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Figure 4.9.  IL-17 producing cells in the lung and spleen in control 
and lactoferrin treated mice.  Lung and spleen homogenates were 
incubated with heat-killed MTB for 48 hours.  IL-17 producing cells 
were enumerated by ELISpot analysis.  Comparisons are made to control 
mice, n = 4 mice per group per time point.  * p < 0.05 
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Figure 4.10.  Specific protein production of proinflammatory 
mediators from control and lactoferrin treated mice.  Splenocytes 
from control and lactoferrin treated mice were stimulated with heat-kill 
MTB for 72 hours.  TNF-α, IL-6, and IL-12p40 were measured in the 
supernatants by ELISA.  Comparisons are made to control mice.  Data are 
presented as the mean with SD, n = 4 mice per group per time point. * p < 
0.05 
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In light of the increased emergence of drug resistant organisms and the 

increasing incidence of TB, it is essential to develop new agents for the treatment of TB.  

It is noteworthy that lactoferrin reduced bacterial burden, accompanied by an increase in 

certain proinflammatory responses while decreasing overall lung immunopathology.  

Lactoferrin has a number of advantages over the current immunomodulators in use 

because it does not suppress the immune system and has a proven safety record in a 

number of animal models and human clinical trials [138, 139, 235, 236]. These 

investigations indicate that lactoferrin has potential as a novel therapeutic for the 

treatment of TB.      
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A major focus of this thesis centered on investigations into the molecular control 

of the granulomatous response to mycobacterial cord factor trehalose-6’6-dimycolate 

(TDM).  The granuloma is the histopathologic hallmark of Mycobacterium tuberculosis 

(MTB) infection.  The tuberculosis (TB) bacilli are likely recognized by alveolar 

macrophages following inhalation of the organism [17].  These macrophages secrete 

cytokines and chemokines that recruit monocytes from systemic circulation and form the 

innate granuloma.  At some point after infection, a dendritic cell becomes infected or 

processes MTB antigen and migrates to the draining lymph node of the lung.  Dendritic 

cell presentation of MTB antigen to naive T-cells generates adaptive immune responses.  

Antigen-specific T-cells migrate to the lung and surround infected macrophages, 

generating mature granulomas [17].  

Granuloma formation is often considered a “double-edged sword” in the host 

defense against MTB [15].  Granuloma formation is clearly needed to prevent 

uncontrolled infection and bacterial dissemination, as demonstrated in both animal and 

studies where factors essential for granuloma generation and maintenance are 

dysregulated [190, 204, 207].  However, there is increasing evidence that MTB possess 

certain factors that specifically drive granuloma formation and tissue remodeling that 

results in physical sequestration of the bacilli from effector immune cells capable of 

killing the organism [15].  Specifically, MTB has been shown to directly interfere with 

intracellular signaling to drive granuloma formation.  A MTB mutant lacking the 

adenylate cyclase Rv0386 was characterized by reduced cAMP after infection, 

accompanied by decreased protein kinase A and CREB activation, and ultimately 

decreased TNF-α synthesis by infected macrophages [104].  The mutant MTB had poor 
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survival in a mouse infection model and decreased lung pathology.  MTB also possess 

mycolic acids, such as trehalose dimycolate, that have been shown to drive granuloma 

formation [13, 116, 118].  Thus, an understanding of the immunological factors that 

drive granuloma formation may lead to novel targets for the treatment of tuberculosis.  A 

portion of this thesis specifically explores the role of TNF-α, complement factor C5a, 

and IL-6 in the generation and maintenance of TDM induced granulomas. 

The TDM model of granuloma formation mimics certain aspects of MTB 

induced immunopathology and is ideal for studying the immunologic factors necessary 

for early granuloma formation [13, 116, 118, 119, 130].  The investigations presented in 

this thesis demonstrate that TNF-α is a key cytokine in mycobacterial TDM induced 

granulomas.  TNF-α deficient mice challenged with intravenous TDM prepared in 

emulsion form failed to generate a histological response to TDM, accompanied by an 

absence of proinflammatory mediators and chemokines.  Macrophages are the innate cell 

type that responds to TDM [122] and are likely the source of TNF-α during the initial 

immune response to MTB [252].  TNF-α possibly acts by inducing chemokines during 

early infection that facilitate recruitment of other immune system cells [191].  Studies 

