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ABSTRACT
BAYESIAN ADAPTIVE DESIGNS FOR EARLY PHASE CLINICAL TRIALS
Publication No.
Chunyan Cai, B.S.

Supervisory Professor: Ying Yuan, Ph.D.

My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase 11
clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional
dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screen-
ing designs to provide more efficient and ethical clinical trials, and (3) incorporating

missing late-onset responses to make an early stopping decision.

Treating patients with novel biological agents is becoming a leading trend in oncology.
Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with
dose, biological agents may exhibit non-monotonic patterns in their dose-response
relationships. Using a trial with two biological agents as an example, we propose a
phase I/II trial design to identify the biologically optimal dose combination (BODC),
which is defined as the dose combination of the two agents with the highest efficacy
and tolerable toxicity. A change-point model is used to reflect the fact that the
dose-toxicity surface of the combinational agents may plateau at higher dose levels,
and a flexible logistic model is proposed to accommodate the possible non-monotonic
pattern for the dose-efficacy relationship. During the trial, we continuously update

the posterior estimates of toxicity and efficacy and assign patients to the most appro-
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priate dose combination. We propose a novel dose-finding algorithm to encourage
sufficient exploration of untried dose combinations in the two-dimensional space.
Extensive simulation studies show that the proposed design has desirable operating
characteristics in identifying the BODC under various patterns of dose-toxicity and

dose-efficacy relationships.

Trials of combination therapies for the treatment of cancer are playing an increas-
ingly important role in the battle against this disease. To more efficiently handle
the large number of combination therapies that must be tested, we propose a novel
Bayesian phase II adaptive screening design to simultaneously select among possible
treatment combinations involving multiple agents. Our design is based on formulat-
ing the selection procedure as a Bayesian hypothesis testing problem in which the
superiority of each treatment combination is equated to a single hypothesis. Dur-
ing the trial conduct, we use the current values of the posterior probabilities of all
hypotheses to adaptively allocate patients to treatment combinations. Simulation
studies show that the proposed design substantially outperforms the conventional
multi-arm balanced factorial trial design. The proposed design yields a significantly
higher probability for selecting the best treatment while at the same time allocating
substantially more patients to efficacious treatments. The proposed design is most
appropriate for the trials combining multiple agents and screening out the efficacious
combination to be further investigated. The proposed Bayesian adaptive phase II
screening design substantially outperformed the conventional complete factorial de-
sign. Our design allocates more patients to better treatments while at the same time

providing higher power to identify the best treatment at the end of the trial.
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Phase II trial studies usually are single-arm trials which are conducted to test the
efficacy of experimental agents and decide whether agents are promising to be sent to
phase III trials. Interim monitoring is employed to stop the trial early for futility to
avoid assigning unacceptable number of patients to inferior treatments. We propose
a Bayesian single-arm phase II design with continuous monitoring for estimating the
response rate of the experimental drug. To address the issue of late-onset responses,
we use a piece-wise exponential model to estimate the hazard function of time to
response data and handle the missing responses using the multiple imputation ap-
proach. We evaluate the operating characteristics of the proposed method through
extensive simulation studies. We show that the proposed method reduces the total
length of the trial duration and yields desirable operating characteristics for different

physician-specified lower bounds of response rate with different true response rates.
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CHAPTER 1

Introduction

1.1 Dose-finding Design for Oncology Clinical Trials of Combinational

Biological Agents

The paradigm of oncology drug development is expanding from traditional
cytotoxic agents to biological agents [5, 17, 32]. Examples of biological agents include
biospecimens targeting a specific tumor pathway, gene products aiming for DNA
repair, and immunotherapies stimulating the immune system to attack a tumor.
These novel agents differ from traditional cytotoxic agents in a variety of ways.
For cytotoxic agents, toxicity and efficacy are typically assumed to monotonically
increase with dose level. However, for biological agents, toxicity may increase at low
dose levels and then approximately plateau at higher dose levels. For instance, when
the toxicity of a biological agent is related to the inhibition of a biological pathway,
the toxicity of the agent increases initially with dose since a high dose results in a
high degree of inhibition; once the inhibition is saturated, the toxicity may be (or
approximately) constant within a certain range of dose. In addition, the dose-efficacy
curves for the biological agents may follow a non-monotonic pattern, and efficacy may
even decrease at higher dose levels [17]. Therefore, traditional dose-finding designs
with a focus on finding the maximum tolerated dose (MTD) [3, 35, 46, 59] are not

suitable for trials of biological agents. Novel designs that consider both the toxicity



and efficacy of these agents are imperative.

Dose-finding designs that jointly model toxicity and efficacy are categorized as
phase I/II designs. Numerous phase I/II designs have been proposed for traditional
cytotoxic agents. Gooley et al. (1994) [16] proposed a phase I/II clinical trial in bone
marrow transplantation to find a dose that balances the risks of two immunologic
complications. Thall and Russell (1998) [49] proposed a phase I/II design to find
a dose satisfying both safety and efficacy requirements based on a trinary outcome.
O’Quigley, Hughes, and Fenton (2001) [33] presented a class of designs aiming to
identify the dose yielding the highest treatment success rate for HIV studies. Thall
and Cook (2004) [47] proposed a Bayesian phase I/II trial design based on trade-offs
between toxicity and efficacy probabilities. Yin, Li, and Ji (2006) [58] developed
a phase I/II Bayesian dose-finding design using toxicity and efficacy odds ratios.
O’Quigley and Zohar (2006) [36] provided a comprehensive review of phase I/1I
designs. All of these phase I/II designs focus on single-agent trials and are not
directly applicable to trials evaluating combinational agents.

For drug combination trials, a number of designs have been proposed to find
the MTD of cytotoxic agents. Simon and Korn (1990) [42] described a mathematical
model for the toxicity probability as a function of the weighted sum of the two doses to
select cytotoxic drugs and dosages for a combination regimen. Afterwards, Korn and
Simon (1993) [26] constructed a tolerable-dose diagram based on this simple mathe-
matical model to guide the phase I trial design. Kramar, Lebecq and Candalh (1999)
[27] proposed monotonically ordering of a selected subset of drug combinations which
reduced the dose finding to a one-dimensional space. Thall et al. (2003) [48] devel-
oped a six-parameter logistic regression model of the toxicity probability to identify

an entire “contour” of combinations. Conaway et al. (2004) [10] examined the simple



and partial orders for drug combinations based on the pool adjacent violators algo-
rithm. Wang and Ivanova (2005) [53] proposed a two-stage Bayesian adaptive design
to identify MTD combinations based on a logistic-type regression for toxicity proba-
bilities. Yuan and Yin (2008) [60] proposed an adaptive two-dimensional dose-finding
design that can accommodate any type of single-agent dose-finding method. They
converted the two-dimensional dose-finding trial to a series of one-dimensional dose-
finding subtrials and conducted the subtrials sequentially. Braun and Wang (2009)
[6] proposed a hierarchical model for the dose-limiting toxicities (DLT) probability
to identify MTD for novel combinations of cancer therapeutic agents which consider
the subject heterogeneity for DLT. Recently, Wages, Conaway and O’Quigley (2011)
[52] extended the continual reassessment method (CRM) to two-dimensional dose
finding by converting a partially ordered two-dimensional dose space into a series of
fully ordered dose sequences. All of these designs focus on phase I dose finding for
cytotoxic agents and do not consider efficacy.

Published research on designs for phase I/1I combination trials, in particular
for biological agents, has been very limited. Yuan and Yin (2011) [61] developed a
phase I/II design for drug combination trials, but that design focused on cytotoxic
agents. Mandrekar, Cui and Sargent (2007) [31] proposed a novel phase I/II design
for trials evaluating combinational biological agents based on a continuation ratio

PYAN13

model for trinary outcomes (namely, “no response,” “success” and “toxicity”). Our
approach differs in several aspects: we model toxicity and efficacy as bivariate bi-
nary outcomes, use a change-point model to render the flexibility to consider that
toxicity may plateau at high dose levels, and introduce a novel dose-finding algo-

rithm to stochastically search the two-dimensional dose space, thereby encouraging

the exploration of untried dose combinations.



Our research is motivated by a drug-combination trial at The University
of Texas MD Anderson Cancer Center for patients diagnosed with relapsed lym-
phoma. The trial combined two novel biological agents, A and B (their names are
masked to maintain confidentiality), that target two different components in the
PISK/AKT/mTOR signaling pathway. This pathway has been associated with sev-
eral genetic aberrations related to the promotion of cancer [18]. Agent A is a PI3K
kinase inhibitor and agent B is a downstream inhibitor of mTOR kinase within that
pathway. Research has suggested that some types of lymphomas are promoted and
maintained by the activation of the PI3K/AKT/mTOR pathway, making the path-
way an important target for drug development [44]. Both agents A and B have
individually demonstrated a partial inhibition of the pathway and some therapeutic
activity. By combining these two agents, the investigators expect to obtain a more
complete inhibition of the PI3k/AKT/mTOR pathway, and thereby to achieve better
treatment responses. The trial investigates the combinations of 4 dose levels of agent
A with 4 dose levels of agent B, which results in 16 dose combinations. The goal is to
find the biologically optimal dose combination (BODC), defined as the dose combina-
tion with the highest efficacy and tolerable toxicity (e.g., with a toxicity probability
< 0.4). The physicians expect the toxicity of the combinations to increase at low
doses and become (approximately) flat at high doses, and they consider the possi-
bility that the dose-efficacy curve of the combinations may be non-monotonic (i.e.,
the dose with the highest efficacy is not necessarily the highest dose).

We introduce a phase I/II design to identify the BODC for oncology trials
of combinational biological agents. The proposed design explicitly accounts for the
unique properties of biological agents. We propose a change-point model to reflect

the property that the dose-toxicity surface of the combinational agents may plateau



at higher dose levels, and use a general logistic model with quadratic terms to ac-
commodate the possible non-monotonic pattern of the dose-efficacy relationship. Our
design is conducted in two stages: in stage I, we escalate doses along the diagonal
of the dose combination matrix as a fast exploration of the dosing space; in stage
II, based on the observed toxicity and efficacy data from stages I and II, we con-
tinuously update the posterior estimates of toxicity and efficacy and assign patients
to the most appropriate dose combination. We propose a novel dose-finding algo-
rithm to encourage sufficient exploration of the two-dimensional dose space, which
facilitates the identification of the BODC. Extensive simulation studies show that
the proposed design has desirable operating characteristics in identifying the BODC

under various patterns of dose-toxicity and dose-efficacy relationships.

1.2 Screening Design for Combination Trials Combining Multiple Agents

The use of combination therapies [28, 38, 62] for cancer treatment can lead
to treatment synergies that result in improved patient outcomes. The number of
treatment combinations that must be tested is often quite large, however, which
means that it is often not practical to conduct separate phase II trials on every
possible combination of treatments. We describe a Bayesian adaptive trial design
that facilitates the pooling of information obtained across treatment combinations
by testing efficacy of all treatment combinations in a single trial. Important benefits
of our trial designs include a reduction in the number of patients that must be
recruited in order to evaluate each treatment combination, the assignment of a higher
proportion of patients to efficacious treatments, faster patient accrual and more rapid
completion of trials.

To motivate our design methodology, we consider a recent drug-combination



clinical trial conducted at MD Anderson Cancer Center to test the effectiveness of
16 combinations of 4 agents, A, Ay, A3 and A4, in reducing the symptom burden
experienced by patients with late stage non-small cell lung cancer (NSCLC) who
have received chemo-radiation therapies. The actual names of the drugs assessed in
the trial are not specified here for reasons of confidentiality. The primary outcome
variable for this trial was the area under the curve (AUC) for five symptoms (pain,
fatigue, drowsiness, sleep disturbance and lack of appetite) measured daily using an
interactive voice recording system (IVR) for 10 days following the onset of radiation
therapy. Each symptom was measured using the MD Anderson Symptom Inventory
(MDASI), which solicits ordinal ratings of symptoms on an 11-point scale ranging
from 0 (“none at all”) to 10 (“worst that can be imagined”) [20]. In contrast to
typical cancer-treating agents, which are generally cytotoxic, the combinations of
four agents tested in this trial were known to have minimal risks of toxicity, and
thus we focused herein on efficacy only. The goal of the trial is to identify the most
efficacious combination to be further investigated in large trials.

A variety of screening designs have been proposed for use in trials of this gen-
eral type. Among these, Thall, Simon and Ellenberg (1988) [50] proposed a two-stage
phase II-I1I trial design to select the most promising treatment from £ treatments in
the first stage, and to compare the selected first stage treatment with the standard of
care in the second stage. Schaid, Wieand and Therneau (1990) [41] presented a simi-
lar two-stage design that used survival data as an endpoint; that design allowed more
than one treatment to be included in the second stage. Yao, Begg and Livingston
(1996) [56] proposed a design to screen new treatments as a continuous process for
identifying promising new therapeutic agents, and determined the optimal sample

size to be used with their design. Yao and Venkatraman (1998) [57], and Wang and



Leung (1998) [54] extended that design to two-stage and fully sequential designs.
Stout and Hardwick (2005) [45] developed a cost-based and constraint-based deci-
sion theoretic-approach to the design of screening trials. Rossell, Muller and Rosner
(2007) [39] proposed a screening design based on Bayesian decision theoretics that
uses optimal linear boundaries. Ding, Rosner and Muller (2008) [11] developed a
more systematic decision-making optimal phase II screening trial design using a util-
ity function that accounts for sampling costs and possible future payoff. However,
none of these designs focus on screening combinations of multiple agents, a feature
which is central to the designs we proposed in this work.

