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Figure 45. Gating viable cells by FSC in K562-Mix.  K562-Mix cells were 

incubated with 2 µM Imatinib or 50 µM H2O2 for 72 hours. FSC High 

cell population was gated in each sample.  The percentage of gated 

cells is labeled. 
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Figure 46. Differential cell survival of the different cell pools with the treatment 

of Imatinib or H2O2 in K562-Mix.  K562-Mix cells were incubated 

with 2 µM Imatinib or 50 µM H2O2 for 72 hours. FSC High cell 

population was further analyzed according to the expressions of 

GFP and RFP.  The position of each cell pool is representing as 

follows:  K562 (Lower Left, GFP-/RFP-, BCL-XL High/BCL-2 Low), 

K562-BCLXL-KD (Upper Left, GFP-/RFP+, BCL-XL Low/BCL-2 

Low), K562-BCL2-GFP (Lower Right, GFP+/RFP-, BCL-XL 

High/BCL-2 High),  and K562-BCL2-GFP-BCLXL-KD (Upper Right, 

GFP+/RFP+, BCL-XL Low/BCL-2 Low).  The percentage of each 

cell pool in K562-Mix is labeled.  The uneven distribution in the 

control sample is due to the different cell growth of each cell pool in 

K562-Mix.  
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Table 3. Fold changes of the original seeding population under different 

treatments.  From the percentage data in Figure 46, the fold 

changes of the different cell population in K562-Mix were calculated 

between its statistical percentage results from the original seeds 

(Left) and the experimental sample (Right).  The number shown in 

different color indicates increase (Red), no dramatic change (Blue) 

and decrease (Green). 
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0.81 ± 0.051.43 ± 0.130.83 ± 0.08K562-BCL2-GFP-

BCLXL-KD

1.43 ± 0.012.02 ± 0.010.84 ± 0.02K562-BCL2-GFP

0.55 ± 0.070.14 ± 0.031.12 ± 0.04K562-BCLXL-KD

0.79 ± 0.030.32 ± 0.021.17 ± 0.06K562

H2O2
-ImatinibControlK562-Mix

0.81 ± 0.051.43 ± 0.130.83 ± 0.08K562-BCL2-GFP-

BCLXL-KD

1.43 ± 0.012.02 ± 0.010.84 ± 0.02K562-BCL2-GFP

0.55 ± 0.070.14 ± 0.031.12 ± 0.04K562-BCLXL-KD

0.79 ± 0.030.32 ± 0.021.17 ± 0.06K562

H2O2
-ImatinibControlK562-Mix

Red: > 1.25, increase

Blue: 0.75 - 1.25

Green: < 0.75, decrease
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4.4.2  Imatinib and ABT737 Enhances Oxidative Stress-induced Apoptosis in 

BCR-ABL Cells.   

The results from the above experiments have suggested that CML cells 

with both high BCL-XL and high BCL-2 expression may have higher chance to 

develop into a drug resistant population, and down-regulation or inhibition of 

them would enhance cell drug sensitivity.  Based on these suggestions, I 

postulated that Imatinib may enhance the sensitivity of oxidative stress-induced 

cell apoptosis in its targeting cells through suppression of BCL-XL.  In addition, 

BCL-XL and BCL-2 inhibitors would be another approach to enhance CML cell 

sensitivity to oxidative stress, especially in the cells with BCR-ABL-independent 

over-expression of BCL-2.  In this study, ABT737, the Bcl-2 homology domain 3 

(BH3) mimetic, was used as the pan-BCL-2/BCL-XL inhibitor.  ABT737 is the 

predecessor of Navitoclax (ABT263) using as a single agent against 

lymphoblastic leukemia in clinic trial.  ABT737 mediates the functional inhibition 

of BCL-XL and BCL-2 as antagonist with no suppression of their expression.   

BCR-ABL transformed cell line 32D-p210, derived from the murine 

myeloid cell 32D, was used to investigate the effects of Imatinib or ABT737 on 

oxidative stress induced apoptosis.  Imatinib was identified to induce a dramatic 

decrease of BCL-XL in 32D-p210 cells (Figure 47).  Pre-treatment of Imatinib or 

ABT737 enhanced H2O2-induced cell death in 32D-p210.  The percentage of 

viable cell was decreased from 89% to 34% or 65% in the combination of H2O2 

and Imatinib or ABT737 (Figure 48).   
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Figure 47. Imatinib induces BCL-XL decrease in BCR-ABL-transformed cells.  

