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Figure 1: The Hippo pathway.  Diagram shows interconnection between the Hippo pathway 

and the BMP, TGF-β, and Wnt/β-catenin pathways.  Arrows indicate activation and blunt heads 

indicate inhibition. 
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suppressor (LATS) [57,58,59,60] or Pez [61]; E-cadherin [62]; Ajuba LIM proteins (Ajuba, 

LIMD1, and WTIP) [63]; and most recently Echinoid (Ed) [9].  The phosphatase complex 

Drosophila Striatin-interacting phosphatase and kinase (dSRIPAK) prevents Hippo activation 

during development [64] and recently, a group identified a class of endocytic neoplastic tumor 

suppressor genes in Drosophila that regulates the Hippo pathway [65].  Cellular detachment 

from the ECM also appears to regulate the Hippo pathway by activating LATS1/2, thus 

inhibiting YAP/TAZ downstream to initiate anoikis [66]. 

The Hippo pathway regulates cell polarity complexes by controlling the apical polarity 

complexes atypical protein kinase C (aPKC), Crb, and Patj [67,68,69] and is important in 

dendrite morphogenesis [70] and axis specification by interaction with the Notch pathway 

[71,72,73,74,75,76].  The Hippo pathway has also been linked to the Akt pathway via MST1/2 

and YAP [77,78] and the Rb pathway, possibly through LATS2 [79], to maintain the terminally 

differentiated states in the Drosophila eye [80].  In mammals, the Hippo pathway plays a vital 

role in organ size and tumorigenesis [81] as well as intestinal stem cell regeneration [82,83,84] 

and tissue regeneration [85,86].  The Hippo pathway may also play a role in mantle cell 

lymphoma [87] and glial cell proliferation [88]. 

In Drosophila, Hpo is required for the cell death response triggered by Ionizing 

Radiations (IR) or Drosophila melanogaster p53 (Dmp53) [89] and is regulated by 

dimerization and cytoplasmic localization [90].  Hpo encodes a sterile20 (Ste-20) family 

protein kinase that binds to and phosphorylates Salvador (Sav), a tumor suppressor that 

interacts with Warts (Wts) [91].  Mob as tumor suppressor (Mats) acts downstream of Hpo to 

regulate cell growth, organ size, and tumor suppression [92,93,94,95].   
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In mammals, Mps one binder (Mob) 1A and 1B, the homologs of Mats, are tumor 

suppressers that regulate mitotic exit and cytokinesis [96] as well as cell polarity [97].  LATS, 

the Warts kinase homolog, has been shown to increase chemosensitivity by stabilizing p73 

[98], to promote apoptosis-stimulating of p53 protein 1 (ASPP1) nuclear localization to 

promote cell death via p53 [99], and to repress cellular reprogramming, thus preventing cells 

from transitioning from a differentiated state to a pluripotent state [100].  Heat shock protein 90 

(Hsp90) inhibitors [101], Itch [102,103], forkhead box P3 (FOXP3) [104], nephronophthisis 4 

(NPHP4) [105], and angiomotin-like 2 (AMOTL2) [106] can affect LATS1 and 2 function.  

LATS is also a novel Snail1 regulator [107].  Crb interacts with TAZ/YAP to relay cell density 

information by promoting TAZ/YAP phosphorylation and TGF-β signaling suppression [108].  

The main components of the Hippo pathway can be found in Table 2.  

Many proteins have been linked to the Hippo pathway including division abnormally 

delayed (dally) and dally-like protein (dlp) that are two targets of Ft and Ds [109], Scribbled 

[110], cluster of differentiation 44 (CD44) [111], filamentous (F)-actin [112,113,114,115], 

Zyxin [116], Runt box domain DNA-binding transcription factor 3 (Runx3) [117], and Tao-1 

[118,119]. 

 

TAZ, YAP, and TEAD 

Much is known about Yki, the TAZ/YAP homolog, which is well-studied in 

Drosophila.  Homothorax (Hth) and teashirt (Tsh) promote cell proliferation and protect eye 

progenitor cells from apoptosis by interacting with Yki [120], which leads to an up-regulation 

of the microRNA bantam [121,122,123,124].  In the midgut, Yki regulates stem cell 
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Table 2: The Hippo pathway components 
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proliferation and intestinal regeneration [125].  Yki also interacts with dMyc in a regulatory 

feedback mechanism to control growth and regulate organ size [126,127,128]; with WW 

domain-binding protein 2 (Wbp2) to drive tissue growth [129,130]; and with dE2F1 to bypass 

the cell cycle exit [131].  Regulation may occur through direct physical interaction with other 

proteins upstream in the Hippo pathway in addition to phosphorylation [132,133].  Also, 

myopic controls Yki endosomal association and protein levels, thus influencing Yki target gene 

expression [134]. 

