previous findings observed in Lee et al. (2004a) showing that the CA3 

representation remained cohesive between a previously learned, stable 

environment and a cue-altered environment (chapter 3).  The results were 

similar, even using a different set of rats and experimenters, but the task 

remained constant.  Representations from the different subfields were compared 

between standard sessions (rats ran counterclockwise around the circular track 

for 15 laps in a familiar environment) and mismatch sessions (where the local 

and global cues were rotated in opposite direction by equal amounts).  A 

significant difference between the two reports involved the comparison between 

hippocampal subfields.  In the current study, we directly compared the CA3 

representation (output) with the DG, LEC, and MEC representations (input), 

whereas Lee et al (2004a) compared CA1 (output) to CA3 (input).  The CA3 

representation showed a strong bias to cohesively follow the local cues both at 

the population level and with individually recorded cells (chapter 3) despite the 

DG input dramatically changing between the familiar and altered environments.  

The DG to CA3 mossy fiber projections have been proposed to be a detonator 

synapse that acts as a teaching signal to help CA3 encode new representations; 

however, under these conditions the CA3 representation remains more cohesive 

than DG.  This suggests that CA3 may remain in the same attractor state despite 

a preprocessing stage where DG attempts to disambiguate the representations 

between the familiar and altered environments.  Under the same experimental 

conditions, the MEC representation appeared to be coherent between the 

standard and mismatch sessions; however, at the larger mismatch angle (180 

degrees), the representation appeared to degrade.  Furthermore, the 

representation appeared to follow the global cues, which contrasted with the CA3 

representation.  For the LEC, the weak spatial signal appeared to be controlled 

by local cues, but the representations between the standard and mismatch 

sessions were not strongly correlated.    

These results provide strong support for CA3 performing pattern 

completion.  We believe that once the CA3 network learns the association 
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between the local and global cues, a stable attractor is established that 

represents the learned configurations (see standard vs. standard correlation 

matrices).  During the probe session, one cortical input (LEC) conveys the local 

signal and the second cortical input (MEC) carries the information about the 

global cue rotation in the opposite direction.  Instead of following the more 

coherent MEC signal, some of the CA3 neurons that were active in the attractor 

network are reactivated by the weak or partial LEC signal.  The recurrently 

connected cells that underwent Hebbian plasticity during the initial learning may 

cause the neuronal population that encoded the familiar environment to fire.  

Thus, the network falls into a stable state despite receiving the conflicting MEC 

and DG signals.   

An unresolved question is why CA3 follows the local cue rotation and the 

weak LEC signal instead of the global cue rotation and the more cohesive MEC 

signal.  One possible explanation is based on the sequence of events at the start 

of the mismatch session.  Between recordings sessions, rats sat on a pedestal in 

a room adjacent to the recording environment as the experimenters rearranged 

the sets of cues.  The rats were then disoriented, to disrupt the rat’s internal 

sense of direction (Knierim et al., 1995;Jeffery and O'Keefe, 1999), and brought 

into the cue-altered environment in an opaque box.  In theory, the first moment 

that the rat could detect the dissociation between the alignment of the local and 

global cues occurred when it was placed onto the track to begin the session.  

When the rat was placed onto the track, presumably it paid attention to the local 

cues at the onset of the experiment.  The LEC, which has been suggested to be 

gated by attention (Burwell, 2000), would then signal the local cue rotation to 

CA3.  This partial signal from LEC may be sufficient to activate enough of the 

original population of CA3 cells that were active during the familiar, standard 

environment to then pattern complete the whole representation with a 

counterclockwise bias.  A combination of computational and experimental work 

would be needed to test this prediction.  The critical test would require controlling 

which input (local or global) CA3 initially received and then determining whether 

CA3 followed the corresponding cues.  This is rather trivial in a simulation; 
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however, experimentally it is more challenging since it involves forcing a rat to 

pay attention to either the local or global cues at the onset of the experiment and 

showing that the animal performed the appropriate behavior.   

