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Fig.5.7: Results of Evaluation on 60° Phantom (using number of samples = 257 and 

NEX=2, 4 and 8). (a, b, c) vector map generated from deconvolved ODFs (from the 10x10 

voxel region of interest = 100 voxels) corresponding to NEX=2, 4 and 8 respectively; (d, e, 

f) representative ODF (from the crossing region) after deconvolution corresponding to 

NEX=2, 4 and 8 respectively; (g, h, i) angles calculated between the first and second vectors 

for the 100 voxels corresponding to NEX=2, 4 and 8 respectively; (j, k, l) angles calculated 

between the second and third vectors for the 100 voxels corresponding to NEX=2, 4 and 8 

respectively. 
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RESULTS 

   60° Angle1 with number of samples 

=257 2 4 8 

mean 68.542 60.4296 59.4382 

median 68.6146 59.5685 57.5 

standard deviation 16.6358 8.6353 6.8692 

% detected 100% 100% 100% 

    60° Angle2 with number of samples 

=257 NEX=2 NEX=4 NEX=8 

mean 69.4462 66.9702 63.5983 

median 69.5812 62.1695 60 

standard deviation 18.4618 29.2308 15.893 

% detected 68% 90% 74% 

 

Table 5.6: Summary of Results of Evaluation on 60° phantom (using number of 

samples = 257 and NEX=2, 4 and 8). Mean, Median, standard deviation (STD) and 

percentage of voxels detected with two vectors (%detected) are tabulated for the angle 

between the first and second detected vector (angle 1) in (a) and for the angle between the 

second and third detected vector (angle 2) in (b). 

 

5.3.3.2 60° Phantom at 515 sampling directions with increasing levels of SNR 

The 60° phantom was evaluated by keeping the number of sampling directions fixed 

at 515 and varying the SNR varied by increasing the number of averages from 2 to 4 to 8. 

The results of this evaluation are presented in Fig.5.8. The angle statistics are shown in 

Fig.5.8 (g, h, i) for angle 1 and (j, k, l) for angle 2 and tabulated in Table 5.7.  It can be 

appreciated from the vector maps in Fig.5.8 (a, b, c) and from the overall quality of 

representative ODFs in (d, e, f) that as SNR increases (from NEX= 2 to 4 to 8), there is an 

overall qualitative improvement in the crossing fiber detection efficiency although they are 

far from agreement with the ground truth especially for NEX=2 and NEX=4. However at 

NEX=8, there is a significant improvement in the crossing fibers detection with very low 

standard deviation for both angle 1 and angle 2 (mean ± STD = 59.8 ± 2.33 and 60.03 ±2.21 

for angles 1 and 2 respectively).   
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Comparing the results of the two evaluations on the 60° phantom, it might seem that 

the mean values in evaluation with 515 sampling points are farther from ground truth than in 

evaluation with 257 sample points. However, a) overall standard deviations are much lower 

in evaluation with 515 sampling points versus evaluation with 257 sampling points for both 

the angles and across all SNR levels (with the exception at NEX=2 and NEX=4 where 

evaluation with 257 sampling points has slightly lower values) and b) the percent detection 

for both the first and second angle in evaluation with 515 sampling points are much higher 

(close to 100% for both the angles). This implies an overall improvement in the accuracy 

with increasing the number of samples from 257 to 515. Overall, the number of samples = 

515 at NEX=8 performed the best both qualitatively and quantitatively (mean ± STD = 59.8 

± 2.33 and 60.03 ±2.21 for angles 1 and 2 respectively).   
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Fig.5.8: Results of Evaluation on 60° Phantom (using number of samples = 515 and 

NEX=2, 4 and 8). (a, b, c) vector map generated from deconvolved ODFs (from the 10x10 

voxel region of interest = 100 voxels) corresponding to NEX=2, 4 and 8 respectively; (d, e, 

f) representative ODF (from the crossing region) after deconvolution corresponding to 

NEX=2, 4 and 8 respectively; (g, h, i) angles calculated between the first and second vectors 

for the 100 voxels corresponding to NEX=2, 4 and 8 respectively; (j, k, l) angles calculated 

between the second and third vectors for the 100 voxels corresponding to NEX=2, 4 and 8 

respectively. 
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RESULTS 

   60° Angle1 with number of samples 

=515 NEX=2 NEX=4 NEX=8 

mean 39.6243 50.705 59.8009 

median 42.8217 48.5 60 

standard deviation 18.2773 9.8674 2.3363 

% detected 100% 100% 100% 

    60° Angle2 with number of samples 

=515 NEX=2 NEX=4 NEX=8 

mean 73.8221 73.3402 60.035 

median 75.7839 73.4353 60 

standard deviation 18.0351 9.0953 2.2132 

% detected 98% 98% 100% 

 

Table 5.7: Summary of Results of Evaluation on 60° phantom (using number of 

samples = 515 and NEX=2, 4 and 8). Mean, Median, standard deviation (STD) and 

percentage of voxels detected with two vectors (%detected) are tabulated for the angle 

between the first and second detected vector (angle 1) in (a) and for the angle between the 

second and third detected vector (angle 2) in (b). 

