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Figure 20.  VV ����� estimates for photon and proton CSI vs. age at exposure 

The �� ����� from photon CSI and proton CSI are overlaid on the plot from figure 19. 

 

  Figure 20 shows that ������ for photon CSI is larger than ������ for proton CSI by factors of 

12 and 20 when DMA and DCE are applied, respectively.  Additionally, Figure 19 demonstrates 

that use of DCE  reduces ������ by almost 60% for photon CSI and has negligible effect for proton 

CSI (high dose patient, patient 1, included).   To further analyze our results for RRMA and RRCE, 

we plotted the difference between RRMA and RRCE against patient age in years (Figure 21a) and 

the ratio of RRCE to RRMA against patient age at exposure (Figure 21b).   
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Figure 21. Comparison of RRMA to RRCE 

In (a) the difference between estimates for RR for each patient (N = 18) when DMA and DCE are 

applied is plotted against patient age at exposure in years, e, for proton and photon CSI.  In (b) 

the ratio of estimates for RR for each patient (N = 18) when DMA and DCE are applied is plotted 

against patient age in years, e, for proton and photon CSI, i.e., the ratio of RRCE to RRMA is 

plotted against ‘e’ for proton and photon CSI. 
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Figure 21 reveals that the relationship between RRMA and RRCE is fairly constant with 

respect to age at exposure.  There is a slight increase in the difference between RRMA and RRCE 

(Figure 21a) for patients that are less than 5 years old.  However, there are not enough data 

points in that region to provide conclusive results. 

3.4.1.1 Sex specific trends for relative risk estimates 

When the risk model (Equation 2.16 or 2.21) is applied to our estimates of HMA or HCE, 

there is an inherent difference in how it is applied to male vs. female patients.  In particular the 

values of the age-specific and organ-specific values, βM and βF, differ for males and females, 

respectively (Table 2).  The ratio of βM  to βF  is 0.5.  As a result, we expected that regardless of 

the radiation source, proton CSI or photon CSI, we would see a ratio of RR in males to RR in 

females of approximately 0.5.  Our results from this comparison are listed in Table 16 below. 

 

Table 16.  Ratios of male-to-female values of dose, risk, and risk coefficient 

The ratio of mean values in male vs. female patients for: 	Wtherapeutic, �Wstray, �Wtotal, ������ using DMA, 

������  using DCE, and the age-specific and organ-specific risk models from BEIR VII are listed 

for proton CSI and photon CSI.  Data for the female patient receiving the highest dose from 

proton CSI was excluded from this analysis. 

 

  

The data in table 16 reveals that for our sample, female patients received almost twice 

the therapeutic dose from proton CSI to the thyroid as males and 10% more stray dose.  

Because the contribution from stray dose dominated total equivalent dose in the case of proton 

therapy (Table 15), the combined effect of therapeutic and stray dose resulted in only 10% 

more total equivalent dose from proton CSI for females than males.   

A similar result was found for photon CSI.  Correspondingly, the ratio of male to 

female values of RR was 0.7 to 0.8, or approximately 60% higher than expected from βM / βF.  
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While these results seem to support the analysis in section 3.1.1, due to our limited sample 

sizes (8 females, 10 males), they did not reveal a significant relationship between sex and dose 

or predicted risk of second cancers in the thyroid. 

  

3.4.2 Ratio of relative risk estimates for photon vs. proton CSI  

 In this section we compare the RR from photon and proton CSI by taking their ratio.  

We termed this the ratio of relative risk or RRR.  Because this was done for RR values which 

were estimated using DMA and DCE (Equations 2.20 and 2.23), our corresponding terminology 

for RRR was RRRMA and RRRCE, respectively. 

 

 
Figure 22. Ratio of relative risk after proton vs. proton CSI 

Predicted ratio of relative risk (RRR) between proton vs. proton CSI are plotted against age at 

exposure, e.   The first estimation (open triangles) utilizes DCE (RRRCE), and the second (closed 

triangle) utilizes DMA (RRRMA). 

 

 Figure 22 indicates that RRR is typically higher when DCE (RRRCE) is applied vs. when 

DMA (RRRMA) is applied.  This finding restates our previous results that RRCE was consistently 

lower than RRMA in the case of photon CSI and approximately equal in the case of photon CSI 

(Figure 20).  More specifically, from Figure 20, we saw that for photon CSI the mean value for 

RRCE was 60% lower than the mean value for RRMA, and for proton CSI there was a negligible 

difference.   The impact of these differences on the predicted RRR is shown in Table 17 for our 

patient sample.   
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Table 17. Ratio of relative risk from photon vs. proton CSI when DCE  vs. DMA is applied 

Values are shown for RRR when DCE  vs. DMA is applied, resulting in predicted values of 

RRRCE and RRRMA, respectively.  Estimates of RRRCE and RRRMA are provided for 18 patients 

in columns A and B.  Columns C and D compare the results in columns A and B via absolute 

difference and percent absolute difference. 
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Table 18.  Summary statistics for the ratio of relative risk after photon vs. proton CSI 

Summary statistics for Table 17 are provided.  Columns A and B present results for the ratio of 

relative risk (RRR) from photon vs. proton CSI when the mean absorbed and cancer equivalent 

dose concepts are applied, respectively.  Columns C and D compare the results in columns A 

and B via absolute difference and percent absolute difference.  

 

 
 

From Tables 17 and 18, the mean value of RRR increased by 67% when it was 

estimated using DCE vs. DMA.   The percent differences between maximum values and 

minimum values of RRR are 62% and 74%, respectively for RRRCE vs. RRRMA.  This reflects 

the sensitivity of the RRR to patient specific variation. Visual representation of the data for 

columns A and B is found in Figures 23 and 24 below.    
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Figure 23. Differences in estimates for RRR when DMA vs. DCE were used 

The difference in estimates for RRR when the DCE  vs. DMA concept is applied, i.e., RRRCE and 

RRRMA, respectively, is stratified by sex and plotted against patient age, e.  
 

