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Cross-presentation of NE and PR3 renders cells susceptible to PR1-targeted therapy 

 PR1 has been effectively targeted in leukemia using a PR1 peptide vaccine,121  PR1-CTL,197, 

198 and 8F4 (anti-PR1/HLA-A2 antibody).188  We therefore investigated whether PR1/HLA-A2 

expression on breast cancer cells following NE or PR3 cross-presentation would render them 

susceptible to killing by PR1-CTL or 8F4 antibody.  MDA-MB-231 cells were cultured in media 

supplemented with NE or PR3 for 24 hours then incubated with PR1-CTLs in a standard cytotoxicity 

assay.  MDA-MB-231 maintained in standard media without NE or PR3 were not killed by PR1-CTL.  

Cross-presentation of NE and PR3 increased susceptibility of the cells to lysis by PR1-CTL (Fig. 15B).  
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CHAPTER 4:  DISCUSSION AND FUTURE DIRECTIONS 

 In this thesis, we have identified novel functions of NE, a serine protease in the tumor 

microenvironment.  We show that NE is present in TANs and that breast cancer cells do not produce 

endogenous NE suggesting TANs as the primary NE source in breast cancer.  We also demonstrate that 

NE is taken up by breast cancer cells in an antigen-specific manner.  Importantly, after uptake, NE 

modulates adaptive immune responses by enhancing antigen presentation.   Specifically, NE uptake 

leads to increased generation of LMW CCNE isoforms and enhanced susceptibility of breast cancer 

cells to lysis by CCNE-CTL.  Furthermore, we have shown that NE, as well as PR3, a second neutrophil 

primary granule protease with significant homology to NE, is cross-presented by breast cancer cells 

leading to increased PR1/HLA-A2 on the cell surface and subsequent killing by PR1-targeted therapies 

including PR1-CTL and 8F4, an antibody targeting PR1/HLA-A2.  Therefore, we have provided 

evidence for a novel mechanism linking NE, a protease secreted by innate immune cells, to adaptive 

immune responses against novel antigens in breast cancer.  These findings have significant implications 

for cancer biology and tumor immunology.   

Uptake of neutrophil elastase  

 The majority of studies investigating the effects of NE in cancer have focused on its ability 

to promote invasion and metastasis through degradation of the ECM.54, 122, 123  Two other studies have 

demonstrated that NE can impact tumor cell proliferation by its effects on cell signaling.   Studies have 

shown that NE can cleave the TNF receptor from the cell surface and that cleaved receptors can bind 

circulating TNF-α thereby decreasing TNF signaling and subsequently decreasing caspase 8-mediated 

apoptosis.126, 127, 129   A study by Houghton et al. showed that NE uptake by lung cancer cells can cleave 

IRS-1 leading to hyperactivity of the PI3K pathway resulting in increased proliferation.130  Our studies 

confirmed the findings of Houghton et al. that cancer cells can take up exogenous NE.  NE uptake in 

breast cancer cells led to increased expression of LMW forms of CCNE which have previously been 

shown to be hyperactive compared to the FL CCNE protein.163  These hyperactive LMW forms promote 
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proliferation by shortening the G1/S phase transition of the cell cycle thus suggesting an additional 

potential mechanism for NE-induced tumor cell growth following uptake.   

 Importantly, we have provided further information regarding the mechanism of NE uptake 

by demonstrating uptake to be dose- and time-dependent suggesting a receptor-mediated mechanism.  

Because the timing and subcellular localization of NE after uptake is similar in different cancer cell 

types, it is possible that there is a common uptake mechanism.  If so, such a mechanism could be 

important for controlling cell growth.  

We have begun to investigate this in the 

laboratory where we have evaluated 

multiple different cell lines from various 

tumor types to include melanoma, 

ovarian cancer, pancreatic cancer and 

colon cancer, for their ability to take up 

NE (Fig. 17). We found that not all 

tumor types take up NE and for those 

that do, the extent of uptake varies.  We 

are working to use this differential 

uptake to determine the receptor 

involved using a computational approach.  Briefly, in addition to the five cell lines shown in figure 17, 

we have evaluated the fold change in uptake for 15 additional cell lines of diverse tissue origins with 

gene expression data (from Affymetrix GeneChip Human Genome U133 Plus 2.0 array) available from 

a public database.  Working with our biostatistical collaborator, Dr. Shoudan Liang, we have correlated 

NE uptake with the level of mRNA expression of membrane proteins thus identifying potential 

receptors that may mediate NE uptake.  This line of investigation is currently being pursued by Dr. 