An alternative explanation for the CA3 representation being controlled by 

the local cues may result from the properties of individual CA3 cells during a rat’s 

stereotyped behavior on the circular track.  Lee et al. (2004b) showed that the 

center of CA3 place fields shifted backwards between the first and last lap (lap 

number 15) during the initial experience in the cue-altered environment.  This 

backward shift in conjunction with the weak local cue signal, conveyed from the 

LEC, may cause the originally active CA3 population encoding the learned 

environment might be reactivated and follow the local cues.  This idea can be 

addressed with two experiments.  First, the rat’s stereotyped trajectory should be 

altered such that it runs counterclockwise on the circular track.  In this condition, 

the center of the CA3 place fields may shift backwards in a counterclockwise 

direction and cause the CA3 fields to follow the global cues.  To complement this 

experiment, one should change the direction of the cue rotations (i.e., global and 

local cues are rotated counterclockwise and clockwise, respectively) while rats 

ran clockwise around the track.  Under this condition, the center of the CA3 place 

fields would likely shift backwards in a clockwise direction similar to Lee et al. 

(2004b) and follow the global cues instead of the local.   

In chapter three, the argument was made that CA3 performs pattern 

completion because its representation is more cohesive than the DG and LEC 

representations.  While the MEC representation is fairly cohesive, the MEC 

population tends to follow the global cues, which contrasts with the CA3 cells 

following the local cues.  Therefore, CA3 is unlikely to passively relay the results 

of information processing from the MEC.  However, there is a possibility that the 

counterclockwise response of a CA3 cells can arise from combining the weak 

local signal from LEC and the global signal from the MEC.  Fyhn et al. (Fyhn et 

al., 2007) reported that hippocampal place cells remap when the alignment of 

grid cells has shifted, whereas the location, but not firing rate, remained constant 
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when the underlying grid cell activity was stable.  McNaughton (2006), O’Keefe 

and Burgess (2005), and Solstad (2006) have modeled the transformation from 

grid cells to place cells using a simple summation rule such that a hippocampal 

place cell fires only when the overlapping vertices of multiple grid cells are 

aligned in a single location.  For grid cells in the MEC, the size and distance 

between each vertex of the grid increases along the dorsal-ventral axis (Hafting 

et al., 2005).  Figure 4.1 illustrates this feature by showing three grid cells (cell 1 

is red and the most dorsal of the three; cell 2 is blue and intermediate between 

cell 1 and 3; cell 3 is green and the most ventral of the three).  All three cells fire 

in a repeating grid-like pattern, which covers the entire environment, and each 

point of the grid representing a vertex of an equilateral triangle.  A circular track is 

located in the center of the environment and only one region on this confined 

space has three overlapping fields.  In this simplified schematic, the three 

overlapping vertices would generate a place field (purple circle) in one of the CA3 

cells during a standard session.  Figure 4.1b represents the underlying grid firing 

pattern during a 90° mismatch session.  All three grid cells were controlled by the 

global cues and rotated clockwise by 45 degrees; however, the pivot point for 

rotation differed slightly for all three cells.  By allowing the grids to rotate around 

independent points, three vertices from the original three cells again overlap 

corresponding to a location that rotated 45° counterclockwise.  This is one 

method to produce a counterclockwise rotation in a CA3 cell from a clockwise 

rotation in a small set (n=3) of MEC cells.  The likelihood that enough of the 

underlying MEC distribution is rotating at different pivot points to cause the 

plurality of CA3 cells to respond with a counterclockwise bias is highly unlikely.  

Running simulations to determine how often this occurs would be informative and 

address the question of whether is possible explanation or an alias of sampling.  

If the simulations show that the clockwise rotation of MEC cells frequently 

produces a counterclockwise bias in the population of CA3 cells, then coupling 

the local signal from the LEC with the MEC representation that followed the 

global cues might be enough to active the same set of CA3 place 
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Figure 4.1. Potential Method for a Counterclockwise Rotation in a CA3 Cell.  
(A)  Schematic showing transformation from grid cell input to place cell output in 
the standard environment.  Three grid cells have firing patterns, with vertices of 
different spacing and size (green, blue, and red), covering a large spatial area.  
When the vertices from the three grid cells align on the track (brown rings), a 
place field for one cell, indicated by a purple circle, is generated. Colored stars 
represent pivot points for underlying grids. (B) During a 90° mismatch session, 
the underlying grid cells rotate their firing pattern by 45° to follow the global cues; 
however, the point of rotation of all three grid cells is slightly offset.  Some of the 
MEC cells may appear to rotate coherently, while other MEC neurons may 
appear to rotate and shift their fields.  Despite each grid cell having a different 
point of rotation, three vertices still align at a point that has appeared to rotate 
45° in the opposite direction.  Coupling the input from the three grid cells with a 
weak counterclockwise signal from the LEC may be sufficient to drive the place 
cell that was originally active in the standard environment.
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 cells that were originally active in the standard session, but cause the CA3 cells 

to rotate their firing locations in a counterclockwise direction.  This potential 

mechanism would not address the question of CA3 performing pattern 

completion.       

