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Figure 21: Platelet transfusion increases tumor cell proliferation that is partially 
blocked by aspirin. 
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 In order to query whether platelet transfusion would impact tumor cell 

apoptosis, ex vivo tumor from treated animals was immunostained for activated 

caspase-3 that was scored based on the number of positive cells per 200x field. 

Tumor from control animals demonstrated a mean of 28.1 +/- 3.43 positive cells 

per 200x field. Tumor from aspirin-treated animals had a nearly identical mean of 

28.9 +/- 2.32 positive cells per 200x field. In sharp contrast, tumor from platelet-

transfused animals had a statistically significantly lower rate of positive 

(apoptotic) cells at 17.6 +/- 2.10 positive cells per 200x field (p < 0.05). 

Interestingly, the tumor from the mice given transfusions with aspirinized platelets 

had a rate of positivity (22.5 +/- 1.62 positive per 200x field) greater than that of 

the platelet-transfusion mice and lower than that of the control and aspirin-treated 

mice (p = 0.113 compared to control and p = 0.098 compared to platelet-

transfused mice). However, the data again suggest that aspirin was only able to 

partially block the effects of platelet transfusion on this orthotopic model of 

ovarian cancer. 
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Figure 22: Platelet transfusion results in decreased tumor cell apoptosis. 
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Acceleration of tumor growth after withdrawal of anti-angiogenic agents 

 As discussed in the introduction, response to anti-angiogenic therapy has 

been modest in the clinical setting, and recent pre-clinical models have even 

suggested a rebound in tumor growth following the withdrawal of certain anti-

angiogenic agents. 

In consideration of this concern, and given the probability that micro-

environmental factors may play a central role in these phenomena, we initially 

sought to establish a pre-clinical model in which we could study the effects of 

anti-angiogenic therapy on tumor. In order to query the phenomenon of 

resistance to anti-angiogenic therapy and rebound tumor growth that has recently 

been described in the literature, we sought to establish a working in vivo model. 

Ultimately, the goal was to develop working in vivo models of both antibody-

based treatment resistance (e.g. bevacizumab) and small molecule inhibitor-

based treatment resistance (e.g. pazopanib). For our first experiment, we started 

with pazopanib because it is a well-tolerated and studied drug in pre-clinical 

models and is of current interest in early-phase ovarian cancer trials. We 

inoculated nude mice with SKOV3-IP1 on Day 0. In the first group of mice, the 

animals were treated with pazopanib for 7 days prior to Day 0 inoculation with 

tumor. Two other groups were given drug vehicle as controls from Day 7-14 and 

starting on day 7 for the duration of the experiment. A fourth group was given 

pazopanib daily from Day 7-14. The fifth group was given pazopanib daily 

starting on day 7 for the duration of the experiment. Animals were sacrificed 

when a significant number appeared to be suffering morbidity related to tumor 
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burden. Data were taken with respect to aggregate tumor weight and the number 

of identified tumor nodules. (See Figure 23.) 

 Mice were sacrificed primarily related to morbidity seen in the mice treated 

with pazopanib for only seven days. There were no statistical differences seen 

between mean aggregate tumor weight or number of tumor nodules for the mice 

pre-treated with pazopanib (0.30 +/- 0.053 g/mouse; 10 +/- 2.22 nodules/mouse), 

the mice treated with vehicle for 7 days (0.35 +/- 0.06 g/mouse; 12.9 +/- 3.34 

nodules/mouse), and the mice treated with vehicle continuously starting at Day 7 

(0.32 +/- 0.06 g/mouse; 12.2 +/- 2.75 nodules/mouse). Choosing a representative 

vehicle control for comparison, treatment with continuous pazopanib resulted in a 