32D-p210 cells were incubated with 0.25 µM Imatinib for 12 hours. 

The change of BCL-XL was identified by Western blotting using 

BCL-XL antibody.  Actin was used as a loading control. 
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Figure 48. Imatinib and ABT737 enhance oxidative stress-induced apoptosis 

in BCR-ABL-transformed cells.  32D-p210 cells were treated with 

50 µM H2O2 for 12 hours following the 12 hour pre-incubation of 

0.25 µM Imatinib or 2 µM ABT737. Cell apoptosis was detected by 

Annexin-V/PI assay.  Percentages of survival cells are labeled. 
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Based on the results from 32D-p210 study, the effects of Imatinib and 

ABT737 on oxidative stress-induced apoptosis were further tested in K562 cells.  

Because K562 cells have relative high BCL-XL expression but low BCL-2 

expression.  The results from K562 would be more representing the effects of 

suppression or inhibition of BCL-XL in CML cells. Consistent with the 32D-p210 

results, Imatinb caused a decrease of BCL-XL in K562 (Figure 49).  Pre-

treatment of Imatinib or ABT737 enhanced H2O2 induced cell death in K562.  The 

percentage of viable cell was decreased from 87% to 25% or 79% to 47% in the 

combination of H2O2 and Imatinib or ABT737, respectively (Figure 50, Figure 51).  

Since the previous observation showed BCL-XL prevents oxidative stress 

induced mitochondrial membrane potential collapse (Figure 23), the change of 

mitochondrial membrane potential was further measured in the combination of 

H2O2 and Imatinib or ABT737.  Pre-treatment of Imatinib or ABT737 sensitized 

K562 cells to H2O2 induced mitochondrial membrane potential collapse.  The 

percentage of cells with collapsed mitochondrial membrane potential was 

increased from 5% to 37% or 11% to 33% by the combination of H2O2 and 

Imatinib or ABT737, respectively (Figure 52, Figure 53).  Because BCL-XL is 

heavily localized to mitochondria, the change of mitochondria-bound BCL-XL was 

investigated in the isolated mitochondria fragments.  A large decrease of 

mitochondria-bound BCL-XL was observed in the cells pre-treated with Imatinib 

or ABT737 (Figure 54).  This data indicated that Imatinib and ABT737 enhance 

oxidative stress-induced cell damage through decrease the amount of 

mitochondrial BCL-XL.  
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Figure 49. Imatinib induces BCL-XL decrease in K562 cells.  K562 cells were 

incubated with 1 µM Imatinib for 12 hours. The change of BCL-XL 

was identified by Western blotting using BCL-XL antibody.  Actin 

was used as a loading control. 
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Figure 50. Imatinib enhances oxidative stress-induced apoptosis in K562 cells.  

K562 cells were treated with 50 µM H2O2 for 24 hours following the 

12 hour pre-incubation of 1 µM Imatinib. Cell apoptosis was 

detected by Annexin-V/PI assay.  Percentages of survival cells are 

labeled. 
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Figure 51. ABT737 enhances oxidative stress-induced apoptosis in K562 

cells.  K562 cells were treated with 50 µM H2O2 for 24 hours 

following the 12 hour pre-incubation of 2 µM ABT737. Cell 

apoptosis was detected by Annexin-V/PI assay.  Percentages of 

survival cells are labeled. 
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Figure 52. Imatinib sensitizes K562 cells to oxidative stress-induced 

mitochondrial membrane potential collapse.  K562 cells were 

treated with 50 µM H2O2 for 12 hours following the 12 hour pre-

incubation of 1 µM Imatinib. Changes of Mitochondrial membrane 

potential were measured by Rhodamine 123 staining assay.  

Percentages of the mitochondrial membrane collapsed cells are 

labeled. 
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Figure 53. ABT737 sensitizes K562 cells to oxidative stress-induced 

mitochondrial membrane potential collapse.  K562 cells were 

treated with 50 µM H2O2 for 12 hours following the 12 hour pre-

incubation of 2 µM ABT737. Changes of Mitochondrial membrane 

potential were measured by Rhodamine 123 staining assay.  