4.5 Characterizing the Spatial Firing of Cells from the Dentate Gyrus 

Before diving into a discussion about the functional role that the dentate 

gyrus plays in memory, a brief discussion regarding the classification of spatial 

firing for the different cell types in this under-characterized hippocampal subfield 

is warranted.  An extensive body of literature examining the in vitro 

electrophiological properties of different cell types of the dentate gyrus exists 

compared to in vivo studies from freely moving animals.  The resting membrane 

potential of granule cells has been reported as extremely hyperpolarized 

(Lambert and Jones, 1990;Spruston and Johnston, 1992;Staley et al., 

1992;Soltesz and Mody, 1994;Ylinen et al., 1995;Penttonen et al., 1997) 

compared to mossy cells (Scharfman and Schwartzkroin, 1988;Scharfman, 

1992;Scharfman, 1994;Lubke et al., 1998;Henze and Buzsaki, 2007).  This 

difference in resting membrane potential could contribute to differences observed 

in the sparseness, as reflected in the firing rates and ratio of active cells to sleep 

clusters, between cells recorded on tetrodes detecting units with only single fields 

and those detecting cells with multiple fields.  Our results indicated that cells 

recorded on tetrodes with active cells firing in single locations do indeed have a 

lower mean firing rate during sleep and a lower percentage of active cells than 

cells recorded on tetrodes detecting active cells with multiple fields.  The 

extremely hyperpolarized resting membrane potential of granule cells would 

cause granule cells to be more difficult to excite than mossy cells and fire at a 

lower rate.  The extremely hyperpolarized resting membrane potential might 

further explain why the group of cells with a lower percentage of active cells fire 

in a single location.  In contrast, exceeding the threshold for triggering a spike in 

cells with a higher resting membrane potential would likely occur more often in 
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multiple locations in the environment, thus it may account for the spatial firing 

observed in numerous places.  It is possible that the functional properties 

reported for cells recorded on tetrodes detecting units with multiple fields might 

describe new born granule cells, as suggested by Alme et al. (2010).  Nothing in 

this report disputes this theory. 

One of the most salient distinctions between granule cells and mossy cells 

recorded in slice is the capacity to fire in burst.  Granule cells recorded in slice do 

not fire trains of spikes either in response to a pulse of current or spontaneously, 

whereas in mossy cells bursting is prevalent (Scharfman, 1992).  After injecting a 

depolarizing current step, granule cells show spike frequency adaptation in which 

the cell initially spikes but does not continue for the duration of the pulse.  In 

contrast, mossy cells (both in slice and anesthetized animals) continue spiking 

through the duration of the pulse.  Our results show that cells recorded on 

tetrodes detecting a cell with a single field are less prone to burst during sleep 

and behavior than cells recorded on tetrodes detecting a cell with multiple fields.  

These results resemble those reported in slice; therefore, we believe granule 

cells tend to fire in single locations and mossy cells tend to fire in multiple 

locations.     

Previous studies describing the spatial firing pattern in the dentate gyrus 

have reported that putative granule cells fire in multiple locations that are 

distributed irregularly across the environment (Jung and McNaughton, 

1993;Skaggs et al., 1996;Gothard et al., 2001;Leutgeb et al., 2007).  In contrast, 

the present study reports that putative excitatory cells in the polymorphic cell 

layer fire in multiple places, dispersed irregularly throughout the environment, 

whereas the spatial firing of putative granule cells is confined to a single region.  

These conclusions are in part based on separating the data into two groups 

depending on the number of fields and then comparing the quantity of active cells 

to sleep clusters.  In all subfields of the hippocampus, the majority of units are 

silent during behavior and these cells are only detected during sleep or under 

anesthesia (Ranck, Jr., 1973;Thompson and Best, 1989;Wilson and 

McNaughton, 1993;Skaggs et al., 1996).  Similarly, the vast majority of granule 
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cells did not express the immediate-early gene Arc after behavioral exploration, 

which suggests that these cells were silent during behavior (Chawla et al., 2005).  