We model the main and synergistic effects of the treatment agents using a
linear model, which facilitates borrowing information across the combinations. We
cast the screening problem into a Bayesian hypothesis testing problem by construct-
ing a series of hypotheses, each of which appoints one of the combinations as the
most efficacious treatment. We utilize an encompassing prior with non-local prior
constraints [25, 21] to accommodate the complex parameter constraints imposed by
the hypotheses. During the trial conduct, based on the observed data, we continu-
ously update the posterior probabilities of the hypotheses and use them to adaptively
allocate patients to effective combinations and select the best treatment. Extensive
simulation studies show that, compared to the standard (multi-arm) balanced facto-
rial design, the proposed design yields a significantly higher probability of selecting

the best treatment. It also allocates more patients to efficacious treatments.

1.3 Interim Monitoring for Late-onset Responses

Phase II trial studies usually are single-arm trials which are conducted to

test the efficacy of experimental agents and decide whether agents are sufficiently



promising to be sent to phase III trials. To avoid assigning unacceptable number of
patients to inferior treatments, interim monitoring is employed to stop the trial early
for futility if there is sufficient evidence to determine the inefficiency of experimental
agents. Many phase II trial designs with interim monitoring are proposed to evaluate
the efficacy of the experimental agents[29]. Simon (1988) [43] presented a optimal
two-stage design which minimizes the expected sample size. The early stopping
criteria is applied to make an early stopping decision for futility at the end of first
stage. Thall, Simon and Estey (1996) [51] proposed a new flexible statistical strategy
to continuously monitor both safety and efficacy in single-arm cancer clinical trials.
Wathen et al. (2008) [55] proposed a Bayesian single-arm phase II design to account
for heterogeneity between patient prognostic subgroups. The subgroup-specific early-
stopping rules are applied to allow terminate some subgroups and continue others.
Johnson and Cook (2009) [19] derived a new class of Bayesian designs based on
formal hypothesis tests using nonlocal alternative prior densities with continuous
monitoring.

In general, interim monitoring based on previous responses assumes that the
outcome could be observed shortly after the initiation of treatment such that the
outcomes of the patients enrolled in the trial have been completely observed by
the time of interim monitoring. However, this assumption may not always hold in
practice, for example the case of late-onset responses [4, 8, 9] which may occur long
after the assignment of treatment. Combining with the fast accrual rate, this would
result in large number of missing responses at the time of interim monitoring. To
address such late-onset responses, one possible approach is to suspend the accrual
and wait until the previously enrolled patients are fully followed. Obviously this

approach utilizes all the information and provides a good estimate of response rate.



However, it leads to an infeasibly long trial and needs to suspend the trial frequently
which is not practical and inconvenient for trial administration. If we do not suspend
the accrual and assign a newly arriving patient to treatment immediately, those
patients under treatment might not have completed the assessment. At the time of
interim monitoring, the early stopping decision will only be made based on the fully
observed data thus far. This approach is also problematic which often overestimates
the response rate and terminates the trial unappropriate.

We propose a Bayesian single-arm phase II design with continuous monitoring
for estimating the response rate of the experimental drug. To address the issue of
unobserved responses at the decision making time, we propose an approach which is
built on missing data methodology. Specifically, we treat the unobserved responses
as missing data and apply standard methods to estimate the response rate. We
propose a piece-wise exponential model to estimate the hazard function of time
to response data and handle the missing responses using the multiple imputation
approach. For the proposed methods, we do not need to suspend patient accrual
to wait for the full observation of the outcomes of patients under treatment. We
evaluate the operating characteristics of the proposed method through extensive
simulation studies. We show that the proposed method reduces the total length
of the trial duration and yields a desirable operating characteristics for different

physician-specified lower bounds of response rate with different true response rates.



CHAPTER 2

A Bayesian Phase I/II Design for Oncology Clinical Trials of
Combinational Biological Agents

In this chapter, we introduce a phase I/II design to identify the BODC for
oncology trials combining biological agents. Biological agents are playing an increas-
ingly important role in oncology drug development. There are some unique features
for the biological agents. The toxicity of biological agents is usually tolerable within
the therapeutic dose range and may plateau at higher dose levels. In addition, the
dose-efficacy curves for these agents often follow a non-monotonic pattern in which
efficacy may decrease at higher dose levels. For cytotoxic agents, toxicity and ef-
ficacy are typically assumed to monotonically increase with dose level. Therefore,
traditional dose-finding designs with a focus on finding the MTD are not suitable for
trials of biological agents. Novel designs that consider both the toxicity and efficacy
of these agents are in great demand.

We propose a dose-finding design that can explicitly account for the unique
properties of biological agents. A change-point model is proposed to reflect the prop-
erty that the dose-toxicity surface of the combinational agents may plateau at higher
dose levels and a general logistic model with quadratic terms is applied to accom-
modate the possible non-monotonic pattern for the dose-efficacy relationship. Our

design is conducted in two stages: in stage I, we escalate doses along the diagonal
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of the dose combination matrix as a fast exploration of the dosing space; in stage
IT, based on the observed toxicity and efficacy data from stages I and II, we contin-
uously update the posterior estimates of toxicity and efficacy and assign patients to
the most appropriate dose combination. To encourage sufficient exploration of the
two-dimensional dose space, we propose a novel dose-finding algorithm which facili-
tates the identification of the BODC. We conducted extensive simulation studies to
evaluate the operating characteristics of our proposed design.

In following sections, we introduce the probability models and the phase I/11
design for finding the BODC. We apply our design to the lymphoma clinical trial and

examine the design’s operating characteristics through extensive simulation studies.

2.1 Methods

2.1.1 Modeling Toxicity and Efficacy

Consider a trial combining J doses of biological agent A, denoted by a; <
as < --- < ay, with K doses of biological agent B, denoted by b; < by < --- <
brx. Without loss of generality, we assume J > K and that the dose values of
the a;’s and b;’s have been standardized to have mean 0 and standard deviation
of 0.5. This standardization is used to anticipate the prior elicitation in Section
2.1.2. Let (a;,bx) denote the combination of dose a; and dose by, and let p;; and gy
denote the toxicity and efficacy probabilities of (a;, by,), respectively, for j = 1,2, ..., J,
and £ = 1,2,..., K. Here, toxicity and efficacy are two binary events that reflect
the side effects (toxicity) and therapeutic effects (efficacy) of the biological agents.
Therefore, p;, and g;; are simply the probabilities of the toxicity event and efficacy
event, respectively, at dose combination (a;, by). Specifically, the toxicity probability
indicates the probability that a subject experiences dose-limiting toxicity and the

efficacy probability represents the probability that there exists a direct or surrogate
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marker of efficacy. The efficacy event can be tumor shrinkage or pathological response
given by clinicians. The goal of the trial is to identify the BODC in the J x K dose

combination matrix.

A change-point model for toxicity

Unlike cytotoxic agents, for which toxicity typically is assumed to monoton-
ically increase with the dose level, the toxicity of biological agents may initially
increase at low doses and then plateau at high doses. To accommodate this prop-
erty of biological agents, we describe pjj, the toxicity probability of (a;, by), using a

change-point model

(2.1) logit(pjr) = (Bo+Bra;+B2br)I(Bo+Braj+Babr < w)+wl(Bo+pFraj+ Baby > w),

where [(-) is the indicator function and (By, 51,32, w) are unknown parameters.
Under this model, the shape of the dose-toxicity surface initially is monotonic with
the dose level but changes to flat once it passes the threshold defined by 5y + f1a; +
Pobr = w (see Figure 2.1). We assume that §; > 0 and S5 > 0 such that the toxicity
probability initially increases with the doses of A and B before it plateaus, at which
time the toxicity probability is given by e¥/(1 4+ €¥). We choose the change-point
model for the dose-toxicity surface because of its intuitive interpretation and the
ability to capture the threshold effect that may occur in some biological agents.
Nevertheless, the choice of the toxicity model could be flexible as long as the model
is able to accommodate the non-monotonic dose-toxicity relationship. For example,
an alternative model pj; = w * logit™!(By + Bra; + Boby) can also provide a good fit
and yield good operating characteristics (results not shown).

In model (2.1), we did not include an interactive effect for the two agents

(e.g., an interaction term [3a;by) because the reliable estimation of such an interac-
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tion term requires a large sample size (e.g., a few hundreds), which is typically not
available in phase I trials. Note that for the purpose of dose finding, we do not seek
to model the entire dose-toxicity surface but aim to obtain an adequate local fit to
facilitate dose escalation and de-escalation. A model may provide a poor global fit
to the entire dose-toxicity surface; however, as long as the model provides a good
local fit around the current dose, it will lead to correct decisions of dose escalation
and selection. O’Quigley and Paoletti (2003) [34] showed that simple parsimonious
models often yield better operating characteristics than complex models for dose
finding. In addition, In the context of drug combination trials, Wang and Ivanova
(2005) [53] and Braun and Wang (2010) [6] found that a model without interaction

performed as well as one with interaction for dose finding.

A second-order logit model for efficacy

For biological agents, the dose-efficacy curve often follows a non-monotonic
pattern. For example, in immunotherapy trials, the dose-efficacy relationship could
be bell-shaped. That is, the most effective dose may be a dose in the middle of
the therapeutic dose ranges, and when a dose level is lower or higher than the most
effective dose, efficacy decreases. To incorporate such a non-monotonic pattern for
the dose-efficacy relationship, we assume that the efficacy probability of (a;, by), that

is, gj, follows a logistic model of the form

(2.2) logit(qjk) =Y + na; + Yoby, + 'YSag + 74bi7

where (7, ...,74) are unknown parameters. The quadratic terms render the model
adequate flexibility to capture the non-monotonic shape of the dose-efficacy surface.
In this dose-efficacy model, we exclude the interaction effect a;b;, for the same reason

described above.
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2.1.2 Likelihood and Prior Specification

Suppose that at a certain stage of the trial, among n;; patients treated at the
paired dose (a;,bx), ;i and y;, patients have experienced dose-limiting toxicity and
efficacy, respectively, where j = 1,---  Jand k = 1,--- | K. Let 8 = {f, 51, 52} and
~ = {7, 7,72,73,7a} denote the regression coefficients in models (2.1) and (2.2).
The likelihood function of the observed data D = {z,i, y;x} can be expressed as

L(Dlw, B,7) o 1_[1_[1);C (1 = pj)" "% X Qﬁk(l — i)"Yk,
j=1 k=1

Let f(w), f(B), and f() denote the prior distributions for w, 3, and -, respectively.
Assuming prior independence among w, 3, and ~y, we write the joint posterior dis-

tribution as
f(w,B,7|D) < L(D|w, B,7) f(w)f(B)f(7),

from which the full conditional distributions can be obtained. The Gibbs sampler [12
7] is used to obtain posterior draws of unknown parameters for statistical inferences.

For the prior specification of the efficacy model, we assign v a weakly infor-
mative default prior f(4) proposed by [13] for logistic regression. To use this default
prior, we first scale the actual values of the clinical doses to standardized values
{a;} and {by}, which have mean 0 and standard deviation 0.5, and then assign an
independent Cauchy distribution with center 0 and scale 2.5, Cauchy(0, 2.5), to the
regression coefficients vy, - -+ 74, and a Cauchy distribution with center 0 and scale
10, Cauchy(0,10), to the intercept . The advantages of using the weakly infor-
mative priors include (1) these priors are diffuse and provide reasonable coverage
of the plausible values of the parameters, (for example, the prior Cauchy(0, 10) for
the intercept expects the efficacy probability for an average case to be between 10~°

and 1 — 107%); and (2) these priors are also appropriately regularized such that a
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dramatic change in efficacy probability (e.g., from 0.01 to 0.5) is unlikely when dose
changes by one level, which substantially improves the estimation stability while still
being vague enough to ensure that the data are able to dominate the priors [13].
For the toxicity model, we use the default prior Cauchy(0, 10) for intercept ;. We
assign 8, and (B a gamma prior distribution with shape 0.5 and rate 0.5 to ensure
the monotonicity before the dose-toxicity surface reaches the change line in model
(2.1). To specify a prior for w, we assume that the toxicity probability at the plateau
is between 0.2 and 0.8, which corresponds to a value of w ranging from -1.39 to 1.39.
Thus, we assign w a normal prior N(0,4), which provides sufficient coverage for all

plausible toxicity probabilities at the plateau, given by e¥ /(1 + e¥).

2.2 Trial design

The proposed phase I/II design consists of two stages. Stage I is a run-in
period, in which the goal is to explore the dose-combination space quickly and collect
preliminary data so that the proposed probability models can be reliably estimated
in stage II for systematic dose finding. We start stage I of the design by treating the
first cohort of patients at the lowest dose combination (aq, b;), and then escalate the
dose along the diagonal of the dose combination matrix until we encounter a dose

combination that violates the safety requirement
(2.3) Pr(pjr < ¢|D) >,

where ¢ denotes the target toxicity upper limit and ¢ is a prespecified safety cutoff.
If the dose matrix is not square (i.e., J > K), we first escalate the dose along
the diagonal from (ay,b;) to (a2, b2) and so on until we reach (ax,bx); thereafter,
we escalate the dose by holding the dose level of B at K and increasing the dose

level of A from (ag,bk) to (axi1,brx) and so on until we reach the highest dose
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combination (ay,bg). In stage I, only a small fraction of patients are enrolled into
the trial and the observed data are sparse. Therefore, in this stage, we evaluate the
safety requirement based on a simple beta-binomial model rather than the proposed
change-point toxicity model. Specifically, we assume that the number of toxicities
xji follows a binomial distribution Bi(n,i, pji), and that the toxicity probability p;y
follows a beta distribution Beta((,§) with two shape parameters ¢ and £. To ensure
that the data dominate the posterior distribution, we set (=0.1 and £=0.2. Under the
beta-binomial model, Pr(p;x < ¢|D) = B(¢|¢ + =k, & + njr — xjx), where B(-) is the
cumulative density function for a beta distribution. In stage I we also collect efficacy
data; however, these data will not be used to determine the dose escalation. The
rationale is that in this initial phase, as long as the doses are safe, we should explore
the two-dimensional dose space as quickly as possible to learn the dose-toxicity and
dose-efficacy surfaces.