performed on animal models of MTB infection indicate that TNF-α is clearly involved 

in the maintenance of established granulomas because treatment with a TNF-α 

neutralizing antibody disrupts chronic granulomas [190], but this phenomenon could not 

be evaluated in the TDM granuloma model.  Use of TNF-α neutralizing therapy in 

patients latently infected with MTB resulted in reactivation of latent infection, often 

accompanied by extrapulmonary disease [204].  Inhibition of TNF-α during TB 

chemotherapy has been proposed as a novel therapeutic strategy because neutralization 
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of TNF-α has been shown to convert MTB from a state of non-replicating persistence to 

active replication, thus making the bacteria susceptible to antibiotics [15].  This 

approach was successful in both an animal model and a human clinical trial [135, 251], 

indicating that TNF-α may be a useful target employed during antimycobacterial 

chemotherapy.   

The studies in this thesis also demonstrate that complement factor C5a plays a 

role in the generation of cohesive granulomas to TDM.  C5a -/- mice developed severe 

pathology accompanied by reduced early synthesis of proinflammatory mediators and an 

absence of IL-12.  Complement C5a is a potent anaphylatoxin that recruits cells to the 

sites of active inflammation [87].  Thus, it is intriguing that deficiency of a chemotactic 

factor resulted in increased influx of cells that produced less inflammatory cytokines.  

C5a is necessary for NFκB activation, an expression regulator for a variety of 

inflammatory mediators, thus possibly accounting for the delayed expression of 

proinflammatory mediators [215].  Furthermore, C5a induces macrophage adhesion 

molecule expression [216, 217], possibly accounting for the inability of C5a-/- mice to 

form cohesive cellular aggregates.  The inability of complement deficient animals to 

produce IL-12 has been documented in a number of other investigation, but a precise 

mechanism has yet to be defined [88].  A number of studies have indicated that the 

decreased IL-12 production by complement deficient animals results in defective cell-

mediated immunity [92, 212, 253].  However, studies in humans have not demonstrated 

an increased susceptibility to TB in patients deficient in complement components; in 

fact, it has been suggested that such patients may be less susceptible to TB because of 
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reduced opsonization and phagocytosis [254].  Therefore, the role of the complement 

system in TB infection and as a therapeutic target remains to be determined.   

IL-6 also appears to play a role in TDM induced granulomas.  Mice deficient in 

this cytokine initially formed granulomas, but failed to maintain them and had severe, 

edematous inflammation.  The IL-6 -/- mice had decreased early production of 

proinflammatory mediators, similar to the complement deficient mice.  An investigation 

by Clahsen and Schaper [255] demonstrated that IL-6 promoted activation of β1-integrin 

and cellular migration across endothelial cells, suggesting that IL-6 has chemokine-like 

properties.  It is hypothesized that IL-6 from macrophages may thus be needed to 

maintain a coordinated response to mycobacterial antigens.  Additionally, a recent 

investigation demonstrated that IL-6 is necessary for regulating local concentrations of 

glucocorticoids that modulate pathological responses [219].  The TDM model used in 

these experiments explores early, innate immune responses.  Thus, the role of IL-6 in 

chronic TB infection cannot be determined from these studies.  Long-term studies of the 

role of IL-6 using MTB infection have generated mixed results.  An intravenous 

challenge of 106 MTB was lethal for IL-6 -/- mice in one study [107];  however, a low 

dose aerosol challenge of IL-6 deficient mice in a different investigation had reduced 

IFN-γ production but ultimately contained the infection [105].  The role of IL-6 in 

human TB infection is less clear.  To date, there have been no studies that link IL-6 

polymorphisms or disruption of IL-6 to TB susceptibility [256].  Therefore, the role of 

IL-6 as a therapeutic target for TB treatment remains to be clarified. 

The overall hypothesis from our studies on the cytokine mechanisms of TDM-

induced granuloma formation is that TNF-α is essential for the initiation of an 
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inflammatory response to TDM, possibly by inducing chemokines needed to recruit cells 

to the lungs.  Once a response has been initiated, complement C5a and IL-6 recruit cells 

that produce regulating cytokines and upregulate integrin that allow cells to form 

organized, cohesive structures.  Such studies may provide insight on the implications of 

using cytokine inhibitors to treat patients with chronic inflammatory disorders who may 

have latent TB disease as well as provide targets for the treatment of TB.    

