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Figure 5.6 

Characterization of IL-6 trans-signaling in human IPF patients 
 
(a) Immunolocalization of IL-6 and phospho-STAT-3 expression on alveolar 
macrophages (red arrows) and alveolar epithelial cells (blue arrows) in lung 
sections from patients of COPD stage 4 and severe IPF. Images are 
representative of 4 patients from each group. Scale bars: 50 � m. (b) 

Measurements of sIL-6Rα in BAL fluid using ELISA in a COPD patient and from 
two different lobes from the same IPF patient, right middle lobe (RML) and lower 
left lobe (LLL). 
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demonstrated increased expression of IL-6 and phospho-STAT-3 in both Stage 4 

COPD and Severe IPF patients (Fig 5b).  These results confirm the observations 

seen in mouse models and demonstrate that key components of IL6-signaling 

are elevated in patients with COPD and IPF. 

In addition, we demonstrated that the sIL-6Rα is elevated in patients of 

severe IPF.  An ELISA specific for sIL-6Rα was used and revealed a marked 

increase in sIL-6Rα levels in the lavage fluid from a COPD patient and from two 

different lobes from the same IPF patient, right middle lobe (RML) and lower left 

lobe (LLL).  Interestingly, in the IPF patient only the LLL demonstrated elevations 

of the sIL-6Rα.  These results suggest that generation of sIL-6Rα is locally 

produced at the site of injury and that IL-6 trans-signaling is associated with 

active disease. 

 

DISCUSSION 

Our findings demonstrate that increased elevations of IL-6 are associated 

with increased STAT-3 activation in AECs.  Activation of STAT-3 in AECs has 

been previously reported (196-199).  Conditional deletion of STAT-3 in type II 

AECs results in mice being susceptible to pulmonary damage once exposed to 

hyperoxia (196) and adenoviral infection (197).  During endotoxin-mediated lung 

injury STAT-3 regulates surfactant phospholipid synthesis and secretion (198).  

These studies in acute lung injury reveal a role of STAT-3 in type II AECs mainly 

in maintenance of surfactant homeostasis (199).  Another analysis performing a 

genome wide mRNA analysis revealed that specific deletion of STAT-3 in type II 



126 

 

AECs resulted in altered gene expression involved in cell growth, apoptosis, and 

lipid metabolism (200).  These studies demonstrate that STAT-3 provides a 

protective effect in respiratory epithelial cells during acute lung injury.  However, 

the role of STAT-3 in the setting of chronic inflammation and remodeling has not 

been addressed.   My findings indicate that genetic removal and neutralization of 

IL-6 results in attenuated fibrosis in association with decreased STAT-3 

activation in type II AECs.  This suggests that the mechanisms by which IL-6 

promotes fibrosis might involve STAT-3 activation in type II AECs.   

One possible mechanism by which type II AECs might be involved in 

fibrosis is through the process known as EMT.  Although the role of IL-6 on type 

II AECs with regards to EMT remains to be investigated, the potential of IL-6 to 

induce EMT in other cell types have been confirmed.   In human breast cancer 

cells, IL-6 is able to induce EMT phenotype by activating STAT-3 and up-

regulating the expression of vimentin, N-cadherin, Snail, and Twist, in 

conjunction with impaired expression of E-cadherin (193).  Other reports 

demonstrate that STAT-3 trans-activates Twist gene expression (201), which is a 

transcription factor involved in the activation of EMT.  In addition, in ovarian 

carcinomas, crosstalk between EGF and IL-6Rα mediates EMT by increasing N-

cadherin and vimentin expression in a STAT-3 dependent manner (202).  Other 

reports have studied the role of IL-6 in mesenchymal cells, human airway smooth 

muscle cells were reported not to express the mIL-6Rα and exposure to IL-6 

trans-signaling resulted in an increased expression of eotaxin and VEGF (203).  