Whenever a dose combination (a;,by) violates the safety requirement, i.e.,
Pr(pjr < ¢|D) < 6, or we reach the highest dose combination (a;,bk), stage I is
then complete and the trial moves on to stage II. For this stage of the trial we invoke
the toxicity and efficacy models described in Section 2 for systematic dose finding.
Stage II dose finding is highlighted by two features. First, the proposed algorithm
encourages the exploration of untried dose combinations to avoid the problem of
trapping in suboptimal doses, which is of particular concern for combinations of
biological agents. Because of complex drug-drug interactions and non-monotonic
dose-response patterns, the assumed (simple) dose-response model is not expected
to estimate the true dose-response surface well, especially at the beginning of the trial
when only a few observations are available. Consequently, the resulting estimates

of efficacy and toxicity may substantially deviate from the truth, and the “optimal”
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dose identified based on these estimates may actually be a suboptimal dose. In other
words, the dose with the highest estimate of efficacy is not necessarily the one actually
having the highest efficacy. By intentionally visiting untried dose combinations, the
proposed method increases the chance of finding better combinations and avoids
trapping in suboptimal doses. Second, we introduce a concept of g-degree neighbor
and g-degree admissible neighbor to facilitate the dose finding on the two-dimensional
space, the details of which we describe next.

Assume that the current dose combination is (a;, by,) and define g-degree neigh-
bors of (aj,by), denoted by N, as dose combinations {(a;, by )} whose dose levels
are different from (a;, by) no more than g levels, i.e., N, = {(aj,by) : |7/ — j] <
g and |k’ — k| < g}. Note that the dose set of NV, includes the current dose com-
bination itself. We further define a g-degree admissible dose set A, = {(a;/, by) :
(aj,bi) € Ny, Pr(pjw < ¢r|D) > ¢}, which is a subset of the g-degree neighbors
N, satisfying the pre-specified safety requirement Pr(pjp < ¢r|D) > 6. That is, A,
contains the safe g-degree neighbors of the dose combination (a;, by).

Let N denote the prespecified maximum sample size, N; denote the number
of patients in stage I, and Ny = N — N; be the total number of patients available
for stage II. Then the proposed dose-finding algorithm for stage II is described as

follows:

1. Based on the accumulated trial data, we determine the dose set Ay, where
g = min{g : A, # 0,9 > 1}. That is, Ay is the nonempty admissible set
with the smallest degree g*. If A+ does not exist, i.e., all investigational doses

violate the safety requirement, we terminate the trial.

2. In Ay, we identify the combination (a;«,by-) that has the highest posterior

mean of efficacy rate gj«-.
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3. If combination (a;«, by+) has not been used to treat any patient thus far, or all
doses in A, have been used to treat patients, we assign the next cohort of
patients to (a;«, bg+). However, if (a;-, by-) has been used to treat patients and
there are some untried doses in A,+, before we decide to assign the next cohort

of patients to (a;«, bg+), we compare §;«;- against the following threshold:

R N2 — N9 @
24 Sk Lk > _
(24) Tk ( Ny ) ’

where ns is the total number of patients that have been treated in stage II and
a is a known tuning parameter controlling how stringent the threshold is. If the
condition (2.4) is not satisfied, (a;«, by+) will be excluded from the admissible

set Ay« and we return to step 2.

4. We continue the above steps until exhaustion of the sample size, and select as
the BODC the dose combination with the highest value of ¢;, and satisfying the

safety requirement Pr(p;, < ¢|D) > 6.

Remark 1: The threshold (2.4) plays a key role in adaptively encouraging the
exploration of untried doses and avoiding the problem of trapping in suboptimal
doses during dose finding. At the beginning of stage II, when patients have not
yet been treated in that stage, i.e., ng = 0, the value of {(Ny — n2)/N2}® equals 1.
Consequently, condition (2.4) disallows treating patients at a dose that has been used
previously and supports the exploration of untried doses. This is a sensible action
because at the beginning of stage II the efficacy estimate ¢;; is of large variability,
and we should give high priority to using new doses rather than putting too much
faith in the point estimate ¢;;. Toward the end of the trial (i.e., no & N3), we have

more precise estimates of ¢;; based on the accumulated data. As {(Ny — ng)/No}*
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approaches 0, we essentially assign incoming patients to the dose combination with
the highest value of ¢, because condition (2.4) is almost always satisfied. In condition
(2.4), the tuning parameter o controls how fast {(Ny — ny)/No}® decays from 1 to
0. The value of o can be calibrated to obtain desirable operating characteristics.

We summarize both stages of the proposed design as follows.
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The proposed algorithm for finding BODC. The trial starts with the treatment of the
first cohort of patients at the lowest dose (ai,b;). Suppose that patients are being
treated at dose (aj,b;). A dose is safe if Pr(p;r < ¢|D) > §; otherwise, the dose is

deemed toxic.

Stage I Run-in Period

I1 If dose (aj, by) is safe, escalate the dose and treat the next cohort at (a;41, by1)-
If j = k = K, escalate the dose to (aj41,bk). If (a1,b1) is deemed toxic,

terminate the trial.

I2 Stage I is complete when either dose (aj, by) is deemed toxic or the highest

dose combination (ay,bk) is reached. Stage II then starts.
Stage II Systematic Dose Finding

IT1 Based on the observed data, identify A« as the nonempty set of safe neighbors
of (a;, by) with minimum degree g*. If Ay« does not exist (i.e., all experimental

doses are deemed toxic), terminate the trial.

112 Among the doses in A,-, identify the dose (a;«, by~ ) with the highest posterior

mean of efficacy g«

113 (a) If nj«g= = 0 or n,.s # 0 for all (a,,bs) € Ay, treat the next cohort at dose

(CL]'* R bk* ) .

(

If Gjegr > <N2N;2”2> treat the next cohort at (a;«, by-),

(b) Otherwise, N
If Gjuppr < (NQN;;Q> remove dose (a;«, by ) from A«

and go to step 112.

\

[14 Repeat steps 112-4 until exhaustion of the sample size. Select as the BODC

the dose combination with the highest §;, among all safe doses.
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2.3 Numerical Studies

2.3.1 Operating Characteristics

We conducted extensive simulations to evaluate the operating characteristics
of the proposed phase I/I1 design. Step 113 in our design encourages exploration of
untried dose combinations when sample size is small. This is an important feature
of the proposed dose-finding algorithm. To evaluate the impact of this feature, we
compared the proposed design to a “greedy” design that is otherwise identical except
that it always assigns patients to the dose with the highest estimate of efficacy.
Technically, this means that the greedy design replaces the condition (2.4) with
¢j+k= > 0 so that the dose with the highest efficacy among admissible dose set Ay is
always selected.

We also compared our design with the phase I/II combination trial design
proposed by Mandrekar, Cui, and Sargent(2007) [31]. For convenience, we refer to
the latter design as the MCS design. The MCS design converts toxicity and efficacy
into a mutually exclusive trinary outcome (namely, “no efficacy and no toxicity,”
“efficacy without toxicity” and “toxicity”) and then uses a continuation ratio model
to describe the relationship between this trinary outcome and the dose. To conduct
a trial, the MCS design continuously updates the posterior estimates of the model
parameters based on the observed data and assigns patients to the dose combination
with the highest estimate of the probability of efficacy without toxicity (i.e., the MCS
design adopts a greedy dose-finding algorithm).

We considered trials combining two biological agents, A and B, with a max-
imum sample size of 45 patients and a cohort size of 3. We investigated 8 different
dose-toxicity and dose-efficacy scenarios (see Table 2.1). The first four scenarios

consider the 4 x 4 combination trials with 4 dose levels for both agents A and B,
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which were (0.075, 0.15, 0.225, 0.3) and (0.08, 0.16, 0.24, 0.32), respectively. We
set the toxicity upper limit ¢ = 0.3. The last four scenarios were taken from the
work of Mandrekar, Cui, and Sargent (2007) [31], which involves the analysis of 5 x 3
combination trials with 5 doses of agent A, (0.60, 0.75, 0.90, 1.05, 1.35), and 3 doses
of agent B, (0.60, 0.90, 1.20). The toxicity upper limit was ¢ = 0.33.

In the proposed design, we set the safety cutoff 6 = 0.4 and the tuning pa-
rameter a = 2, and used 2,000 posterior samples of unknown parameters w, 3, and
~ to make inference after 1,000 burn-in iterations based on the adaptive rejection
Metropolis sampling algorithm [14]. Under each scenario, we carried out 2,000 simu-
lated trials for each of the designs. We used C++ to implement the proposed design;
the simulation code is available upon request.

The simulation results under scenarios 1-4 are summarized in Table 2.2, in-
cluding the selection percentage for each dose combination as the BODC and the
percentage of patients allocated to each dose combination (shown as subscripts). In
scenario 1, the dose-toxicity surface initially increases with the dose levels of agents
A and B and then plateaus in the right upper corner of the dose combination matrix
with a toxicity probability of 0.25; the dose-efficacy relationship is non-monotonic,
characterized by efficacy monotonically increasing with agent A but not with agent B.
The true BODC is (a4, bs). Among the three designs, the proposed design performs
the best with the highest selection probability (31.0%) and allocates the highest per-
centage of patients (15.9%) to the target dose combination. The greedy design is
often trapped in the doses on the diagonal since it does not encourage exploration of
untried dose combinations. As a result, it incorrectly selects the dose combination
(a4,bs) as the BODC with the highest percentage. Moreover, the greedy design only

allocates 10.0% patients to the true BODC, which is more than 1/3 lower than the
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Table 2.1: Fight dose-toxicity and dose-efficacy scenarios for the simulation studies.

The target BODCs are bolded.

Agent B
Scenario  Agent  Toxicity probability Efficacy probability
A 1 2 3 4 1 2 3 4
1 4 25 .25 25 .25 42 .60 .38 .32
3 A5 .25 .25 .25 19 44 20 .18
2 10 .25 .25 .25 A2 .29 15 .10
1 .05 10 .15 .25 .05 .22 .10 .08
2 4 25 .25 .25 .25 100 .29 29 42
3 A5 .25 .25 .25 25 .35 43 .60
2 10 .25 .25 .25 A2 24 32 .39
1 .05 .10 .15 .25 .05 14 .28 .32
3 4 25 .25 .25 .25 .05 .12 .18 .26
3 A5 .25 .25 .25 10 .15 .25 .30
2 10 .25 .25 .25 A4 18 .30 43
1 .05 .10 .15 .25 23 .28 42 .60
4 4 A7 .25 45 .55 .60 35 .32 .28
3 12 16 .25 .43 42 .30 .28 .25
2 08 .10 .19 .22 350 .28 .22 .20
1 .05 .08 .12 .18 25 .23 .19 .16
5 5 07 .09 .11 48 .53 .64
4 05 .07 .09 29 .36 .51
3 .04 .06 .08 19 28 45
2 .03 .05 .07 A3 .22 40
1 .02 .04 .06 10 .19 .38
6 5 51 .52 .53 19 .28 45
4 41 42 43 19 28 45
3 31 .32 .34 19 28 45
2 16 .18 .19 19 28 45
1 A1 13 .15 19 28 .45
7 5 41 42 43 A5 .24 42
4 21 22 24 43 .49 .61
3 .06 .08 .10 .62 66 .74
2 .04 .05 .07 43 49 .61
1 .03 .05 .07 24 32 48
8 5 80 81 81 A5 .19 .19
4 o1 .52 .53 34 41 48
3 36 .37 .38 43 49 .61
2 21 22 24 .53 .58 .68
1 .06 .08 .10 .62 .66 .74
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proposed design. The MCS design does not perform well, selecting the true BODC
only 9.2% of the times. Scenarios 2 and 3 share the same dose-toxicity surface as
scenario 1, i.e., toxicity initially increases and then plateaus, but possesses different
shapes of the dose-efficacy surface. In scenario 2, combination (as, bs) has the highest
efficacy and is the true BODC. Our proposed design identifies (a3, by) with the high-
est selection percentage 33.1% and assigns 18.5% patients to that dose combination.
The greedy and MCS designs identify the true BODC 17.9% and 14.5% of the times
and assign only 9.3% and 9.4% of the patients to the target, respectively. In scenario
3, a monotonic dose-efficacy relationship is assumed for agent B but not for agent
A and the highest dose combination (aq, bs) is the true BODC. The proposed design
again outperforms the other two designs. Scenario 4 is constructed to examine the
case in which only toxicity monotonically increases with dose, but not efficacy. The
proposed design yields a selection percentage of 46.3%, which is higher than those of
the greedy design (39.1%) and the MCS design (26.5%).

The simulation results for trials with 5 x 3 combinations are shown in Table
2.3, indexed as scenarios 5-8. In scenario 5, toxicity is negligible for all dose combi-
nations and efficacy monotonically increases with dose. The greedy design exhibits
the best performance. This is mainly due to the coincidence that the greedy design
would first escalate from dose combination (ai,b;) to (as,bs) along the diagonal,
then escalate up to the dose combination (as, b3) during the run-in period in stage 1.
Therefore, after the initial dose escalation the greedy design would quickly identify
(a5, b3) as the most desirable dose without exploring off-diagonal untried doses. Nev-
ertheless, the proposed design exhibits a better performance than the MCS design.
In scenario 6, toxicity monotonically increases with doses of both agents A and B,

whereas efficacy only increases with agent B and is not affected by agent A. The
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selection percentage of the proposed design is lower than that of the MSC design by
6.2%, but higher than that of the greedy design. In scenario 7, the selection per-
centage of the proposed design is higher than that of the MCS design (37.2% versus
30.2%), and in scenario 8, the selection percentage of the MCS design is 9.6% higher
than the proposed design. In addition to the eight scenarios shown in Tables 2.2 and
2.3, we also considered additional scenarios (see Table 2.4) with different shapes of
dose-toxicity and dose-efficacy relationships. The simulation results are summarized

in Table 2.5 and demonstrate that the proposed design performs consistently well.
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Figure 2.1: Surface of the toxicity probabilities for combinational agents using the

proposed change-point model. Toxicity initially increases with dose level

and plateaus after reaching the change line.
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Table 2.4: Additional dose-toxicity and dose-efficacy scenarios for the simulation stud-

ies. The target BODCs are bolded.