Granulomas are clearly essential in the prevention of uncontrolled bacterial 

proliferation and dissemination.  However, it is hypothesized that modulation of 

granuloma structure may be a novel target for the treatment of TB [15].  MTB 

sequestered within granulomas enter a state of non-replicating persistence characterized 

by absent bacterial division and the use of altered biosynthetic pathways [131, 132], thus 

rendering the bacteria relatively resistant to the action of antibiotics.  The physical 

structure of the TB granuloma is such that killer lymphocytes capable of lysing infected 

cells are physically separated from the infected cells by a layer of fibrosis [17].  Finally, 

reducing the inflammatory pathology induced by MTB may enhance antibiotic 

penetration into tissues.  Reduction of pathology has led to favorable results in both 

animal and human studies [135, 136, 251].  Therefore, studies were undertaken to 

develop a therapeutic to reduce the pathological response to MTB and its antigens.   

Lactoferrin was selected the candidate immune modulator for these studies 

because it has been shown to reduce immune mediated tissue destruction in a variety of 

inflammatory and infectious disease models.  For example, lactoferrin added to the BCG 

vaccine as an adjuvant resulted in both increased protection following challenge with 

virulent MTB and decreased lung occlusion [232].  Additionally, mice injected with LPS 
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and treated with lactoferrin had decreased mortality and reduced gut tissue destruction 

[183].  Therefore, studies were conducted to determine if lactoferrin is able to modulate 

the immune response to mycobacterial antigens using TDM.   

Macrophages were first stimulated with TDM-coated beads and lactoferrin added 

to the culture media; lactoferrin treatment of the macrophages resulted in globally 

reduced proinflammatory cytokine production.  Mice challenged intravenously with 

TDM and treated with 24 hours later had significantly fewer and smaller granulomas at 

the peak of the granulomatous response.  Overall, proinflammatory cytokine production 

in the lungs of TDM-challenged mice was not significantly altered by lactoferrin; 

however, TGF-β and IL-10, cytokines that can have anti-inflammatory functions, were 

increased in lactoferrin treated mice.  When macrophages were infected with MTB and 

treated with lactoferrin, production of certain proinflammatory cytokines were increased.  

It is hypothesized that lactoferrin modulated macrophage cytokine production in vivo to 

reduce the histopathological response to TDM.  However, it is intriguing that different 

cytokine responses were obtained when lactoferrin was added to macrophages 

stimulated with TDM-coated microspheres, mice challenged with TDM, and 

macrophages infected with MTB.  Lactoferrin is known to have different effects 

depending on the model system, the inflammatory stimulus, and the immune status of 

the host [140].  For example, lactoferrin treated macrophages stimulated with a low dose 

of LPS had increased production of proinflammatory cytokines compared to untreated 

cells [175].  However, macrophages given higher doses of LPS had reduced 

proinflammatory cytokine production when lactoferrin was added to the culture media.  
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This unique property of lactoferrin makes it an ideal candidate immunomodulator for a 

number of inflammatory and infectious diseases. 

The differing cytokine production when macrophages are given isolated TDM 

and live mycobacteria suggested that in vivo infection with MTB would likely give 

different results than those obtained from the TDM model.  Additionally, the TDM 

model used in these studies only allows exploration of innate responses.  Cell-mediated 

immunity is critical to the control of TB infection, which cannot be evaluated in the two-

week TDM model.  Furthermore, the alteration of granuloma structure and production of 

cytokines with anti-inflammatory properties may result in enhanced bacterial 

dissemination from the lung [131], a phenomenon that cannot be evaluated using the 

TDM model.  Therefore, mice were aerosol challenged with a low dose of MTB strain 

Erdman and treated with lactoferrin by adding it to the drinking water.  We found that 

mice treated with lactoferrin at the start of infection or one week after infection had 

decreased organ bacterial burden.  Furthermore, lactoferrin treated mice had decreased 

lung histopathology, fewer areas of foamy macrophages, and increased numbers of 

lymphocytes.  The fact that lactoferrin had a favorable effect even when given after 

established infection indicates that lactoferrin has the potential to be a novel therapeutic 

for the treatment of TB.  