decreased mean aggregate tumor weight (0.11 +/- 0.01 g/mouse versus 0.35 +/- 

0.06 g/mouse, p < 0.05) and decreased number of tumor nodules that 

approached statistical significance (6 +/- 0.97 nodules/mouse versus 12.9 +/- 

3.34 nodules/mouse, p = 0.06). In sharp contrast, treatment of the mice with 

pazopanib from days 7-14 resulted in increased aggregate tumor weight 

compared to control that approached statistical significance (0.54 +/- 0.05 

g/mouse versus 0.35 +/- 0.06 g/mouse, p = 0.08) and an increased average 

number of tumor nodules that was non-significant but of interest (17.0 +/- 1.87 

versus 12.9 +/- 3.34 nodules/mouse, p = 0.29). The differences in mean tumor 

weight and mean number of nodules between animals treated continuously with 

pazopanib and for 7 days with pazopanib were both statistically significant, p < 

0.05. 
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Figure 23: Short-term anti-angiogenic therapy results in acceleration of tumor 
growth. 
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Acceleration of tumor growth after withdrawal of anti-angiogenic agents is 

abrogated by FAK blockade. 

 Based on the preliminary finding that short-term treatment with pazopanib 

in our orthotopic model of ovarian cancer resulted in an increase in the aggregate 

tumor mass and number of tumor nodules per mouse compared to control and to 

continuously treated animals, based on the knowledge that FAK-inhibition is 

effective in platelets, based on demonstrated platelet infiltration into tumor, and 

based on literature suggesting that the absence of focal adhesion kinase 

signaling in platelets leads to impaired migration, we formed a two-fold 

hypothesis: (1) short term anti-angiogenic therapy leads to local hypoxia and 

increased local activation of platelets through ADP-driven mechanisms, and (2) 

that impairment of FAK-mediated signaling would lead to impaired platelet 

infiltration into tumor, correlating with a blockade of the observed “rebound” 

effect. 

 Based on this hypothesis, a series of in vivo studies were designed 

utilizing the orthotopic model of ovarian cancer in nude mice. In the first 

experiment, nude mice were inoculated with SKOV3-IP1 on Day 0 and treatment 

was initiated on Day 7. Control mice were untreated. In groups 2-4, pazopanib 

was initiated and given daily. In groups 5-7, bevacizumab was administered on a 

twice-weekly schedule. In groups 2 and 5, treatment was discontinued after 1 

week. In groups 3 and 6, treatment was continued for the duration of the 

experiment. In groups 4 and 7, treatment of the anti-angiogenic medication was 

discontinued after 1 week, and the FAK-inhibitor was administered on a daily 
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basis thereafter. The experiment was ended and animals sacrificed when a 

significant degree of cancer-related morbidity was observed. (See Figure 24.) 

 In the second experiment, the design detailed above was replicated using 

the cell line HeyA8. (See Figure 25.) 

 In the third experiment, nude mice were inoculated with SKOV3-IP1 and 

tumor was allowed to develop until palpable. One group was an untreated 

control, one group was given twice-weekly bevacizumab, one group was given 

daily pazopanib, and one group was given FAK-inhibitor. After one week of 

therapy, animals were sacrificed and tumor was harvested for analysis. Blood 

was also taken at that time for CBC. Tumor was analyzed by 

immunofluorescence to determine whether the platelet infiltration was altered 

either by the use of anti-angiogenic agents or the use of the FAK-inhibitor. (See 

Figure 26.) 

 In this first experiment, mice were inoculated with SKOV3-IP1 prior to the 

initiation of therapy, and therapy was as described above. The experiment was 

stopped because of the condition of the mice treated with only 7 days of 

pazopanib. Compared to the untreated control mice, animals treated with 

continuous pazopanib were noted to have a significant decrease in the aggregate 

mean tumor weight (0.95 +/- 0.22 g/mouse versus 0.26 +/- 0.06 g/mouse, p < 

0.05) and a trend toward a significantly decreased number of tumor nodules 

(15.33 +/- 2.8 nodules/mouse versus 8.7 +/- 1.58 nodules/mouse, p = 0.152). By 

contrast, mice treated with only 7 days of pazopanib had increased aggregate 

mean tumor weight (0.95 +/- 0.22 g/mouse versus 1.39 +/- 0.27 g/mouse, p = 
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0.22) and number of nodules (15.33 +/- 2.8 nodules/mouse versus 29.11 +/- 6.36 