Agent B
Scenario Agent  Toxicity probability Efficacy probability
A 1 2 3 4 1 2 3 4
9 4 14 25 25 .25 19 .24 39 .29
3 .09 .15 .18 .25 33 45 .60 .42
2 .04 .08 .13 .18 A4 29 37 .28
1 .02 .04 .07 .12 .04 17 28 17
10 4 14 .25 .25 .25 42 .60 .38 .32
3 .09 .15 .18 .25 19 44 20 .18
2 .04 .08 .13 .18 A2 .29 15 .10
1 .02 .04 .07 .12 05 .22 .10 .08
11 4 Jd4 25 25 .25 .60 35 .32 .28
3 .09 .15 .18 .25 42 30 .28 .25
2 .04 08 .13 .18 35 .28 .22 .20
1 .02 .04 .07 .12 25 .23 .19 .16
12 4 40 40 40 40 19 24 39 .29
3 A5 18 .20 .25 33 45 .60 .42
2 .08 .12 .16 .20 14 .29 37 .28
1 .01 .05 12 a7 .04 17 28 A7
13 4 40 40 40 .40 10 .10 .18 .24
3 A5 18 .20 .25 14 14 24 43
2 .08 .12 .16 .20 23 .28 42 .60
1 .01 .05 12 a7 .08 .10 .29 .42
14 4 A5 18 .21 .25 10 .10 .18 .24
3 10 15 .19 .23 14 14 24 43
2 05 12 .15 .20 23 .28 42 .60
1 .01 .07 .12 .18 .08 .10 .29 42
15 4 A5 .18 .21 .25 42 .60 .38 .32
3 10 15 .19 .23 19 44 20 .18
2 05 12 .15 .20 A2 .29 15 .10
1 .01 .07 .12 .18 .05 .22 .10 .08
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Table 2.4 continued.

Agent B
Scenario Agent  Toxicity probability Efficacy probability
A 1 2 3 4 1 2 3 4
16 4 A5 18 .21 .25 19 24 39 .29
3 10 .15 .19 .23 33 45 .60 .42
2 05 12 15 .20 A4 29 37 .28
1 .01 .07 .12 .18 .04 17 28 7
17 4 A7 .22 45 .50 42 .60 .38 .32
3 A2 160 .25 43 19 44 20 .18
2 08 .10 .19 .22 A2 .29 .15 .10
1 05 .08 .12 .18 05 .22 .10 .08
18 4 A7 .22 45 .50 10 18 24 .14
3 A2 16 .25 43 A3 .24 37 .26
2 .08 .10 .19 .22 24 .38 .60 .37
1 05 .08 .12 .18 100 .23 42 .22
19 4 A7 .22 45 .50 10 .10 .18 .24
3 A2 160 .25 43 14 14 24 43
2 .08 .10 .19 .22 23 .28 42 .60
1 05 .08 .12 .18 .08 .10 .29 42
20 4 .06 .07 .08 .10 24 20 .15 .10
3 .05 .06 .07 .08 .60 43 35 .25
2 .04 04 .05 .06 39 32 24 12
1 02 .03 .04 .05 30 .20 .10 .05
21 4 .06 .07 .08 .10 24 18 14 .10
3 .05 .06 .07 .08 37 .26 .20 .13
2 .04 04 .05 .06 .60 37 30 .24
1 .02 .03 .04 .05 42 .22 15 .10
22 4 25 .25 .25 .25 24 20 .15 .10
3 A5 .25 .25 .25 .60 43 35 .25
2 10 .25 .25 .25 39 32 .24 12
1 .05 .10 .15 .25 30 .20 .10 .05
23 4 25 .26 .25 .25 15 .10 .08 .05
3 A5 .25 .25 .25 24 18 .14 .10
2 10 .25 .25 .25 37 .26 .20 .13
1 .05 .10 .15 .25 .60 37 30 .24
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CHAPTER 3

Bayesian Adaptive Phase II Screening Design for
Combination Trials

In this chapter, we propose a Bayesian adaptive screening design for com-
bination trials. There is an increasing trend to use the combination therapies for
cancer treatment. Combination therapies can lead to treatment synergies that result
in improved patient outcomes. Therefore, the number of treatment combinations
that must be tested is often quite large. Conducting separate phase II trials on every
possible combination of treatments is often not practical. Novel designs that can test
the efficacy all combinations in a single trial are imperative.

Toward this goal, we describe a Bayesian adaptive trial design that facilitates
the pooling of information obtained across treatment combinations. We model the
main and synergistic effects of the treatment agents using a linear model, which
facilitates borrowing information across the combinations. We cast the screening
problem into a Bayesian hypothesis testing problem. We construct a series of hy-
potheses, each of which appoints one of the combinations as the most efficacious
treatment. We utilize an encompassing prior with non-local constraints to accom-
modate the complex parameter constraints imposed by the hypotheses. During the
trial conduct, based on the observed data, we continuously update the posterior

probabilities of the hypotheses and use them to adaptively allocate patients to effec-
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tive combinations and select the best treatment. We conduct extensive simulation
studies to evaluate the performance of the proposed design. The comparison to the
standard (multi-arm) balanced factorial design show that our proposed design selects
the best treatment with a significantly higher probability and allocates more patients
to efficacious treatments.

In following sections, we describe our model, prior specification and trial
design. We examine the operating characteristics of our design using simulation

studies.

3.1 Methods

3.1.1 Probability Model

We consider trials to evaluate the treatment effects of all possible combi-
nations of k treatment agents, A, As,---, and Ay. We assume that each drug
combination is assigned to one treatment arm, although it is straightforward to ex-
tend our design to trials where some combinations are excluded. Given k agents,
there are (]:) different r-agent combinations, » = 0,1, , k, resulting in a total of
p= Zfzo (f) = 2% combinations, including placebo group, to be evaluated. The goal
of the trial is to identify the most efficacious treatment combination.

The outcome variable in the trial that motivates our research represents the
mean change in the patient-reported symptom score. We assume that the outcome
for the ¢th patient, y;, is continuous and follows a linear model of the form
(3.1)

Yi = Bo+Lr1li(Ar)+Pali(A)+- - -+ Prali(Ar, Ag)+- - -+ Pro. i Li(Ar, Aoy -+ - Ag) +e

where [y is the intercept of the linear model and [;(-) is an indicator of whether

patient ¢ receives the given agents. For example, if patient i receives a combination
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of Ay and Ay, then [;(A;) = I;(As) = I;(A;, Ay) = 1; whereas all the other indicator
functions are then 0. Model (3.1) is flexible and accounts for the main and interaction
effects of combining agents. Specifically, 55 represents the main treatment effect of
Ay, By represents the two-way interaction or synergistic effect between A; and Ay
when k # k', and so on. We assume that the residual ¢; follows a normal distribution

with mean 0 and variance o>

. Binary and time-to-event outcomes can be modeled
using a similar linear structure within a generalized linear model framework.

To cast the problem into a hypothesis testing framework, we define the null
hypothesis Hy to assert that no treatment is better than the placebo, and a series
of alternative hypotheses Hi,...,H,_ 1, where H; asserts that the jth treatment
combination is superior to all others. In our trial, for example, treatment j is superior
to treatment k if it leads to a greater reduction in symptom burden. Let 6y(3) denote
the effect of the placebo and let 0;(3), j = 1,...,p — 1, denote the net treatment
effect of the jth combination (or treatment arm). Under the linear model (3.1),
the treatment effect, 6;(3), is a linear combination of the regression parameters,
B’s. For example, the treatment effect of the combination of A; and A, is given by
8,(8) = Bo+ b1+ P2+ P 2; and the treatment effect of the three-agent combination of
Ay, Ay and Az is 0;(8) = Bo+ S1+ o+ B3+ Br2+ B3+ P23+ B123. To be consistent
with the lung cancer trial described in Section 1.2, we assume that a smaller value of

8,(B8) (i-e., less symptom burden) represents a better response. Then the hypotheses

can be formally expressed as

Hj:0;(8) = min(0y(B), -+ ,0p-1(B)), j=0,---,p—1
We let 7;(8, 0%) denote the prior distribution assigned to the unknown parameters 3

and o2 under H;. Further discussion of the prior specification is provided in Section

2.3; for the moment we note that the domain of each prior is restricted to values of
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B that are consistent with the hypothesis under which they are defined [21]. Given

these prior densities, the marginal density of the observed data y under Hj; is

(3.2) mj(y) = / / f(y1B,0*)m;(8, 0*)do*dB,

and the Bayes factor [23, 15] of H; to H; is given by

(3.3) Bj; =

If p(H;) denotes the prior probability of Hj, then the posterior probability of H;

given the data vy is

-1

M‘d

(3.4) p(H;ly) =

p(H) [
>y ()z

If we assume that all hypotheses are equally likely a priori, then the posterior prob-

:0 3

ability of H; simplifies to

p—1

(3.5) p(Hjly) =

M

i= o =0
The value of p(H;|y) has a very intuitive probability interpretation—the probability
that the jth combination is the best treatment conditional on the observed data.
Meanwhile, the value of p(Hp|y) is the probability that the placebo is the best
treatment. Therefore, it provides a natural evidence-based mechanism to adaptively

assign patients to efficacious combinations and select the most promising combina-

tion.

3.1.2 Trial Design

We propose the following adaptive randomization scheme for the conduct of
the trial. We assume that a total of N patients are available for testing, and that

the first m x p patients are equally randomized into the p treatment arms using m
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replications of a complete factorial design, i.e., m patients are randomized to each of
p arms. The advantage of using a factorial design is that it allows us to rapidly obtain
preliminary estimates of the main treatment effects. Following the lead-in factorial
phase of the design, subsequent patients are assigned to a treatment according to
the posterior probability that each treatment is best. The resulting design can be

described as follows.

1. Assign m X p patients to the p treatment arms using m replications of a factorial

design.

2. Fori=m xp+1,..., N, randomize the ith patient to the jth treatment arm
with probability p(H,ly), j = 0,...,p — 1, where y = (y1,--- ,y;—1)" are the

observed outcomes data from the first ¢ — 1 patients.

3. At the end of the trial, we select the combination j* that has the highest pos-
terior model probability, i.e., j* = argmax;p(H;|y),j =1,--- ,p — 1.
During the trial, we impose the following futility stopping rule: the trial is terminated
for futility if

maX{p(HO _ej > 5|y)} < O{’j = ]-7 y D — 1

where ¢ and « are the prespecified minimal effect size and threshold, respectively.
That is, at any time during the trial, conditional on the observed data, if the proba-
bility of achieving an effect size of § for the best treatment arm is below the threshold
«, we terminate the trial. In practice, the value of § can be elicited from investiga-
tors, and the values of design parameters m and « can be chosen by examining the

operating characteristics of the trial in simulation studies.
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3.1.3 Delayed Outcomes

In general, outcome-dependent adaptive randomization, such as the one we
have proposed, assumes that the outcome is quickly ascertainable so that when an
incoming patient is ready for randomization, the previous patients have been as-
sessed and their outcomes are completely observed. This assumption may not hold
in practice. In many cases, the patient outcomes require a long follow-up time to
be assessed (or the accrual is fast), so their outcomes are not available when a new
patient is randomized. To address this delayed outcome issue, one approach is to
suspend accrual and wait until the outcomes of patients treated in the trial are fully
observed. However, this approach is often not practical because it causes lengthy
delays in a trial, wastes patient resources, and causes administrative problems. Al-
ternatively, we propose to base our adaptive randomization scheme only on those
patient outcomes that are available at the time that each new patient is random-
ized. Our simulation studies in Section 3.2.1 show that, with finite samples, this

observed-data approach is competitive to the approach of suspending accrual.

3.1.4 Prior Specification and Derivation of Bayes Factor

We adopt the encompassing prior approach proposed by Klugkist et al. [25]
and Klugkist and Hoijtink [24] to set the prior distributions on B and ¢? under
each hypothesis. In this approach, we first specify a prior distribution for the un-
constrained model, and then based on that prior define prior densities under each
hypothesis. More specifically, we begin by assigning a noninformative prior to o2 of
the form m(0?) oc 1/0%. Given % and a hyperparameter g, we assume that 3 has a
normal prior density of the form 7(8|0?) ~ N(0, go?I,), where I, denotes a p X p

identity matrix.
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To modify the unconstrained priors for application to hypothesis H;, j =
0,...,p — 1, we restrict the domain of B under each hypothesis so that it is con-
sistent with the assumptions of the given hypothesis [21]. That is, under hypoth-
esis H;, the domain of B is restricted to the value space satisfying the condition
0,(8) = min(6y(8),- - ,0,—1(8)). This leads to the encompassing prior for H; de-
fined according to

1

(36) mi(%) o g, m(Blo?) = N (0,90 L) L (65(5)),

J

where I, (0;(3)) denotes an indicator function of whether 6;(8) = min(6y(8), - - - ,8,-1(3)),

and
= [ N(BI0.90°T,) Lun(8,(8))5.
The prior densities used to define each hypothesis are thus non-local with respect to
one another, which enables us to more rapidly exclude hypotheses that are inconsis-
tent with the data [21].
Under model (3.1) and the encompassing prior (3.6), the marginal density of

data y under hypothesis H; is given by
m; = [ [ 1618.0%)m, (810" (o) do%d
= [ | NIXB.0 L) SN (810.90°T, i (0,(8) 5B
where
= [ N(BI0.90°T,) L (8,(8))45.
Letting 3’ = 3/0, it follows that the normalizing constant
= [ N(B10.91,) (6,088

Recall that 6;(83),7 = 0,--- ,p — 1, is a linear function of B, thus I,i,(0;(c8")) =

Inin(06;(8')). Since o > 0, the order of {c6,(3')} is the same as that of {6;(3")}.
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Thus
Luin(03(08")) = Lnin (6;(8"))
and
— [ N 810,91, (6,848
We can see that ¢; is independent of o | which greatly simplifies the evaluation of

the marginal density of y. Then it follows that

m = [ [ Nwixs.0 ) N(BI0,60°T,) L (0,(8)) —ylodB

=~ [ [ ¥ wIXB.ALIN(BI.00°T,) 10,88

, ~(n+p)/2
_ Llln+p)/2) / (( —~ X8y Xﬂ)+$ﬂTﬂ) Lnin(0;(8))dB

Cj gP/Qﬂ'("H'p)/Q

L(n/2)V[V] / £, (5, 1) L (605(8))dB

T P (yTy — pTV )

Therefore the Bayes factor of H; to H;, B;j, is given by

_ m;(y) _ ri/c
mi(y)  rj/e;

where
= [ )T 0,(8))05.