The hypothesized mechanism of lactoferrin-mediated reduction in bacterial 

burden is the early induction of Th1 immune responses.  Th1 cells produce IFN-γ, which 

in turn acts synergistically with lactoferrin to augment nitric oxide mediated killing of 

MTB by macrophages (Figure 5.1).  A number of other investigations have reported that 

lactoferrin increases Th1 responses.  For example, lactoferrin administered orally  
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Figure 5.1.  Hypothesized mechanism for the reduction in MTB bacterial 
burden by lactoferrin treatment.  Innate antigen presenting cells present 
MTB antigen to naive T-cells on MHC II. Lactoferrin augments the induction 
of Th1 cells by increasing IL-12 production, as well as increasing expression 
of MHC II and the costimulatory molecules CD40 and CD86. IFN-γ 
production by Th1 cells acts synergistically with lactoferrin to promote MTB 
killing by macrophages in a nitric oxide dependent manner.  



 108 

increased Th1 responses, indicated by increased IFN-γ production, in both naive and 

tumor-harboring mice [173, 174].  Transgenic mice expressing human lactoferrin and 

infected with Staphylococcus aureus had increased IFN-γ and TNF-α, along with 

decreased IL-10 and IL-5 [172].  The possible mechanism by which lactoferrin increases 

Th1 responses is enhancement of innate immune cell antigen presentation and increased 

production of IL-12 [140].  While lactoferrin increased Th1 responses in the studies 

presented here, others have reported that lactoferrin can increase Th2 responses 

depending on the model system.  For example, lactoferrin increased IL-10 and decreased 

IFN-γ in an infection model of Toxoplasma gondii, indicating the enhancement of Th2 

responses [177].  The precise mechanisms by which lactoferrin promotes Th1 versus 

Th2 responses is unknown; however, this ability of lactoferrin gives it the potential to be 

beneficial in a number of disease states.   

Lactoferrin treatment also increased the numbers of IL-17 producing cells in the 

lungs of MTB infected mice.  To our knowledge, this is the first report of lactoferrin 

affecting levels of IL-17+ cells.  New evidence suggests that IL-17 producing cells play 

an important role in the host defense against MTB [64, 65, 241].  Of importance to these 

studies, early enhancement of IL-17 responses by administration of an IL-23 producing 

adenovirus during infection with MTB reduced lung bacterial burden and pathology 

[67].  Thus, the early appearance of IL-17 producing cells in the lactoferrin treated mice 

may have contributed to the reduced pathology and bacterial burden.  Potential 

mechanisms by which IL-17 may be protective during MTB infection include 

enhancement of IFN-γ responses that activate macrophages, neutrophil recruitment, 
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stimulation of phagocytic cells, and increasing expression of antimicrobial peptides with 

activity against MTB [67, 250].  

While a number of receptors for lactoferrin have been reported [141], the precise 

intracellular signaling mechanisms induced after activation by lactoferrin remain 

undefined.  A 105-kDa lactoferrin receptor is found on platelets and lymphocytes and 

possibly initiates signaling cascades [166, 257].  Lactoferrin was shown to bind surface 

nucleolin, followed by endocytosis, and translocation of the lactoferrin/nucleolin 

complex to the nucleus [258].  Other lactoferrin receptors are the low-density lipoprotein 

receptor related proteins (LRPs) that are found on a number of cell types including 

macrophages [141].  Finally, an intestinal receptor that induces lactoferrin endocytosis is 

hypothesized to promote IL-18 synthesis and increase in systemic Th1 responses [259].  

How lactoferrin promotes different immune responses is likely dependent on the model 

system under investigation.    

The ability of lactoferrin to have a favorable effect during MTB infection when it 

is administered orally increases its appeal as a therapeutic, especially in drug-resistant 

infections that require the administration of injectable medications.  However, it is not 

clear if lactoferrin’s effects were mediated by modulation of systemic immune responses 

or local action at the lung.  The decreased CD4+IFN-γ+ and IL-17+ cells in the spleen 

compared to the lung suggest that lactoferrin had different local and systemic responses.  