 

Figure 24. Percent difference in estimates for RRR when DMA vs. DCE were used 

The percent difference in estimates for RRR when DCE  vs. DMA is applied, i.e., RRRCE and 

RRRMA, respectively, is stratified for sex and plotted against patient age, e. 

 

In a final analysis of our estimates for RRRCE and RRRMA we performed three t-tests 

using S-Plus.  These tests were performed to determine if our estimates for RRRCE vs. RRRMA 

were statistically different from the null hypothesis (RRR = 1) and one other.    In our first test, 
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we compared the mean value of RRRMA against RRR = 1 .  In the second test, we compared the 

mean value of RRRCE against RRR = 1, and in the third test, we used a paired t-test to compare 

the mean value for RRRCE against the mean value for RRRMA (Table 19).  

 

Table 19. Results of t-test to determine if there is a statistically significant difference 

between RRRCE vs. RRRMA 

Column A shows results of a t-test for one sample in which the mean value for RRRMA is 

compared to RRR = 1.  Column B shows results of a t-test for one sample in which the mean 

value for RRRCE is compared to RRR = 1.  Column C shows results of a paired t-test for two 

sample means: RRRCE and RRRMA.  All tests were performed for our patient sample (N = 18).  

The results for the two-tail test are highlighted in yellow because they are most relevant to the 

virtual clinical trial in this work. 

 

 
 

 Table 19 provides results for a one-tail and two-tailed t-test.  For either test and in all 

columns, the reported p-values are much less than 0.05, thus there is very strong statistical 

evidence that both RRRMA and RRRCE are significantly different from unity.  Similarly, there is 

very strong evidence of statistically significant difference between RRRCE and RRRMA.   

 

3.4.2.1 Sex specific trends for the ratio of relative risk for photon vs. proton CSI 

Our estimates for RRRCE and RRRMA show no identifiable trend with respect to sex.  

Additionally, comparisons of RRRCE and RRRMA (Figures 23 and 24) also show now difference 

with respect to sex.  This is an expected result because according to Equations 2.20 and 2.22, 

the sex specific terms in the risk model, βM and βF, cancel when the ratio of RR values is taken. 

 

3.5 Sample size estimations  

We performed three separate analyses of sample size.   Our first two analyses were the 

most relevant to our virtual clinical trial because they estimated the number of patients needed 

to determine a statistically significant difference in predicted risk from proton vs. photon CSI 
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for two cases: (1) the case when DMA was used to determine predicted risk and (2) the case 

when DCE was used to determine predicted risk.  Our third analysis addressed the related 

question of whether or not we had enough subjects to compare estimates for predicted risk 

using DMA vs. DCE.   

In our first analysis we considered the case in which a patient population was 

characterized using the mean value and experimental standard deviation of RRRCE as 

determined in our work.  In our second analysis we considered the case in which a patient 

population was characterized using the mean value and experimental standard deviation of 

RRRMA as determined in our work.  In these first two analyses we used the one sample t-test in 

which we compared our mean values of RRRMA and RRRCE, respectively, against the null 

hypothesis for our virtual clinical trial, i.e., H0: RRR = 1. 

Table 20. Sample size estimation for one sample t-test 

Results are shown for three sample size estimators, two freely available statistical packages and 

S-Plus.  Input into the estimators included mean RRR for our patient population (N = 18), the 

experimental standard deviation (σRRR) for our patient population (N = 18), and the desired 

values of α and power (1-β) which were 5% and 80%, respectively.  Output from the 

estimators was given as the minimum sample size needed to achieve 5% for alpha and 80% 

power.  Differences in estimates for the required sample size between software packages are 

most likely the result of differences in the software’s rounding, i.e., a sample size of 0 vs. 1, 

and truncation of reported results.   

 

 

The results for our sample size estimates in Table 20 indicate that the sample size 

required for 80% power is at most 1, regardless of whether DCE or DMA was applied.  One 

reason for this finding is that our estimates for RRRMA and RRRCE are 20 to 12.5 times lower 

than that of our null hypothesis (RRR = 1).  Additionally the variation or experimental standard 

deviation of our sample was very small.  As a result, the estimators calculated that at most one 

patient was needed to show that the risk of second cancers in the thyroid is reduced with proton 
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CSI vs. photon CSI.  Thus, according to our estimation for sample size, use of DCE to reduce 

sample size becomes an un-necessary step.   

In our second analysis of sample size, we estimated the number of patients needed if 

one were to perform a study which directly compared predicted risk using DMA vs. DCE.   To do 

this we used a two sample t-test in which we compared our mean values of RRRMA to our mean 

values of RRRCE.  More precisely, we were no longer comparing our estimates for RRR against 

the null hypothesis: we were instead comparing RRRMA to RRRCE.  Thus, in this estimation, the 

estimates for sample sizes represent the number of patients needed to see a significant 

difference between RRRMA and RRRCE (Table 21).   

   

Table 21. Sample size estimation for two sample t-test 

Results are shown for two sample size estimators (freely available statistical packages).  

Sample size was estimated for two data sets.  In the first data set we included all patients in the 

study (N = 18),   In the second data set, we excluded the patient receiving a notably high dose 

from proton CSI, patient #1, (N = 17).  Input for each data set included values of mean RRR, 

the experimental standard deviation ( σRRR ), and our desired values of (α )and power (1-β)  

which were 5% and 80%, respectively.  Output from the estimators was given as the minimum 

sample size needed to achieve 5% for alpha and 80% power. 
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In Table 21, estimates of required sample size increased relative to the estimates for the 

one sample t-test (Table 20).  One reason for the increase is that when we switched to a two 

sample t-test, statistical variation within each sample was increased.  This occurred because 

each sample no longer served as its own control.  However, even with the increase in required 

sample size, Table 21 revealed that our sample size (N = 18 ) is large enough to demonstrate 

that RRRMA and RRRCE were statistically different from each other when the t-test is used.  

Thus, in future studies, it is reasonable to expect that two samples, in which the predicted RRR 

is determined using different methods, can be directly compared. 