Percentages of the mitochondrial membrane collapsed cells are 

labeled. 
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Figure 54. Imatinib and ABT737 cause mitochondrial BCL-XL decrease in 

K562 cells.  K562 cells were treated or non-treated with 50 µM 

H2O2 for 6 hours following the 12 hour pre-incubation of 1 µM 

Imatinib or 2 µM ABT737. Mitochondria fragments were isolated.  

BCL-XL was identified by Western blotting using BCL-XL antibody.  

BAX, HSP60 and ATP synthase subunit-α were used as the 

internal controls. 
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4.4.3 Combination of PEITC with Imatinib or ABT737 Promotes Potent Cell 

Killing Effects in CML Cells.    

PEITC can induce intrinsic oxidative stress and promote massive cell 

death in CML cells; however, the major concern of PEITC is its non-specific 

oxidative stress effects on normal cells.  A proper drug combination to decrease 

the minimum effective dose of  PEITC will limit its side effects and enhance its 

therapeutic selectivity.  The designs of Imatinib and ABT737 were derived from 

the concept of targeted therapy. Imatinib and ABT737 specifically suppress their 

cellular targeting molecules and only disrupt their targeting cells.  Therefore, the 

combination of targeted therapeutic agents with PEITC would only drive the 

targeted cells hyposensitive to oxidative stress.  Ideally, the lower minimum 

effective dose of PEITC and the higher selectivity could be achieved.   

PEITC dramatically promoted ROS generation in CML cell lines K562 and 

KBM5 (Figure 55).  PEITC was used in this experiment at dose of 5 µM, which 

has no growth inhibition effect on normal peripheral blood mononuclear cells 

(Figure 33).  Pre-treatment of Imatinib sensitized K562 cells to PEITC induced 

mitochondrial membrane potential collapse.  The percentage of cells with 

collapsed mitochondrial membrane potential was increased from 11% to 35% in 

the combination of PEITC and Imatinib (Figure 56).  Consistently, pre-treatment 

of Imatinib enhanced PEITC induced cell death in K562.  The percentage of 

viable cell was decreased from 70% to 36% in the combination of PEITC and 

Imatinib (Figure 57).  These results indicated that combination of Imatinib and 

PEITC is very potent to promote cell killing effects in CML cells.  In addition, pre-
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treatment ABT737 also enhanced PEITC induced cell death in K562.  The 

percentage of viable cell was decreased from 67% to 30% in the combination of 

PEITC and ABT737 (Figure 58).  Because KBM5 cells showed relatively higher 

expression of BCL-2, which may delay cell death (Figure 20), inhibition of BCL-2 

and BCL-XL by ABT737 would enhance or accelerate oxidative stress-induced 

apoptosis in KBM5.  As expected, pre-treatment of ABT737 enhanced PEITC-

induced cell death in KBM5.    The percentage of viable cell was decreased from 

63% to 42% in the combination of PEITC and ABT737 (Figure 59).    

Based on the above results, the combination of redox modulation with 

suppression of BCL-2 family survival factor function would be an effective 

strategy to eliminate CML cells.  Especially, the combination of PEITC with 

Imatinib or ABT737 is worthy of further pre-clinical and clinical investigation.  

Additionally, my study also suggested that the targeted therapy agents could be 

used as the specific sensitizers to decrease the tolerance of malignant cells to a 

certain stress.   
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Figure 55. PEITC promotes cellular ROS generation in CML cells.  K562 and 

KBM5 cells were treated with 10 µM PEITC for 2 hours.  Cellular 

ROS contents were measured by flow cytometric using CM-H2DCF-

DA fluorescence dye.  Medians are labeled. 
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Figure 56. Imatinib sensitizes K562 cells to PEITC-induced mitochondrial 

membrane potential collapse.  K562 cells were treated with 5 µM 

PEITC for 12 hours following the 12 hour pre-incubation of 1 µM 

Imatinib. Changes of Mitochondrial membrane potential were 

measured by Rhodamine 123 staining assay.  Percentages of the 

mitochondrial membrane collapsed cells are labeled. 
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Figure 57. Imatinib enhances PEITC-induced apoptosis in K562 cells.  K562 

cells were treated with 5 µM PEITC for 24 hours following the 12 

hour pre-incubation of 1 µM Imatinib. Cell apoptosis was detected 

by Annexin-V/PI assay.  Percentages of survival cells are labeled. 
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Figure 58. ABT737 enhances PEITC-induced apoptosis in K562 cells.  K562 

