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they have no contribution to the complex, but that they do not meet the experimental 

cutoff value of a hot spot. Since both programs scored the Phe410 and Met450 residue 

very close to a hot spot, both these residues should not be ignored as they will likely 

contribute to the binding, albeit not significantly (at least to the RANK peptide). 

2. Virtual Screening 

 In GOLD, the default scoring function is the GoldScore; this is comprised of four 

components from the equation: 

int_int___ vdwhbextvdwexthb SSSSf +++=  

 Where Shb_ext is the protein-ligand hydrogen bonding score and Shb_int is the 

internal hydrogen bonding of the ligand. Svdw_ext and Svdw_int are the scores arising from 

weak external and internal Van der Waals forces, respectively. The scores from the 

virtual screening approached an extreme value distribution (Figure 3) 
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Figure 3. Histogram of TRAF6 virtual screening results (GoldScores) from GOLD.  
 
The highest GoldScore was 75.18 and the lowest was 18.31. The average was 40.30 
for the GoldScore. 

 

3. Selection of Compounds for Biological Testing, and Biological testing 

 The technique described above resulted in 300 compounds for consideration for 

biological testing. The first round of selected compounds was limited in the number of 

compounds that were to be tested, and only seven compounds were selected for testing 

(Table 4). These first seven tested compounds were found to be not active when tested at 

100µM and 300µM (Figure 4).  
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Table 4. First set of selected compounds for biological testing.  

Test ID values were assigned from decreasing GoldScore from the list of 79 compounds. 
GOLD: GoldScore output from GOLD. logP: calculated log of octanol/water partition 
coefficient. All seven of these were shown to be inactive via GST pull-down assay. 
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Figure 4. GST-RANK pull down assay for first round of seven selected compounds.  

DP is the positive control decoy peptide, and C is the negative control (no peptide). 

 After discovery that the first set of compounds were not active, the docking 

results were examined once again, this time with emphasis on the Arg392/Phe410 

binding site. The reasoning was that it was this region (not the Phe471/Tyr473 region) 

that might be more significant to the binding of compounds to TRAF6. The second round 

of compounds were taken from the pool of 79 compounds, but compounds to be selected 

for the second round were those compounds that had a more favorable binding to this 

region. Twenty compounds were selected for the second round of testing (Table 5), 

(Table 6), and (Table 7) using the same technique as the first round of compounds, but 

were to only be tested at 200µM (Figure 5). While the concentration of the ligands was 

high, there does seem to be some reduction in the binding of the compounds SZB-40, 

SZB-45, and SZB-46. 
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Table 5. Second set of compounds to be tested. 

GOLD: GoldScore output from GOLD. logP: calculated log octanol/water partition 
coefficient. Test ID: assigned names from list of 79 compounds. 



27 
 

 

Table 6. Second set of biologically tested compounds (continued).  

GOLD: GoldScore output from GOLD. logP: calculated log octanol/water partition 
coefficient. Test ID: assigned names from list of 79 compounds. 
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Table 7: Second set of biologically tested compounds (continued).  

GOLD: GoldScore output from GOLD. logP: calculated log octanol/water partition 
coefficient. Test ID: assigned names from list of 79 compounds. SZB-40, SZB-45, 
and SZB-46 showed some activity. 
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Figure 5. GST-RANK pull down assay for first round of selected compounds.  

DP is the positive control decoy peptide, and C is the negative control (no peptide). 
Compounds 40, 45, and 46 appeared to have some activity. 

 

 Molecular Dynamics simulations 

 GROMACS simulations were run for 20 nanoseconds compound SZB-40, SZB-

46, and for the RANK peptide (as a control and comparison). SZB-40, which appeared to 

have the best binding score from GOLD, did not have as significant of a binding energy 

when compared with the RANK peptide (Figure 6). This figure shows the short range 

Lennard-Jones energy of the protein-ligand complex. The average energy of the run of 

SZB-40 was -177kJ/mol, while RANK had energy of -257 kJ/mol; standard deviations 

were 20.86 and 28.10 for SZB-40 and RANK, respectively. 
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Figure 6. Lennard-Jones energies for molecular dynamics simulations. 