To generalize the trends from Tables 18 (RRR) and 20 (corresponding sample size), we 

performed a more broadly-applicable analysis.   That is, we used the input parameters in Table 

18 (restated in Table 22 below) and the PS software (Dupont and Plummer 1990) to generate 

curves for sample size for ����1 and ���45 for specific statistical power values, i.e. 50%, 

60%, 80% and 90%.  These curves were determined using a two-sided t-test with two 

independent samples, thus, our values of  ����������1 and  ���������45 were compared against the null 

hypothesis, Ho: RRR = 1.  The results of this analysis as it relates to our project goal of 

achieving 80% power is shown in Figure 25 below.   
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Figure 25.  Effect of DMA vs.  DCE on sample size 

 (a) Plot of sample sizes when 80% power is achieved for a population characterized by our  

values of RRRMA and RRRCE  (����������1 =  0.052, standard deviation for RRRMA  =  0.014,     

���������45  =  0.087, standard deviation for RRRCE  =  0.021). The red circle indicates the region on 

the graph that is not limited by concerns of equipoise due to low RRR values or lack of 

descriptive statistics due to low sample sizes.  (b) The region within the red circle in figure (a) 

is enlarged and demonstrates the relationship between RRR values and sample size when RRR 

is calculated using DMA vs. DCE.  The orange arrows indicate the sample sizes for RRRMA and 

RRRCE at RRR  =  0.986 (48 vs. 22 patients) and RRR  =  0.984 (17 vs. 37 patients). 
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 Figure 25a demonstrates the relationship between sample size and RRRMA or RRRCE 

when 80% statistical power was achieved.   The curves for RRRMA or RRRCE were 

characterized using values from our patient sample (N = 18), i.e., ����������1, ���������45, and values 

of  experimental standard deviations of  RRRMA and RRRCE, respectfully.    In addition, Figure 

25 demonstrates the effect of factors which limit the intervals of acceptable sample size and 

RRR, i.e., the number of subjects required to achieve descriptive statistics and the range of RRR 

in which concerns regarding equipoise are avoided.  When the aforementioned limitations are 

addressed, the intervals of acceptable sample size and the RRR shrank (Figure 25b).  Within 

that window, we found that for 80% power and a RRR value of 0.984, 37 patients vs. 17 were 

needed if RRR is calculated using DCE vs. DMA.  For a RRR value of 0.986, 48 patients vs. 22 

were needed if RRR is calculated using DCE vs. DMA.   

 

3.5.1 Four factors that affect sample size  

To further understand the interplay between estimates for RRR and sample size, we 

used PS to estimate sample size for three general relationships.  In particular, we followed a 

procedure similar to the one used to create Figure 25 to illustrate the influence of (1) power, (2) 

variance (or standard deviation), and (3) α on sample size using data from the virtual clinical 

trial.  Thus, our estimations for sample size probed the impact of differing values of power, 

variance (or standard deviation), and α for two populations, i.e., one characterized by our 

values of RRRMA, and one characterized by our values of, RRRCE (Figures 26-28).  The 

corresponding input parameters for these three tests are listed in Table 22 below. 

 

Table 22.  Input parameters for estimates of sample size relative to differing values for 

power (1-β), standard deviation of RRR (σRRR), and α. 
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  Figure 26 represents our first generalized estimation.  That is, it compares the effect of 

differing values for power on sample size. 

 

Figure 26.  Effect of power on sample size 

Sample size is plotted against RRR for two populations (input parameters in Table 22).  In one 

population (solid lines), RRR was calculated using DCE, i.e., RRRCE, and in the other (dashed 

lines) RRR was calculated using DMA, i.e., RRRMA.  Power curves are shown in solid lines for 

RRRCE vs. sample size and in dashed lines for RRRMA vs. sample size.  Alpha was set to 5% for 

all curves. 

 

Figure 26 demonstrates that in order to achieve 50% to 90% power, a larger sample size is 

required when DCE is used to estimate RRR.  It also shows that the difference in sample sizes is 

most applicable when small samples are used, i.e., sample sizes of 5 or less.  This finding is 

expanded upon in Table 23 (below) which presents an analysis based on data from Figure 26.  
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Table 23. Effect of power on sample size for RRRMA vs. RRRCE 

Values for the absolute difference and the percent absolute difference between RRRMA and 

RRRCE are shown for the 80% and 50% power curves at specific sample sizes. 

 

 

Table 23 highlights the result that use of DMA vs. DCE when estimating RRR has a more 

notable difference at the level of individual comparisons of risk for an individual patient, i.e., 

as opposed to a sample of patients.  In other words, estimates of RRR differed by as much as 

19% when RRRCE  was used in place of RRR MA in a case study (sample size of 1) or 4% when 

a sample size of 2 is used.  When the sample size increases beyond 5, the percent difference in 

estimates for RRRMA vs. RRRCE drops to less than 1%.    

To further investigate use of RRRMA vs. RRRCE, we focused on the potential impact of 

differences in standard deviation on sample size.  Recall that in our virtual clinical trial, the 

experimental standard deviation was 0.014 for RRRMA and 0.021 for RRRCE .  Figure 27 plots 

the impact of the standard deviation on sample size. 
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Figure 27.  Effect of standard deviation on sample size 

Curves for estimations of the RRR are plotted against sample size for 80% power and an alpha 

value of 0.05.  In (a) and (b) curves are shown for the cases in which the standard deviations of 

estimates for RRR are 0.05, 0.03, 0.02, and 0.01.  In (a) the general shape of the plot is shown.  

Enlarged images of the relationship between curves for (b) sample sizes less than 5 and (c) 

sample sizes larger than 15 are shown.  Also in (c) standard deviations from the virtual clinical 

trial were added (dashed lines).  Data for standard deviations of 0.01. 0.014, and 0.02 were not 

available for sample sizes less than 16, 32, and 64, respectively.   
 