cells were treated with 5 µM PEITC for 24 hours following the 12 

hour pre-incubation of 2 µM ABT737. Cell apoptosis was detected 

by Annexin-V/PI assay.  Percentages of survival cells are labeled. 
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Figure 59. ABT737 enhances PEITC-induced apoptosis in KBM5 cells.  KBM5 

cells were treated with 5 µM PEITC for 24 hours following the 12 

hour pre-incubation of 2 µM ABT737. Cell apoptosis was detected 

by Annexin-V/PI assay.  Percentages of survival cells are labeled. 
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5. Discussion 

5.1 BCR-ABL-Induced Cellular Oxidative Stress. 

An increase of ROS has been observed in human CML primary cells by 

comparing with the bone marrow cells isolated from healthy donors. 58,59,61 ROS 

is believed to mediate multiple biological alterations involved in CML 

development. 63  Consistent with previous studies, I have also identified that 

higher ROS levels present in BCR-ABL over-expressing cells. 58-60  Additionally, 

my study emphasized the supplement of glucose in cell culture is essential to 

mediate BCR-ABL-induced the increase of cellular and mitochondrial ROS.  

These results suggested that patient’s glucose nutrition conditions and the blood 

glucose levels should be considered for CML disease management, especially 

for CML prevention purpose.  Since the activation of mitochondria by glucose 

metabolism is a process involved multiple enzymes involving in glycolysis, 

pyruvate consumption and TCA cycle, the related genetic alterations of these 

enzymes may be detectable.  I compared the expressions of metabolic enzymes 

between K562 and normal bone marrow CD34+ cells, based on the profile from 

NCBI GEO database.  In GEO profile GDS596, most enzymes of glycolysis and 

TCA cycle are more expressed in K562 cells than normal bone marrow CD34+ 

cells (Figure 60, Figure 61). In addition, pyruvate carboxylase, the enzyme 

catalyzing irreversible carboxylation of pyruvate to form the critical TCA cycle 

intermediate oxaloacetate, is also more expressed in K562 (Figure 62).  This 

analysis provided the hint of using metabolic enzymes as the biomarker to 

evaluate the development of CML.  
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Figure 60. Expression profiles of glycolytic enzymes in K562 cells.  GDS596 

data profile was downloaded from Gene Expression Omnibus 

(GEO) (NCBI).  The expressions of glycolysis pathway enzymes in 

K562 cells (GSM18897 and GSM18898) were analyzed.  CD34+ 

bone marrow cells (GSM18885 and GSM18886) were used as 

controls.  The fold changes of gene expression were listed with 

gene name and probe codes.  Red indicates increase, and green 

indicates decrease. 
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Figure 61. Expression profiles of TCA cycle enzymes in K562 cells.  GDS596 

data profile was downloaded from Gene Expression Omnibus 

(GEO) (NCBI).  The expressions of TCA cycle enzymes in K562 

cells (GSM18897 and GSM18898) were analyzed. CD34+ bone 

marrow cells (GSM18885 and GSM18886) were used as controls.  

The fold changes of gene expression were listed with gene name 

and probe codes.  Red indicates increase, and green indicates 

decrease. 
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Figure 62. Expression profiles of Pyruvate carboxylase (PC), pyruvate 

dehydrogenases (PDHA1 and PDHB) and lactate dehydrogenases 

(LDHA and LDHB) in K562 cells.  GDS596 data profile was 

downloaded from Gene Expression Omnibus (GEO) (NCBI).  

Pyruvate carboxylase (PC), pyruvate dehydrogenases (PDHA1 and 

PDHB) and lactate dehydrogenases (LDHA and LDHB) 

expressions of K562 cells (GSM18897 and GSM18898) were 

analyzed. CD34+ bone marrow cells (GSM18885 and GSM18886) 

were used as control.  The fold changes of gene expression were 

listed with gene name and probe codes.  Red indicates increase, 

and green indicates decrease. 
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5.2 Differential Roles of BCL-XL and BCL-2 in Protecting Mitochondria 

Under Oxidative Stress. 