Here t,(-) denotes a multivariate student distribution with degree of freedom v = n,
scale matrix ¥ = V(yTy — p"V'u)/n and median p = V X'y, where V =
(éIp + XTX)™!, X is the design matrix in model (3.1) and n is the number of

patients who have completed the assessment during the course of the trial.
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3.2 Numerical Studies

3.2.1 Operating Characteristics

We evaluated the operating characteristics of the proposed Bayesian adaptive
screening (BAS) trial design through extensive simulation studies. In the context of
the lung cancer trial, we considered a total of 16 combinational treatments, including
the placebo control, that result from 4 agents (Table 3.1). Two hundred patients were
available for enrollment (i.e., N=200), and we performed m = 2 replications of the
factorial design to obtain preliminary estimates of the treatment effects. The accrual
rate was 12 patients per month, and it took 10 days to obtain the symptoms outcome.
Because the accrual was fast, we faced the delayed-outcome problem, that is, when a
new patient is accrued and ready for randomization, some patients treated in the trial
may have not finished their 10-day assessment and their outcomes are not available
for calculating the randomization probabilities for the new patient. To deal with this
issue, we adopted the observed-data approach described previously and calculated
the randomization probabilities based on observed data when the outcomes of some
patients are not available. Because the observed-data approach supports continuous
accrual, it took approximately 17 months to complete the trial. For this trial, the
approach of suspending accrual apparently is not feasible because it would lead to
an infeasibly long trial lasting at least 4.8 years. Although the accrual-suspension
approach is not useful in practice, it provides a theoretical benchmark for compar-
ison because it represents the optimal case that the complete data are available to
determine treatment assignment. For convenience, we denote the BAS design based
on the accrual-suspension approach as BASg,s,. We configured the simulation pa-
rameters, 3, to generate 12 different efficacy scenarios. The simulation results of the

selection percentage of each treatment under these 12 different efficacy scenarios are
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displayed in Table 3.2. The total selection percentage of target treatments and the
total percentage of patients assigned to targets are summarized in Table 3.3. Under
each scenario, the most efficacious combination was defined as the combination with
the smallest value of symptom burden, §(3). We set the residual variance o? = 130
based on previous symptom report data. The two parameters involved in the futility
stopping rule, a and ¢§, were set to 0.35 and 10, respectively. We also compared the
proposed BAS design to a design based on 12 replications of the complete factorial
design on the 16 treatments, randomly allocating the last 8 available patients to
treatments. For the factorial design (FD), the treatment with the lowest value of the
least square estimate of 6(3) was selected as the best treatment at the end of the

trial. We carried out 2,000 simulations for each scenario.

Table 3.1: The 16 combinations of four agents (A;, Az, A3 and Ay) investigated in the

lung cancer trial.

Treatment T() T1 TQ T3 T4 T5 T6 T7
Ay 0 1 0 0 0 1 1 1
As 0|0 1 0 0 1 0 0
As 0 0 0 1 0 0 1 0
Ay 0|0 0 0 1 0 0 1

Treatment Tg Tg T1 0 T1 1 T1 2 T1 3 T1 4 T1 5
Ay 0 0 0 1 1 1 0 1
A, 1 1 0 1 1 0 1 1
As 1 0 1 1 0 1 1 1
Ay 0 1 1 0 1 1 1 1
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Scenarios 1 to 4 simulated the cases in which there was a single best treatment.
In scenario 1, the best (or most efficacious) treatment was 7 (i.e., single agent A;),
and the BAS design substantially outperformed FD. The selection probability of
the target treatment 77 under the BAS design was 86.1%, while under FD it was
64.9%. In addition, compared to FD, the BAS design allocated a significantly higher
percentage of patients to the best treatment (6.3% versus 39.3%, respectively). The
performance of the BAS design was rather similar to that of the optimal BASgep,
design. The selection probability of the target treatment under the BAS design
was only 1.1% lower than that of BASg,, design, and the percentage of patients
allocated to the best treatment were almost same in two designs (39.3% versus 39.1%,
respectively), suggesting that randomization based on observed data provided an
efficient way to handle delayed outcomes. In scenario 2, the best treatment was
Ty, the combination of agents A; and A,. In this case, the selection probability of
the BAS design was 21.5% higher than that of FD, and the BAS design assigned
32.8% more patients to the best treatment. In scenarios 3 and 4, the three-drug
combination 77y (i.e., combination of Ay, As and Ajz) and the four-drug combination
T15 were defined as the optimal treatments. Comparisons under these scenarios were
similar to those made under scenarios 1 and 2. The selection probabilities of the
BAS design were more than 18% higher than these of FD, and the percentages of
patients assigned to the best treatment under the BAS design were more than 33%
higher than those under FD. Again, we observed that the performance of the BAS
design was rather similar to that of the BASy,s, design.

Scenarios 5 to 8 were designed to evaluate the performance of the design when
there were two best treatments that were equally effective. In scenario 5, T7 and T,

were the target treatments with the highest efficacy. The BAS design selected T with
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a probability of 46.7% and T, with a probability of 47.5%; whereas FD selected these
two targets with probabilities of 41.0% and 43.1%, respectively. That is, the total
selection probability of 77 and T5 under the BAS design was 10.1% higher than that
under FD. The percentage of patients assigned to the best treatment using the BAS
design was 38.8% higher than that using FD. For scenarios 6 to 8, the BAS design
again outperformed FD, achieving substantially higher selection probabilities and
assigning higher percentages of patients to the optimal treatments. Scenarios 9 and
10 had three optimal treatments, and scenario 11 had four target treatments. Under
these scenarios, the performance of the proposed BAS design once again dominated
that of FD. Compared to FD, the total selection probabilities of the target treatments
under the BAS design were improved by 0.7-5.9%, and the percentages of patients
assigned to the best treatments were improved by 39.8-44.6%. Scenario 12 represents
the case in which the treatment effects of all combinations are the same as that of
the placebo. Under this scenario, the BAS design and FD terminated the trial due
to futility, with respective probabilities of 85.2% and 90.5%.

As demonstrated in the simulation study, the proposed BAS design achieved
two important clinical goals simultaneously. First, it selected the best treatment
arms with high probability. Second, it allocated more patients to the best treat-
ments. This result seems somewhat surprising because the common notion is that
these two goals are in conflict with each other. That is, it is often assumed that
randomization schemes in which patients are allocated to effective treatments have
less power to detect the best treatment at the end of the trial. This may be the case
in comparisons of only two or three treatments, but in more complicated settings in
which large numbers of treatments and treatment combinations are tested, the BAS

offers significant gains in both power and patient allocation.
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The success of our adaptive randomization scheme in accomplishing both
goals simultaneously in high-dimension settings can be understood by noting that
our design allocates more patients to the subset of treatments that are competitive.
By reallocating patients away from ineffective treatments, we obtain higher power
to distinguish between the top treatments. For example in scenario 1, our design
allocated 39.3 and 10.3 patients to the best and second best treatments (77 and 7T}5);
in contrast, FD allocated 6.3 patients to both T} and Ti5. As a consequence, BAS

had higher power to distinguish between T} and Ti5.
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Table 3.2: Operating characteristics of the proposed Bayesian adaptive screening

(BAS) design, BAS design based on the accrual-suspension approach

(BASqusp) and factorial design (FD). The efficacious treatments are bolded.

Treatment Effect
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-18
-25
-21

-13
-18
-10

-13
-18
-10
-21

-13
-18
-10
-21

Selection percentage

of each treatment

BAS BASsusp FD
Scenario 1
0.0 86.1 0.0 0.0 0.0 87.2 0.0 0.0 0.0 64.9 0.0 0.0
0.0 2.5 1.4 0.5 0.0 2.4 1.0 0.2 0.0 8.9 4.4 2.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0
0.2 0.2 0.1 6.2 0.1 0.2 0.0 6.0 0.2 1.6 0.3 16.1
Scenario 2
0.0 2.8 0.0 0.0 0.0 2.8 0.0 0.1 0.0 10.0 0.0 0.0
0.0 86.6 1.4 0.5 0.0 854 1.5 0.5 0.0 65.1 4.2 3.1
0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.5 0.0 0.0
0.2 0.3 0.0 5.5 0.2 0.2 0.0 6.6 0.4 1.6 0.2 14.2
Scenario 3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1
0.0 3.3 1.2 0.6 0.0 2.5 1.1 0.7 0.0 8.6 4.5 2.9
0.0 0.0 0.0 86.0 0.0 0.0 0.0 87.5 0.1 0.2 0.1 67.6
0.1 0.1 0.2 6.2 0.0 0.2 0.0 5.7 0.2 1.3 0.1 13.5
Scenario 4
0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.7 0.0 0.0
0.0 3.5 1.0 0.2 0.0 2.1 1.0 0.5 0.0 9.1 4.1 2.7
0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.4 0.0 0.0
0.0 5.7 0.0 86.8 0.1 6.5 0.0 86.5 1.0 144 0.1 66.6
Scenario 5
0.0 46.7 47.5 0.0 0.0 46.1 48.8 0.0 0.0 41.0 43.1 0.0
0.0 1.0 0.2 0.2 0.0 0.6 0.3 0.0 0.0 4.1 2.0 1.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.0 2.5 0.0 0.1 0.0 2.3 0.4 0.5 0.1 6.8
Scenario 6
0.0 46.2 0.0 0.0 0.0 47.0 0.0 0.0 0.0 43.9 0.0 0.0
0.0 49.1 0.2 0.1 0.0 48.8 0.2 0.2 0.0 43.0 1.8 1.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 1.7 0.0 0.0 0.0 1.5 0.2 0.9 0.0 8.3
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Table 3.2 continued.
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Selection percentage

of each treatment

BAS BASsusp FD
Scenario 7
0.0 46.3 0.0 0.0 0.0 47.9 0.0 0.0 0.0 42.1 0.0 0.0
0.0 0.8 0.4 0.2 0.0 0.8 0.2 0.2 0.0 4.3 2.1 0.9
0.0 0.0 0.0 48.5 0.0 0.0 0.0 46.8 0.0 0.0 0.0 41.3
0.0 0.0 0.0 1.8 0.0 0.2 0.0 2.0 0.2 0.7 0.0 7.7
Scenario 8
0.0 47.5 0.0 0.0 0.0 49.4 0.0 0.0 0.0 43.8 0.0 0.2
0.0 0.8 0.5 0.1 0.0 0.4 0.0 0.2 0.0 5.1 2.5 1.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0
0.1 0.1 0.0 48.7 0.0 0.0 0.0 48.3 0.2 0.9 0.1 44.5
Scenario 9
0.0 31.3 31.5 0.0 0.0 33.4 30.9 0.0 0.0 31.1 32.0 0.0
0.0 34.1 0.3 0.0 0.0 334 0.2 0.0 0.0 29.2 1.2 0.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 1.0 0.0 0.0 0.0 0.9 0.2 0.4 0.0 4.7
Scenario 10
0.0 30.9 33.7 32.2 0.0 30.6 34.1 31.3 0.0 30.4 30.9 29.6
0.0 0.4 0.5 0.2 0.0 0.6 0.5 0.2 0.0 2.5 1.2 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.1 0.3 0.0 4.2
Scenario 11
0.0 23.5 0.0 0.0 0.0 26.3 0.0 0.0 0.0 25.9 0.0 0.0
0.0 25.7 0.2 0.2 0.0 254 0.2 0.0 0.0 22.7 0.8 0.6
0.0 0.0 0.0 24.7 0.0 0.0 0.0 24.6 0.0 0.0 0.0 25.2
0.0 0.0 0.0 24.6 0.0 0.0 0.1 22.7 0.0 0.2 0.0 24.0
Scenario 12
0.0 0.9 1.1 0.6 0.0 0.8 1.1 0.9 0.0 0.8 0.5 0.4
1.0 0.8 1.5 1.4 1.0 0.8 0.8 1.0 0.4 1.0 0.4 0.8
1.0 0.8 0.8 1.1 1.0 1.0 1.2 0.8 0.8 0.5 1.0 0.6
0.8 1.1 0.8 1.1 1.1 1.1 1.2 1.1 0.7 0.4 0.4 0.8
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Table 3.3: Summary of the simulation results, including the total selection percent-

age of target treatments and percentage of patients treated at the target

treatments.
Scenario 1 2 3 4 5 6 7 8 9 10 11 12
Total selection percentage of target treatments
BAS 86.1 86.6 86.0 86.8 942 953 948 96.2 969 96.8 985 85.2%
BASsusp 87.2 854 875 86.5 949 958 94.7 97.7 977 96.0 99.0 85.1%
FD 649 65.1 676 66.6 841 869 834 883 923 909 978 90.5*
Total percentage of patients treated at target treatments

BAS 393 39.0 39.2 39.8 51.3 547 512 559 615 586 69.6
BASsusp 39.1 387 404 40.0 51.8 54.6 51.2 56.8 61.6 585 69.5

FD 6.3 6.2 6.2 6.3 125 125 125 125 188 188 25.0

* the percentage of trials terminated due to futility.