In this study, extended periods of deep sleep, unlike CA1 where quiet 

wakefulness and ripples are sufficient to detect sleep clusters, were recorded 

under the assumption that it would facilitate the detection of the extremely sparse 

firing population of granule cells.  The pioneering study from Leutgeb et al. 

(2007) do not specifically describe the spatial firing properties of cells that were 

recorded on tetrodes with more than six sleep clusters.  One possibility is that 

Leutgeb et al. (2007) did not record enough deep sleep to detect the extremely 

sparse firing granule cells and instead recorded the more active cells in the hilus.  

Another pioneering study, Jung and McNaughton (1993) stimulated the perforant 

path (primary input to the molecular layer of the dentate gyrus) to aid in the 

identification of putative granule cells and observed cells with both single and 

multiple fields.  However, this technique does not exclude the possibility that cells 

from the polymorphic cell layer were recorded in this study, since Scharfman 

(1991) reported some hilar cells have dendrites in the molecular layer that can be 

excited by perforant path stimulation at a lower threshold for synaptic activation 

than granule cells. 

In the current report, we showed that approximately 22% of putative 

granule cells were active while the animal foraged in a large environment.  This 

percentage is considerably larger than previously reported (Barnes, 1990;Chawla 

et al., 2005).  One potential explanation may be that many of the cells were silent 

during sleep despite recording for prolonged periods of time.  To observe a 

percentage as low as 2%, one would need to record one active cell out of every 

50 detected during sleep.  It was observed that some tetrodes had numerous 

clusters during sleep, but no behaviorally active cells.  These sleep clusters were 

not included in the ratio of active to sleep cells, since the spatial firing pattern of 

active cells was used to separate the two groups of cells.  Including these cells in 

the sparseness index might have increased the similarity to the proportions that 

were previously reported.  Another possibility contributing to the higher 

percentage of active cells may have been the method used to classify cells as 
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single or multiple fields.  Using the current method based on peak rate and 

contiguous pixels, two fields in close proximity but with inflections would be 

counted as a single field.  This misclassification would increase the percentage of 

active cells.  To avoid miscategorizing cell types into an arbitrary taxonomy of 

single or multiple fields, one would need to unequivocally identify the cells being 

recorded.  This is further complicated, not only because there are multiple 

excitatory cells in the dentate gyrus, but this region undergoes lifelong 

neurogenesis in which new cells are incorporated into the existing hippocampal 

circuitry (Zhao and Overstreet-Wadiche, 2008) that might have different spatial 

firing properties than the mature granule cells and mossy cells.  Alme et al., 

(2010) report that a small excitable population of granule cells might correspond 

to the most recently generated cells, which is a distinct possibility.  Nothing 

reported in the current study disputes this claim; however, we have strong 

evidence that the majority of cells recorded deep in the polymorphic layer show 

spatial firing in multiple locations throughout an enclosure.  To unambiguously 

determine the properties of the complicated local circuitry in the dentate gyrus, it 

will likely require using molecular tools to specifically target the three types of 

excitatory cells in the dentate gyrus in combination with in vivo 

electrophysiological records from freely moving animals. 

The anatomy of the hippocampus suggests that mossy cells play a central 

role in the recurrent circuitry within the dentate gyrus as well as in the only 

excitatory feedback pathway in the classic “trisynaptic loop” (Witter and Amaral, 

2004;Scharfman, 1994;Buckmaster and Schwartzkroin, 1994;Jackson and 

Scharfman, 1996;Buckmaster et al., 1996;Wenzel et al., 1997).  Given estimates 

of 1,000,000 granule cells and 30,000 mossy cells (Morgan et al., 2007), one can 

estimate that each mossy cell receives powerful, converging feed-forward 

excitation from as many as 400 granule cells.  Early in the 1990’s Ishizuka et al. 

(1990) and Li et al. (1994) showed that the axon collaterals of dye injected CA3c 

pyramidal cells were present in the dentate gyrus polymorphic layer, which was 

later shown to be a monosynaptic connection capable of producing small 

depolarizations in mossy cells (Scharfman, 1994).  The mossy cells are a node 
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for the convergence of excitatory inputs; however, these cells are also heavily 

innervated by perisomatic inhibition (Acsady et al., 2000;Murakawa and Kosaka, 

2001) that would prevent mossy cells from spiking in response to every excitatory 

input.  In the behaving animal, the input from CA3 typically represents a single 

location in the environment.  Similarly, the results in the present study suggest 

that the firing pattern of putative granule cells represent single locations, whereas 

putative excitatory cells in the polymorphic layer tend to fire in multiple locations.  