In Figures 27a and 27b, we see that with smaller standard deviations, fewer samples are 

needed to achieve 80% power and a 5% alpha value.  In Figure 27c we see an application of 

this concept within the frame work of our virtual clinical trial because curves which represent 

the experimental standard deviation from our clinical trial are shown.  Additionally in Figure 

27c, the curves for standard deviation are shown within the window of sample size values that 

is not limited by a lack of equipoise or descriptive statistics (Figure 27c).  From Figure 27c, we 

see that there can be a very subtle affect of standard deviation on sample size and that it is most 

pronounced at values of RRR which approach unity.  More specifically in a comparison of the 

curves for standard deviation values: 0.020 vs. 0.021, there is a maximum difference of 6 in 

sample size at RRR = 0.99.   
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Figure 28 plots the effect of differing alpha values (α) on estimations for sample size, 

i.e., each α corresponded to differing probabilities of Type I errors which impacted the required 

sample size.
4
 

 

 

Figure 28. Effect of alpha on sample size 

Curves for varying alpha values are shown in solid lines for RRRCE vs. sample size and in 

dashed lines for RRRMA vs. sample size.  Input parameters were given in Table 22.  In (a) the 

general shape of the plot is shown.  Enlarged images are shown for (b) sample sizes less than 5 

and (c) sample sizes larger than 5.   

 

In Figure 28, we see that larger alpha values correspond with smaller sample sizes.  We 

also see in Figures 28a and 28b that at sample sizes less than 5 there is a potential for overlap in 

curves which are characterized by different input parameters, i.e., in the region of RRR = 0.6 to 

RRR = 0.8, the curve for an alpha value of 0.02 for the population characterized by input from 

RRRMA crosses several alpha curves (alpha = 0.05, 0.06, and 0.08) belonging the population 

characterized by input from RRRCE.  However when the plot is limited to a range of RRR and 

sample size that satisfy the need for equipoise and descriptive statistics, as in Figure 28c, there 

                                                      
4
 Type I errors represented errors associated with the assumption that for our sample there was no difference in 

predicted risk between proton and photon CSI when, in reality, a larger population would show a difference in 

predicted risk between proton and photon CSI.  
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is no chance for overlap between curves.  Thus, as expected, Figure 28 demonstrates that the 

potential for introducing a Type I error is reduced at higher sample sizes.   

 

3.6 Uncertainty analysis  

To estimate uncertainty in RRR when DCE and DMA are respectively used, we performed 

uncertainty analysis for the predominant factors which contributed to uncertainty in RRR.  Our 

analysis of uncertainty in absorbed dose, the cell sterilization factor, and the neutron weighting 

factor, are presented in sections 3.5.1, 3.5.2, and 3.5.3, respectively.   In section 3.5.4, we 

combine the data from sections 3.5.1 - 3.5.3 to estimate the corresponding uncertainty in RRR 

when DCE and DMA were respectively used.   Finally in section 3.5.5, we estimated the impact 

of uncertainty in RRR on sample size.   

3.6.1 Uncertainty in absorbed dose 

  In this section we present the results of our estimation of uncertainty in absorbed dose 

in the thyroid due to variations in patient-set up for proton vs. photon CSI.   More specifically, 

we estimated the mean dose in the thyroid when it was shifted relative to its original position, 

i.e., its location at the time of treatment planning.  Shifts on the order of 0.5 cm were made in 

the superior, inferior, anterior, posterior, right, and left directions.  An illustration of the 

anterior and posterior shifts is shown below in Figure 29. 

  

Figure 29.  Thyroid location relative to the treatment field for proton and photon CSI 

The original position of the thyroid (pink) is shown for a 10 year-old female.  Also shown are 

its positions when shifted by 0.5 cm superiorly (light green) or inferiorly (dark green).  The 

beam direction is indicated by a yellow arrow, and dose distributions are shown in color wash.  

In (a) the dose distribution is shown for photon CSI, and in (b) the dose distribution is shown 

for proton CSI.  In both images dose is shown in units of cGy (RBE) where RBE is set to 1.1 

for proton CSI and 1 for photon CSI.  
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From Figure 29, we see that shifts in thyroid location in the anterior – posterior direction may 

potentially impact the mean absorbed dose in the thyroid; however, we also see that shifts in 

specific directions may have more impact than others.   Quantitative results for the mean 

absorbed dose in each shifted location are presented in Table 24 below. 

 

Table 24.  Absorbed dose and summary statistics for shifts in the thyroid location relative 

to the original treatment field 

 
 

From Table 24, we see that shifts in the posterior direction corresponded with the 

largest change in mean absorbed dose for both proton and photon CSI.  More specifically, the 

estimated interval in absorbed dose values due to 0.5 cm shifts in the thyroid location was 39.3 

cGy (RBE) and 39.8 cGy (RBE) for proton CSI when DCE and DMA are respectively applied, 

and for photon CSI the estimated intervals are 44.1 cGy and 198.2 cGy when DCE  and DMA 

were respectively applied.   These intervals represent to our estimated uncertainty in absorbed 

dose due to variations in patient set-up, or our value for 
X

Dσ in Equation 2.25.  As a result, 

when we took a ratio of the our values of 
X

Dσ and the mean absorbed dose in the case of no 

shifts, 1.4 cGy (RBE) for proton CSI and 1001.9 cGy or 1836.7 cGy for photon CSI when DCE  
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or DMA  were respectively applied, our values of
X

X

D

Dσ
in Equation 2.25 were 28.0 or 28.4 for 

proton CSI when X = CE or MA and 0.044 or 0.018 for photon CSI when X = CE or MA.  

These findings support our earlier observations (see Figure15) which demonstrated that proton 

CSI is highly sensitive to fluctuations in thyroid dose.   

3.6.2 Uncertainty in the cell sterilization  factor 

We estimated uncertainty in the cell sterilization factor, σC, by determining its interval 

when values for the thyroid-specific cell sterilization factor, α (Equation 2.27) are varied.  To 

visualize the effect of variations in α on C, we plotted a range of absorbed dose values, D (Gy), 

against the corresponding cancer equivalent dose, DCE (Gy).  This was done for the minimum 

value for α (Equation 2.26), αMIN; the value for α that was used in this study, α*; and the 

maximum value for α (Equation 2.26), αMAX; i.e., we plotted D (Gy) vs. D (Gy)* C(D,α) 

(Figure 30). 