3.2.2 Sensitivity Analysis

The encompassing prior for B3 requires pre-specification of the value for hy-
perparameter g. We conducted a sensitivity analysis to check the robustness of the
design to the value of g. Specifically, we considered a tighter (or more informative)
prior with ¢ = 5 and a more diffused (or noninformative) prior with g = 20. Table
3.4 shows the results under scenarios 2, 4, 6, 8 and 10. Under each of these scenarios,
the results with ¢ = 5 or 20 were very similar to these reported in Table 3.2 (with
g = 10), suggesting that the operating characteristics of the proposed design were
not sensitive to the specification of g as long as it was reasonably diffuse. For exam-
ple, in scenario 2, the selection probabilities of the target treatment, 77, were 87.3%
and 87.1% under g = 5 and 20, respectively, which were very similar to that under
g = 10 (86.6%). The percentages of patients assigned to T; were also very similar
for g = 5,10 and 20.

We conducted another sensitivity analysis to examine the performance of the
proposed design when the outcome needs a longer assessment period to be evaluated.

We assumed an assessment period of 60 days and an accrual rate of 6 patients per
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month. As shown in Table 3.5, the results were very similar to these reported in
Table 3.2, in which the assessment period was 10 days with an accrual rate of 12
patients per month. This suggests that the proposed design is robust to the length

of the assessment period and delayed outcomes.

Table 3.4: Sensitivity analysis with different values of g under scenarios 2, 4, 6, 8 and 10
for the proposed Bayesian adaptive screening (BAS) design. The efficacious

treatments are bolded.

g=>5 g=20
Scenario Selection percentage Selection percentage
2 0.0 2.6 0.0 0.0 0.0 2.8 0.0 0.0
0.0 87.3 1.1 0.5 0.0 87.1 1.2 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.2 0.0 5.9 0.2 0.3 0.2 5.1
4 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0
0.0 2.5 0.7 0.2 0.0 2.9 0.8 0.6
0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
0.2 5.0 0.0 88.2 0.2 5.9 0.0 86.2
6 0.0 48.4 0.0 0.0 0.0 45.1 0.0 0.0
0.0 46.5 0.4 0.2 0.0 50.5 0.3 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.0 1.8 0.0 0.0 0.0 1.7
8 0.0 49.5 0.0 0.0 0.0 48.6 0.0 0.0
0.0 0.8 0.4 0.2 0.0 0.6 0.3 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.0 47.0 0.0 0.0 0.0 48.6
10 0.0 32.2 32.1 32.1 0.0 32,9 32.1 31.3
0.0 0.4 0.4 0.2 0.0 0.5 0.4 0.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.2 0.0 0.0 0.0 1.1
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Table 3.5: Sensitivity analysis for the proposed Bayesian adaptive screening (BAS)

design with an assessment period of 60 days and an accrual rate of 6 patients

per month. The efficacious treatments are bolded.

Selection percentage

Selection percentage

Selection percentage

Selection percentage

Scenario 1

0.0 86.5 0.0 0.0
0.0 3.2 1.1 0.5
0.0 0.0 0.0 0.0
0.2 0.3 0.0 5.3

Scenario 5

0.0 48.5 45.6 0.0
0.0 0.7 0.3 04
0.0 0.0 0.0 0.0
0.0 0.2 0.0 1.7

Scenario 9

0.0 319 31.9 00
0.0 324 0.2 0.2
0.0 0.0 0.0 0.0
0.0 0.2 0.0 1.3

0.0
0.0
0.2
0.1

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

Scenario 2

2.8 0.0 0.0
85.3 1.4 0.6
0.0 0.0 0.0
0.3 0.2 5.7

Scenario 6

47.9 0.0 0.0
47.0 0.3 0.4
0.0 0.0 0.0

0.0 0.0

Scenario 10

1.6

32.3 32.0 31.8
0.6 0.4 0.1
0.1 0.0 0.0

0.0 0.0

1.4

Scenario 3

0.0 0.0 0.0 0.0
0.0 2.7 13 0.2
0.0 0.0 0.0 86.0
0.0 0.2 0.2 6.6

Scenario 7

0.0 47.2 0.0 0.0
0.0 0.8 0.6 0.4
0.0 0.0 00 46.2
0.0 0.0 0.0 2.6

Scenario 11

0.0 24.2 0.0 0.1
0.0 24.6 04 0.2
0.0 0.0 00 25.0
0.0 0.1 0.0 24.5

Scenario 4

0.0 0.2 0.0 0.0
0.0 28 1.1 0.9
0.0 0.0 0.0 0.0
0.2 6.2 00 84.8

Scenario 8

0.0 48.4 0.0 0.0
0.0 0.8 0.2 0.2
0.0 0.0 0.0 0.0
0.1 0.1 00 47.8

Scenario 12

0.0 1.0 1.0 1.2
0.9 1.1 1.2 1.1
1.2 1.0 1.1 1.1
0.9 1.0 1.1 1.1
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CHAPTER 4

A Bayesian Phase 11 Design with Continuous Monitoring for
Late-Onset Responses Using Multiple Imputation

In this chapter, we propose a Bayesian single-arm phase II design with contin-
uous monitoring for late-onset responses. The interim monitoring rule is employed
to terminate the trial early for futility if there is sufficient evidence to determine the
inefficiency of experimental agents. The benefits of the interim monitoring include
avoiding assigning an unacceptable number of patients to inferior treatments and
saving resources. In general, interim monitoring based on previous responses as-
sumes that the outcome could be observed shortly after the initiation of treatment.
Therefore, at the decision-making time, the outcomes of previous enrolled patients
have been completely observed. However, this assumption may not hold. For late-
onset responses, patient outcomes may occur long after the assignment of treatment.
With fast accrual rate, the amount of missing responses at the decision-making time
is large.

To address the issue of late-onset responses, we propose an approach built
on missing data methodology to handle the missing responses and apply standard
methods to estimate the response rate. Specifically, we use a piece-wise exponential
model to estimate the hazard function of time to response data and use the multiple

imputation method to deal with unobserved responses. For the proposed methods,
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we do not need to interrupt patient accrual to wait for the full observation of previ-
ously patients that dramatically shortens the trial duration. We conducted extensive
simulation studies to evaluate the operating characteristics of the proposed method.
The comparison with standard, observed and complete methods show that the pro-
posed method reduces the total length of the trial duration and yields a desirable
operating characteristics for different physician-specified lower bounds of response
rate with different true response rates.

In following sections, we introduce the probability models and trial design
with interim monitoring. We propose a multiple imputation method to handle the
missing responses. We examine the operating characteristics of our proposed design

through extensive simulation studies and sensitivity analyses.

4.1 Methods

4.1.1 Probability model

Considering a single-arm phase II trial, we assume that subjects enter the trial
sequentially and each subject will be assessed for a fixed assessment period of T'. We
consider a binary response as a primary outcome variable for subject ¢ during the
follow-up time, denoted by y;, where y; = 1 if treatment-related response is observed
in (0, 7') and y; = 0 otherwise. The length of assessment time 7" is chosen based on
previous knowledge to ensure that a treatment-related response event usually occur
within (0, T"). For different diseases and treatment agents, the evaluation period T’
varies from days to months.

During the stage of the trial, suppose that n patients have entered the trial,
and let y; denote the binary response outcome for ¢th subject. Denoting the observed

response data for n subjects by y = {y;,i = 1,--- ,n}, the likelihood function is given
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by

(4.1 Lylm) = [[ 741 = m}i oo

where 7 denotes the response rate of the experimental treatment. Letting f(7)

denotes a prior distribution for 7, the posterior distribution of 7 is given by

L(y|m)f(m)
J L(y|m) f(m)dn

(4.2) fmly) =

For the conjugate prior specification of response rate m, we set f(7) as a beta distri-
bution with two shape parameters ¢ and &, then the posterior distribution of 7 is a
beta distribution with shape parameters ¢ + > ", y; and £ +n — > . y;. Here, we

suggest to use a vague or non-informative prior for .

4.1.2 Interim Monitoring and Late-onset Responses

Interim monitoring is usually conducted to stop the trial early for futility if
there is sufficient evidence to demonstrate the inefficiency of experimental drug. The
monitoring rules can be applied to the trial continuously or after a group with a fixed
number of subjects. The advantage of interim monitoring is that if the experimental
treatment is deemed inefficacious, we can stop the trial earlier and assign fewer
patients to the ineffective treatment.

The stopping rule in our trial design is based on a physician-specified lower
bound of response rate for the experimental treatment, denoting by ¢. If the true
response rate of the experimental treatment is higher than the lower bound ¢, we
consider the experimental treatment to be efficacious and should continue recruiting
new arriving patients into the trial; otherwise, the trial should be terminated when
sufficient information has been collected to demonstrate its futility. In our trial

design, we conduct continuous monitoring before each new patient entering the trial
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after ng patients are completely followed. During the course of the trial, suppose that
n (n > ng) patients have entered the trial. If the posterior probability of response
rate achieving the physician-specified lower bound, ¢, is less than a cut-off value, 1),
e.g., Pr(m < ¢) > 1, we stop the trial due to futility; otherwise the trial continues
recruiting new patients until the exhaustion of the total sample size N and concludes
that the experimental agent is sufficiently promising for further study. The inference
of the posterior estimates of response rate 7 is made given observed patient data by
the formula (4.2).

As mentioned before, continuous monitoring based on previous patients out-
comes needs outcomes to be assessed quickly after the initiation of the treatment.
However, it may not be the case for late-onset responses which may occur long after
the assignment of treatment. Before we discuss our method to address this issue,
we introduce the missing mechanism of the late-onset responses. In general, for
late-onset responses, the assessment time 7' usually is longer than the interarrival
time between two consecutive cohorts. Here, the interarrival time is defined as the
interval time between the entering time of two consecutive cohorts. If we denote the
patient interarrival time by 7, it indicates that when 7 < T', some patients under the
treatment might have not yet exhibited responses or completed evaluation period
when new patient is ready to enter the trial. Specifically, we denote the time to
response by t; for the ith subject and let u; (0 < w; < T') denote its actual follow-up
time at the moment of interim monitoring. If the actual follow-up time is less than
the true response time, i.e., u; < t;, it indicates that the patient response could not
be observed at the moment of interim monitoring. Therefore, responses are missing
only when patients have not yet experienced response (u; < t;) and have not fully

followed up to T (u; < T'). If patients either have experienced responses (t; < u;)
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or have completed followed-up (u; = T') without experiencing responses, patients
outcomes are observed. Yuan and Yin (2012) showed that under this missing data
mechanism, the generated data are non-ignorable missing which means the proba-
bility of missingness of responses depends on the underlying missing outcomes. For
patients who will not experience responses during the whole assessment period, they
are more likely to have missing outcomes at the interim monitoring time compared
to patients who experienced responses.

As we know if the patient accrual rate increases, there would be more missing
responses at the same decision-making time. For example, considering a trial with
an assessment period of 3 months, if the accrual rate is 2 patients per month, i.e., the
interarrival time 7 = 1/2 months, there would be at most 6 missing outcomes at the
decision-making time. If we increase the accrual rate to 4 patients per month, i.e.,
the interarrival time 7 = 1/4 months, there would be at most 12 missing outcomes
at the decision-making time. Therefore, during the trial of conduct, the amount of
missing data depends on the ratio of of the assessment period 7" and the interarrival
time 7. We denote this ratio by A/I ratio = T'/7. The larger the value of the ratio
is, the greater the amount of missing data would be.

Comparing with missing completely at random or missing at random, non-
ignorable missing data bring a new challenge to the trial design. To address the issue,
one possible approach is to suspend the accrual and wait until the previously enrolled
patients are fully followed-up. Therefore, the outcomes of all treated patients can
be observed and there is no unobserved response before new patient entering the
trial. Obviously, this method fully utilizes all available information and provides
a precise estimate of response rate at the time of decision-making time. However,

frequently suspension leads to an infeasibly long trial and brings inconvenience for
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trial administration.

If we do not suspend the accrual and assign a newly arriving patient to ex-
perimental treatment immediately, those patients under treatment might not have
completed the assessment period. A simple choice is to make early stopping deci-
sions solely based on the outcomes from patients who have completed the assessment
period or experienced responses during the assessment period. It means only the
complete data thus far are used at the moment of interim monitoring and the data
from the patients who have not completed the assessment period and not yet given
responses are ignored. However, this method has a higher chance to include patients
who would experience responses during the assessment period. The reason is that for
patients who would not experience responses in (0, 7"), their responses are more likely
missing at the interim monitoring time compared to patients who would experience
responses in (0,7). Therefore, this method is problematic and overestimates the
response rate. Another approach which does not suspend the accrual is to make in-
ference based on data from all treated subjects. For patients who have not completed
the assessment period, if there are no responses at the time of interim monitoring,
the current outcomes of no responses will be considered as the final outcomes at the
end of assessment period. Specifically, if the ith subject has not completed the eval-
uation period 7" and also has not experienced response, his/her response at the end
of assessment period is considered as censored, i.e., y; = 0. Although this approach
includes all the patients under the treatment, it uses current observed information to
replace the final outcomes for the partially observed patients. Due to the property of
late-onset responses, these patients who have not completed the assessment period
are more likely to give responses at the remaining assessment period. The longer we

follow the patient, the higher probability that the patient will experience response
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later. Therefore, this approach is also problematic since it often underestimates the

response rate and terminates the trial unappropriate.