This pattern of multi-punctate fields might be explained from the convergence of 

input representing single locations in the environment (Figure 4.2).  In our 

proposed model, a subset of active granule cells would fire in a single location in 

the environment, which would drive the downstream mossy cell to fire in multiple 

locations that corresponded to the location of the active granule cells.  Since a 

mossy cell may be functionally connected to 200-400 granule cells, 2% of which 

have been reported to be active in a given context (Chawla et al., 2005), it can be 

estimated that in any environment a mossy cell will receive powerful input from 2-

8 active granule cells, thereby causing the mossy cell to fire in 2-8 locations and 

multiple contexts.  These numbers would likely increase when considering the 

impact of the excitatory feedback from CA3c cells.  

4.6 Mechanism for Memory Storage in the Dentate Gyrus   

Many models that concentrate on the mnemonic function of memory 

storage suggest that the dentate gyrus creates a sparse representation from a 

distributed neural code in the cortex.  This process of expansion recoding permits 

neuronal activity patterns to be differentiated by redistributing overlapping neural 

activity from a smaller population of cells into nonoverlapping activity in a much 

larger granule cell population (Marr, 1971;McNaughton and Morris, 1987;Rolls 

and Treves, 1998).  Although we cannot address directly the notion that the DG 

performs pattern separation in chapter 2, it is noteworthy that one population of 

cells show sparse encoding, which is an integral part of the longstanding notion 

of DG as a pattern separator.  For chapter 3, the analyses were restricted to 

neurons in each region that were active in a least one session.   
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Figure 4.2. Model of Hippocampal Local Circuitry.  (A) Illustration of dentate 
gyrus and CA3c neural network.  The mossy cells (gray; ~30,000 cells) receive a 
powerful feedforward input from the granule cells (red; ~1,000,000) and a 
feedback input from the CA3c pyramidal cells (white).  The feedforward and 
feedback signals converge onto a less densely packed region (convergence 
ratios of 100:3 from granule cells to mossy cells and unknown for CA3c 
pyramidal cells to mossy cells).  For simplicity, one mossy cell (9) is innervated 
by a small subset of granule (1-8) and pyramidal cells.  (B) Hypothetical 
examples of spatial firing for granule and mossy cells in a square and circular 
environment.  The multi-punctate spatial firing pattern of the mossy cell (9) could 
depend on which set of inputs are active in the environment (either granule cells 
1-4 with single fields in the square environment or granule cells 5-8 with single 
fields in the circular environments).  In theory, each mossy cell would fire in 
multiple different contexts, since these cells receive powerful input from an 
estimated 200-400 granule cells. 
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These analyses ignore the number of cells that were silent while the animals 

circumnavigated the track, which decreases the sparseness.  Nonetheless, we 

still show in Chapter 3 that the DG representations of two similar environments 

are less correlated than the cortical input representations.  An attempt was made 

to partition the DG into individual components (i.e. granule cells and hilar cells), 

but the number of cells in each group was too small to make any statistical 

conclusions.  However, the spatial population correlation matrices for both 

groups appeared decorrelated; therefore, we combined all recordings from the 

DG into one region.  Further support for combining all cell types from the dentate 

was provided from behavioral and computational studies.  Hunsaker and 

colleagues (2008) showed that lesions to both the dentate and to a lesser extent 

CA3c impaired an animal’s ability to detect subtle changes in the distance 

between two objects in an environment and concluded that granule, hilar, and 

CA3c cells acted as a functional unit to perform pattern separation.  This theory 

has been further extended in computational work from Myers and Scharfman 

(2009), who created a model of dentate gyrus function in which mossy cell 

activity directly affected the efficacy of pattern separation (i.e., increasing or 

decreasing the firing rate of mossy cells could increase or decrease pattern 

separation).  Pattern separation would be significantly facilitated by having mossy 

cells fire in multiple locations in an environment.  Since mossy cells feedback to 

basket cells that silence the original granule cell input, the repetitive mossy cell 

activity distributed across the environment might enhance the globally distributed 

inhibition of basket cells onto granule cells (Struble et al., 1978;Sik et al., 

1997;Andersen et al., 2006), thus decreasing the percentage of overlapping 

activity in the granule cell population and amplifying pattern separation. 