 

Figure 30.  DCE  with various correction factors 

Absorbed dose, D (Gy), was plotted against a several curves for cancer equivalent dose, DCE 

(Gy).   The red curve represents the case where the minimum value for α was applied, i.e., C(D, 

α  =  0.020).  The blue curve represents the case where the value for α that was used in this 

study was applied, i.e., C(D, α  =  0.033).  The green curve represents the case where the 

maximum value for α was applied, i.e., C(D, α  =  0.047).  Inflection points for the curves 

occur at 50 Gy, 30 Gy, and 21 Gy, respectively.  The dashed lines show the locations of the 

study’s mean values of absorbed dose in the thyroid from proton CSI (Table 7) and photon CSI 

(Table 8).  
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In Figure 30, we found, that for absorbed dose values which are less than 7.5 Gy, there 

was little sensitivity to variation in α, but for absorbed dose greater than 10 Gy there is greater 

sensitivity.  This provides a visual demonstration of what previous sections revealed: the larger 

values of absorbed dose from photon CSI are more sensitive to the cell sterilization factor than 

the smaller values from proton CSI.  We also found that the curves for DCE had inflection 

points at 50 Gy, 30 Gy, and 21 Gy for αMIN, α*, and αMAX, respectively.    The location of our 

inflection point for α* agrees with the results of Sigurdson et al (2005) in which the inflection 

point for observing cell sterilization in the thyroid was observed at 30 Gy.  This agreement 

supported our use of 0.033 for α in the study; however to determine the potential uncertainty in 

our estimates, we used the minimum and maximum values of α to determine the maximum 

interval for C (Equation 2.29).  Our results for proton and photon CSI are found in Table 25 

below. 

 

Table 25.  Uncertainty estimates for cell sterilization  

In the first three columns values are reported for mean absorbed dose from the TPS, D , stray 

dose from neutrons, Hstray, and the total effective dose, Htotal, for a 10 year-old female (patient # 

14) receiving 23.4 Gy (RBE) from proton vs. photon CSI where the RBE values are 1.1 and 1, 

respectively.  In the next three columns, values are listed for the thyroid-specific cell 

sterilization factor, α, i.e. the minimum value for α, the value for α that was used in this study 

(α*), and the maximum value for α; the corresponding correction factors, C; and the 

corresponding values of cancer equivalent dose, HCE.  Finally in the last two columns, we 

present the interval for C, Cσ , and 
*C

Cσ
, where C* is the value of C when α* is used. 

 
 

3.6.3 Uncertainty in the mean radiation weighing factor for neutrons 

 We estimated uncertainty in Rw by scaling our values of Rw  by 0.5 and 2 and 

applying those values to our estimates for RRRX where X = MA or CE.  We then used these the 

scaled values of RRRX to determine a representative bracket of uncertainty for Rw .  Results 

for this process are shown in Table 26 below. 
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Table 26.  Uncertainty in the mean radiation weighting factor for neutrons 

 

  

Table 26 reveals that scaling Rw did have an impact on our estimates for RRRMA  and 

RRRCE, and as a result, our estimates for uncertainty in Rw differed accordingly.  More 

specifically uncertainty in  Rw  was 24% less when DMA was applied to our estimates for RRR 

than or when the DCE was applied.  Nonetheless, when these respective values of uncertainty 

were divided by the mean value for Rw  across all treatment fields (7.93 from Table 5), the 

distinction between use of DMA vs. DCE was reduced.  In particular, the relative uncertainty in 

Rw  was approximately 0.01, regardless of its method of estimation. 

3.6.4 Uncertainty in RRR when DCE vs. DMA are used 

 Once the results from the individual uncertainty analyses, i.e., the uncertainty analyses 

for absorbed dose, cell sterilization, and the neutron weighting factor, were combined  

(Equation 2.25), we determined their combined uncertainty through our estimates of  RRR 

(Equation 2.24).  Results of this analysis are listed in Table 27 below. 

 

 

Table 27.  Estimates of relative uncertainty in RRR when DCE vs. DMA are used 

Values are listed for the terms in Equations 2.24 and 2.25 which are used to estimate relative 

uncertainty in RRRMA  and RRRCE.  Entries for 
*C

Cσ
are blank when DMA was used because a 

cell sterilization factor was not applied in that case.  Also, the entry for 
XOY�����
OY�����  is blank for photon 

CSI because the mean radiation weighting factor for neutrons did not apply. 



68 

 

 

  

 Table 27 reveals that relative uncertainty in RRR is approximately the same regardless 

of when DCE was applied or when DMA was applied, i.e., the percent difference between  

and  is less than 1%.  This stems from the finding that uncertainty in RRR is largely 

dominated by relative uncertainty in absorbed dose, namely the uncertainty in absorbed dose 

from proton CSI.  Moreover, the disproportionately large values of 
x

X

D

Dσ
from proton CSI vs. 

photon CSI indicate that the predicted risk of SC in the thyroid from proton CSI is notably 

more patient-specific than that of photon CSI.  Additionally, with large values of 
x

X

D

Dσ
, 

uncertainty in predicted risk for adjacent organs is increased.  
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Chapter Four 

 

4 Discussion 

We used a virtual clinical trial to determine the impact of cell sterilization effects on 

estimations of the relative risk for a second cancer in the thyroid following proton vs. photon 

CSI.  Our goal was to determine if use of DCE would reduce the sample size needed to achieve 

80% power.  However, data from our virtual trial revealed that achieving 80% statistical power 

(with an alpha value of 0.05) required a maximum sample size of 1 patient.  Because this 

finding occurred regardless of whether DCE or DMA was used, it highlighted several important 

trends in our data.  In particular, it confirmed that the predicted risk of second cancer in the 

thyroid is greater after CSI with photons vs. protons.  Accordingly, because the predicted risk 

increased with the equivalent dose in the thyroid, use of DCE reduced total equivalent dose for 

photon CSI by approximately 44%, and while the total equivalent dose in proton CSI was 

generally insensitive to DCE,we did find that in one patient the use of DCE reduced total 

equivalent dose for proton CSI by as much as 22%.  This revealed the potential importance of 

patient-specific analysis for proton CSI and hints that the greatest factor contributing to 

uncertainty in our estimates for RRR was uncertainty in the absorbed dose from proton CSI.  