IL-6 trans-signaling on human airway epithelial cells in response to bacteria 
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pathogens lead to activation of MCP-1 and inhibition of IL-8 in the same cells 

(204).  Hence, bacterial stimulation on airway epithelial cells induces IL-6 

expression and activates IL-6Rα shedding by TACE subsequently promoting 

autocrine–mediated IL-6 trans-signaling events.  Similar results involving 

exposure of azoxymethane to mice leads to colonic epithelial cells inducing sIL-

6Rα biosynthesis and STAT-3 activation, which in turns accelerates colon 

carcinogenesis (205).  Other studies confirm that mice exposed to dextran 

sodium sulfate leads to colon carcinogenesis but through the induction of the IL-

6/sIL-6Rα complex by laminar propia macrophages on colonic epithelial cells 

(206).  This effect was associated with increased gp130 and decreased IL-6Rα 

expression on colonic epithelial cells, suggesting a synchronized upregulation of 

IL-6 trans-signaling and reduction of classical IL-6 signaling.   Accordingly, it has 

been established that classical signaling is associated with anti-inflammatory 

properties while trans-signaling with chronic and pro-inflammatory effects.  

Hence, it is conceivable that IL-6 might play diverse roles on epithelial cells, 

displaying protective effects via classical signaling and perhaps chronic and 

remodeling properties by means of trans-signaling activation.  Our findings 

suggest a fibrotic contribution of IL-6 in type II AECs via the STAT-3 pathway in 

both models analyzed.  Induction of EMT was observed on different alveolar 

epithelial cell lines with exposure to IL-6 in combination with the sIL-6Rα.  The IL-

6/sIL-6Rα complex was able to enhance EMT by increasing expression of 

vimentin and α-SMA in these cells.  Furthermore, induction of EMT by the IL-

6/sIL-6Rα complex was shown to be associated with enhanced activation of the 
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transcription factors STAT-3 and TWIST, which is a master regulator of EMT.  

TWIST is a known transcription factor involved in the regulation of metastasis, a 

multistep process where primary tumors spread to establish secondary tumors in 

distant sites (195).  TWIST is a master regulator of embryonic morphogenesis 

and contributes to tumor metastasis by promoting EMT (195).  It has been shown 

that TWIST is able to induce loss of E-cadherin-mediated cell-cell adhesion, 

promote cell motility, and induce mesenchymal markers (195).  Hence, activation 

of TWIST via STAT-3 establishes a link between IL-6 and EMT.  Thus, this IL-

6/sIL-6Rα complex provides an alternative pathway by which IL-6 could 

potentially mediate the fibrotic development caused by increased adenosine 

concentrations.   

Several studies have reported elevations of IL-6 in patients of 

inflammatory and fibrotic lung diseases such as asthma, COPD, sarcoidosis, 

cystic fibrosis, and IPF (113, 114, 121).  For instance, bronchial epithelial cells 

and mast cells from asthmatics produce IL-6 (117, 207), and alveolar 

macrophages from asthmatics secrete IL-6 upon allergen exposure (115).   In 

addition, BALF and sputum from symptomatic asthmatics have increased IL-6 

levels compared to asymptomatic asthmatics (118).  These findings suggest that 

IL-6 is involved in the pathogenesis of many lung diseases.  To further 

corroborate our findings and the importance of IL-6 signaling from COPD and IPF 

patients, we analyzed the expression of IL-6 and phospho-STAT-3 in lung tissue 

obtained from the Lung Tissue Research Consortium (LTRC).  Patients with 

preserved lung function were used as control group in comparison to stage 4 
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COPD and severe IPF patients.  In COPD patients, increased IL-6 expression 

was observed mainly on macrophages whereas increased STAT-3 activation 

was detected in alveolar epithelial cells.  This suggests a paracrine loop between 

inflammatory cells producing IL-6 and AECs being the cellular targets thereby 

augmenting disease conditions.  In severe IPF patients, both IL-6 and phopho-

STAT-3 expression were localized in hyperplastic epithelial cells.  This suggests 

an autocrine IL-6 signaling where remodeled airway epithelial cells are both 

secreting and being the target of IL-6.  This autocrine feedback loop represents a 

plausible mechanism by which IL-6 signaling exacerbates fibrotic pathologies by 

contributing to the differentiation of hyperplastic epithelial cells and increasing 

fibroblast foci accumulation, which are the site of active disease.  In addition, it 

has been shown that following the engagement of the A2BR on alveolar 

macrophages isolated from COPD and IPF patients produce increased IL-6 

transcript and protein levels (208).  Furthermore, elevations of the sIL-6Rα were 

only detected at the affected lobe from the patient of IPF.  The same patient did 

not demonstrated increased elevations of the sIL-6Rα from the unaffected lobe.  