Celine Kerros, a post-doctoral fellow working in the laboratory of my advisor Dr. Molldrem.   
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 Along with the report by Houghton et al., our demonstration of NE uptake by breast cancer 

cells represents the first studies showing the ability of a secreted protease to enter target cells.  We are 

continuing to evaluate other cell types for NE uptake and our data suggests that this is a ubiquitous 

phenomenon shared among multiple solid tumors.  Because NE has broad substrate specificity, it is 

likely that uptake provides NE access to a wide array of potential substrates affecting multiple biologic 

processes impacting tumor development and growth. As was demonstrated in chapters 2 and 3 of this 

thesis and will be discussed further below, uptake of NE also results in increased antigen presentation 

thereby making the tumor cells more attractive targets for adaptive immune responses and targeted 

immunotherapeutic approaches. 

Cyclin E as a novel breast cancer antigen 

 We have provided data linking NE uptake to an adaptive immune response against CCNE 

in breast cancer.  Specifically, we showed that increased expression of LMW CCNE after NE uptake 

leads to enhanced susceptibility to lysis by CCNE CTL.132   Importantly, using tetramer staining, we 

identified a low precursor frequency of CCNE144-152 CTL in breast cancer patients confirming that the 

antigen is naturally processed.  Our data therefore support the discovery of CCNE as a novel breast 

cancer antigen and suggest that CCNE-targeting immunotherapy to include a peptide vaccine combining 

CCNE144-152 with an immunoadjuvant may augment the CCNE-specific-CTL response.   

 Previously, overexpression of CCNE and its LMW forms has been shown to be a poor 

prognostic factor in breast cancer.172  Because CCNE is aberrantly expressed in breast cancer and this 

aberrant expression drives proliferation, CCNE has characteristics of an ideal TAA.  CCNE144-152, the 

immunogenic epitope that we have identified, is expressed in both the FL and LMW forms of the CCNE 

protein (Fig. 9A).  Our data strongly suggest that after NE uptake, there is increased substrate 

availability of the CCNE LMW fragments, which could facilitate antigen processing and presentation of 

CCNE peptides.  The LMW forms of CCNE lack the nuclear localization sequence that is in the amino 

terminus of the FL protein.  Consistent with this, Delk et al. have shown altered subcellular localization 
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of the LMW forms of CCNE with the majority being present in the cytoplasm.166  This cytoplasmic 

localization may facilitate proteasomal-mediated degradation and CCNE peptide translocation by the 

transporter associated with antigen presentation (TAP) protein to the endoplasmic reticulum where the 

peptides would access MHC class I molecules.189  In support of this hypothesis, we found that HER18 

cells are more susceptible to killing by CCNE-CTL than MDA-MB-231 cells that have less LMW 

CCNE expression (Fig. 10).  In addition, after uptake of soluble NE, there was an increase in LMW 

CCNE expression in the MDA-MB-231 cells and enhanced susceptibility of the cells to lysis by CCNE-

CTL.  Additional studies must be done to determine whether the LMW forms are the predominant 

source of CCNE144-152 peptide.  To evaluate this, we have discussed a collaboration with Dr. Khandan 

Keyomarsi whereby we would stably transfect MCF-7 breast cancer cells (HLA-A2+; high transfection 

efficiency, low baseline LMW CCNE expression) with the EL, trunk 1, and trunk 2 constructs that she 

has previously used to investigate the effect of FL versus LMW CCNE on cell cycle regulation.163  The 

EL construct overexpresses FL CCNE, the trunk 1 construct overexpresses the EL2 and EL3 LMW 

forms and the trunk 2 construct overexpresses the EL5 and EL6 forms.  These cells would be used as 

targets in standard cytotoxicity assays with CCNE-CTL as effectors.  We would hypothesize that the 

MCF-7 cells transfected to overexpress LMW CCNE would be lysed more effectively than cells 

transfected with the EL vector or the empty vector control.  This model system could also be used to 

further investigate ubiquitination and proteasome-mediated degradation of FL versus LMW CCNE; two 

processes required for antigen processing and presentation 

Antigen discovery  

 Because NE has broad substrate specificity, it is possible that uptake of NE may generate 

novel antigens other than CCNE.    There are however many challenges in identifying target antigens.  

First, most antigen-specific T-cell receptors (TCRs) have low affinity for their target MHC-peptide 

complex.  This makes using biochemical techniques relying on high affinities difficult.204  In addition, 

the majority of TCRs are polyspecific and can be activated by the parent peptide as well as similar 

“mimotopes” that have amino acid exchanges.205  Finally, TCRs recognize peptide-MHC complexes that 
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