nodules/mouse, p = 0.065) that trend toward statistical significance. Mice treated 

with short-term pazopanib followed by the FAK-inhibitor also had significantly 

decreased tumor weight compared to control (0.95 +/- 0.22 g/mouse versus 0.26 

+/- 0.05 g/mouse, p < 0.05) and decreased number of nodules compared to 

control (15.33 +/- 2.8 nodules/mouse versus 4.87 +/- 0.50 nodules/mouse, p = 

0.065). 

In a similar fashion, compared to untreated control animals, mice treated 

with only 7 days of bevacizumab experienced non-significant increases in mean 

aggregate tumor weight and number of nodules. In contrast, mice treated with 

continuous bevacizumab were noted to have decreased aggregate mean tumor 

weight compared to control (0.95 +/- 0.22 g/mouse versus 0.29 +/- 0.06 g/mouse, 

p < 0.05). Similarly, animals treated with 7 days of bevacizumab followed by the 

FAK-inhibitor were noted to have decreased aggregate mean tumor weight 

compared to control (0.95 +/- 0.22 g/mouse versus 0.14 +/- 0.06 g/mouse, p < 

0.05). 
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Figure 24: Short-term anti-angiogenic therapy accelerates tumor growth, and the 
effect is blocked by the FAK-inhibitor. 
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In the second experiment, mice were inoculated with HeyA8 prior to the 

initiation of therapy, and therapy was as described above. The experiment was 

stopped because of the condition of the mice treated with only 7 days of 

pazopanib. Compared to the untreated control mice, animals treated with 

continuous pazopanib were noted to have a significant decrease in the aggregate 

mean tumor weight (0.55 +/- 0.16 g/mouse versus 0.19 +/- 0.03 g/mouse, p < 

0.05). By contrast, mice treated with only 7 days of pazopanib had increased 

aggregate mean tumor weight (0.55 +/- 0.16 g/mouse versus 1.51 +/- 0.35 

g/mouse, p < 0.05). Mice treated with short-term pazopanib followed by the FAK-

inhibitor also had decreased tumor weight compared to control (0.55 +/- 0.16 

g/mouse versus 0.29 +/- 0.14 g/mouse, p = 0.24) that trended toward 

significance and was not statistically distinct from mice treated with continuous 

pazopanib (p = 0.50). 

In a similar fashion, compared to untreated control animals, mice treated 

with only 7 days of bevacizumab experienced increases in mean aggregate 

tumor weight that trended toward significance (0.55 +/- 0.16 g/mouse versus 1.05 

+/- 0.33 g/mouse, p = 0.182). In contrast, mice treated with continuous 

bevacizumab were noted to have decreased aggregate mean tumor weight 

compared to control (0.55 +/- 0.16 g/mouse versus 0.31 +/- 0.08 g/mouse, p = 

0.21). Similarly, animals treated with 7 days of bevacizumab followed by the 

FAK-inhibitor were noted to have decreased aggregate mean tumor weight 

compared to control (0.55 +/- 0.16 g/mouse versus 0.18 +/- 0.05 g/mouse, p = 

0.060). 
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Figure 25: Short-term anti-angiogenic therapy accelerates tumor growth, and the 
effect is blocked by the FAK-inhibitor. 
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 In animals inoculated with SKOV3-IP1, after tumor was palpable, animals 