In mammals, TAZ is a WW domain-containing molecule that is located at chromosome 

3q23 that functions as a transcriptional co-activator by binding to proline-proline-any amino 

acid-tyrosine (PPXY) motifs present on transcription factors and is normally expressed highly 

in heart, lung, kidney and placenta [135,136].  TAZ also binds to the regulatory 14-3-3 proteins 

[135].  14-3-3 proteins bind to serine/threonine-phosphorylated residues in a context specific 

manner and bind and regulate key proteins involved in intracellular signaling, cell cycling, 

apoptosis, and transcription regulation [137].  TAZ binds 14-3-3 proteins when phosphorylated 

on four specific serine residues (S66, S89, S117, S311), serine 89 being the most important.  

Phosphorylation results in TAZ being exported out of the nucleus to the cytoplasm [135].  TAZ 

also contains a post-synaptic density, Drosophila disc large tumor suppressor, and zonula 

occludens-1 (PDZ)-binding motif in the C-terminus that localizes TAZ to discrete nuclear foci 

and is vital for TAZ-stimulated gene transcription [135]. 

YAP is located on chromosome 11q13 and is highly expressed in placenta, prostate, 

ovary, and testis, but undetectable in peripheral blood leukocytes [138].  YAP binds to the Src 

homology domain 3 (SH3) of the Yes proto-oncogene product [139] and interacts with many 

proteins including ezrin/radixin/moesin (ERM)-binding phosphoprotein 50 kD (EBP50) in the 
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apical compartment of the airway epithelia [140]; p53-binding protein-2 (p53BP-2) [141]; 

Smad7 to promote the inhibitory effect against TGF-β signaling [142]; the full-length 

erythroblastosis oncogene B 4 (ErbB4) receptor at the membrane and the C-terminal fragment 

that translocates to the nucleus to regulate transcription [143,144]; Runx2 to suppress its 

function [145]; heterogeneous nuclear ribonuclear protein U (hnRNP U), an RNA- and DNA-

binding protein that plays a role in the regulation of gene expression, via a proline-rich amino 

terminus not present in TAZ [146]; proline-rich γ-carboxyglutamic acid protein 2 (PRGP2) 

[147]; early growth response-1 (EGR-1) to upregulate B-cell leukemia/lymphoma 2 (Bcl2)-

associated X (Bax) expression in irradiated prostate carcinoma cells [148]; amphiregulin 

(AREG) whose induction contributes to YAP-mediated cell proliferation and migration, but not 

epithelial-to-mesenchymal transition (EMT) [149]; ΔNp63α [150,151]; anterior gradient 

homolog 2 (AGR2) in adenocarcinomas [152]; FatJ to restrict the neural progenitor cells (NPC) 

pool size [153]; Rous sarcoma virus (RSV) [154]; and p73, which enhances its transcriptional 

activity [155].  Many groups have shown that promyelocytic leukemia gene (PML) is required 

for YAP to interact with p73 [156,157] and another showed that YAP competes with Itch thus 

preventing Itch-mediated ubiquitination of p73 [158].  Phosphorylation by c-Abl at position 

Y357 in response to DNA damage stabilizes YAP and creates a higher affinity to p73 [159]. 

TAZ contains one WW domain, unlike YAP, which contains 2 [160,161,162]; however, 

a group recently discovered a TAZ isotype with two WW domains [163].  The WW motif, a 

sequence of 38 amino acids containing two widely spread tryptophans, mediates protein-protein 

interactions and binds to PPXY motifs on proteins [164,165].  The WW motif lacks disulfide 

bridges, forms a three-stranded antiparallel β-sheet [166], and has distinct regulatory roles in 

different cell types [167].  PPXY motifs are found on many transcription factors including jun 

proto-oncogene (c-Jun) [168], activating enhancer binding protein 2 (AP-2) [169], nuclear 



15 
 

factor erythroid-derived 2 (NF-E2) [170], C/EBPα [171], early growth response 2 (EGR2) 

[172], myocyte enhancer binding factor 2 (MEF2) [173], and polyomavirus enhancer binding 

protein 2 (PEBP2), which suggests that it is a transcription activation domain that functions by 

recruiting TAZ/YAP as strong transcription activators to target genes [174]. 