4.1.3 Multiple Imputation Approach

To address the missing-response issue introduced in previous section, we pro-
pose a method to handle the unobserved patient outcomes based on missing data
theory [30]. Different from above simple methods, this method is built on missing
data methodology and systematically treats the unobserved outcomes as missing
data. Intuitively, we first fill in the missing data by the multiple imputation method
and then apply the standard complete-data method to the imputed dataset. Mul-
tiple imputation provides a systematic way to impute the missing response data
and meanwhile account for the sampling uncertainty due to the missing values [40].
Following this route, we replace each missing value with M imputed values, respec-
tively, i.e., we impute the missing data M times to form M filled-in datasets. Then
the standard complete-data methods can be applied to each of the filled-in datasets.
By combining the M complete-data inferences, we take into account the imputation
uncertainty.

To achieve the goal above, we specify a flexible piecewise exponential model
for the time to response data during assessment period. Specifically, we consider a
partition of the follow-up period [0, 7] into a finite number of K disjoint intervals
[0, h1), [h1,he), -+, [hKk—1,hxk = T] and assume a constant hazard A, in the kth in-
terval. We define the observed time x; = min(u;, t;) and d;; = 1 if the ith subject ex-
periences response in the kth interval; and d;; = 0 otherwise. Let A = {Ay, -+, Ax };

when {z;} are completely observed, the likelihood function for n subjects based on
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observed time to response data D = {z;,dy,i = 1,--+- ,n,k=1,--- K} is given by
n K
(4.3) L(DIA) = [T [T Ow) *exp{—Mew},
i=1 k=1
where e = hy, — hyp_1 if ; > hg; ey = x; — hy_y if z; € [hy_1, hy); and otherwise
e;r = 0. K is the number of intervals defined for the piecewise exponential model.
Large K results in a nonparametric model of hazard function and unstable estimates;
small K lead to inadequate model fitting. In our simulation studies, we conducted
sensitivity analysis with different values of K to check its robustness.
Let f(A) denote the joint prior distribution for all A;’'s. We write the joint

posterior distribution as
L(DIA)f(A)
fAD) = -5
J L(DIX)
For the prior specification of the piece-wise exponential model, we adopt a correlated
prior approach introduced in Qiou, Ravishanker and Dey (1999) [37]. Specifically,
a discrete-time martingale process [1][2] is assigned to correlate the \;’s in adjacent

intervals, which introduces some smoothness to the estimates. Given (Ay, -+, A1),

we specify that

Ck

Me| AL, Aeo1 ~ Gammal(cy, Y k=1, K

where Gamma(&,n) represents a gamma distribution with a shape parameter £ and
a scale parameter 7, so that E(Ag|A1, -+, Ak_1) = Ap_1. The choice of the value
of )y is suggested as follows. We assume a constant hazard function for the whole
assessment period, i.e., A\x = Ag_1 = --- = A\g. Then the value of \y can be obtained
by setting the response rate at the end of assessment period as the physician specified
lower bound ¢. The value of ¢, indicates the amount of information for smoothness

of \p. If ¢, =0, \; is independent of A\,_; while if ¢, — 00, A\ = A\p_1.
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The conditional posterior distribution of A given Aq,--- , A\._1 and observed

data D is

_ LD sl )
F e A ) = JLAD) F Nl A1, Akea)”

After we obtained the full conditional distributions for each A, the Gibbs sampler will
be used to obtain posterior draws of unknown parameters for statistical inferences.

We denote the binary response outcomes for subjects in the trial by y =
(Yobs> Ymis), Where y . and y,,.. denote the observed and missing response data,
respectively. To carry out the multiple imputation, we draw the missing binary

responses from its posterior predictive distribution which is given by

F(wlD) = / S\ FID)AA

The inference for informative missing responses is based on current observed time
to response data D which is more informative than observed binary data y,,. The
inference using only y,,, would lead to biased estimates. Specifically, we can draw M
independent sampling of the unknown parameter A with respect to its posterior dis-
tribution f(A|D) given observed data D. Therefore, based on the posterior estimates
of A, we can calculate the response rate of the experimental treatment at any time
t for 0 <t < T. Generally, if the ¢th subject has not experienced response at the
decision-making time given the actual follow-up time u;, i.e., ¢ > u;, the conditional
probability that the ¢th subject would experience response during the assessment

period (0,7T) based on the posterior estimate of A is

#ON) = Prt < Tit > u) = 27U <P€it_>P;§t <) _ F(T;?@g(Ui)

where 7;(A) denotes the conditional response rate and F'(-) is the cumulative dis-

tribution function of the random variable. In our piece-wise exponential model, the
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estimation of F'(s) for any 0 < s < T' can be obtained by F'(s) = 1—2sz1 exp(—Agex)
where e, = hy, — hg—q1 if s > hy; e, = s — hy—1 if s € [hg_1, hy); and otherwise e, = 0.

After we obtain the conditional response rate at the end of assessment period
for subject i, 7;(A), we can easily find that the full conditional distribution of binary

response Y; € Y,,.;, 1s given by
f(yilA) = Bernoulli(7;(X)),

where Bernoulli(-) represents the probability density function of a Bernoulli distribu-
tion. Based on M independent posterior samplings of the parameter A, we can draw
M independent samplings of y; € y,,,;, from the above posterior distribution f(y;|A).
Here, the missing value y; generated in this way is drawn from its posterior predic-
tive distribution f(y;|D). We construct M imputed datasets by filling in y,,;, with
M independent samples y%ﬁ,m =1,---, M. Based on the mth imputed dataset
y™ = {y,., y%z}, we obtain the posterior distribution of the response rate 7™ by
applying the simple Beta-Binomial model (4.1) and get the estimate of Pr(7(™ < ¢).

Then we combine the estimates of the response rate across M imputed datasets by

average and get the estimate of stopping criteria

1 M

Pr(r < ¢) = i Z Pr(r™ < ¢).

m=1
If Pr(m < ¢) > 1, we stop the trial due to futility; otherwise, the trial continues

until the maximum sample size N is reached.

4.2 Numerical Studies

4.2.1 Operating Characteristics

In this chapter, we propose a multiple imputation method to handle unob-

served responses at the decision-making time for a single-arm phase II trial design.
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We conducted extensive simulation studies to evaluate the operating characteristics
of the proposed method. A maximum number of N = 50 patients were treated se-
quentially. The assessment period was set as 7' = 6 months and the interarrival time
between every two consecutive cohorts was 7 = 1 month, i.e., the A/I ratio=6. The
number of intervals for piece-wise exponential model used in multiple imputation ap-
proach is assumed as K = 6. Specifically, we partitioned the assessment period [0, 7]
into K equal intervals, i.e., [0, %T), [%T, %T), e ,[%T, T]. We assigned a beta
distribution with ( = 0.1 and £ = 0.2 for f(7). Under each scenario, we simulated
1,000 trials.

We considered three different lower bounds of response rate with ¢ = 0.3,0.4,0.5,
respectively. Under each case of different lower bounds, we considered several sce-
narios with various true response rates of experimental treatment, denoted as F(7T').
Specifically, for ¢ = 0.3, we considered 5 scenarios with true response rates at 0.1,
0.2, 0.3, 0.4, and 0.5 respectively. For ¢ = 0.4, we considered 5 scenarios with true
response rates at 0.2, 0.3, 0.4, 0.5, and 0.6 respectively. Similarly, for ¢ = 0.5, we
considered 5 scenarios with true response rate as 0.3, 0.4, 0.5, 0.6, and 0.8 respec-
tively.

Under each scenario, we generated time to response data from a Weibull dis-
tribution. To generate the late-onset responses with different degrees of responses
occurring in latter half of the assessment period, (7/2,T), we specify the Weibull
distribution with different shape and scale parameters. Specifically, we choose the
scale and shape parameters of the Weibull distribution based on the following two
requirements. First, the true response rate at the end of follow-up indicates the value
of cumulative distribution function at t = T', where ¢ is generated from Weibull dis-

tribution. Second, the probability of occurring responses during (7/2,T) is fixed
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at a pre-specified percentage, which represents the degrees of late-onset responses.
Therefore, based on the true response rate of experimental treatment and degrees
of late-onset responses, we specify the shape and scale parameters of the Weibull
distribution to generate the time to response data under each scenario. In our simu-
lations, we assumed approximately 50%, 70% and 90% responses would occur in the
later half of the assessment period (77/2,T).

We compared the proposed multiple imputation methods (MI) to the stan-
dard method, complete method, and observed method which will be introduced here.
For convenience, we refer to the latter three methods as SD, CP and OB, respec-
tively. Basically, the simple Beta-Binomial model (4.1) is applied to estimate the
posterior distribution of response rate for these three methods. For SD, we suspend
the accrual and wait until the previously enrolled patients were fully followed-up.
This method utilizes all the information and provides a benchmark for comparison.
For the designs of CP and OB method, both recruit patients as the same rate with
the proposed design using MI method. However, CP and OB methods only use
partial information and lead to biased inferences resulting in terminating the trial
inappropriately. Specifically, CP discards the missing responses and its inference is
solely based on the outcomes of patients who have completed the assessment period
or experienced responses during the assessment period. OB considers outcomes from
all the treated patients, but it uses current outcomes to replace the final outcomes
if they still have not been observed at the decision-making time. As mentioned in
Section 2.2, CP and OB are both problematic with overestimation and underesti-
mation of response rate respectively. For all four designs, continuous monitoring is
conducted after ny patients have been fully followed-up in the trial. Therefore, we

need to suspend the accrual after the noth patient enters the trial for designs of MI,
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CP and OB. In our simulation studies, we set ng = 5.
The simulation results are shown in Table 4.1. We compared MI to SD, CP
and OB in the terms of the average percentage of trial stopping, total number of

patients assigned to the treatment and the total trial duration under each scenario.
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Table 4.1: The percentage of trial stopping, total number of patients assigned to the
treatment and the total trial duration under the standard, complete, ob-

served and multiple imputation methods.

percentage of stop # of patients trial duration
F(T) SD CP OB MI SD CP OB MI SD CP OB MI

Response lower bound ¢=0.3, 90% response in (7/2,T),A/I =6
0.1 99.3 98.8 99.7 98.8 9.5 11.8 82 11.1 55.7 16.8 13.2 16.2
0.2 75.3 70.6 89.0 74.5 239 270 16.6 254 136.9 33.5 221 31.7
0.3 33.5 29.8 576 33.7 37.2 39.1 281 378 207.7 476 35.2 46.1
0.4 10.3 9.7 294 10.7 45.8 46.1 384 458 248.7 55.7 46.9 55.3
0.5 30 30 117 33 48.7 48.7 452 48.6 256.3 58.5 54.6 58.4

Response lower bound ¢=0.4, 90% response in (1/2,T),A/I =6
0.2 98.7 96.4 99.6 97.5 124 16,6 88 15.1 70.7 21.8 13.8 20.2
0.3 71.5 64.3 89.1 70.3 26.0 30.2 15.8 27.6 1449 370 214 341
0.4 30.1 23.8 59.7 29.5 39.0 419 273 40.1 211.6 50.8 343 48.6
0.5 9.0 6.4 323 88 46.3 47.7 369 46.8 2441 573 452 564
0.6 2.0 1.2 13.0 25 49.1 49.5 447 49.0 2514 59.4 54.0 589

Response lower bound ¢=0.5, 90% response in (1//2,T),A/I =6
0.3 95.3 925 99.1 95.0 151 203 9.2 16.6 84.0 256 143 219
0.4 63.7 56.3 88.8 67.9 28.7 34.0 158 278 155.2 411 214 345
0.5 25.2 200 635 32.7 41.2 440 25.1 38.8 2171 53.0 32.0 472
0.6 64 45 373 115 474 484 35.1 455 2423 58.1 43.3 55.0
0.8 03 02 43 0.7 499 499 482 49.7 2374 59.9 580 59.7

Response lower bound ¢=0.3, 70% response in (7/2,T),A/I =6
0.1 993 985 99.8 989 98 124 85 114 56.8 17.5 13.5 16.5
0.2 76.2 68.1 874 75.9 23.2 274 17.1 25.0 128.9 33.9 227 31.2
0.3 33.6 279 514 333 373 395 304 38.0 199.1 481 37.8 46.3
0.4 9.3 87 220 9.7 46.1 46.5 41.3 46.1 235.8 56.1 50.2 55.7
0.5 4.5 39 105 45 48.0 48.2 456 48.0 235.2 581 55.1 57.8

Response lower bound ¢=0.4, 70% response in (1/2,T),A/I =6
0.2 977 959 994 974 131 181 95 15.5 72.8 233 145 20.7
0.3 71.2 60.8 87.6 70.6 259 318 16.8 28.1 138.5 388 224 34.6
0.4 28.0 203 544 282 394 431 289 404 201.2 521 36.1 49.0
0.5 85 49 265 7.1 46.5 48.2 393 474 228.1 579 48.0 57.0
0.6 2.3 1.0 11.2 1.8 49.1 49.6 454 49.3 229.6 59.5 549 59.2

Response lower bound ¢=0.5, 70% response in (T/2,T),A/I =6
0.3 95.9 923 99.2 96.5 144 209 9.7 159 76.9 26.2 14.7 21.1
04 653 54.7 86.8 67.1 28.5 354 17.0 28.9 145.9 427 227 355
0.5 275 172 59.6 31.7 40.3 44.7 271 39.3 1975 539 34.1 477
0.6 6.2 3.7 289 93 47.5 48.6 385 46.5 221.7 585 47.0 56.0
0.8 0.6 0.2 3.4 0.8 49.8 49.9 48.6 49.7 208.4 599 584 59.6
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Table 4.1 continued.