TRAF6-ligand complex (kJ/mol) of SZB-40 (blue), SZB-46 (red), and RANK 
peptide (green) for the entire 20 nanosecond molecular dynamics simulation. 
Output of energies was performed for each trajectory, and the output was graphed 
in Excel. 
 

 The two simulations produced roughly similar RMSD values, the control RANK 

simulation deviating at an average of 0.239Å from their main chain, and the SZB-40 

RMSD equal to 0.196Å, indicating that the overall stability of the structure was not 

significantly affected by the ligands. The standard deviation of main chain of the 

structures was 0.0399 Å for RANK, 0.0288 Å for SZB-40.  

 The region of the 9,000 to 13,000 picoseconds (9 to 13 nanoseconds) is 

interesting, as it shows better energy values. Output of trajectories at every 2,000 

picoseconds was carried out for the entire simulation, in order to evaluate the differences 

that occur between SZB-40 and the TRAF6 structure throughout the MD run. The 

trajectory at 10 nanoseconds shows a very interesting conformation (Figure 7). It appears 

that the ligand has achieved pi-stacking with the aromatic residues Phe470, and there is 
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also a pi-stacking interaction to the Phe410 residue. There are hydrogen bonds to two 

points on the main chain of Gly469, similar to that of RANK. It is interesting to note that 

many portions of the MD simulation run showed the ligand on the side of TRAF6 closer 

to the Phe471 residue. This conformation was not possible in the GOLD 

screening/docking, as only the side chains are flexible; the GROMACS MD simulation 

shows a more favorable position to those that were seen from the GOLD docking. 
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Figure 7. Sample trajectory conformation at mid-point (10 ns) of MD simulation of 
SZB-40 (pink) and TRAF6 (green). Yellow dashed lines with numerical labels 
denote distances to neighboring aromatic groups. Hydrogen bonds to main chain 
atoms on Gly469 to SZB-40 are shown in unlabeled yellow dashed lines. This 
conformation was close to the average structure over the 9-11 nanosecond range, 
and it shows a more favorable pose to docked positions, with pi-stacking of both 
aromatic ends of SZB-40 to other aromatic groups on TRAF6. The distance from 
SZB-40 to Phe410 is 4.0 angstroms, and Phe410 was predicted as a hot spot by 
HotPoint and KFC2. 
 
 Another sample output was taken at the 12,000 picoseconds (12 nanoseconds), 

which is also in the region of lower energy. One would assume that this lower energy 

state would correspond to a more favorable docked position similar to that of the 10 

nanosecond point, and this is indeed the case (Figure 8.). This is similar to that of the 10 

nanosecond point, but there is additional hydrogen bonding to Gly471 (which lies in 
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between Tyr472 and Phe470. This state should have an even tighter binding to TRAF6, 

and this might explain why SZB-40 was shown to be active. 

 

 
Figure 8. 12 nanosecond sample trajectory of SZB-40 (pink) and TRAF6 (green). 
Yellow dashed lines denote distances to neighboring aromatic groups. Hydrogen 
bonds are shown in yellow dashed lines without distance labels. Note the more 
extensive hydrogen bonding to both Gly469 but also to main chain atoms on Phe471. 
This interaction is also more favorable to docked positions seen from GOLD. 
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4. LD50 Predictive QSAR Modeling 

 A histogram of the compounds shows a good distribution of values, and 

approaches an extreme value distribution (Figure 9). After the kNN-QSAR models were 

generated at various parameters, the predictive model with the best cross validated r2 (q2) 

had eight descriptors and were as follows:  logPWeighted, smallestRingSize, 

acceptorCount, ASAPolar, topologicalPolarSurfaceArea, chainAtomCount, atomCount, 

and hararyIndex. These descriptors are primarily associated with size, logP, and 

accessible surface area. The number of nearest neighbors for this highest rated model was 

three (k = 3), and this model had a q2 value of 0.324 in the training set, and a 

corresponding r2 of 0.6252 for the 385 compounds in the test set. The distribution of the 

actual versus predicted values can be seen when plotted (Figure 10). 