were treated for one week with nothing, bevacizumab, pazopanib, or the 

available FAK-inhibitor. At the end of the week, animals were sacrificed. Blood 

was taken for CBC. All groups had similar platelet levels except for the animals 

treated with bevacizumab. In this case, compared to control, bevacizumab-

treated animals had an elevated platelet level compared to control that 

approached statistical significance (1399 +/- 18 cells/mcL versus 1746 +/- 91 

cells/mcL, p = 0.07). Tumor was harvested and flash frozen after 

paraformaldehyde intra-vital fixation. Double-immune fluorescence staining of 

tumor sections were significant for both intravascular and intra-tumor platelet 

accumulation that was scored according to the number of discrete aggregates 

per 200x field. Compared to the control mice, those treated with bevacizumab 

had an increased number of platelet aggregates that reached statistical 

significance (3.88 +/- 0.17 aggregates/200x versus 14 +/- 0.55 aggregates/200x, 

p < 0.05). Compared to the control mice, those treated with pazopanib had an 

increased number of platelet aggregates that approached statistical significance 

(3.88 +/- 0.17 aggregates/200x versus 5.83 +/- 0.17 aggregates/200x, p = 0.06). 

In contrast, animals treated with FAK-inhibitor had a decreased number of 

platelet aggregates that did not reach statistical significance (3.88 +/- 0.17 

aggregates/200x versus 2.93 +/- 0.19 aggregates/200x, p = 0.45). 
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Figure 26: Short-term anti-angiogenic therapy causes increased platelet invasion 
into tumor that is blocked by the FAK-inhibitor. 
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Discussion 

 Over the past 30 years, significant time, effort, and money have been 

spent in an on-going fight to decrease mortality related to cancer. Aside from 

some notable victories, e.g. imatinib therapy for chronic myelogenous leukemia, 

progress has been incremental, and progress has been significantly less than 

that seen in other chronic diseases of aging. Of late, there has been significant 

focus placed on determining a more detailed understanding of the detailed 

molecular biology of cancer. This point of view may be reductionist, and it is at 

significant risk of failing to recognize both the dizzying heterogeneity of a cancer, 

but is also the myriad interactions of those heterogeneous tumor cells with 

otherwise normally functioning cells and systems of the human body. This work 

is not a rejection of pathway-level thinking, however the logic of the current work 

operates at the level of cellular systems and considers net effect at the level of 

population and ecology; we specifically consider the contribution of platelets to 

selection and promotion of clonal populations via mitogenicity and the 

augmentation of angiogenesis. 

 

 One of the primary reasons that cancer has proven difficult to treat, 

including in the case of ovarian cancer, is that we continue to lack adequate 

biomarkers to provide early identification of more readily treated disease. In the 

present work, we provide evidence to support the notion that platelet levels may 

be considered as part of a screening algorithm for early identification of 

malignancy. We correlate elevated platelet levels at the diagnosis of malignancy 
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with decreased interval to progression and decreased overall survival. We 

provide evidence that normalization of platelet levels reflects relative success of 

therapy, and we provide evidence that elevation of platelet levels during the post-

therapy monitoring period may be useful as part of a monitoring program. Historic 

evidence would suggest that ovarian cancer patients who have normalized CA-

125 and negative imaging at the conclusion of induction therapy continue to have 

up to a 50% rate of persistent disease. And, in the case of ovarian cancer, recent 

prospective data has raised concern that CA-125 monitoring after the conclusion 

of therapy may not improve cancer-related outcomes. Given, in the case of 

ovarian cancer, that CA-125 has proven to be of at best controversial utility in 

monitoring disease, and given that the present data is weakened by its 

retrospective collection, we would advocate for the inclusion of CBC’s as part of 

a prospective monitoring program both during and after therapy in order to better 

identify patients with persistence of disease at the conclusion of therapy, but also 

in the hope of obtaining early identification of patients who may have a 

recurrence amenable to definitive therapy. 

 

 In the present work, we go beyond established literature on the effects of 

platelets on endothelial cells, and we show in multiple cell lines that platelets 

confer apoptosis resistance, increase rates of proliferation, and encourage the 

migration of tumor cells. Understanding that platelets are known to sequester and 

release multiple mitogens and regulators of angiogenesis, we were able to show 

via siRNA transfection and protein knock-down that at least a portion of the 
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observed effects on apoptosis were due to signaling through TGFBR1 and at 

least a portion of the proliferative effects were mediated through PDGFRA 

signaling. It is recognized that platelet activation results in the release of multiple 

mediators, and therefore we approached the question of therapy not from the 

perspective of attempting to block one or another pathway, but from the 

perspective of blocking platelet activation and release of the mediators in 

question.  