BCL-XL and BCL-2 play important roles in negatively regulating 

mitochondria dependent apoptosis through inhibiting Apaf-1 mediated Caspase-9 

activation. 131-133 BCL-2 family survival factors maintain mitochondrial integrity by 

preventing cytochrome c release. 134 However, there is no clear evidence to 

demonstrate the distinct roles of BCL-XL and BCL-2 in response to different 

apoptosis stimuli.  Therefore, one goal of my study was to investigate the 

efficiency of BCL-XL and BCL-2 in preventing oxidative stress induced cell 

damage in CML.  According to my results, BCL-XL actually is more essential 

than BCL-2 to protect mitochondria against oxidative stress in CML cells.   It is 

worthy of noting that unlike BCL-XL, the higher expression of BCL-2 has been 

mainly observed in blast crisis patients but not chronic phase CML patients. 

135,136 These studies have suggested that BCL-2 is most likely functional as the 

secondary survival factor during the development of malignancy in CML.  In 

addition, CML malignancy is driven by the myeloid progenitors.  The promotion of 

cell proliferation in the early stage progenitors is often linked with ROS increase 

and differentiation. 137,138 Intriguingly, one recent study has shown that the 

expression of BCL-XL and BCL-2 is completely opposite during the differentiation 

of human bone marrow mesenchymal stem cells. 139 In this study, researchers 

have identified that the expression of BCL-XL is at the similar level in 

undifferentiated and differentiated cells, however, BCL-2 only expresses in 

differentiated cells.  Additionally, they have demonstrated that BCL-XL but not 
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BCL-2 plays the dominant survival role in undifferentiated cells.  So the 

differential roles of BCL-XL and BCL-2 in response to oxidative stress in CML 

cells may involve a cell stage impact.   

Previous studies have shown that BCL-XL and BCL-2 also regulate 

cellular redox capacity.  BCL-XL regulates mitochondrial membrane potential and 

protects oxidative stress-caused GSH pool decrease. 69,70 BCL-2 incorporates 

with antioxidants and regulates cellular GSH distribution. 140,141  Surprisingly, 

BCL-2 has also been viewed as a pro-oxidant to promote mitochondrial ROS 

generation. 142 To address such a controversy, the effects of BCL-XL and BCL-2 

on BCR-ABL promoted mitochondrial ROS generation were investigated.  The 

mitochondrial ROS levels of BCL-XL or BCL-2 over-expressing K562 cells were 

detected with or without glucose in culture media.  The 5 hour shortage of 

glucose caused a decrease of mitochondrial ROS in both BCL-XL over-

expressing cells and parental cells, but not in BCL-2 over-expressing cells 

(Figure 63).  The similar phenomenon also observed through the comparison 

between K562 and KBM5.  KBM5 cells, with relatively high BCL-2 expression, 

were less sensitive to 5 hour glucose shortage-induced mitochondrial ROS drop 

than K562 (Figure 64).  These results suggested that BCL-2 seems play a role in 

maintaining mitochondrial ROS generation in CML, and implied a disadvantage 

of BCL-2 in protecting mitochondria under oxidative stress. 
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Figure 63. BCL-2 over-expressing cells are less sensitive to short term 

glucose shortage-induced mitochondrial ROS decrease.  

Mitochondrial ROS levels were detected by MitoSOX Red.  K562, 

K562-BCLXL-HA and K562-BCL2-GFP cells were cultured in 

regular or glucose free media for 5 hours.  
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Figure 64. BCL-2 high cells are less sensitive to short term glucose shortage-

induced mitochondrial ROS decrease.  Mitochondrial ROS levels 

were detected by MitoSOX Red.  K562 and KBM5 cells were 

cultured in regular or glucose free media for 5 hours.  The medians 

are labeled. 
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5.3 Role of Intracellular GSH Pool for Survival. 

My results indicated that the depletion of cellular glutathione appeared to 

be an important biochemical event mediating the cytotoxic effects of PEITC.  