 

 

 



35 
 

 
Figure 9. Histogram of negative log of LD50 values (mol/kg) of 3472 compounds.  

The highest value was that of tetrachlorodibenzo-p-dioxin (TCDD), with a value of 
10.2, while the lowest was 6-methyl uracil, with a value of 0.29. The average value 
was 2.466. Data was transformed and graphed using Excel. 
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Figure 10. Actual vs. Predicted LD50 values from best kNN-QSAR model. 

 

5. Bioavailability Predictive QSAR Modeling 

 While the values for bioavailability were well distributed (Figure 11), the 

bioavailability model did not perform as well. There are 22 descriptors for this model, 

these were all generated from MOE, and they are as follows: randicIndex, FASA_H, 

PEOE_VSA_FPPOS, pmiY, vdw_vol, SMR_VSA2, Q_RPC-, PEOE_VSA_FPOL, 

PEOE_VSA-2, vsurf_HB2, PEOE_VSA+3, b_1rotR, carboRingCountOfSize, 

logDPHYS, SMR_VSA1, aliphaticRingCount, chi1v_C, a_ICM, SlogP_VSA0, 

BCUT_SMR_3, GCUT_SLOGP_2 mr, and BCUT_SLOGP_1. There are four nearest 

neighbors, and the q2 is 0.363177 for 414 compounds, and the r2 is 0.123 for 306 

compounds (Figure 12). 
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no hot spots were predicted for the TRAF/RANK complex with KFC2a. It is also 

interesting that while the KFC2a model predicted no hot spots on TRAF6, the KFC2b 

model appears to have had both a high true positive, and a higher false positive rate.  

 

2. Preparation and Analysis of Target Receptor 

 Selection of crystal structures 1LB5/1LB6 was necessary since both have the 

RANK/CD40 peptides bound to them. The remaining C-terminal 21 residues at the end 

of the crystal structure that are not included but exist in the TRAF6 sequence do not lie 

close to the RANK/CD40 binding site. The shortest distance from Thr501 to the RANK 

peptide is 16.4Å. Also, Thr501 ends a β-sheet, so the remaining residues of the structure 

are likely in a loop region that either interacts with the other loop regions in this area, or 

with the long helix that forms in the TRAF6 trimer (Figure13) 
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Figure 13. C-terminal Thr501 residue in TRAF6 1LB5 crystal structure (green).  
 
RANK residue shown in magenta sticks. This threonine residue lies at least 19 
angstroms to the RANK binding site; remaining residues on this tail are unlikely to 
have an effect on the binding site. 

 

 1LB5 was selected as the structure for which to do docking, since it contains the 

RANK peptide bound to TRAF6. [15]. While the TRAF6-CD40 complex of 1LB6 has a 

slightly higher resolution (1.80Å), it is very similar to 1LB5 (resolution of 2.40 Å). The 

RMS of the two structures (when superimposed) is only 0.294 Å, and this difference is 

mainly in the loop regions of the two structures. The only TRAF6 residue in the binding 

site that is significantly different in its conformation is the Arg392 residue (Figure 14). 
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Figure 14. Superimposed overlay of 1LB5 (green) and 1LB6 (blue) structures.  
 
Hotspot residues are displayed in sticks. Tyr473 and Phe471 are nearly identical in 
their conformation, while Arg392 is rotated significantly. 

 

3. Chemical Library Selection 

 The choice of MyriaScreen as the primary ligand screening set ensured that 

adequate chemical diversity was present in the virtual screening, while retaining good 

drug-like and lead-like structures. Additionally, MyriaScreen compounds are easily 

commercially available, making for easy procurement and testing of the selected 

compounds.  
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4. Virtual Screening 

 GoldScore fitness function was selected as the scoring function, as it has been 

created and optimized for small molecule docking into the prediction of ligand binding 

energy. GOLD has proven to be a more than acceptable program for various techniques 

when compared with other docking programs [98-100], and it has been shown to be 

capable of reproducing reliable docked conformations of ligands for many of my other 

projects. The program is able to run on a multi-core environment, which is favorable to 

other methods that are more computationally expensive.  