The dentate gyrus, in theory, could use multiple mechanisms to change its 

representation from one condition to the next.  One mechanism that the dentate 

gyrus may use to perform pattern separation is the classic theory of expansion 

recoding.  Originally proposed by Marr (1969) to explain how to decrease the 

overlap between a similar set of input patterns in a small population of cells that 
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project to a larger population of cells in the cerebellum, this theory was later 

expanded to the dentate gyrus of the hippocampus (McNaughton and Morris, 

1987;McNaughton and Nadel, 1990).  The dentate gyrus could perform pattern 

separation and prevent spurious recall by producing nonoverlapping, sparse 

representations from entorhinal cortex input (McNaughton and Morris, 

1987;McNaughton and Nadel, 1990).  This would be expressed as remapping 

(i.e. cells that start or stop firing between the standard and mismatch sessions).  

Indeed, the majority of cells in the dentate remapped (i.e. started or stopped 

firing during the mismatch session), which was a larger proportion than either the 

MEC or LEC.  Another method for enhancing pattern separation is to increase 

the variability in the responses of individual cells to the cue manipulations.  

Individual cells that fired in sequential standard and mismatch sessions were not 

controlled by a specific cue set and were never significantly clustered.  Even 

simultaneously recorded DG cells showed a variety of responses to the cue 

rotations and rarely were the mean vectors significantly larger than chance.  Both 

of these mechanisms are likely being used by the dentate to disambiguate similar 

inputs and create different representations.   

 Leutgeb et al. (2007) found that DG cells with multiple fields could 

independently change the firing rates of each field as the shape of the 

environment was altered.  The authors argued the changing patterns in firing rate 

could enhance the decorrelated state of the ensembles and differentiate each 

environment.  This additional mechanism to express pattern separation cannot 

be excluded by the current study for the DG cells with multiple fields.  It is a 

distinct possibility that for cells with multiple fields, each subfield may be 

independently controlled by either the global or local cues and, during the 

mismatch session, might rotate in either direction.  This would alter the 

representation between the standard and mismatch sessions.  Unfortunately, this 

could not be tested due to the difficulties of unambiguously tracking the fields 

during the mismatch sessions.            
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4.7 Dissociation of Input Streams 

Hargreaves et al. (2005) reported that in an open-field environment MEC 

neurons convey significantly more spatial information than LEC neurons.  

Complementing this study, Yoganarasimha et al. (2010) showed that the 

disparity between hippocampal input regions remained even when the simple 

environment was switched to a cue-rich environment.  Furthermore, the local 

field potentials in the MEC show a stronger theta oscillation than the local field 

potentials in the LEC (Deshmukh et al., 2010).  The present report further 

dissociates the two primary inputs to the hippocampus by showing a weak local-

cue-related signal in the LEC population, despite individual LEC cells showing 

poor spatial tuning, that contrasted with the global-cue-related signal in the MEC 

population.  This study provides one of the first reported functional correlates for 

LEC neurons in freely moving animals.  To my knowledge, only one other report 

has provided a functional role for the LEC neurons in foraging rats; Deshmukh 

and Knierim (in preparation) showed that the spatial information score of LEC 

neurons is higher in the presence of objects than without objects.  Some LEC 

cells fired near the objects and other neurons developed place fields without an 

obvious relationship to any of the objects.  These findings support the notion that 

two streams of information are transmitted to the hippocampus; a spatial “where” 

signal conveyed by the MEC and a nonspatial “what” signal conveyed by the 

LEC. 