This clearly indicates that the production of the sIL-6Rα is only generated in the 

setting of chronic injury.  Thus, the sIL-6Rα levels are a clear indication of 

disease severity.  These results substantiate the findings observed in our mouse 

models further demonstrating the relevance and importance of IL-6 signaling in 

human lung diseases.  These studies have important implications for the use of 

adenosine and/or IL-6 blocking reagents in the treatment of pulmonary disorders 

where fibrosis is a detrimental component. 
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CONCLUSION 

Substantial information and studies demonstrate that adenosine 

elevations regulate pathways that promote the pathogenesis of chronic lung 

diseases.  Studies in the Ada-/- mice, an adenosine-mediated pulmonary injury 

model, reveal that adenosine is sufficient to regulate aspects of pulmonary 

phenotypes; however, the mechanism by which adenosine is able to regulate the 

chronic state of these diseases via the mediation of different factors remains 

unknown.  My overall findings suggest that increased elevations of IL-6 are 

associated with increased STAT-3 activation in conjunction with increased 

pulmonary inflammation, alveolar destruction, and fibrosis (Fig 6.1).  In this 

dissertation, experiments in Chapter Three demonstrate that macrophages and 

bronchial epithelial cells are the source of adenosine-driven IL-6 elevation, 

whereas alveolar epithelial cells are target cells of IL-6 via STAT-3 activation.  In 

addition, genetic removal and neutralization of IL-6 in Ada-/- mice is associated 

with diminished airway remodeling, attenuated lung inflammation, and reduced 

fibrosis in conjunction with decreased STAT-3 activation.  Furthermore, 

experiments in Chapter Four utilized the bleomycin model, which is the most 

common model of pulmonary fibrosis to assess the therapeutic potential of anti-

fibrotic agents.  The genetic removal and neutralization of IL-6 in the bleomycin 

model is associated with decreased lung inflammation and attenuated fibrosis in 

conjunction with diminished STAT-3 activation.  Therefore, our findings from 

Chapter Three and Four and published results in the literature suggest an 
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essential role of IL-6 in the pathogenesis of inflammatory and fibrotic lung 

diseases.   

These chapters indicate that targeting IL-6 can provide potential 

therapeutic benefits for chronic inflammatory and fibrotic diseases.  Moreover, 

experiments in Chapter Five focus on determining the mechanism of action by 

which IL-6 induces fibrosis (Fig 6.1).  IL-6 trans-signaling is elevated in Ada-/- 

mice and the bleomycin model.  Also, IL-6 trans-signaling enhances EMT in vitro.  

This enhancement of EMT is characterized by increased expression of vimentin 

and α-SMA in association with increased activation of STAT-3 and TWIST, a 

known master regulator of EMT.  To the best of our knowledge, these 

experiments are the first to show IL-6 trans-signaling has direct fibrotic properties 

on alveolar epithelial cells.  Also in Chapter Five, our findings in our models were 

corroborated in the lungs of IPF patients.  Also, sIL-6Rα levels were elevated in 

BALF from the affected lobe of an IPF patient together with increased IL-6 and 

STAT-3 activation.  Thus, these studies demonstrate that IL-6 contributes to the 

inflammatory and fibrotic processes involved in chronic lung diseases.  Thus, our 

working model is that elevated adenosine engages the A2BR to increase IL-6 

production from macrophages.  In turn, IL-6 activates STAT-3 in target cells, 

mainly alveolar epithelial cells, to contribute to the pathology associated with 

these models via trans-signaling.  Based on this research, treatment with the IL-6 

neutralizing antibodies leads to the functional halting of STAT-3 activation in 

alveolar epithelial cells, which consequently inhibits the transcriptional activation 

of the pathways involved in the development of the chronic pathological 
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symptoms observed in these models.  Thus, IL-6 is involved in the development 

of pathological features associated with adenosine-mediated pulmonary injury 

and bleomycin-induced pulmonary fibrosis.  These observations indicate that IL-6 

signaling represents a potential therapeutic target for chronic lung diseases.   