 

5. Processing of Results 

 The clustering of the GOLD results based on MACCS fingerprints removes 

similar compounds and increases the diversity of the pool of molecules by removing 

structurally similar compounds. Retaining the highest scoring representative structure of 

each cluster ensures the quality of the docked conformations is retained, but repetitive 

structures are discarded. This technique also ensures that the highest scoring 

representatives of each of the compounds is retained and selected as the best 

representative of the respective chemical core and binding pose.  

 

6. Selection of Compounds for Biological Testing 

 As for the selection of the final hits, the technique used here has been used in 

various other projects. The cluster centers were individually visualized by hand in 

PyMOL to maximize the potential of finding ligands that would prove to be active 

biologically. This higher scrutiny at this stage not only ensured that there was more than 
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adequate diversity in the final compounds; it confirmed that the compounds resided in the 

desired interaction site and therefore had a high potential of inhibiting the interaction 

with RANK. Also of note, our analysis was independent of the docking scores obtained; 

this made for our analysis to be more qualitative than quantitative.  

 

Flexible Docking of three active compounds 

 The three compounds that showed affinity (SZB: 40, 45, and 46) were submitted 

to a more rigorous GOLD docking, in which the ten closest residues to their original 

conformation were allowed to have their side chains be fully flexible; this process 

permits a deeper understanding of the potential interactions between the hits and TRAF6. 

For these docking jobs, GOLD was again used as the docking program, and the number 

of operations and population size of the genetic algorithm were doubled from the original 

virtual screening protocol. 

 Although the SZB-40 compound contains a ring structure that can gain stability 

by pi-pi stacking in between Tyr473 and Phe471, the flexible docking did not show such 

a conformation (Figure 15). Instead, there was main chain hydrogen bonding seen 

between Gly470 and His412. But the most significant difference in the side chains (due 

to the flexible docking) is seen in the Arg392 and Arg466 residues. There are two 

hydrogen bonded interactions to the Arg392 and this is stabilized by the pi-stacking of 

the terminal (non-chlorinated) benzene structure of SZB-40 to Arg466. The movement of 

these two structures between the original structures creates a more favorable pocket.  
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Figure 15. Flexible GOLD docking of SZB-40 (pink) to TRAF6 (green).  

Hydrogen bonds are shown as dashed yellow lines. This conformation show a weak 
pi-stacking to the Arg466 residue, and main chain hydrogen bonds to the Gly470 
and Phe471, but no significant interactions to the aromatic Phe410, Phe471, or 
Tyr473 residues.  
 
 
 SZB-45 was similar to SZB-40 in that it also had a moiety by which to mimic the 

proline structure on RANK in the pi-pi stacking interaction between the Tyr473 and 

Phe471 residues, but this conformation was not seen in the docking results (Figure 16). 

This structure had much more extensive binding to the Arg392 and Arg466 structures 

(from the highly charged sulfonamide region) at multiple locations on each of these 



47 
 

residues. There is also a hydrogen bonding interaction with the Asn467 main chain. 

There appears to be a pi-stacking interaction with the Phe410 moiety; this somewhat 

validates the prediction of Hotpoint and KFC2, which both predicted this residue as a hot 

spot. Robetta calculated this residue’s ΔΔG of the complex with a value of 0.76 kcal/mol. 

 

Figure 16. Flexible docking of SZB-45 (blue) to TRAF6 (green).  

Hydrogen bonds shown as dashed yellow lines. Main chain hydrogen bonding 
interactions are seen to Asn467 and side chain hydrogen bonds are seen to the 
Arg466 and Arg392 residues. There is also a good pi-stacking interaction with the 
Phe410 residue. 
 