Additionally, this work we analyzed risk in a population of patients (N = 18) and studied the 

influence of power, experimental standard deviation, and alpha values on required sample size.   

Also, this work highlighted the potential impact of cell sterilization factors on future clinical 

trial design.  More specifically, it revealed that sample size can increase with the use of a cell 

sterilization factor and that failure to account for this can lead to trial designs that will have 

larger than expected probabilities of Type II and Type I errors.  This is important because it can 

have clinical repercussions with respect to the additional resources and time that would be 

required to acquire additional patients.  This is particularly relevant in the case of rare cancers 

in small populations. 

4.1 Previous literature  

 When compared to previous works, this study is unique in its application of dosimetic 

metrics.  Specifically, this study is the first to apply a cell sterilization factor to a population of 

patients in which estimates for second cancer risk are based on patient-specific estimates of 

stray and therapeutic dose.  As a result, we are unable to make direct comparisons of our 
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estimates for second cancer risk with previous works, but we were able to compare specific 

aspects of our results with those previous works, specifically those of Newhauser et al. (2009) 

and Brodin et al. (2011).     

In their work, Newhauser et al. considered the risk of second cancer of the thyroid from 

therapeutic and stray radiation in the case of pediatric CSI as we did.  In particular, Newhauser 

et al. estimated lifetime attributable risk following the recommendations of ICRP Publication 

60 (1990) and they reported that the predicted lifetime risk of developing a second cancer of 

the thyroid at 0.35%.  In this work, we estimated RR following the recommendations in the 

report of the BEIR VII Committee (NRC 2006).  Our estimates of stray dose, 437 mSv, are in 

good agreement with those of Newhauser et al, 443 mSv. Newhauser et al. (2009) used the 

therapeutic absorbed dose from Miralbell et al. (2002), and we used therapeutic doses which 

were calculated specifically for each patient in our study.  As a result of the differing strategies 

for determining therapeutic dose, the study by Newhauser et al. (2009), which took therapeutic 

dose from Miralbell et al., reported that therapeutic dose was the greatest contributing factor to 

the risk of second cancers in the thyroid, and our study reports that stray dose is the greatest 

contributing factor.   Nonetheless, the fact that our findings for dose from stray radiation agree 

within 1.3%, provides some external validation of our results. 

 Our study was also similar to that of Brodin et al. (2011) in that they, too, considered 

the contribution of stray and therapeutic dose in their estimates of second cancer risk in the 

thyroid.  Additionally, they considered a cell sterilization factor for dose, as we did.  However, 

they chose to follow a different dose-response model than we did to account for cell 

sterilization.  Specifically, they chose a linear plateau-model while we selected a linear 

exponential model.  Additionally, their study focused on different methods of radiation delivery 

than ours did.  They studied the effects of rotational intensity modulated radiation therapy with 

photons (rotational IMRT), conventional 3D radiation therapy with photons (3D CRT), and 

intensity modulated radiation therapy with protons (IMPT).  Because they took values of dose 

from stray radiation in IMPT from Newhauser et al. (2009), our results for dose from stray 

radiation agreed with theirs.  However, they used a different model for predicting risk than we 

did.  Specifically they estimated excess absolute risk following the method of Schneider et al. 

(2008) which takes into account attainted age, sex, and age at exposure while we estimated 

excess relative risk using BEIR VII (NRC 2006) which takes sex, age at exposure and organ 

specific factors into account.  Thus, the main difference in these estimates is that Brodin et al. 
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(2011) used data from the Life Span Study (UNSCEAR 2000) and a weighted mean approach 

to estimate thyroid specific results, and at the dose levels of our project, any resulting 

differences in the respective estimations of risk were considered negligible. 

 In an attempt to compare one additional aspect of our study to previous works, namely 

the effect of using a cell sterilization  factor we surveyed several works which address this 

topic (Brodin et al. 2011, Bhatti et al. 2010, Schneider et al. 2005, Ronckers et al. 2005, and 

Sigurdson et al. 2005).  This revealed no overall consensus regarding which model is most the 

appropriate model to use for pediatric CSI patients.  In particular, Brodin et al. (2011) used data 

from Schneider et al. (2008) to compare the linear, linear-exponential, and plateau dose-

response models.  Their finding was that the plateau dose-response model provided the best fit.  

Because, they did not provide all the parameters used in their analysis, we did not make a direct 

comparison with the model used in this work.  For our remaining comparisons, we plotted dose 

response curves from Sigurdson et al. (2005), Ronckers et al. (2005), Schneider et al. (2006), 

and Bhatia et al. (2010) in Figure 31 below.   
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Figure 31. Comparison of dose-response models 

Relative risk is plotted against absorbed dose for several dose-response models in the literature.  

The model used in this study is the linear exponential from Schneider et al. (2005) with a 

thyroid-specific cell sterilization parameter of 0.033 (dashed navy blue curve).  In (a) the dose 

response models are shown for high and low dose regions.  In (b) the dose response models are 

shown to the maximum therapeutic dose, including boost, that would be delivered for a 

population of pediatric patients being treated with CSI.  The yellow boxes in both images 

represent the area which corresponds to the interval of therapeutic dose in this study, 0 Gy to 

25 Gy. 
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 The dose-response model that we used to estimate DCE was based on the work of 

Schneider et al. (2006) in which they determined that a linear exponential model provided the 

best fit to their data.  Also in their work, they provided a 95% confidence interval for their 

exponential term.  We graphed these and used them as a lower and upper bound estimate for 

the linear exponential used in our work (Figure 31).  Additional works which based their 

analysis on data from the Childhood Cancer Survivorship Study (CCSS) included that of 

Ronckers et al. (2005) which examined several curves.  The best fit was achieved with a linear 

exponential quadratic model (Figure 31).  In the work by Sigurdson et al. (2005), they report 

that a linear exponential curve affords the best fit (Figure 31), however, when graphed this 

curve overlies the linear exponential quadratic defined by Ronckers et al. (2005).  In an update 

to the CCSS study by Bhatti et al. (2010), the dose-response curve from Sigurdson et al. (2005) 

was updated to a new linear exponential quadratic (Figure 31) which more closely resembles 

the a linear exponential curves from Schneider et al. (2005).  In particular, it resembles the 

lower-bound estimate from Schneider et al. (2005).  Thus, through comparison with these 

previous works, we found that use of the cell sterilization factor provided by Schneider et al. 