 

FUTURE DIRECTIONS 

DETERMINATION OF THE SOURCE OF SOLUBLE IL-6 RECEPTOR 

This dissertation demonstrated that IL-6 trans-signaling is functional in the 

setting of pathological conditions in both Ada-/- mice and the bleomycin model.  

Yet, one question remains unanswered, namely what is the source of the sIL-

6rα?  To determine the cells that produce the proteolytic cleavage sIL-6R (PC-

sIL-6R), an experiment will be performed where isolated macrophages from both 

models will be analyzed using immunostaining for the expression of the mIL-6Rα.  

After confirming that these macrophages express the mIL-6Rα, they will be 

incubated with the known protease ADAM17.  This incubation is expected to 

generate the PC-sIL-6R.  In addition, an ADAM17 inhibitor will be introduced to 

test if the PC-sIL-6R production is prevented.  Measurements of ADAM17 with an 

ELISA assay in the plasma and BALF will further demonstrate the local 

production responsible for the increased sIL-6R levels.  
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Figure 6.1 

Working Model 
 
After tissue injury, elevated adenosine levels engage the A2BR on activated 

macrophages (M2) leading to increased IL-6 production and IL-6Rα shedding.   

IL-6 trans-signaling involves the binding of the IL-6/sIL-6Rα complex to gp130 
receptors on type II alveolar epithelial cells (AECs) resulting in the 
phosphorylation and nuclear translocation of STAT-3.  Activation of STAT-3 on 
these cells acts as a transcription factor in target genes that enhance the process 
of epithelial-to-mesenchymal transition (EMT), which is known to contribute to 
fibrosis via the accumulation of myofibroblasts and collagen production. 
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Our results demonstrated that measurements of the sIL-6Rα in the BALF 

and plasma from both models indicated that the sIL-6Rα is produced locally 

rather than systemically.  This is inferred since only BALF and not plasma display 

increased sIL-6Rα levels.  However, in this study no confirmation was made as 

to which sIL-6Rα isoform was increased during disease conditions of both 

models.  Thus, differentiation of the two sIL-6Rα isoforms needs to be done in 

order indicate the predominance of the alternative spliced sIL-6Rα (AS-sIL-6Rα) 

or the proteolytic cleavage sIL-6Rα (PC-sIL-6Rα).  To confirm the generation 

mechanism of the sIL-6Rα, an ELISA against the recognition sequence of the 

AS-sIL-6Rα will be used from both plasma and BALF.  Detecting the levels of the 

AS-sIL-6Rα from both the plasma and BALF will demonstrate if the increased 

sIL-6Rα levels are produced locally by proteolytic cleavage or systemically by the 

alternative splice mechanism. 

In addition, our results from BALF obtained from human patients of IPF 

demonstrated that sIL-6Rα levels are elevated in the affected lobes of the 

individual whereas unaffected lobes display decreased levels of this receptor.  

This suggests that the sIL-6Rα is generated only at the site of injury and 

increased levels of this receptor correlate with disease severity.  However, our 

results are derived only from one patient due to the difficulty in obtaining human 

samples for basic research.  Thus, future directions involved to further increase 

the number of human patients analyzed to corroborate these findings. 
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CHARACTERIZATION OF THE EFFECT OF STAT-3 INHIBITION ON IL-6-
INDUCED FIBROSIS 
  

Observations in this dissertation demonstrated that IL-6-dependent 

increased phospho-STAT-3 activation is associated with pulmonary pathology.  

However, at this stage it is difficult to determine cause and effect between 

phospho-STAT-3 and pulmonary pathology or fibrosis.  To assess the 

contribution of IL-6 via the STAT-3 pathway to the fibrotic response, type II AECs 

in the presence of IL-6 and the sIL-6Rα will be treated with an STAT-3 siRNA.  

As a control, a scramble siRNA will be used to treat these cells. Treatment of IL-

6-activated type II AECs with the STAT-3 siRNA will determine which of the IL-6 

activities related to fibrosis are activated by the STAT-3 pathway. If IL-6 induces 

EMT on type II AECs via the STAT-3 pathway, then treatment with the STAT-3 

siRNA will be able to preserve the ATII phenotype and prevent the excessive 

ECM deposition common to fibrogenesis. 

