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Figure 4-16. The schemes for fly crosses to generate strains with 

Taf1 overexpression in a Hfp mutant background 

The genetic scheme for producing the fly strain with both hfp13 and 

taf1EP421 is shown in part A. The production of the other fly strains 

with both hfp9 and Bam-Gal4 is shown in part B. The processes of 

producing other controls are shown in part C-E.  
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Figure 4-17. The verification of genotypes of recombined male flies 

Genotypes were tested with the primers specific to hfp, Bam-Gal4 

and EP421 by PCR. Genomic DNA was isolated from single male flies. 

Genotypes are indicated above the images. PCR products are labeled 

by the sizes and names. Both Hfp alleles contain a partially 

excised P element in the 5’ UTR. The insertion left behind the 

excision was about 80 nt in hfp13 mutant, and 480 nt in hfp9 mutant. 

The upstream primer used for amplifying hfp alleles is located 

upstream of the P element insertion site and the downstream one is 

within the hfp intron 1 (A). The PCR product of the wild type 

allele is less than 300 nt. No wild type allele was detected in the 

hfp9/hfp13 mutant genome (A,B). Primers internal to the Bam-Gal4 

element are used to detect it, as shown in (A) no signal of Bam-

Gal4 was detected in the wild type. Primers used for the EP421 

element are located at the boundary of the insertion site. The 

element was not detected in wild type genome as shown in (A). Lanes 

labeled “Gal” represent the Bam-Gal4 element, “EP” represent the 

EP421 element. 
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Figure 4-18. Fertility rescue test of Hfp mutant males by 

overexpressing Taf1 in testis 

Individual males flies from different genotypes were crossed with 

wild type virgins. Percent of tested males with different numbers 

of offspring are summarized in the graphs. Genotypes are shown 

above the graphs. The numbers of tested males are indicated (N). 

The mean number of progeny (M) are indicated. P values of each 

group are compared with the control genotype Bam-Gal4; hfp9/hfp13. 
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Discussion 

 

Although Hfp and Tra2 are both identified in the regulation of 

Taf1 exon 12a splicing, and some similar phenotypes are observed in 

mutants, one fundamental question is whether this alternative 

splicing event has any biological significance or is important for 

the normal spermatogenesis. As a transcriptional regulator, Taf1-2 

is highly enriched in Drosophila testis. Taf1 protein has two AT 

hook motifs, one is encoded in exon 12 and the other one is encoded 

in exon 12a. So only Taf1-2 and Taf1-4 contain both AT hook motifs 

in their final protein products. Previous studies have shown that 

both AT-hook motifs are required for Taf1 to bind to DNA target 

efficiently. Thus alternative splicing of exon 12a is predicted to 

directly affect the transcriptional activity of Taf1’s downstream 

targets, such as beta-tubulin, string and Don juan (Metcalf and 

Wassarman, 2006). By regulating exon 12a splicing, Hfp and Tra2 are 

potentially able to affect the binding activity and further the 

transcription function of Taf1. Therefore the regulation of exon 

12a inclusion influences the process of male germ cell development. 

The phenotypic similarities between Hfp and Taf1 mutants shown in 

our experiments suggest this prediction and the importance of Taf1-

2 alternative splicing during spermatogenesis. Additional 

experiment with Taf1-2 specifically expressed in the testis of Hfp 

mutant background would verify this idea. Partial rescue of the 

phenotypes in Hfp mutants would be expected by Taf1-2 

overexpression. 
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We discovered in Chapter 3 that Hfp and Tra2 together repress 

M1 intron splicing, but here the same two proteins regulate Taf1 

exon 12a splicing in opposite directions. Our in vivo experiments 

suggested that these factors act in in parallel pathways to affect 

Taf1. This conclusion is based on the observation that 

overexpressed Tra2 in vivo didn't result in more exon 12a skipping. 

Why might an increase in Tra2 affect exon 12a? Tra2 is known to be 

expressed at relatively high levels in the male germline (Mattox 

and Baker, 1991). As mentioned before, it is thought that tra2 uses 

a stronger promoter to reach high protein level in a short time and 

that negative feedback regulation is needed to limit these levels 

from becoming deleterious. So it is likely that Tra2 levels are not 

a limiting factor in promoting exon 12a skipping yet sharp 

reductions in Tra2, as can result in dramatic changes. So although 

Hfp is able to negatively regulate Tra2 through M1 splicing, this 

limitation in Tra2 levels has no impact on Taf1 splicing. Rather 

our results suggest that Hfp affects Taf1 splicing through a 

separate pathway.   