(2006) provides a comparatively conservative estimate of risk (Figure 31b).  This is a 

particularly important finding when one considers that studies such as ours may be used in 

clinical decision making.   

 

4.2 Major findings and implications 

 One of the major findings from this work is that for a sample of patients receiving CSI, 

DCE made only a 2.5% difference in predicted estimates for RRR.  However, on a patient-by-

patient basis use of  DCE made as much as an 11% difference in estimates of RRR for an 

individual patient.  Because the patient with an 11% difference, patient 1,  was subjected to the 

same SOC and physician approval criteria as the other patients in the sample, this finding has 

two potential implications.  The first implication is that predicted risk can be very patient 

specific, particularly in the case of proton CSI.  Reasons for this include a potential for errors in 

range and patient set-up.  This suggests that it may be more prudent to perform personalized 

risk estimates on a per-patient-basis, i.e., class estimates for risk, at least within our population 

could have resulted in an 11% error in risk.   A second implication is that regions of higher 

dose may be more sensitive to the cell sterilization effect.  In particular, there may be 



74 

 

implication with respect to regions that are subject to higher dose gradients or regions in which 

there is a higher potential for dose irregularities, i.e., in structures that move, such as the lung 

or heart.   

 An additional finding of this work was that as the value of RRR  approaches one, i.e., 

when RRR  > 0.8, calculations of sample size become increasingly important and sensitive to 

factors such as the experimental standard deviations of the respective populations.  In other 

words, when there is a less than 20% difference in the estimates for risk from proton vs. photon 

CSI, a larger population of patients is needed in order to confidently determine if a difference 

in risk exists.   While this is an expected result, we were surprised at the magnitude of the 

difference in sample size in relation to shifts in standard deviation.  More specifically, we 

found a 6 patient difference for a change in experimental standard deviation of 0.001 (Figure 

27c) which can have profound implications with respect to resources and the required time for 

studies in which eligible patient pool is limited, as is the case in pediatric populations.    

 Finally, we found that application of a cell sterilization factor, DCE, increased the 

experimental standard deviation of our population.  As a result, when DCE was applied to our 

population, our estimate of RRR  was more susceptible to Type I and Type II errors and 

required larger sample sizes (Figures 26, 28).  Thus, while the exact numerical impact of a cell 

sterilization factor may differ with the specific dose-response model that is selected (Figure 

31), our study shows that when a cell sterilization factor is taken into account, it can impact 

sample size.  Thus, without careful consideration a higher probability of statistical error can be 

introduced (Schafer and Gilbert 2006).  Moreover, when we consider the dose range of this 

study, the actual dose-response model becomes less important, because the models differ most 

in the high dose region.  It is the low dose region which applies most to pediatric populations 

and accordingly has the greatest potential to effect clinical decision making. 

 

4.3 Study strengths 

This project is one of the first population-based virtual studies of comparative risk that 

departs from the traditional use of DMA.  To our knowledge it is the only study that explores the 

relationship between cell sterilization and statistical significance in an epidemiological study of 

small sample groups, e.g., groups which include pediatric cancers and patients treated with 

advanced radiotherapy.  Additionally, no prior study has applied similar concepts to a 
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population in which both therapeutic and stray dose were determined on a patient-specific 

basis.   Thus, the major strength of this work is that it revealed the potential impact of cell 

sterilization factors on sample size in small-scale radio-epidemiological studies.  Additionally, 

it provides the first general analysis of what sample sizes are needed to meet the dual 

requirements of equipoise and descriptive statistics.   

 

4.4 Study limitations  

There were several limitations to our study.  For clarity we have grouped them into two 

general categories:  those related to the design of the virtual clinical trial and those which are 

model specific.  With respect to the design of the virtual clinical trial, we have defined three 

potential limitations.  In the first of these, we note that we used a mean radiation weighting 

factor for neutrons which was generalized for our patient population.  Ideally the neutron 

weighting factor would be determined on a patient-specific basis; however, given the time 

constraints for this work and the fact that field energies varied little between patients, this was 

not a serious limitation.  A second limitation, related to trial design, was that we considered 

only one organ.   In particular, we performed our risk analysis on the thyroid which is small, of 

fairly constant density, and did not display large gradient of dose in our treatment plans. As a 

result, our study had little dosimetric variation which resulted in small standard deviations in 

dose i.e., the experimental standard deviation for Htotal was less than 8.5% for proton CSI and 

less than 5.5% for photon CSI.  While this limited the applicability of our risk analysis to other 

organs with greater tissue heterogeneity, it also provided a solid first step in our investigation 

of the effect of a factor for cell sterilization because the thyroid is one of the organs with the 

greatest known effect (Bhatti et al. 2011).   Thus, by focusing on the thyroid we were able to 

limit the potential for competing variables in our study.  Finally, we did not include results 

from intensity modulated photon therapy, IMRT.  In this respect, use of IMRT may have 

introduced a CSI technique for photons with tissue sparing that was more comparable to that of 

CSI with passively scattered protons.  This may have increased our values of RRR which may 

have impacted our findings regarding sample size when DCE vs. DMA were applied.  However, 

because IMRT is not the SOC for CSI, we are confident that our use of the FIF technique for 

photon CSI may ultimately yield the most clinically relevant results.    