The regulation of TAZ is still being elucidated.  The Hippo pathway regulates TAZ via 

two mechanisms: 1) phosphorylating a phosphodegron and recruiting the S-phase kinase-

associated protein 1 (Skp1)-cullin-F-box protein beta-transducin repeat-containing protein 

(SCF
β-TrCP

) E3 ligase to promote degradation [175] and 2) LATS phosphorylation on the 

previously mentioned serine residues to promote cytoplasmic sequestration [135].  When these 

serine sites are replaced by an amino acid residue that cannot be phosphorylated (alanine), TAZ 

is constitutively active within the nucleus, which promotes cell proliferation, cell migration, 

invasion, and EMT in breast cancer cells [176,177].  EMT promotes the invasive and metastatic 

properties of tumor cells [178,179,180] and this model may provide insight into PMT seen in 

GBM.  Physical interaction with angiomotin (AMOT) and AMOTL1 also promotes 

cytoplasmic retention thereby restricting TAZ activity [181].  Recently, it was discovered that 

protein phosphatase 1 alpha (PP1A) and ASPP2 promote TAZ dephosphorylation by 

antagonizing LATS, thus promoting TAZ function [182].  TAZ is also involved in other 

pathways including BMP2 signaling pathway [32] and Wnt/β-catenin signaling pathway via 

interaction with disheveled (DVL) in the cytoplasm where it inhibits Wnt signaling by 

regulating β-catenin translocation to the nucleus [34,35]. 

Similar to TAZ, multiple regulatory mechanisms of YAP have been elucidated.  YAP is 

inhibited by cell density via the Hippo pathway and phosphorylation of serine residues by 

LATS1 leads to cytoplasmic translocation of YAP and binding to 14-3-3 
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[183,184,185,186,187,188,189].  Akt [190], Jun N-terminal kinase 1 and 2 (JNK1 and JNK2) 

[191], and α-catenin [192,193] act as negative regulators of YAP by phosphorylating YAP as 

well.  YAP is also regulated by phosphorylation of a phosphodegron thus recruiting the SCF
β-

TrCP
 E3 ligase to promote degradation [194].  In hepatocellular carcinoma (HCC), microRNA 

375 (miR-375) inhibits YAP [195] and AXL receptor tyrosine kinase drives YAP-dependent 

oncogenic activities [196].  miR-375 also inhibits YAP in lung cancer with neuroendocrine 

features [197].  The PDZ-binding motif is necessary for YAP localization in the nucleus [198] 

since zonula occludens 2 (ZO-2) was found to bind to YAP via the PDZ-binding motif to 

promote nuclear localization of YAP [199].  Cytoplasmic ASPP inhibits the interaction of YAP 

with LATS1, thus enhancing nuclear accumulation of YAP, which leads to inhibition of 

apoptosis [200].  In addition to phosphorylation, AMOTL1 and AMOTL2 regulate YAP via 

direct protein-protein interaction independent of YAP phosphorylation status and promote 

cytoplasmic retention [201,202,203].  Dobutamine has also been shown to inhibit YAP-

dependent gene transcription [204] as well as 4.1/ezrin/radixin/moesin (FERM) domain 

containing 6 (Willin/FRMD6) that also antagonizes YAP activity [205].  Thus far, PP1A is the 

only protein shown to dephosphorylate YAP [206]. 

It is interesting to note that TAZ plays a role in mesenchymal stem cell (MSC) and 

human pulp stem cell differentiation by activating Runx2 [136,207,208] and repressing 

peroxisome proliferator–activated receptor γ (PPAR- γ) [136].  Groups have shown that TGF-β 

[209] or ephrin B1 [210] may also interact with TAZ to promote this osteogenic differentiation 

and that dexamethasone may inhibit TAZ to promote adipogenesis [[22374070]].  TAZ is 

similar to β-catenin by integrating extracellular, membrane, and cytoskeletal-derived signals to 

influence MSC outcome [211].  One group studied MSCs of multiple myeloma patients and 

found that TAZ expression was suppressed by tumor necrosis factor α (TNF-α), which resulted 
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TEAD-1, -2, -3, and -4 show different, but overlapping, spatiotemporal expression 

patterns.  This would suggest that they are redundant, but differ in their control of development 

and regulation of specific tissues [316,317].  They share a highly conserved 68-amino acid 

TEA/ATTS DNA-binding domain, which binds to many motifs with the predominate 

consensus of GGAATG [318].  The TEAD family regulates Hippo pathway-responsive genes 

[319,320,321].  In Drosophila, the TEAD homolog Scalloped (Sd) functions to regulate cell-

specific gene expression during development, especially in the nervous system differentiation 

[322].  TEAD-1/TEF-1 has been shown to activate human papillomavirus in cervical carcinoma 

cells [323], regulate vascular smooth muscle α-actin gene in myoblasts and fibroblasts 

[324,325,326,327], and plays an important role in cardiac development [328,329,330].  TEAD-

2/TEF-4/ETF was first identified in mouse neural progenitor cells and expression in developing 

embryos was restricted to certain tissue such as the hindbrain [331], gut, and nephrogenic 

region of the kidney [332].  TEAD-3/TEF-5/DTEF-1 is strongly expressed in placenta 

[333,334] as well as cardiac muscle [335,336] while TEAD-4/TEF-3/RTEF-1 plays an 

important role in trophectoderm [337,338] and embryonic development of skeletal muscle 

[332,339,340], and cardiac muscle in mice [341] and was also found to be aberrantly expressed 

in lung adenocarcinomas [342] and in hypoxic endothelial cells [343,344]. 