Lactoferrin undergoes partial digestion in the gastrointestinal tract to produce peptides, 

such as lactoferricin, that have antimicrobial effects [260].  The effects of specific 

lactoferrin peptides on MTB growth and immune modulation during MTB infection are 

currently unknown.  However, an investigation in humans reported that gastric survival 
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of lactoferrin is at least 60% [261].  Studies in mice demonstrate that intact lactoferrin 

accumulates in a number of organs shortly after oral administration [262].  A study using 

a peptide of human lactoferrin showed that it accumulates at sites of active inflammation 

in a mouse model of MRSA infection [263].  Thus, orally administered lactoferrin has 

the potential to modulate infection and inflammation in specific tissues.  

 Further increasing the appeal of lactoferrin is its favorable safety profile in a 

number of animal and clinical studies.  A major concern over the use of novel agents in 

the treatment of TB is that the long use required for treatment may result in toxicity.  

F344/DuCrj rats given bovine lactoferrin in their diet for 40 weeks had no clinical signs 

of toxicity and had significantly lower liver transaminases, blood urea nitrogen, and 

triglyceride levels compared to control rats [138].  A phase 2 clinical trial was conducted 

in patients with disseminated renal cell carcinoma who were given a recombinant form 

of human lactoferrin for 12 weeks reported good tolerability and no renal, hematologic, 

or hepatic toxicities [137].  No major toxicities were reported in a 12 week trial 

evaluating the impact of bovine lactoferrin on patients with chronic hepatitis C [139].  

Thus, lactoferrin represents a natural molecule that is well suited for clinical use. 

 

Future Directions 

 TB remains a major public health problem, accounting for approximately 2 

million deaths each year [1].  The studies presented in this thesis indicate that lactoferrin 

has the potential to be a novel therapeutic in the treatment of TB.  However, TB 

treatment requires the use of a combination of at least four drugs [2].  It is essential to 

confirm that lactoferrin still has a favorable effect when used in a combination drug 
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regimen.  It is theoretically possible that lactoferrin may antagonize the action of a 

specific antimycobacterial antibiotic.  Furthermore, such studies will determine if 

lactoferrin can be used in combination with standard TB drugs to generate novel drug 

regimens that will allow for shortening the time needed to treat TB.              

 To our knowledge, these studies are the first to report that lactoferrin increases 

production of IL-17.  Future studies can be performed to further characterize the 

importance of these responses.  For example, IL-17 knock-out mice (currently not 

commercially available) can be infected with MTB and treated with lactoferrin to 

determine if lactoferrin still has a favorable effect in the absence of IL-17.  Alternatively, 

wild-type mice can be treated with a neutralizing IL-17 antibody, but such experiments 

are extremely expensive.   

 Additionally, it is not known if lactoferrin acted systemically or locally in the 

lungs when either TDM-challenged or MTB-infected mice were treated with lactoferrin.  

Studies can be undertaken to label lactoferrin and determine its distribution in MTB 

infected mice.  Additionally, it is possible that lactoferrin peptides generated in the 

digestive tract of treated animals may be responsible for some of the effects observed.  

Thus, peptides of lactoferrin can be generated and tested for immune modulating activity 

and therapeutic potential during MTB treatment.   

 Finally, these experiments explored the utility of lactoferrin in an acute model of 

MTB.  Human patients are likely to present for treatment with chronic lesions.  It is 

unclear at this time if administration of lactoferrin to individuals with on-going chronic 

disease will alter pathology.  Experiments can be performed to determine if lactoferrin 

still has a favorable effect when administered to animals with established chronic 
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infection.  However, humans with active TB often have cavitary lesions.  Unfortunately, 

the animal models that adequately replicate the cavitary lesions that are found in human 

post-primary TB patients are not completely standardized [13]; it would be premature to 

investigate lactoferrin effects in these model systems until this obstacle if overcome.   

 In summary, these studies provide insights into the cytokine mechanisms by 

which mycobacterial antigens induce granulomas.  The lung immunopathology induced 

by trehalose-6’6-dimycolate can decreased by lactoferrin, possibly by modulation of 

macrophage cytokine production.  Finally, lactoferrin has a number of favorable effects 

during MTB infection including reduction of organ bacterial burden and lung 

inflammation.  The hypothesized mechanism by which lactoferrin decreases bacterial 

CFUs is by increasing Th1 responses and increased IFN-γ mediated killing by 

macrophages.  Thus, lactoferrin has the potential as a novel therapeutic for TB treatment.                            
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