GSH is viewed as a critical survival antioxidant.  A previous study has identified 

that the levels of GSH determine cell sensitivity to apoptosis in leukemia cells. 143 

Consistently, a severe depletion of GSH before cell apoptosis was found in my 

experiments (Figure 29, Figure 30B).  Intriguingly, my colleague has identified 

that PEITC results in a rapid depletion of mitochondrial GSH and disruption of 

mitochondrial metabolism function before inducing an entire cellular GSH pool 

loss in leukemia cells. 144 These results suggested that the non-mitochondria 

GSH seemed to function as the barrier to prevent the activation of the 

downstream steps in apoptosis.  Since caspase-3 activation and PARP cleavage 

matched the decrease of total GSH in my experiments (Figure 34, Figure 29), I 

did an in vitro test to evaluate the effects of GSH levels on caspase-3 mediated 

PARP cleavage.  I observed that 3 mM GSH prevented the spontaneous PARP 

cleavage in CML cell lysates (Figure 65).  I further found that 3 mM GSH also 

inhibited caspase-3 mediated PARP cleavage in cell lysates (Figure 66).  These 

results suggested that GSH may play a role in the direct regulation of apoptotic 

activation.  The potency of PEITC in inducing cell death may be also due to 

enhancing cell apoptotic sensitivity by depleting GSH. 
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Figure 65. GSH prevents spontaneous PARP cleavage in vitro.  KBM5 cell 

pellets were collected.  Cell lysate samples were transferred into 

100 µl aliquots.  The aliquots were incubated in the presence or 

absence of 3 mM GSH at 37 °C for 3, 10 or 60 minutes, and then 

collected for Western blotting to detect PARP cleavage.  The GSH 

incubation-caused precipitated proteins were also collected and 

blotted with PARP antibody to exclude the precipitation-caused 

decrease of cleaved PARP. 
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Figure 66. GSH prevents caspase-3 induced PARP cleavage in vitro.  KBM5 

cell pellets were collected.  Cell lysate samples were transferred 

into 100 µl aliquots.  The aliquots were incubated in the presence or 

absence of active caspase-3 enzymes or 3 mM GSH at 37 °C for 

60 minutes, and then collected for Western blotting to detect PARP 

cleavage.   
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5.4 Potential Advantage of PEITC in Redox-Directed Therapy in CML. 

‘The increase of ROS stress in CML cells expressing either wild-type or 

mutant BCR-ABL can be exploited for therapeutic purpose.  Recently, the redox-

directed therapeutic strategy has drawn researchers’ attention. 145 My present 

study has suggested that the severe ROS stress induced by PEITC might alter 

the redox state of BCR-ABL proteins, including the T315I mutant, and render it 

vulnerable to degradation by caspase-3.  This notion is supported by the 

observation that either NAC or specific inhibitor of caspase-3 could significantly 

suppress the cleavage of BCR-ABL.  It should be pointed out that the 

degradation of BCR-ABL may not be the primary cause of PEITC-induced cell 

death, which is likely triggered by direct oxidative damage to mitochondria and 

other critical cellular molecules.  However, the ability of PEITC to induced rapid 

degradation BCR-ABL may effectively abolish the pro-survival signal of this 

oncoprotein, thus add to the potency of this compound in killing CML cells.  

Furthermore, normal lymphocytes have a lower basal ROS output and possess 

intact redox-regulatory machinery, which make them less vulnerable to ROS 

stress imposed by PEITC.  Based on the promising activity of PEITC against 

Imatinib-resistant CML cells, its therapeutic selectivity, and its unique mechanism 

of action, I conclude that this compound may be useful to overcome CML 

resistance to kinase inhibitors.’114  

5.5 Potential Advantage of Imatinib in Redox-Directed Therapy in CML. 

One of the major concerns of redox-directed therapeutics is the off-

targeting effects on the normal cells. Therefore, the improvement of the 
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therapeutic selectivity would make this strategy more beneficial.  Oncoprotein 

BCR-ABL, encoded by CML specific Bcr-Abl fusion gene, has been identified in 

more than 95% CML cases. 45-47  In the past few years, molecular targeting BCR-

ABL functional inhibitors were derived from the concept of targeted therapy and 

developed for the chemotherapy of CML. 90 Imatinib specifically suppresses its 

cellular targeting molecules and only disrupts the targeted cells.  The 

combination of Imatinb with redox modulation agents would only drive the 

Imatinib targeting cells hyposensitive to oxidative stress.  Therefore, the lower 

minimum effective dose of redox modulation agents and the higher therapeutic 

selectivity could be achieved.  

5.6 Antioxidant Defects in CML. 

My results suggested that anti-apoptotic factors play essential roles in 

preventing oxidative stress-induced cell damage in BCR-ABL expressing cells.   