 

5.4 Summary of Phantom Studies  

The phantoms developed in this thesis were used to quantitatively evaluate the effect of 

the number of samples and SNR on the angular accuracy of DSI derived ODFs. As the 

number of sampling points increases, there is an overall improvement in the angular 

accuracy in DSI. At NEX=8 and number of samples=515, the crossing angles reach values 

very close to the ground truth for both 45° and 60° phantoms.  Also, given a choice between 

increasing NEX and increasing the number of samples (for a given scan time), increasing the 

number of samples appears to yield more accurate results. It is important to carefully 

investigate the overall vector map to judge the results, as the mean values may be 

misleading. Standard deviations help in identifying potential issues.  Finally, deconvolution 
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5.6.3 Diffusion Anisotropy (DA) Maps 

The Diffusion Anisotropy (DA) maps were generated after deconvolution as 

described in the previous chapter. A representative DA map from a central axial slice (slice 

14 out of 28 slices) is shown in Fig.12. The color code indicates the direction of the 

principal direction vector obtained from the maximum of the ODF (determined by the local 

maximum method). 

Fig.5.12: DA Map of a Normal Human Subject. The color is encoded by the direction of 

the principle direction vector from the maxima of the ODF (determined by the local maxima 

method). The color scheme is represented by the standard RGB sphere in inset (red: left-

right; green: anterior-posterior; blue: superior-inferior. 
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5.6.4 Fiber Tracking 

Fiber tracking was performed using the vector maps derived from ODFs both before 

and after deconvolution for comparison. Fiber tracking was performed based on the 

algorithm described in Chapter 4 (Note [22] recommends a step-size of < ½ the voxel size. 

Hence, a step-size of 0.4 was used given our voxel size of 4 mm (step-size of <2 mm was 

recommended). Also, a typically threshold value of Øc<0.5 radian (i.e. 30 )was used. A DA 

threshold (DAthesh) value of 0.25 was chosen based on the range of DA values in the gray 

matter of our data-sets. 

Fig.5.13 presents the results of fiber tracking from seed points placed in the corpus 

callosum region highlighted in (a). The tracts before and after deconvolution are shown in 

(b) and (c), respectively. The seeds were then extended to the entire corpus callosum region 

(identified manually on the sagittal slices) and the results are shown in Fig.5.14. Fiber tracts 

before deconvolution are shown in (Fig.5.14 a) and fiber tracts after deconvolution are 

shown in (Fig.5.14b). Overall, with deconvolution, the tracts appear to be better defined and 

more coherent. 

Fiber tracking results from the centrum semiovale region which is known to consist 

of three-way fiber crossing crossings from corona radiata (blue), corpus callosum (red) and 

superior longitudinal fasciculus (green) are presented in Fig.5.15 and Fig.5.16. Fig.5.15 

shows this region (which is identified from the published literature [15] and highlighted on 

the DA intensity map in the coronal plane (Fig.5.15 a). The resultant tracts (after 

deconvolution) are shown overlaid in (Fig.5.15 b). The tracts before and after deconvolution 

are shown in (Fig.5.16 a and b, respectively) for comparison. The tracts after deconvolution 

appear cleaner and depict the known three-way anatomical connectivity between three-way 
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fiber crossing connectivity. Such connectivity was not clearly depicted and missed by using 

the vector set of ODFs without deconvolution. 

 

 

Fig.5.13: Fiber Tracking Results from CC Region. (a) Placement of seed points; (b) Fiber 

tracts before deconvolution; (c) Fiber tracts after deconvolution. 
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Fig.5.14: Fiber Tracking Results from a Seed Points placed in the entire CC. (a) Tracts 

before deconvolution; (b) tracts after deconvolution.  

 

 

Fig.5.15: Fiber Tracking Results from Centrum Semiovale region. (a) The region where 

the seeds are placed is highlighted (in red) on the DA intensity map; (b) The resultant tracts 

after deconvolution. (zoomed version of this tract is shown in Fig.16 b). 
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Fig.5.16: Fiber Tracking Results from Centrum Semiovale Region (zoom). (a) Fiber 

tracts before deconvolution; (b) tracts after deconvolution. Without deconvolution, the three 

crossing fibers were not getting detected. Also, there is a qualitative improvement in the 

tracts after deconvolution in terms of the tracts being better defined and more coherent. 
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5.7 Summary of Human Studies   

The purpose of the human studies was not quantitative evaluation, but to qualitatively 

evaluate the performance of the deconvolution. Overall, with deconvolution, the tracts 

appear to be better defined and coherent, as shown from the fiber tracking results from seed 

points placed in corpus callosum. Also, the deconvolution improved the detection of the 

three crossing fibers from the centrum semiovale region. 