 

If exon 12a splicing is oppositely regulated by Tra2 and Hfp, 

it might be predicted that in Tra2 mutants, the number of 

spermytocytes in each cyst should be more than 16 or doubled to 32. 

It is reported that in Drosophila ovaries (Van Buskirk and 

Schupbach, 2002), Encore (enc) mutants contained 32-cell egg 

chambers, while Hfp mutants had 8-cell egg chambers. These two 

genes were thought to antagonize their functions in mitosis during 
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oogenesis through ovarian tumor’s (otu) activity. Especially Hfp 

was shown to regulate otu splicing in this process. Therefore it 

was thought that Otu was responsible for the mitotic cell division 

in oogenesis. However Otu is not thought to express in testis, 

therefore we hypothesized the regulation of taf1 splicing in testis 

would be responsible for the cell division during spermatogenesis. 

However, our results from two different tra2 mutants showed only 16 

spermatocyte cysts in the testes. That suggests that Tra2 probably 

plays limited roles on the mitotic division, or some other factors 

control mitosis are independent of Taf1 regulation.   

 

Genes participating in a common regulatory pathway often share 

similar phenotypes. We predicted that some overlap in phenotype 

between Hfp and Taf1 mutants would be expected if the regulation of 

Taf1-2 production is dependent on Hfp. The phenotypes observed from 

both Hfp mutant and taf1 RNAi knockdowns share a number of 

similarities which support the idea that these two proteins are in 

a common pathway that drives meiotic events and later 

spermatogenesis. Another striking similarity was observed between 

taf1 RNAi mutant and other reported TAF mutants, such as no hitter 

(nht) and meiosis I arrest (mia) (Ayyar, 2003; Hiller et al., 

2004). Taf1 was reported to function together with other testis 

specific Tafs and also co-localize with them in testis (Metcalf and 

Wassarman, 2007). Testes of Taf mutants consistently showed 

significant delays in meiosis and aberrations in spermiogenesis 

(Hiller et al., 2004; Hiller et al., 2001). Testes of these mutants 

are generally found filled with primary spermatocytes and a small 
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Summation And Future Directions 

M1 intron retention mediated by Tra2 is only seen in 

Drosophila male germ line. However, this regulation occurs in 

response to high transcriptional levels of Tra2 in the germline 

rather than to a tissue specific factor (Mattox and Baker, 1991; Qi 

et al., 2006). Therefore, although this regulation is tissue 

specific in vivo, many cell types retain the competence to exert M1 

repression and it has been observed that M1 retention can be 

induced in either somatic tissues or cultured cells by elevating 

Tra2 level (Qi et al., 2006). We took advantage of this by using 

splicing reporters in a Drosophila S2 cell based RNAi screen to 

identify Hfp/Puf68 as a participant in the splicing repression of 

M1 intron both in cultured cells and in vivo. Both Tra2 and Hfp 

were regarded as splicing activators based on studies of other 

substrates (Inoue et al., 1992; Ryner and Baker, 1991; Van Buskirk 

and Schupbach, 2002). However they both displayed negative 

regulatory function on M1 intron splicing (Chandler et al., 2003; 

Mattox and Baker, 1991; Qi et al., 2007). More interestingly, both 

of these factors themselves have multiple protein isoforms but 

different behaviors were observed for their effects on M1 splicing 

(Mattox et al., 1996; Mattox et al., 1990). We found Hfp had two 

isoforms that differ from each other in the N terminus containing 

four serine-arginine dipeptides. The two isoforms were verified in 

vivo, and their functional differences in S2 cells may be due to 

the distinct patterns of subcellular localization. It will be 

interesting to know whether similar distribution patterns are also 
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present in tissues. Besides the localized distribution, a more 

important question for these two isoforms is whether there are any 

other functional differences between them. Does Hfp58 have the same 

effect on the regulation of c-myc transcription as Hfp68 does? Does 

Hfp58 also have a splicing function that is relevant in other RNA 

substrates? If so, does Hfp58 display a positive regulatory role in 

splicing? Like Tra2 that is predicted to have three kinds of 

protein isoforms, the functions that each isoform of Hfp takes can 

be tested by introducing them individually into Hfp mutant 

background.  