Treatment with the selective STAT-3 inhibitor CPA-7 can be used as a 

confirmatory assay to determine the effect of IL-6 via the STAT-3 or as an 

alternative approach in case the siRNA targeted approach does not completely 

silence the STAT-3 gene. An additional alternative approach will consists of 

obtaining primary type II AECs from conditional STAT-3 knockout mice. Treating 

these type II AECs, which do not express STAT-3, will not develop the EMT 

effects presumably induced by IL-6. In case that the MAPK or PI3K pathway is 

involved for fibrotic activities, the same approach will be used, namely the siRNA 

target approach and pharmacological inhibitors for ERK and Akt. 
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Assessment of the pathway by which IL-6 contributes to features of 

pulmonary fibrosis is limited to the STAT-3 pathway. Although IL-6 activation is 

thought to be mainly STAT-3 mediated, other downstream signaling pathways 

are activated besides the STAT-3 such as the Ras/Raf/Mitogen-Activated Protein 

Kinases (MAPKs)/ERK and the phosphatidylinositol 3-kinase (PI3K)/Akt. These 

pathways are activated by IL-6 and elicit a variety of responses such as myeloma 

cell growth, survival, and drug resistance via the MAP Kinase pathway (209) and 

protection from TGF-β-induced apoptosis on hepatoma cells via the PI3K 

pathway (210). Therefore, an alternative approach to assess the mechanism 

involved in IL-6-induced fibrosis will include measuring the activity of the 

MAPK/ERK and the PI3K/Akt pathways. Western blot analysis measuring ERK 

and Akt phosphorylated proteins will determine the activity of these pathways 

when type II AECs are treated with IL-6 and sIL-6R together. 

 

DETERMINATION OF EPITHELIAL-TO-MESENCHYMAL TRANSITION IN THE 
ADA-DEFICIENT MICE AND THE BLEOMYCIN MODEL. 
 

Although on the previous chapter it was demonstrated in vitro that IL-6 

trans-signaling is able to enhance EMT in alveolar epithelial cell lines, no direct 

evidence was provided that this process is occurring in vivo.  To move from in 

vitro experiments to an in vivo setting, lung sections from Ada-/- mice and 

bleomycin-exposed mice will be triple stained for E-cadherin, phospho-STAT-3, 

and α-SMA. This triple staining will allow identifying type II AECs that are 

transitioning in losing their epithelial-like phenotype (E-cadherin) and becoming 

mesenchymal in nature (α-SMA).  The phospho-STAT-3 staining will identify the 
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cells that are undergoing EMT due to STAT-3 activation. According to our results, 

Ada-/- mice and bleomycin-exposed mice subjected to genetic removal or 

neutralization of should demonstrate reduced expression of this transitioning 

phase.  Thus, future studies will determine the in vivo role of IL-6 in inducing 

EMT on type II AECs, which is the remodeling effect seen in pulmonary fibrosis 

(158, 166). 

 

IL-6 AS A THERAPEUTIC TARGET FOR CHRONIC LUNG DISEASE 

The results obtained from this dissertation indicate that targeting IL-6 

could be beneficial in patients with chronic lung disease.  In particular, it was 

demonstrated that pulmonary fibrosis is attenuated by blocking IL-6 in mice.  

Tocilizumab or Actemra is a humanized monoclonal antibody (mAb) targeting the 

IL-6 receptor (91), which inhibits both IL-6 classical and trans-signaling.  The 

development of this humanized anti-IL-6 receptor mAb was pioneered for the 

treatment of the rare Castleman’s disease and later was approved to treat 

rheumatoid arthritis (RA) (211).  Significant improvement was observed in RA 

patients treated with Actemra compared to standard treatments alone.  However, 

IL-6 blockers have not been considered for the treatment of chronic lung 

diseases.  Considerations in using a humanized mAb against IL-6 must include 

the potential adverse effects of blocking such a pleiotropic cytokine.  The main 

side-effect in blocking IL-6 could be the inability of the immune system to fight 

infections caused by bacteria, fungi, or viruses.  It has been reported that RA 

patients while taking Actemra have died from these infections, such as 
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tuberculosis and Epstein-Barr virus (211).  In addition, other side-effects include 

gastrointestinal perforation, neutropenia, thrombocytopenia, increased liver 

enzymes, and elevated lipid parameters (212).  Actemra is a genetically-

engineered mAb that is humanized from a mouse antihuman IL-6 receptor using 

the complementarity determining regions (CDRs), which are the most variable 

part of the antibody and determine its affinity and specificity for specific antigens.  