 

5.8 SUMMARY 

This chapter presented the validation of the DSI analysis described earlier using the 

phantoms that were developed as a part of this thesis work. Specifically, quantitative 

evaluation of angular accuracy of the DSI derived ODF using these phantoms was 

presented. The consequence of DSI acquisition parameters on the angular resolution in 

phantoms was quantified. The improvement in these regions by applying deconvolution was 

demonstrated. In addition, the applicability of the developed methodologies on normal 

human subjects was presented qualitatively. Known regions of human brain consisting of 

single fibers and crossing fibers were highlighted. Deconvolution seems to improve the fiber 

delineation and detection from these regions.  
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CHAPTER 6 – Conclusions and Future Directions 

 

 

In this dissertation, I have designed and constructed novel diffusion phantoms, 

including three fiber crossings, and employed post-processing techniques in order to 

systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a 

clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and 

analysis. 

Two phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° 

and 45° respectively, along with a phantom with three crossing fibers at 60° were 

constructed. Phantom construction involved novel hollow plastic capillaries designed to 

obtain a higher packing density than the previously reported hollow capillary phantoms. 

Also, a novel placeholder was designed for keeping the capillaries in a preset orientation 

forming a number of interleaved parallel layers resulting in fibers crossing at the desired 

angle. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous 

signal and absence of air bubbles. 

 A technique to de-convolve the response function of an individual peak from the overall 

ODF was also implemented. The technique involves representing the DSI derived ODF with 

its spherical harmonic coefficients and performing the deconvolution using the properties of 

Funk-Hecke theorem. The deconvolution methodology greatly improved the angular 

resolution of the otherwise un-resolvable peaks in the ODF.  The effect of DSI acquisition 
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parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner was 

studied and quantified using the phantoms.  

With a high angular direction sampling and reasonable levels of SNR, quantification of a 

crossing region with 10x10 pixels in the 90°, 45° and 60° phantoms resulted in a successful 

detection of angular information with mean ± SD of 86.93 ± 2.65, 44.61 ± 1.6° and 60.03 

±2.21° respectively, while simultaneously sharpening the ODFs in regions containing single 

fibers.  As the number of sampling points and SNR increases, there is an overall 

improvement in the angular accuracy in DSI. Also, given a choice between increasing NEX 

and increasing the number of samples (for a given scan time), increasing the number of 

samples appears to yield more accurate results. Deconvolution in general is beneficial for 

DSI as a post-processing step; however, deconvolution should be used with caution if the 

angular resolution or SNR of the data is low. Similar evaluations can be performed with 

these phantoms to test the effect of other acquisition parameters (for example effect of b-

value and effect of slice thickness). 

The proposed deconvolution methodology significantly improved the angular accuracy 

of the crossing fiber ODFs obtained from DSI.  This deconvolution methodology is directly 

applicable to ODFs obtained from any other ODF based high angular resolution diffusion 

imaging techniques. Given a reasonable angular direction sampling and reasonable levels of 

SNR, inclusion of deconvolution in the post-processing ensures enhanced angular resolution 

i.e. sharper peaks of the ODF. In this thesis, the fiber tracking was performed using a 

deterministic algorithm. However, the probabilistic tracking is likely to benefit more with 

the improved angular resolution in the ODFs obtained using the deconvolution technique, 
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since probabilistic tracking is likely to benefit from lesser and correct fiber orientations to 

choose from at each step. 

Finally, the applicability of these methodologies on normal human subjects was 

demonstrated. The improvement in delineating known crossing fiber regions by applying 

deconvolution, followed by fiber tracking results were studied qualitatively.  

An in-house software package in MATLAB which streamlines the data reconstruction 

and analysis for DSI with easy to use graphical user interface was also developed. This 

software package can be easily extended in functionality since it is highly modular in design.  

 The phantoms developed in this dissertation offer a means of providing ground truth for 

validation of various diffusion models (particularly the ones that aims to resolve the crossing 

fibers), evaluation of different acquisition or reconstruction schemes and validation of 

tractography algorithms. For example, the acquisition time can be reduced by truncating the 

number of samples and filling the q-space using the mathematical relationship and 

exploiting the q-space symmetry. The minimum number of sampling points can be validated 

using the phantoms. Also, an interesting study would be to compare DSI with q-ball, using 

the phantoms developed, to quantitatively evaluate the performance of these comparable q-

space sampling schemes simultaneously on the clinical scanner.  Another future direction 

would be to evaluate the tractography systematically in humans, compare rigorously the 

fiber tracts obtained with DTI and HARDI techniques and determine the fiber compromise 

in diseases such as Multiple Sclerosis (MS). 
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Overall, this dissertation sheds further light on the viability of using DSI in a clinical 

setting using ground truth phantoms. The main contributions of this thesis were:  

- Validation of the angular resolution of DSI against the known ground truth diffusion 

phantom on a clinical 3T scanner. 

- Design and construction of novel diffusion phantoms including a three fiber crossing 

phantom. 

- Implementation of a de-convolution based technique for post-processing DSI data. 

- Development of software tools for automated DSI post-processing, image 

reconstruction and analysis.  
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