Silencing TEAD or even preventing the TAZ-TEAD interaction blocked the ability of 

TAZ to promote cell proliferation and to induce EMT in breast cancer cells [177,345].  TAZ 

and TEAD1 have been shown to up-regulate zinc finger E-box binding homeobox 1 (Zeb1), a 

well-known transcription factor involved in EMT, in retinal pigment epithelial (RPE) cells, 

which then results in dedifferentiation, cell proliferation and EMT [346].  EMT is a normal 

biological process vital for morphogenesis during embryonic development that goes awry in 

neoplastic cells [347,348].  EMT describes the event of polarized epithelial cells undergoing 
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morphologic changes into non-polarized mesenchymal cells, thus allowing improved abilities 

to migrate, invade, and resist apoptosis [347,349]. 

 
 

EMT versus PMT 

EMT is initiated by changes in expression of certain transcription factors (some 

discussed below), cell surface and cytoskeletal proteins, and enzymes that degrade the ECM 

[347].  EMT can be subdivided into three groups that are separated based on the cellular 

activities at the time of EMT.  Type 1 occurs during implantation, embryogenesis, and organ 

development; Type 2 occurs during tissue regeneration and organ fibrosis; and Type 3, occurs 

during cancer and metastasis [347].  Five common steps to EMT are first, a group of cells to 

undergo EMT; second, intercellular adhesion loss is mediated by cadherins at adherens 

junctions; third, polarity markers are lost; fourth, cytoskeletal reorganization drives 

delamination; and fifth, the basement membrane degrades [350].  EMT plays an important role 

in early development, such as gastrulation and neural crest formation as well as in cardiac and 

musculoskeletal development [178,351,352].  One group showed that induction of EMT in 

immortalized human mammary epithelial cells resulted in the gain of mesenchymal traits as 

well as stem cell marker expression [353].  EMT plays many roles in carcinogenesis, including 

invasion, resistance to cell death and senescence, resistance to chemotherapy and 

immunotherapy, immunosuppression, inflammation, resistance to immune surveillance, and 

confers stem cell properties [178].  Activation of EMT is a critical mechanism for acquisition 

of malignant phenotype by cancer cells and facilitates aggressive dissemination since cells 

acquire stem cell features, invasiveness, and resistance to chemotherapy [347]. 
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The loss of E-cadherin is central to EMT and leads to loss of cell-cell adhesion.  E-

cadherin is down-regulated during carcinoma by epigenetics, including transcriptional 

repression and promoter hypermethylation [354,355,356,357,358,359,360].  Sometimes a 

mutation leads to the absence or expression of a non-functional protein [361].  MicroRNAs 

have also been shown to play a role in E-cadherin regulation.  The miR-200 family was found 

to directly target the mRNA of the E-cadherin transcriptional repressors ZEB1 and ZEB2 (also 

known as Smad-interacting protein 1 SIP1) [362,363].  E-cadherin is then replaced by 

expression of N-cadherin, a mesenchymal cadherin, implying a “cadherin switch” is important 

to initiating EMT.  N-cadherin plays an opposite role of E-cadherin by promoting cell motility 

and migration.  Changes in cadherin expression may modulate tumor cell adhesion and affect 

signal transduction [364].  Loss of E-cadherin contributes to metastases by inducing 

transcriptional and functional changes [365]. 

A number of pathways regulate EMT including TGF-β signaling, Wnt signaling, the 

Notch pathway, and tyrosine kinase receptors [352].  TGF-β signaling is a primary inducer of 

EMT and uses multiple distinct signaling mechanisms, such as direct phosphorylation by 

ligand-activated receptors of Smad transcription factors and by certain cytoplasmic proteins 

regulating cell polarity and tight junction formation [352,366].  EMT can occur through the 

Wnt signaling pathway via inhibition of phosphorylation of β-catenin by glycogen synthase 

kinase-3β (GSK3β).  This decrease in β-catenin phosphorylation prevents degradation in the 

cytoplasm and leads to an increase of β-catenin in the nucleus, thus inducing Wnt target genes 

that are involved in EMT [367].  Notch signaling may trigger EMT via its regulation of stem 

cell function and maintenance of stem cell-like traits [368,369].  RTKs also play a role in EMT.  