The humanized anti-human IL-6 receptor antibody has resulted in reduced 

antigenicity in humans.  Thus, the advantage of using humanized Actemra is 

prolongation of its half-life and rarely causes production of neutralizing antibodies 

against the drug.  Inhibition of IL-6 may also aid this feature since IL-6 induces 

antibody production (211).       

IL-6 is a major player in driving the immune system with the potential to 

have pro- or anti-inflammatory properties.  IL-6 remains at low levels in healthy 

individuals but increases dramatically during an immune response targeting 

different immune cells, such as monocytes, macrophages, dendritic dells, B cells 

and T cells.  In response to injury, infection, or other factors, IL-6 induces an 

acute phase reaction marked by an increase in acute-phase proteins such as C-

reactive protein and fibrinogen.  In addition, IL-6 not only favors the shift to a Th2 

over Th1 response; but in combination with TGF-β, IL-6 is able to inhibit Treg 

cells and induce Th17 differentiation marked by increased IL-17 production.  This 

Th17 subset of T cells is involved in autoimmune diseases.  To add to this 

complexity, IL-6 is able to activate cells that lack the mIL-6Rα by forming the IL-

6/sIL-6Rα complex and binding to gp130, a process known as trans-signaling.  
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Hence, this complexity provides three different ways to inhibit IL-6 signaling by 

blocking the cytokine, the receptor, or the IL-6/sIL-6-Rα complex.  Blocking IL-6 

signaling with humanized mAb against the receptor is associated with a degree 

of abnormalities.  Targeting IL-6 and not the receptor presumably is associated 

with reduced side effects, especially in the liver since hepatocytes highly express 

the mIL-6Rα.  This makes IL-6 a decidedly more attractive therapeutic target.  

The third option is to block just IL-6 trans-signaling.  This can be done by 

trapping the IL-6/sIL-6Rα complex with the soluble gp130 fusion protein thereby 

preventing the activation of target cells.  This resembles more a natural 

mechanism by allowing classical IL-6 signaling to be functional and most 

probably with an improved side-effect profile.   The most common side-effect in 

IL-6 and IL-6 receptor blocking antibodies is the susceptibility to opportunistic 

infections since it weakens the body’s immune defense.  However, blocking IL-6 

trans-signaling allows classical signaling to be activated as needed.  

Nevertheless, there is a need for clinical trials to determine which of these 

inhibitors compared to one another would be better for a particular disease.    

Regarding inhibition of IL-6 signaling in patients with Chronic Lung 

Disease, therapeutic trials need to be performed to determine the efficacy and 

safety of these different blockers of IL-6.  The different approaches to block IL-6 

signaling are to inhibit IL-6 production (A2BR antagonism), direct neutralization of 

IL-6, blockage to the IL-6 receptor, and abduction of the IL-6/sIL-6R-α.  Another 

possibility is to inhibit the intracytoplasmic gp130 signal, thereby inhibiting STAT-

3 activation.  Concerning the role of IL-6 in pulmonary fibrosis, treatment of IPF 
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patients with the different options of blocking IL-6 signaling would determine 

which approach is more beneficial by monitoring the outcome and assessing the 

side-effects.   Hence, long-term observational studies using these approaches in 

patients with IPF are needed to determine the efficacy of blocking IL-6 in chronic 

lung disease. 

 

SUMMARY 

This dissertation focuses on the confirmation of the contribution of IL-6 to 

features of inflammatory and fibrotic lung diseases in both the Ada-/- mice and 

bleomycin-exposed mice in order to provide a better understanding of the 

development of these diseases. Collectively, the neutralization of IL-6 and the 

genetic removal of IL-6 in both models provided a comprehensive analysis 

regarding the contribution of IL-6 to disease progression in these models.  

Hence, the IL-6 signaling mechanism represents a potential therapeutic 

application for these deadly disorders. 
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