 As for SZB-46, this conformation seems to have a better opportunity for pi-

stacking in between the two aromatic structures, and it also is stabilized by the two 
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arginine groups (Figure 17). Additionally, the hydrogen bonding interactions with the 

Gly470 are similar to that of RANK, and there are two hydrogen atoms on the Lys469 

structure that share hydrogen bonds with two different carbonyl regions of the SZB-46 

ligand. 

 

Figure 17. Flexible docking of SZB-46 (blue). Hydrogen bonds shown in yellow. 

This conformation shows side chain hydrogen bonds to Arf466, Arg392, and main 
chain bonds to Gly470 and Phe471. There is also a good pi-stacking interaction to 
Phe410. 
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7. Biological Testing 

 The GST-RANK pull down assay did manage to show an inhibition of three of 

the hits on the second round of testing, but as this method is more qualitative than 

quantitative, it is difficult to elaborate on the results beyond what is apparent from the 

Western blot. Further testing is required (preferably one that can be quantized) using 

another technique, possibly an ITC or luciferase assay. 

 

8. Molecular Dynamics simulations 

 The choice of GROMACS as the molecular dynamics (MD) package was an easy 

one, as GROMACS is very flexible and widely used software [64]. GROMACS has been 

shown to be much more efficient than other MD programs, and scales very well on large, 

parallel computing clusters [101]. It has been shown that the topologies resulting from the 

PRODRG server can deviate from simulations from GROMOS parameters, and 

reasonable configurations can be achieved using this method [102].  When the average 

back bone structure of the MD simulation is output from the MD simulation and then 

aligned to the original 1LB5 crystal structure, the RMSD is only 1.346Å, and this 

difference lies only in the loop regions, not in the β-sheet region (Figure 18). It is 

reasonable to assume that the stability of the β-sheet sandwich in TRAF6 is highly stable 

in the explicit water solvent used here. Hence, the GROMACS molecular dynamics 

method appears to be a good system on which to compare the result of this and future 

TRAF6 inhibitors. 
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Figure 18. Alignment of cartoon structures of MD simulation of TRAF/RANK.  

Average structure (backbone atoms) of results of MD simulation (blue), 1LB5 
structure TRAF6/RANK complex (green). RMSD of these structures is 1.346Å. The 
three hot spot residues are shown as sticks as a point of reference. Output for the 
simulation was prepared using Gromacs, and the structures were aligned using the 
“align” feature in PyMOL. 

 

9. LD50 Predictive QSAR Modeling 

 The large size of the dataset was a potential hindrance in the production of better 

models, but considering the variability of the data, the models were able to achieve a 

general prediction as to the magnitude of the endpoint which was attempted to be 

modeled. While most of the data is from oral testing of rats, the species and weights of 

these rats is not available. What is interesting (and perhaps contradictory to the previous 

statement) is that selecting only the less toxic compounds (removing the top 10% most 

lethal compounds from the data set) actually produced worse models than the one 
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presented here. The model presented includes highly lethal compounds like several forms 

of polychlorinated dibenzodioxins (dioxins), and the nerve agent O-ethyl-S-(2-

dimethylaminoethyl)-methyl-phosphonothioate (EDMM). Since lethality can manifest in 

different forms (inhibition of protein synthesis, mitochondrial damage, blocking of 

critical ion channels, DNA damage, to name a few), there are many different structural 

cores that are present in the dataset. These different structural cores and their 

corresponding mechanisms of lethality are likely creating confusion in the models. A data 

set that only contained ion channel disruptors is more likely to produce a good model of 

lethality, but would not be representative (or applicable) to other, more diverse 

compounds. Despite the variability of the data, logP is known to be a major factor in 

toxicity, as non-polar structures are much more likely to be metabolized and excreted (as 

well as be handled by the acidic gut) before their toxicity can become apparent. 