A longstanding view proposes that the spatial metric in the hippocampus 

results from a path integration mechanism (McNaughton et al., 1996).  Originally,  

McNaughton (1996a;1996a;1996) and Whishaw (1999;1996;1997;1998;1998) 

believed that path integration was occurring in the hippocampus proper; 

however, after the landmark discovery of grid cells in the MEC it is now believed 

that this process occurs one synapse upstream of the hippocampus (O'Keefe 

and Burgess, 2005;McNaughton et al., 2006;Fuhs and Touretzky, 2006).  The 

generation of the internal representation of space is thought to be derived from 

self-motion and directional heading without the use of external cues (i.e., distant 
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landmarks); however, these cues are theoretically used to orient the spatial 

representation.  In the current study, evidence shows that the MEC population 

follows the global cue rotation.  This, however, was expected because of the 

underlying neural circuitry that conveys a head direction signal (anterior dorsal 

thalamic nucleus  postsubiculum  MEC) and evidence showing that the 

preferred firing direction of head direction cells in the anterior dorsal thalamic 

nucleus was tightly coupled to the global cue rotation when rotating the local and 

global cues in equal, but opposite directions (Yoganarasimha et al., 2006).  

Furthermore, numerous reports indicate that rotating external cues in isolation 

controls the preferred firing direction of head direction cells in both the anterior 

dorsal thalamic nucleus and postsubiculum (Taube et al., 1990b;Taube and 

Burton, 1995;Taube, 1995).            

4.8 Overview Summary 

   This dissertation examines the flow of information through the 

hippocampal formation and suggests potential mechanisms that each subfield 

may use to encode and recall memories.  Many studies have ascribed functions 

to the different hippocampal subfields based on assumed properties of the 

upstream structure and rarely make direct comparisons between the input and 

output representations.  The initial results from my dissertation describe the 

previously under-characterized spatial firing properties of neurons in the DG, 

which is one of the primary inputs into CA3.  Strong evidence is provided that 

shows two populations of cells in the DG convey spatial information.  One group 

has lower mean rates in sleep and behavior, a lower propensity to burst, more 

simultaneously recorded cells, and fires in a single location in an environment.  

The second group has higher firing rates in sleep and behavior, a higher 

propensity to burst, less simultaneously recorded cells, and fires in multiple 

locations in an environment.  Based on previously characterized firing properties 

of granule and hilar cells recorded in slice and anesthetized animals, we 

concluded that cells with single fields were likely granule cells and cells with 

multiple fields were likely hilar cells.  Despite reporting two groups of cells with 
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different firing properties in the dentate, data were combined because each 

group appeared to change representations between a familiar environment and 

cue-altered environment.  Furthermore, previous reports have suggested that the 

local circuitry of the dentate works as a functional unit to orthogonalize similar 

inputs.  To address the computations performed in the DG and CA3 networks, 

the input and output representations were compared between a learned, familiar 

environment and a cue-altered environment (see Figure 4.3).  Evidence was 

provided that showed the dentate gyrus decreased the overlap between similar 

measured inputs and the DG representation was less cohesive than the 

representations in the MEC and LEC.  This was theoretically achieved through 

the implementation of multiple mechanisms, all of which facilitate pattern 

separation.  First, the ratio of presumed active to silent granule cells is small, 

thus creating a sparse representation.  Second, more cells remapped in the DG 

network than in the distributed cortical networks.  Finally, ensembles of cells 

were less coherent and never controlled by one set of cues.  In contrast to DG, 

the population of CA3 cells appeared more coherent than its primary inputs.  

Despite a fairly cohesive representation in the MEC conveying information about 

the global cue rotation, the CA3 network followed the partial, weak local signal in 

the LEC.  These results provide a direct, quantitative comparison between 

hippocampal input and output representations and support the longstanding 

theoretical models that the dentate gyrus performs pattern separation and that 

CA3 performs pattern completion. 
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Figure 4.3. Summary of Mechanisms for Storing and Recalling Memories. 
During the double rotation experiment, the CA3 representation remains more 
coherent than the combined input from MEC, LEC, and DG.  The MEC and LEC 
signal a rotation in the global and local cues, respectively.  Despite the conflicting 
signals, the weak LEC signal may be sufficient to activate a few CA3 neurons in 
the attractor network representing the learned environment.  Because of the 
previous learning between recurrently connected CA3 cells, other previously 
coactive neurons may be reactivated and generate a more cohesive 
representation than seen in the input structures.  Meanwhile, the DG network 
attempts to disambiguate the altered and learned environments by creating 
different representations.  The DG may create a sparse code in the granule cell 
layer from a distributed code in the cortex, change the population of active cells 
(i.e., remap), independently alter the location/rate of each field for cells with 
multiple fields (suggested by Leutgeb et al. (2007), and respond to either the 
global or local cue sets in order to change the representations between 
environments. 
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