Normally, they are involved in embryonic processes (i.e.—Type 1 EMT), but become mutated 

and constitutively active in cancer [352,370,371,372]. 
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Numerous transcription factors are involved in EMT as well.  A few well-studied 

proteins include Snail1, Slug, Twist, Zeb2/SIP1, and FOXC2.  Snail1 is a well-studied zinc-

finger transcription factor that triggers EMT by inducing the loss of epithelial markers, 

changing the cell shape and increasing the expression of mesenchymal markers.  These allow 

epithelial cells to develop migratory and invasive properties during both embryonic 

development and tumor progression [373].  Snail1-induced EMT has been shown to accelerate 

cancer metastasis through enhanced invasion and immunosuppression induction [374].  Snail1 

has also been shown to induce basement membrane degradation and perforation as well as 

initiate angiogenesis in cancer [375].  In addition to cancer cells, Snail1 regulates normal 

mesenchymal cell function [376].  For EMT induction, Snail1 requires binding to its co-

repressor, Ajuba, via 14-3-3 interaction [377].  Slug is associated with breast cancer tumors 

from patients with metastatic disease or disease recurrence [378] and plays a role in semi-

differentiated tubules within ductal carcinomas [379].  Twist expression leads to a loss of cell-

cell adhesion and activates mesenchymal markers and induces cell motility [380].  Twist1 and 

Twist2 may also contribute to early tumor progression by preventing ras-induced senescence 

[381].  Zeb2 is up-regulated after Snail1-induced EMT [382] and is a Smad-interacting, multi-

zinc finger protein that is triggered by TGF-β and acts as a transcriptional repressor of E-

cadherin by binding to the promoter [383].  FOXC2 plays a role in invasion and metastasis and 

also promotes mesenchymal differentiation during EMT [384]; however, cytoplasmic FOXC2 

has been shown to promote epithelial differentiation in injured tubular cells [385].  Twist1, 

Twist2, and Zeb1 have also been shown to regulate EMT, senescence, motility, and invasion 

[386]. 

Hypoxia can also induce EMT via up-regulation of hypoxia inducible factor 1α (HIF1α) 

and hepatocyte growth factor (HGF) up-regulation, DNA hypomethylation induction, and NF-
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κB pathway activation [387].  In fact, a group showed that in hypoxia-induced EMT, different 

chromatin modifiers are induced to control EMT and that histone deacetylase 3 (hdac3) is vital 

for this type of EMT [388].  Alternative splicing of several genes has also been correlated with 

EMT progression and in an established breast cancer cell line, a group found an alternative 

splicing signature [389].  Other transcription factors shown to play a role in EMT, include 

KLF17, which was shown to be a negative regulator of EMT and metastasis in breast cancer 

[390] and secreted clusterin induced by TGF-β that acts as an important extracellular EMT 

promoter [391].  Other new players in EMT include Pez [392], PRL-3 [393,394], Aurora-A 

[395], Podoplanin [396,397], L1 cell adhesion molecule [398], interleukin-related molecule 

[399], interleukin-6 [400,401], and Thymosin β4 [402].   

Similarities between PMT seen in gliomas and EMT can be drawn.  Resistance to 

chemotherapy is commonly seen in EMT and this resistance to chemotherapy is also seen in 

gliomas that were originally defined as proneural and later became more mesenchymal over 

time [24].  Another similarity is the aggressive behavior of the tumor; those with a proneural 

tumor survived longer than those with a mesenchymal tumor, implying the transition to 

mesenchymal increases aggressiveness.  This change in gene expression profiles is similar to 

the change seen in EMT when mesenchymal gene expression increases and epithelial gene 

expression decreases.  Although the two processes are similar, differences exist.  EMT is 

characterized by a loss of E-cadherin expression and a gain of Snail1, Slug, Twist, and/or ZEB2 

[348].  These major EMT players seem not to play a large role in PMT and were not found to 

be significantly associated with mesenchymal gene expression in GBM [24].  Most of EMT is a 

direct result of E-cadherin loss [179,347,348,349].  A similar loss of a single protein has not 

been elucidated in PMT.  EMT and PMT have similarities and while it would be convenient to 

hypothesize PMT is exactly the same as EMT, PMT likely has distinct differences that have yet 
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factors.  Ideally, we would be able to translate this information in the clinic by developing 

treatments targeting these mesenchymal network regulators.  Molecular profiling will be 

essential to personalized medicine by identifying patients who will do better clinically and 

identifying treatments to which they will respond.  If personalized medicine advances greatly, it 

is possible that diagnostic gene marker panels will eventually identify cancer patients earlier 

than when they start to show symptoms. 

Further investigation of the Hippo pathway is likely to lead to great advances in the next 

several years.  This pathway will likely be connected to many more pathways besides BMP, 

TGF-β, and Wnt/β-catenin [32,34,35,108].  Understanding how these pathways are integrated is 

an important question.  Additional proteins that dephosphorylate TAZ/YAP may also be 

identified as well as other downstream targets of TAZ/YAP.  Like YAP, TAZ will likely be 

found to be important in numerous other cancers.  Also, how the upstream regulators of 

MST1/2 regulate its activity and how these upstream regulators relate to one another will 

hopefully be elucidated in the near future.  How cell polarity and cell adhesion proteins regulate 

the Hippo pathway are additional important questions that could be answered in the years to 

come.  It is an exciting time for those studying the Hippo pathway since many aspects of this 

relatively new pathway have yet to be explored and fully understood. 