 

10. Bioavailability Predictive QSAR Modeling 

 The inconsistencies in the original data set definitely hurt the quality of the 

models generated, it is apparent that there is over fitting of the data, and the number of 

descriptors seen in the model (especially when compared with the LD50 model) backs this 

assumption up. Variability in the dosing, formulation, pharmacogenomics 

(polymorphisms in efficacy and other pharmacokinetic properties), health of the subjects 

and sampling error when recording the bioavailability data will all lead to a 

corresponding decrease of the quality of the models, and this is most likely what is seen 

here. It appears that such a complex endpoint in humans is difficult to model with simple 

tools, and classification schemes will likely lead to better predictive models. The strength 
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of using a kNN based model such as the one that was used here is that it is non-

parametric; there are no assumptions made on the distribution of the data set.  

 

Conclusion: 

 In this study novel inhibitors of the TRAF6/binding peptide interaction site are 

presented that were discovered through a rational design process incorporating various in 

silico techniques. From an initial set of 10,000 compounds, 26 of them were tested. Three 

of these 26 compounds were shown to be biologically active. These results validate the 

virtual screening and biological methodology described here, as well as validates the 

TRAF6/binding peptide interaction as a potential target for small molecule inhibition. 

 The results here lay the framework for future study of inhibition of the 

TRAF6/binding peptide interaction, and further study of the binding mechanism (either 

by crystallization of the inhibitors in complex with TRAF6, or by other biological 

experiments) will reveal means of optimizing the inhibitors for use in clinical settings. 

Future studies of the generation of TRAF6 inhibitors will surely benefit from additional 

assays for which to test the activity and mechanism of binding. Techniques such as a 

luciferase assay or isothermal titration calorimetry (ITC) would bolster the evidence of a 

possible inhibitor from the initial GST assay described above. Once a decent inhibitor has 

been found, optimization of the respective chemical groups can increase the binding 

affinity even further. While the TRAF6/binding peptide protein-protein interaction is a 

very valuable target, it is a difficult one. The binding site is not a prototypical pocket that 

is conducive to traditional drug design efforts, and the interaction site, despite being 

small for protein-protein interactions, is large for small molecule inhibitors to bind to. In 
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general, targeting protein-protein interactions are high-risk and high-reward, but the 

TRAF6/binding peptide interaction is beyond the exemplary target and has even higher 

potential value. Computational techniques such as the ones that I have outlined here (hot 

spot prediction, virtual screening, and molecular dynamics simulations) will help to 

ameliorate the risk involved by guiding the decisions throughout the drug design process. 

  Given that TRAF6 plays many essential roles in immunity and other diverse 

biological functions, TRAF6 inhibitors are most certainly in high demand. Not only will 

they serve to advance the understanding of the TRAF6 pathway, but has the potential to 

improve the lives of patients through controlling inflammation and treating a wide range 

of diseases, such as: osteoporosis, cancer-induced bone lesions and other bone diseases, 

postmenopausal osteoporosis, multiple myeloma, periodontitis, connective tissue 

destruction, bladder outlet obstruction, Paget’s disease, and viral infections [103-105]. On 

the front of cancer therapeutics, it has been postulated that TRAF6 inhibitors should be 

able to inhibit the spread of multiple myeloma and prevent bone loss (the most significant 

clinical manifestation of MM). These inhibitors will mean the inclusion of a new target 

for the treatment of cancer, and will be able to overcome resistance to chemotherapy 

[106]. There are still more questions as to the TRAF6 pathway, most notably the specific 

activation mechanism of TRAF6. It is unknown if TRAF6 is monomeric before 

recruitment to its receptors; additionally it is unclear if it is the TRAF6 oligomerization or 

the resulting conformational changes from oligomerization that guide the subsequent 

activation of TRAF6 [107]. These questions, as well as understanding how ubiquitination 

plays a role in TRAF6 activation, need to be answered to complete the puzzle. As the 

understanding of TRAF6 and its effectors continues to be understood, the use and affinity 

of TRAF6 inhibitors will prove to me more efficacious as our understanding improves. 
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