  

 A simplified schematic is offered in Figure 27. Briefly, the simplified model 

reflects a biology in which tumor is subjected to routine platelet trafficking as a 

result of characteristically haphazard and leaky vasculature. Platelets in the 

tumor are activated by various stimuli within the tumor, and this activation results 

in the release of mitogenic cytokines, including PDGFA and TGFB1, that lead to 

tumor proliferation, apoptosis resistance, and increased migration. We propose 

this process of co-opting the normal, wound-healing functions of platelets to be a 

routine part of tumor biology that contributes to the ability of tumor cells to survive 

in an adverse environment, to propagate in the body, and to metastasize.  
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Figure 27: A simplified model of co-opted platelet function contributing to tumor 
cell proliferation, survival, and metastatic potential. 
 
 

Recognizing that platelet activity is dependent on activation, we first 

demonstrated that platelet-mediated mitogenic functions, i.e. apoptosis 

resistance and proliferation, could be blocked simply by platelet fixation with 

paraformaldehyde. We were subsequently able to demonstrate that proliferative 

functions were able to be (at least partially) be blocked by co-culture in the 

context of aspirin and an inhibitor of FAK.  

 

 As part of the consideration of how platelets would interact with tumor as 

regulators of angiogenesis, we began or investigation in vitro with the use of an 
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induced hypoxic environment. We were able to demonstrate that hypoxia 

resulted in a 6-fold increase in ADP in the environment around tumor cells. It is 

important in consideration of this fact to recall that ADP is a powerful activator of 

platelets, and concentrations of ADP three orders of magnitude less than that 

seen in our experiments have been shown to activate platelets that have been 

treated with high doses of aspirin. Also, our work showed that platelets facilitate 

growth of tumor cells in the hypoxic environment in a manner visually identical to 

that seen in the normoxic environment, suggesting that platelet activity (that 

would be increased by ADP activation in a hypoxic micro-environment) may 

rescue cell populations from the stress imposed by hypoxia. It is important to 

recall that tumors have characteristically leaky vasculature, and our work 

demonstrated platelet transit into the bulk of tumor. 

 

 In order to test these hypotheses in a more typical biologic environment, 

we used orthotopic models of ovarian cancer in mice that are well known to our 

lab. In our first experiment, we showed that depletion of platelets using an anti-

platelet antibody had anti-tumor effects by itself, and depletion of platelets 

increased the efficacy of cytotoxic chemotherapy. In the next experiment, we 

showed that platelet transfusion had the opposite effect, increasing tumor growth 

and decreasing the efficacy of cytotoxic chemotherapy. After that, we attempted 

to block the effects of platelet transfusion with aspirin. Two interesting 

observations emerged. The first was that aspirin by itself seemed to have 

minimal effect in this model; in fact, pre-treatment of transfused platelets with 
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aspirin only partially blocked their effect on the tumor. Within this context, it is 

important to recall that an adequate amount of ADP will activate platelets despite 

aspirin therapy, and so many of these platelets may well have been activated in 

the tumor despite aspirin therapy. The second observation was that platelet 

transfusion was associated with increased proliferation of tumor cells, decreased 

apoptosis of tumor cells, and an increased frequency of lumina identified in 

vessels suggesting vascular stabilization, normalization, and maturation. Again, 

these effects were incompletely blocked by aspirin pre-treatment of transfused 

platelets. 