Ideally, this research would be translated clinically and TAZ could be used as a 

biomarker, but much more research would need to be done in order for that to happen.  To be 

the best biomarker, it must identify the disease throughout its development (i.e.—from early to 

late) and it would have to pass a Food and Drug Administration (FDA) process qualification 

[436].  Convincing biotechnology companies to develop this as a biomarker, it must show 

promise financially and be readily available for physicians in all settings from rural to urban 
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areas to use.  The biomarker would show appeal to clinicians if it was cheap, fast, easy to use, 

accurate, and reimbursed by health insurance.  To use as a screening tool, it would need high 

sensitivity and would have to be followed up with another test that has high specificity to rule 

out the false positives.  To truly translate this research to the bedside, many obstacles exist and 

must be dealt with at each step. 

If TAZ biomarker development is not possible, other tests could be established.  

Examples of potential studies include testing gene signatures or TAZ methylation status.  The 

gene signature could be tested via microarray, but that would be difficult due to cost, variability 

between batch runs and the need for bioinformatics experts to decipher the data for clinicians.  

Microarrays would have to become cheaper to be used clinically.  A biomarker panel could be 

developed to test for the overall gene signature, but that development faces the same problem 

as using TAZ as a biomarker.  This kind of panel could be a cheaper option compared to 

microarray.  Another option would be to test the methylation status of the TAZ promoter, but 

this would require DNA isolation followed by bisulfite conversion and PCR.  These analyses 

have potential, but all would have to be streamlined to make it practical to use clinically. 

Even if a biomarker test is developed, we must know what to do with this data once 

obtained and what it means for treatment.  Without a drug inhibitor of TAZ, it will not help the 

patient by merely just knowing the TAZ levels of the tumor.  Drug inhibitors would have to be 

identified and clinical trials would be needed before this data could be used clinically.  A 

general start to this study would include testing a drug panel and using a CTGF driven 

luciferase assay to test the TAZ activity.  Once potential drugs that silence TAZ activity are 

identified, we would need to test them both in vitro and in vivo.  For the in vivo experiments, 
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we would need to find concentrations of the drugs that are both effective and could realistically 

be used on human subjects without numerous side effects. 

This research is important because it provides a greater understanding of the molecular 

mechanism controlling mesenchymal transition.  It shows that more than one transcription 

factor can regulate this transition and that the tumor cells have more than one pathway to 

transition to a mesenchymal signature.  Realistically, it would be difficult to target all these 

modulators, but maybe it is possible to target more than one at a time.  Another possibility is 

trying to both promote the proneural signature to mask or inhibit the mesenchymal signature as 

well as attempt to silence the mesenchymal phenotype.  If we were to focus on TAZ alone, then 

it could be used as a drug target or methylation of its promoter could be tested.  This research 

changed the field because it shows that TAZ is epigenetically regulated and that the 

mesenchymal shift is also due to TAZ-TEAD interaction.  These data show that many 

transcription factors can regulate the mesenchymal transition in gliomas similar to the many 

transcription factors that affect EMT.  In the end, TAZ-TEAD-related mechanisms represent an 

important part of the mesenchymal phenotype, but additional transcription factors and 

pathways are also likely to play an important role.  The future has much potential to improve 

our understanding of the clinical aggressiveness of gliomas. 
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WT-YAP decreases survival and increases glioma grade in the RCAS/N-tva model. 

 

In addition to TAZ and its role in gliomagenesis, I was also curious about the potential 

role of YAP in glioma formation.  Although I chose to further characterize TAZ, I speculated 

that YAP may also play a role in gliomagenesis since they are comparable, but with some 

differences.  I used the RCAS/N-tva mouse model to test the role of YAP in glioma formation 

and found that the over-expression of WT-YAP + PDGF-β also decreased overall survival 

compared to PDGF-β alone (Fig. 42).  The mice injected with WT-YAP alone did not form 

tumors and survived more than 90 days (Fig. 42).  Over-expression of WT-YAP + PDGF-β 

also led to an overall shift in grade, meaning the predominantly grade in PDGF-β alone was 

grade II (76%) while the predominate grade with the gene combinations was grade IV (69%; 

Fig. 43A).  The grade IV tumors that formed in the WT-YAP + PDGF-β group showed the 

pathognomonic signs of GBM (i.e.—pseudopalisading necrosis and microvascular 

proliferation) while these features were lacking in the majority of the tumors in the PDGF-β 

alone group (Fig. 43B).  Again, no tumors formed in the mice over-expressing WT-YAP alone 

(Fig. 43B). 