With respect to the model specific limitations of our study, we have also defined three 

potential limiting factors, the first of which deals with our choice for the thyroid specific cell 
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sterilization factor alpha, α.  In our work we used estimates for α which were determined by 

Schneider et al. (2006) with data from Hodgkin’s patients.   As noted in our uncertainty 

analysis (section 2.10.2), there are some conflicting reports in the literature regarding whether 

or not cell-sterilization occurs similarly for Hodgkin’s patients vs. non-Hodgkin’s patients 

(Sigurdson et al. 2005; Ronckers et al. 2006).  Moreover the region of low doses, such as was 

used in our study, is the region in which the differences are greatest between the dose-response 

curves suggested by Sigurdson et al., Ronckers et al., and Schneider et al. (Figure 31).  As a 

result, we agree that this could be a very notable limitation in our work.  However, in light of 

our results for uncertainty in RRR, i.e., the two major contributors to relative uncertainty in 

RRR are uncertainty in absorbed dose for proton CSI, on the order of 2800%, vs. relative 

uncertainty in the cell sterilization factor, on the order of 50%.  We remain confident that 

uncertainty in the thyroid-specific cell sterilization factor does not invalidate our results and, 

indeed, was the impetus for much of the uncertainty analysis in this work.  In a second 

limitation stemming from the dose-response model, we note that the model used in this work, 

the BEIR VII model for ERR/H does not take dose fractionation into account.  Moreover, the 

BEIR VII data is based on A-bomb survivor data and because risk is not linear with dose, linear 

adaptations of the BEIR VII data to our region of low dose, is not optimal.  However, until 

more data is available, use of the BEIR VII model represents a reasonable choice.  Finally, a 

third limitation, which is associated with the dose-response model, is that while radiation 

therapy (RT) accounts for roughly 8% of second cancers in adults other factors such as 

lifestyle, environmental factors and genetic susceptibility may account for more than 90% of 

the remaining occurrences of second cancers (Berrington de Gonzalez et al. 2011).   This is a 

limitation because current models do not describe how RT interacts with the aforementioned 

other factors.  However, this is an active area of research (Morton and Chanock 2011), so when 

results become available, the results from our study can be adjusted in a straightforward 

manner.  In this respect, this limitation may be overcome in a future work. 

 

4.5 Future work 

Given the biological and statistical complexity of this subject, future studies are needed 

to determine the effect of DCE vs. DMA in other organs.  This includes organs with differing 

tissue heterogeneity, organs which move, and organs which receive partial in-field irradiation.  

Additionally, in an effort to address the uncertainty associated with the selection of appropriate 
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dose-response models, efforts to retrospectively compare the results of this study with actual 

patient outcomes would be greatly beneficial.  Such work may be particularly challenging in 

the case of proton CSI given the relative rarity of pediatric cancer and the historically limited 

availability of proton therapy.   However, this constraint is fading.  There are approximately 28 

proton therapy centers in operation world-wide (Particle Therapy Co-Operative Group, 2010); 

thus, there is a growing potential for creating a database of treatment outcomes which would 

facilitate retrospective comparisons.   
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Chapter Five 

5 Conclusions 

This work was motivated by the unique challenges associated with epidemiological 

studies of late effects from contemporary radiation therapy.  First, the risk of developing a 

radiation-related second cancer increases with the time since exposure, and the latency for solid 

tumors is 5 years or more.  Thus, by the time a study can be completed, the contemporary 

treatment is no longer contemporary.  Second, while second cancers account for 18% of cancer 

diagnoses (Howlander et al. 2011), it is still difficult to accrue sufficient numbers of patients 

for a population based outcome study.  This challenge is compounded when rare sub-groups, 

such as patients who received pediatric radiation are considered.  Third, the traditional 

approach of estimating second cancers from radiation organ dose considers only mean organ 

dose.  This approach overlooks the effect of cell sterilization which at high doses makes second 

cancer formation unlikely.   In our work, we used a prospective method to compare and predict 

the risk of radiation related second cancers for different contemporary radiation therapy 

techniques, i.e., a virtual clinical trial.  We tested this method for a recurring challenge in radio-

epidemiological studies, small sample sizes.  As a result, we considered (1) a rare pediatric 

cancer requiring craniospinal irradiation and (2) a rare but well understood second cancer, 

thyroid cancer.  We considered the effect cell sterilization on risk prediction and, consequently, 

sample size in a micro-clinical trial.  As a result, we found that in a trial of radiation therapy 

techniques, when the difference in the predicted risk of second cancers is less than 10%, 

inclusion of cell sterilization in the dose model results in a need for larger sample sizes if a 

study is designed to achieve 80% statistical power.   

This work demonstrated that it is possible to prospectively evaluate contemporary 

radiation therapy techniques for radiation-related second cancers using a virtual clinical trial 

approach.  This work provided specific results which indicate that these types of studies can 

achieve statistical significance, even with small sample sizes.  Specifically, the required sample 

size (N) for our specific study was unity, regardless of whether cell sterilization was included 

in the dose model.  Reasons for this include relatively large differences in absorbed dose in the 

thyroid from proton vs. photon CSI (����������1 = 0.052, ���������45 = 0.087) and small variations in 

absorbed dose across the patient sample due to small variations in patient anatomy relative to 

the treatment field (N���Z[= 0.014, N���\]= 0.021). Additionally, this work found that for 
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proton CSI there is potential for increased variation in patient specific risk estimates, up to a 

factor of 27, when error in patient set-up is considered.  Thus, in that case or others, when there 

is increased variation in patient specific risk estimates (σRRR) or when the difference in the 

predicted risk of second cancers is less than 10%, using alternate concepts for dose, i.e., use of 

cell sterilization rather than mean organ dose can greatly impact estimations for sample size.  

Furthermore, this study revealed that accurate estimation sample size may be vitally important 

to avoid statistical error.  However, using alternate concepts for dose requires careful study 

design because the outcome is very sensitive to the factors used in the cell sterilization model.  

Ignoring or selecting wrong factors can result in under-sampling, which can have profound 

implications on the quality or even the validity of study results.     Thus, we conclude that 

patient specific studies are the most appropriate types of studies for clinical decision making as 

statistical averaging may overestimate the errors for some individuals.  This is especially true 

for proton therapy where range and set-up error dramatically impact organ dose.   Moreover, it 

is especially important that the details of the treatment plans and their uncertainties be given 

careful consideration when comparing different treatment techniques because the details can 

change the outcome of the study.   
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