 

 These observations, coupled with the sheer magnitude of angiogenic 

mediators housed by platelets, to consider whether platelets may be at least 

partially responsible for the poor performance of angiogenic drugs in clinical trials 

and for emerging evidence of resistance to anti-angiogenic agents that has been 

described in recent literature. In order to consider this possibility, we first 

established a model system in vivo using short versus continuous treatment with 

anti-angiogenic agents. This model consistently demonstrated an acceleration of 

growth after short-term treatment with anti-angiogenic drugs, however variances 

and inadequate mouse numbers to meet strict statistical significance in many 

cases limited the model. Despite this limitation, we were able to in two cell lines 

and using two anti-angiogenic agents demonstrate that the acceleration in tumor 

growth seen after short-term anti-angiogenic therapy could be blocked by the use 

of the FAK-inhibitor. Recalling that platelets deficient in FAK signaling have 
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diminished capacity to spread and activate, and recalling our in vitro findings with 

respect to the FAK-inhibitor blocking platelet-mediated proliferation, we sought to 

establish that the effects of the FAK-inhibitor on the observed tumor growth were 

at least partially attributable to platelet-specific effects. We were able to offer 

preliminary evidence that that platelet infiltration into tumor is significantly 

increased given seven days of hypoxia-inducing anti-angiogenic therapy, 

supporting the hypothesis that local platelet activation is increased. 

 

 In view of these findings, we propose the following model to account for 

the effects of hypoxia, both biological resulting from tumor growth and iatrogenic 

from the use of anti-angiogenic therapy, in Figure 28. 
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Figure 28. The effect of tumor hypoxia on platelet trafficking and activation. 

 

 In this model, we propose that hypoxia results in an increase in local ADP 

in the tumor microenvironment that increases the capacity of the tumor to 

activate platelets. At the same time, increased vascular irregularity permits 

increased incidental trafficking of platelets. In fact, our preliminary data suggests 

that platelet levels may systemically increase as a result of tumor hypoxia, a 

result supported by data that tumor IL-6, which is known to drive malignant 

thrombocytosis, is produced in response to hypoxia. Platelet activation results in 

improved tumor angiogenesis and neovascularization, along with the increased 

proliferation, decreased apoptosis, and increased migratory behavior of tumor 
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cells already considered. This entire process can be slowed, or even stopped, 

with the use of agents such as aspirin and FAK-inhibitors that block activation. It 

is noted that FAK-inhibitors have the added benefit of slowing platelet migration 

in response to fibrinogen. 

 

 Better understanding of the full spectra of factors, especially those normal 

and co-opted, regulating angiogenesis and mitogenic behavior will necessarily 

lead not only to more effective treatment of angiogenesis specifically, but it may 

also lead to a better understanding of the most optimal dosing of various, more 

common, chemotherapeutic regimens. And increased understanding of the 

behavior of platelets as a mediator of angiogenesis should cause a 

reconsideration of the degree of thrombocytopenia that constitutes a toxicity of 

chemotherapy and what degree of thrombocytopenia might be seen as a 

desirable treatment effect. Similarly, it is appropriate to consider the broad 

ramifications of treatment effects of more traditional agents, not just on tumor 

cells specifically, but on other cells in the micro-environment. In the same way 

that taxanes have been show to impact platelet function beyond direct tumor 

effect, we have shown that inhibition of FAK impacts platelet function and the 

interaction of platelets with tumor above and beyond well-known direct tumor 

effect. Future attempts to understand and treat cancer may demand a greater 

emphasis on a systemic, ecological understanding of cancer and its context 

within the body. In this work, we consider the effects of platelets directly on tumor 

and within the context of angiogenic regulation necessary for tumor growth. We 
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demonstrate previously unknown mitogenic effects of platelets on tumor cells, we 

show that platelets and tumor cells interact, and we show that platelet-driven 

modulation of angiogenesis contributes to therapeutic resistance. 

 

 The current data argue strongly for consideration of the routine use of 

combination therapy when an anti-angiogenic agent is considered. Specifically, 

when considering anti-angiogenic therapy, one should consider adding agents 

that have anti-activation effects on platelets. Many of these drugs are already 

available on the market, such as aspirin, clopidogrel, and lovenox. FAK-

inhibitors, with the added benefit of limiting platelet migration, are entering clinical 

trials both as single agents and as combination therapy with anti-angiogenic 

agents. These data offer an additional biological rationale for this combination. 
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