percentage of stop # of patients trial duration
F,(T) SD CP OB MI SO CP OB MI SD CP OB MI
Response lower bound ¢=0.3, 50% response in (7/2,T),A/I =6, K =6
0.1 99.7 98.7 999 994 9.7 124 87 11.2 55.3 175 13.7 16.2
0.2 746 652 828 73.6 23.6 283 198 254 127.0 35.0 25.7 31.7
0.3 325 253 46.1 30.6 37.6 404 32.8 38.8 191.4 49.1 40.5 47.3
0.4 11.1 88 194 105 45.3 46.1 42.1 45.6 217.6 55.7 51.1 55.0
0.5 34 28 57 31 48.5 48.7 47.6 48.6 2189 58.6 57.3 58.5
Response lower bound ¢=0.4, 50% response in (1/2,T),A/I =6, K =6
0.2 97.2 93.8 98.8 96.3 129 18.6 10.2 15.7 69.8 24.0 15.3 20.9
0.3 68.6 55.7 81.4 66.5 26.5 33.8 19.8 29.5 135.0 41.0 25.7 36.2
0.4 28.2 19.5 4777 26.5 39.4 432 314 40.8 189.0 52.2 39.1 49.5
0.5 8.1 46 216 7.9 46.7 48.1 41.3 46.9 2114 579 50.2 56.5
0.6 33 19 96 23 48.6 49.2 459 49.0 2054 59.1 55.5 58.9
Response lower bound ¢p=0.5, 50% response in (T7/2,T),A/I =6, K =6
0.3 95.9 904 982 954 14.7 22.8 10.7 16.8 75.3 28.2 15.8 22.0
04 673 51.0 824 66.9 28.0 36.6 19.8 28.7 134.8 44.0 25.7 35.3
05 240 137 51.1 26.1 41.3 45.7 30.9 40.8 186.0 55.0 38.3 49.5
0.6 6.5 25 21.2 6.9 473 49.0 415 472 199.8 589 50.4 56.9
0.8 0.0 0.0 1.2 0.1 50.0 50.0 49.5 50.0 181.9 60.0 59.5 60.0

66



First, we considered high skewed late-onset response data, i.e., 90% of re-
sponses would occur in the later half of the assessment period (7'/2,7). For the
scenario of the lower bound of response rate ¢ = 0.3, if the true response rate
F,(T) = 0.1, the experimental treatment has lower efficacy and we should terminate
the trial early to avoid assigning more patients to it. Under this scenario, SD termi-
nates 99.3% trials for futility and assigns average 9.5 patients to the treatment. MI,
CP and OB perform very similarly with SD. They terminate the trial for futility at
the percentages of 98.8%), 98.8% and 99.7% and assign 11.1, 11.8 and 8.2 patients to
the treatment, respectively. For SD, because of frequently accrual suspension, the
trial duration is much longer than the other three methods. Considering the scenario
with the same lower bound ¢ = 0.3, if the true response rate F;(T) = 0.2, we also
should terminate the trial early and assign fewer patients to the treatment. Under
this scenario, SD terminates 75.3% trials and assign 23.9 patients to the treatment.
Our proposed MI method performs much more closer results with SD, which ter-
minates 74.5% trials and assign 25.4 patients to the treatment. For CP, patients
who would experience responses during the assessment period are more likely to be
included for inference and therefore it overestimates the response rate which results
in low percentage of early stopping. Hence, CP terminates the trials with the per-
centage of 70.6%, which is lower than that of SD, and assigns 27.0 patients to the
treatment, which is higher than that of SD. OB considers the final responses of par-
tially followed-up patients as no response. However, these patients might experience
responses during the remaining assessment period. Therefore, it results in under-
estimation of the response rate and high percentage of early stopping. Comparing
with SD, OB terminates the trials with lower percentage (89.0% versus 75.3%) and

assigns fewer patients (16.6 versus 23.9) to the treatment. When the true response
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rate Fy(T) = 0.3, SD terminates trials with the percentage of 33.5% and assigns 37.2
patients to the treatment. MI still performs better than CP and OB. Comparing
with SD, its percentage of early stopping (33.5% versus 33.7%) and the number of
patients assigned to the treatment (37.2 versus 37.8) are both very close to the re-
sults of SD. For the scenarios of considering true response rates Fy(7) = 0.4 and
F,(T) = 0.5, MI still has the best performance among all three methods, and has
very comparable results with SD. However, the trial duration of SD is much longer
than MI and results in a fatal implementation problem in the real trial. For all these
five scenarios, CP outperforms than OB on average, since due to the high skewed
late-onset responses, very few patients would experience responses at the early part
of the assessment period which reduces the degree of overestimation for CP method.
Similarly, we considered five scenarios with the lower bound ¢ = 0.4 and another five
scenarios with the lower bound ¢ = 0.5. The same conclusion of MI outperforming
CP and OB is made for all scenarios.

To further evaluate the performance of our proposed method, we consid-
ered different degrees of responses occurring in latter half of the assessment period,
(T'/2,T). Similarly, we considered scenarios combining 70% of responses occurring
in (7/2,T) with different lower bounds. Taking the case of the lower bound ¢ = 0.4
as an example, we listed 5 scenarios with different true response rates Fy(7). On
average, MI has very comparable results with SD and outperforms CP and OB.
Specifically, considering F;(7) = 0.2, MI terminates the trial for futility with the
percentage of 97.4%, which is very close to the stopping percentage of SD (97.7%).
When the true response rate is set at Fy(7") = 0.6 higher than the lower bound
¢ = 0.4, SD terminates only 2.3% of trials for futility. Under this scenario, MI

outperforms CP and OB again with stopping percentage at 1.8%. Meanwhile, MI
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assigns similar number of patients to the experimental drug comparing with SD, but
its trial duration is much shorter than the duration of SD. For the case of 50% of
responses would occur in the later half of the assessment period (7'/2,T), MI still
has very comparable performance with SD under many scenarios with different lower

bounds and true response rates.

4.2.2 Sensitivity Analysis

To further evaluate the performance of MI, we generated the late-onset data
from log-logistic distribution and compared the simulation results with SD, CP and
OB. We considered two cases: in one case setting the lower bound ¢ at 0.4 with 90%
responses occurring in (7/2,T); in the other setting the lower bound ¢ at 0.5 with
70% responses occurring in (77/2,7). The simulation results under these settings
are displayed in Table 4.2. From the table, we made the same conclusion comparing
with previous simulations which generate the time to response data from the Weibull
distribution. Specifically, MI performs the comparable results with SD for both two
cases and outperforms CP and OB. Taking the first case as an example, if the true
response rate Fy(T) = 0.3, MI terminates the trial with 68.2% and assigns 28.1
patients to the treatment, which are very close to the results from SD (71.5% and
26.0).

We conducted sensitivity analyses to check the impact of parameter K and
A /T ratio. The simulation results are displayed in Table 4.3. We considered the case
of setting lower bound ¢ = 0.4 and 90% responses occurring in (77/2,7). The first
five rows represent the analysis of checking the robustness of parameter K under
different values of Fy(T"). Here, the A/I ratio is still set at 6, which is the same as
the settings of previous simulation results. Specifically, we considered the scenarios

with ' = 10,12 and compared the results with the results in Table 4.1, which set
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K = 6 with the same ¢ and late-onset degree. From the results, we found similar
simulation results for different values of K. For example, considering Fi(7T") = 0.2,
MI terminates the trial for futility with the percentages of 97.5%, 96.8% and 96.2%
for K =6, 10, 12, respectively. MI also assigns the similar numbers of patients to the
treatment with the similar trial duration for different values of K. The results show
that the number of intervals for piece-wise model has negligible effect on the results

when it is set within a reasonable range.

Table 4.2: Sensitivity analysis for the proposed multiple imputation method with data

generated from log-logistic distribution.

percentage of stop # of patients trial duration
F(T) SD CP OB MI Sb CP OB MI SD CP OB MI

Time to event data is generated from log-logistic distribution
Response lower bound ¢=0.4, 90% response in (T7'/2,T),A/I =6, K =6
0.2 97.5 95.8 99.8 96.8 126 169 9.1 154 71.8 22.1 14.1 20.6
0.3 69.7 61.9 88.9 68.2 26.6 31.0 159 28.1 1479 379 214 347
04 284 227 60.3 29.2 39.9 426 27.2 40.2 215.8 51.4 342 487
0.5 99 72 311 98 46.0 473 377 46.4 240.7 57.0 46.1 55.9
0.6 1.7 1.0 150 1.9 49.3 49.6 43.8 49.3 249.7 59.6 53.1 59.2

Response lower bound ¢=0.5, 70% response in (7/2,T),A/I =6, K =6
0.3 95.6 919 99.1 95.8 153 21.9 10.1 16.7 81.8 273 152 219
04 633 538 845 653 29.1 352 18.0 29.2 148.5 425 23.8 36.0
0.5 25.8 171 579 294 40.7 447 277 39.8 199.1 53.8 34.8 484
0.6 4.9 22 2718 70 48.0 49.2 39.1 47.2 223.0 59.1 47.7 56.9
0.8 02 01 27 02 49.9 50.0 489 499 207.0 60.0 588 59.9

The last five rows in Table 4.3 represent the analysis of checking the impact
of A/I ratio. For comparison, the parameter K is set at 6, which is the same with
the simulations in Table 4.1. We considered ¢ = 0.4 and 90% late-onset degrees. We
considered the A/I ratio at larger values of 8, 12 and compared the results in Table
4.1, which set A/I ratio at 6 with the same ¢ and late-onset degree. The larger
value of A/I ratio indicates faster accrual rate and higher percentage of missing

responses at the decision-making time. Therefore, it leads to a difficult case when
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A/T ratio increases. From the simulation results, we found that with higher A/I
ratio, MI incorrectly terminates the trial with a higher percentage for most scenarios.
Considering a scenario with true response rate Fy(T') = 0.6, the stopping percentages

for A/I ratio at 6, 8, 12 are 2.5, 3.6, 3.9, respectively.

Table 4.3: Sensitivity analysis for the proposed multiple imputation method with dif-

ferent values of K and different values of A/I ratio

Fy(T) % of stop # of patients trial duration % of stop  # of patients trial duration

K=10 K=12
0.2 96.8 15.3 20.5 96.2 15.6 20.8
0.3 69.1 28.0 34.6 69.0 27.9 34.5
0.4 29.9 40.0 485 31.7 39.2 47.6
0.5 9.1 46.5 56.1 8.7 46.7 56.3
0.6 1.9 49.2 59.1 2.6 49.0 58.8

A/1=8 A/1=12
0.2 97.7 15.6 17.1 97.1 16.8 14.0
0.3 69.2 28.3 28.1 70.0 28.8 21.5
0.4 30.3 40.0 38.9 32.4 40.0 29.2
0.5 11.4 45.7 44.2 9.9 46.6 33.7
0.6 3.6 48.6 46.7 3.9 485 35.0
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CHAPTER 5

Conclusions

To account for the unique properties of biological agents, we proposed a new
Bayesian phase I/II design for trials that evaluate combinational biological agents.
A change-point model is used to capture the feature that the dose-toxicity surface
of biological agents may plateau at high dose levels, and a second-order logistic
model is employed to accommodate non-monotonic patterns for the dose-efficacy
relationship. We proposed a novel dose-finding algorithm that adaptively encourages
the exploration of two-dimensional dose-toxicity and dose-efficacy surfaces during
dose finding. In the early stage of the trial, the algorithm gives higher priority to
trying new doses, and toward the end of the trial it assigns patients to the most
effective dose that is safe. Extensive simulations show that the proposed design
has good operating characteristics with a high probability of selecting the BODC.
The advantage of our proposed design over the greedy design further verifies the
importance of the dose-exploration algorithm incorporated in our design.

The proposed design is appropriate for trials in which toxicity and efficacy
outcomes are observed quickly. If toxicity and particularly efficacy cannot be ascer-
tained in a timely manner, the proposed design may be less useful. To handle delayed

toxicity and efficacy outcomes, we can extend our approach by modeling toxicity and
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efficacy as time-to-event outcomes to accommodate censored observations [22]. In
addition, in the proposed design, we are interested in finding the dose with highest
efficacy and tolerable toxicity as the target BODC. Our design can be easily extended
to the case that the target BODC is defined by a certain toxicity-efficacy trade-off
function. In that case, the main exercise is to elicit a reasonable toxicity-efficacy
trade-off (or utility) function from clinicians [47]. Once the trade-off is defined, our
design can be directly applied by replacing efficacy with the trade-off as the criteria
of dose escalation and selection.

To more efficiently handle the large number of combination therapies that
must be tested, we proposed a Bayesian adaptive phase II screening design for trials
combining multiple agents. Rather than testing each of the combinations indepen-
dently, our design encompasses all the combinations of interest in a large screening
trial. We model the main and synergistic effects of the treatment agents using a linear
model and cast the screening problem into a Bayesian hypothesis testing problem.
By using a factorial lead-in phase, we are able to quickly obtain preliminary estimates
that each treatment combination is optimal, which enables us to quickly move into
the adaptive phase of the algorithm. We utilize the encompassing prior with non-
local constraints to accommodate the complex parameter constraints imposed by the
hypotheses, and we continuously update the posterior probability that each treat-
ment is best. Based on this posterior probability, we adaptively allocate patients to
effective combinations and select the best treatment. The proposed design substan-
tially outperformed a complete factorial design. Our design allocates more patients
to better treatments while at the same time providing higher power to identify the
best treatment at the end of the trial.

To address the unobserved responses for late-onset responses at the decision
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making time, we proposed a Bayesian single-arm phase II design for estimating the
response rate of the experimental drug. We conduct continuous monitoring to termi-
nate the trial early for futility and avoid assigning unacceptable number of patients
to inefficacious treatments. We handle the missing responses using the multiple im-
putation approach by modeling the hazard function of time to response data using
a piece-wise exponential model. Extensive simulations show that the proposed de-
sign yields a desirable operating characteristics for different physician-specified lower
bounds of response rate with different true response rates. The proposed design

dramatically reduces the total length of the trial duration.
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