The next step for this experiment is to develop mutants that are similar to 4SA and 4SA-

S51A and test these mutants in the RCAS/N-tva mouse model as well.  YAP is phosphorylated 

at S61, S109, S127, S164, and S381 [437]; mutations of these serine residues to alanine would 

create a mutant functionally similar to 4SA.  Adding a mutation at S94 to an alanine would 

prevent TEAD binding [437], thus creating a mutant functionally similar to 4SA-S51A.  It 

would be interesting to see similar results to those seen with TAZ; however, if results are 

different, then that would imply that YAP is involved in gliomagenesis, but through a 

mechanism not involving the interaction with TEAD.    
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Figure 42: Kaplan-Meier of survival analyzing YAP in the RCAS/N-tva mouse model.  

Kaplan-Meier of survival probability of RCAS/N-tva mice injected with PDGF-β or WT-YAP 

 PDGF-β.  
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Figure 43: RCAS/N-tva mouse model studying WT-YAP.  (A) Bar graph shows percentage 

of each grade (no tumor = purple; grade II = red; grade III = blue; grade IV = green) within 

each group (PDGF-β or WT-YAP PDGF-β).  (B) Representative pictures of hematoxylin 

and eosin stained RCAS/N-tva tumors from each group (PDGF-β or WT-YAP PDGF-β) are 

pictured at 40x magnification. 
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TGF-β does not activate TAZ in GSCs. 

 In a paper written by Varelas, et. al., the group found that TAZ controlled Smad 

localization, thus affecting TGF-β induced genes [33].  When TAZ localized to the nucleus, the 

Smad complex was able to bind to TAZ and the promoter regions of TGF-β genes.  When TAZ 

localized to the cytoplasm, the Smad complex was unable to induce TGF-β driven genes.  The 

group also found that the TAZ-Smad interaction regulated human embryonic stem cell (ESC) 

self-renewal.  Based on these findings, I hypothesized that something similar was occurring in 

GSCs.  I first tested this hypothesis by IF of Smad2/3 in GSCs after TGF-β treatment (R&D 

Systems).  In GSC 20 (high TAZ), Smad2/3 localized to the nucleus while this was not seen in 

GSC 23 (low TAZ; Fig. 44).  This suggested that Smad2/3 localization depended on TAZ.  I 

further tested this hypothesis by real-time qPCR of GSC 20 after transient knockdown of 

WWTR1 and looked at two known downstream TGF-β targets, SERPINE1 and SMAD7 [438].  I 

found that there was no significant increase in expression of either gene after the addition of 

TGF-β to the siCtrl sample (Fig. 45).  I also did not see a decrease in expression of either gene 

when WWTR1 was transiently knocked down (Fig. 45).  One would speculate that if these 

targets were TAZ dependent, then expression should decrease after transient WWTR1 

knockdown.  Other real-time qPCR experiments showed inconsistent results when I tested the 

effect of TGF-β on GSCs (data not shown), thus I chose to study the TAZ-TEAD interaction 

instead.  TGF-β may play a role in gliomagenesis via TAZ, but the genes I chose to study did 

not support this hypothesis.  Of course if pursued in the future, TGF-β-TAZ dependent genes 

could be found to support the hypothesis. 
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Figure 44: IF of Smad2/3 in GSCs after TGF-β treatment.  IF of Smad2/3 localization after 

100 pM TGF-β treatment for 3 hrs in GSC 20 (high TAZ) and GSC 23 (low TAZ).  
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Figure 45: Real-time qPCR of transient TAZ knockdown with TGF-β treatment.  Real-

time qPCR of WWTR1, SERPINE1, and SMAD7 expression in GSC 20 after transient 

knockdown of WWTR1 followed by 100 pM TGF-β treatment for 3 hrs.  To compare transcript 

levels, fold change before and after treatment was used.  NS = not significant.  ‘*’ = p-value < 

0.05.  
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In another angle, I also tested transcription factor 3 E2A immunoglobulin enhancer 

binding factors E12/E47 (TCF3) in GSCs after TGF-β treatment.  TCF3 was found to be 

important for maintaining ESC self-renewal [439] and I found that TCF3 levels paralleled TAZ 

in GSCs (Fig. 46A).  I hypothesized that TGF-β-TAZ-TCF3 played a role in regulating GSCs.  