However, there are other genes, antioxidant enzymes, constantly scavenging 

ROS in normal physiological conditions.  Why do CML cells highly rely on the 

anti-apoptotic factors? Are the antioxidant enzymes deregulated in CML cells?  

These are the questions left for future studies. 

One of the major antioxidant enzymes, GPX1, has been reported to 

dysfunction or lost in some BCR-ABL positive patients or cultured human CML 

cell lines. 92,108  However, no study has yet demonstrated the link between the 

regulation of GPX1 and the induction of BCR-ABL. GPX1 is the selenium (Se)-

dependent antioxidant enzyme, mainly catalyzing the reduction of the cytosolic 

H2O2 using GSH as the substrates.  The regulation of cellular GPX1 expression 
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is through multiple optional signaling pathways and largely remains unknown. 

The binding sequences of PU.1 and p53 have been identified in GPX1 promoter 

region. 146,147 It is worth noting that p53 has been reported to be mutated or 

deleted in many CML cases. 148 In addition, a previous study suggested that 

FOXO3a also plays an important role in regulating GPX1 gene expression. 149  

Furthermore, the inhibition of FOXO3a activity has been observed in v-Abl 

transformed cells.150  These studies suggest that BCR-ABL might interrupt the 

expression of GPX1 through inhibiting its upstream transcription factors.  BCR-

ABL-transformed cell 32D-p210 showed increased phosphorylation at FOXO3a 

Thr32, which inhibits FOXO3a activation (Figure 67A).   In addition, a decreased 

gene expression of GPX1 was also observed in 32d-P210 (Figure 67A, B, 

P=0.0017).  These data implied that over-expression of oncogene BCR-ABL may 

cause some crucial antioxidant defects and render the transformed cells more 

dependent on anti-apoptotic factors to respond oxidative stress.   
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Figure 67. Over-expression of BCR-ABL results in FOXO3a inhibition and 

GPX1 decrease.  (A) Phosphorylation of FOXO3a Thr32 and GPX1 

were detected in samples from 32D-p210 and 32D parental by 

Western blotting.  (B) GPX1 mRNA expression was measured by 

quantitative real-time PCR as described in previous Materials and 

Methods 3.13. 
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6. Summary and Conclusion 

In conclusion, the present studies have demonstrated that BCR-ABL 

promotes cellular and mitochondrial ROS generation, while elevating the cell 

survival factors GSH and BCL-XL to prevent oxidative stress-induced apoptosis.  

Enhancement of glucose metabolism by BCR-ABL contributes to the increase of 

mitochondrial ROS in CML cells.  These findings have provided insight into the 

persistent oxidative stress observed in CML cells.  In addition, the current 

research has identified the distinct roles of BCL-XL and BCL-2 in preventing 

excessive ROS induced apoptosis, which are due to their differential function in 

protecting mitochondria against oxidative stress.  Based on the biological 

mechanism studies, novel therapeutic strategies were investigated.  PEITC 

effectively promotes massive cell death in Imatinib-resistant CML cells through 

targeting cellular GSH system.  The combination of either Imatinib or ABT737 

with PEITC diminishes the protecting effects of BCL-2 family survival factors and 

promotes excessive intrinsic oxidative stress; thus showing  cell killing effects in 

CML cells.  This therapeutic strategy could ultimately improve the selectivity and 

potency of redox-directed therapy in CML and other hematological malignancies 

(Figure 68). 
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Figure 68. Model summarizing the biological basis and clinical implications of 

BCR-ABL-induced mitochondrial oxidative stress and cell survival.  

Tyrosine kinase onco-protein BCR-ABL promotes mitochondrial 

ROS increase through the enhancement of glycolysis.  BCR-ABL 

down-stream survival factor BCL-XL plays an essential role in 

preventing oxidative stress-caused mitochondria damage and cell 

apoptosis.  Redox modulating reagent PEITC induces potent cell 

death in CML cells by depleting GSH and promoting intrinsic 

oxidative stress.  Combination of PEITC with BCR-ABL inhibitor 

Imatinib or BCL-XL/BCL-2 inhibitor ABT737 strengthens redox 

modulation-induced cell death in CML.  Glut: Glucose transporter; 

HK: Hexokinase; LDH: Lactate dehydrogenase; P: phosphorylation; 

TCA: TCA cycle; I,II,III and IV: Mitochondrial respiratory chain 

complex I to IV; C: Cytochrome c.  
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