To test this hypothesis, I used real-time qPCR to test TCF3 expression after TGF-β treatment 

and after transient WWTR1 knockdown followed by TGF-β treatment.  I would expect TCF3 

levels to increase after TGF-β treatment and to be low after TGF-β treatment in transient 

WWTR1 knockdown samples if TCF3 expression was dependent on TAZ.  I did not find a 

significant difference in TCF3 expression after the addition of TGF-β or after the transient 

knockdown of WWTR1 with the subsequent treatment with TGF-β (Fig. 46B).  This suggests 

that TCF3 is independent of TAZ.  Based these data, I chose not to further study TCF3 and its 

potential role in maintaining self-renewal in GSCs. 
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Figure 46: Western and real-time qPCR analyses studying TCF3 in GSCs.  (A) Western 

analysis of TCF3 and TAZ in GSC 7-10, GSC 11, GSC 20, and GSC 23.  (B) Real-time qPCR 

of WWTR1 and TCF3 in GSC 11 and GSC 20 after 100 pM TGF-β treatment for 3 hrs.  

WWTR1 was transiently knocked down in GSC 20 and samples were subsequently treated with 

TGF-β.  To compare transcript levels, fold change before and after treatment was used.  All 

results are NS unless noted with an ‘*’ or an ‘**’.  NS = not significant.  ‘*’ = p-value < 0.05 

and ‘**’ = p-value < 0.005.  
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GSCs cultured with CTGF show an increase in growth. 

  

It is well-established that CTGF is a downstream target of TAZ-TEAD [181,297,345].  

Early on, I hypothesized that the mesenchymal transition seen in gliomas was due to TAZ-

TEAD-CTGF.  I wanted to test if CTGF was the primary reason that GSCs shifted to a 

mesenchymal phenotype, thus I tested the effect of adding CTGF (ThermoScientific) to 

cultures of GSCs with low basal expression of TAZ as a way to bypass TAZ-TEAD.  I also 

wanted to test if CTGF could supplement EGF or FGF, growth factors that are important in 

culturing GSCs to maintain the original tumor phenotype [440].  I cultured GSC 11 and GSC 

23 in neural basal media containing various combinations of EGF, FGF, and CTGF.  Cells were 

split and counted prior to addition of the appropriate media.  I found that adding CTGF 

increased the number of neurospheres in both GSC 11 and GSC 23 and could supplement EGF, 

but not FGF (Fig. 47).  It is possible that the results were due to the addition of high, non-

physiological levels of CTGF.  The next step would be to add physiological levels of CTGF; 

however, based on other experiments mentioned earlier, I chose not to pursue this route and 

modified the hypothesis to its current form. 
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Figure 47: Effect on GSCs cultured with CTGF.  GSC 11 and GSC 23 were cultured in 

neural basal media (NBM) with various combinations of EGF, FGF, and CTGF.  EGF and FGF 

concentrations were based on [440] and CTGF was added at 25 μM.  Cells were grown in this 

media for 14 days.  Representative pictures were taken at 5x magnification. 
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TAZ-TEAD may recruit SATB1/2 to repress proneural genes. 

 

As mentioned previously, TAZ-TEAD appears to down-regulate proneural genes.  The 

mechanism of this repression is unknown; however, I hypothesized that special AT-rich 

sequence-binding protein 1 (SATB1) and SATB2 were potential mediators of proneural 

repression.  SATB proteins are PDZ domain containing proteins that control nuclear gene 

expression by recruiting histone deacetylaces directly to the promoter of genes [441,442].  

Since TAZ contains a C-terminal PDZ binding motif, I hypothesized that the TAZ-TEAD 

complex represses proneural genes by recruiting SATB1 and/or SATB2 to target promoters 

(Fig. 48A).  To test this hypothesis, I first wanted to know the basal expression levels of 

SATB1 and SATB2 then I wanted to confirm the interaction of TAZ with SATB1 and/or 

SATB2 via IP-WB.  I found no correlation between SATB1 or SATB2 expression and TAZ 

(Fig. 48B), but one would not necessarily expect different levels of SATB1 or SATB2, just 

different levels of TAZ-TEAD affecting proneural gene expression via recruitment of SATB1 

and/or SATB2.  Next I performed IP-WB to test the interaction of TAZ with SATB1 in GSC 20 

and GSC 11-4SA.  I found that TAZ and SATB1 may interact, but different antibodies need to 

be used for the experiment in the future since the IP-WB was not very clean (Fig. 48C).  This 

hypothesis has potential to be pursued at a later time in order to discover the mechanism 

repressing proneural gene expression in GSCs.  
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Figure 48: Western and IP-WB analyses of SATB1 and SATB2 in GSCs.  (A) Proposed 

model of PN gene down-regulation via TAZ-TEAD.  Blunt head indicates inhibition.  (B) 

Western analysis of TAZ, SATB1 and SATB2 in GSC 7-11, GSC 8-11, GSC 11, GSC 23, GSC 

6-27, and GSC 20.  (C) IP-WB analysis of GSC 20 and GSC 11-4SA.  IP-TAZ or IP-Flag was 

done and western analysis of TAZ and SATB1 was performed. 
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