 

 Curiously, the regulators identified so far to be involved in 

repression of M1 intron splicing are all known to act as splicing 

activators in other contexts. Tra2 and Rbp1 both promote female 

specific splicing of both dsx pre-mRNA and fruitless pre-mRNA 

(Heinrichs and Baker, 1995; Heinrichs et al., 1998; Ryner and 

Baker, 1991). Hfp favors exon inclusion in the alternative splicing 

of Otu pre-mRNA in Drosophila oocytes (Van Buskirk and Schupbach, 

2002). Yet our findings here implicate Tra2 and Hfp as co-

repressors of M1 and Rbp1 was shown to be able to repress M1 

splicing both in living S2 cells (Kumar and Lopez, 2005) and 

nuclear extracts (Qi et al., 2007) in previous studies, even though 

it showed minor activation activity in our reporter based screen. A 

challenging question for the regulation of alternative splicing 

therefore is how these splicing activators function together to 

repress RNA splicing of M1 intron? It has been shown that Tra2 

could repress M1 splicing through the CAAGR repeats of ISS element 
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in vitro and Rbp1 functions independently through a small fragment 

outside of the repeats in the ISS. In our studies, we found the 

negative regulatory function of Hfp requires both the ISS and a 

weak 3’ splice site in the intron. The phenomenon of position-

dependent regulation of alternative splicing has been reported in 

several splicing factors. Their regulatory roles on RNA splicing 

depend on where they bind, upstream or downstream of the regulated 

exons. Similarly Tra2 and other SR factors exert position dependent 

effects on alternative splicing as discussed in Chapter One. Upon 

binding to exons these factors help to promote exon inclusion but 

repress splicing when they are bound to introns. Notably each of 

the factors implicated in M1 repression, act through sequences 

located within the intron. However a detailed explanation of the 

mechanism of splicing repression by SR factors has yet to be 

defined. Why these factors could not just promote recognition of a 

weak 3’ splice site by binding to the nearby intronic elements is 

unclear. Exon definition by an SR protein-containing complex offers 

one potential explanation. Based on the result of our study we 

speculate that Hfp represses splicing by potentially competing with 

the activity of U2AF50 within the 3’ region of the M1 intron and 

form another more stable complex across the whole M1 intron with 

Tra2 that binds to the ISS. Eventually this big complex could 

communicate with complexes formed in the flanking exons and define 

the entire exon3-M1-Exon4 fragment as a single exon. This model not 

only can explain the phenomenon of SR-mediated splicing repression, 

but also is consistent with the observed differences in the effect 

of exon verses intron bound SR factors. Usually a weak splice site 
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is required for the regulation of alternative splicing and Hfp’s 

vertebrate orthologue PUF60 has been specifically associated with 

recognition of weak 3’ splice sites. That could be the reason why 

Hfp is required for M1 retention and why a strong 3’ splice site 

could abolish M1 repression in vivo. Consistent with this I 

observed that when the dsx enhancer, which contains strong binding 

element for Tra2 was inserted into ftz intron containing a strong 

3’ splice site, it still could not mediate intron repression even 

in the presence of elevated Tra2 level in S2 cells (data not 

shown). To further test the above model, an intron with strong 3’ 

splice site could be included upstream of exon 3 and an intron with 

strong 5’ splice site could be included downstream of exon 4. When 

the transcript is expressed in S2 cells, Tra2 would be predicted 

cause the whole exon3-M1-exon4 to be included with upstream and 

downstream exons in the final mRNA.  

 

 Alternative splicing of Taf1 exon 12a was found in our study 

to be regulated oppositely by Tra2 and Hfp in Drosophila testis. 

Because exon 12a encodes another AT hook of Taf1 protein, its 

splicing could potentially influence the transcriptional activity 

of Taf1 (Metcalf and Wassarman, 2006). Further spermatogenesis in 

both Hfp and Taf1 mutants were examined and similar effects between 

the two mutants were recorded. These observations suggest that the 

regulation of male germ cell development by Hfp is partially 

through the regulation of taf1 alternative splicing. From our 

rescue experiment, minor effect was seen by forced expression of 

Taf1 in the Hfp mutant background. To further confirm the 
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regulation of Hfp on Taf1 splicing, Taf1-2 isoform, the testis-

enriched isoform with exon12a inclusion, should be specifically 

expressed in testis in the Hfp mutant background. This raises the 

question of how Hfp plays opposite roles of Tra2 on the exon 12a 

splicing. What elements within these introns or exons are required 

for Hfp activation but also suffice for Tra2 repression? At present 

we do not know if Hfp or Tra2 directly associates with taf1 

transcript. By comparison with the situation in the M1 intron, the 

mechanism of exon 12a splicing regulation by both Hfp and Tra2 

could provide deeper understanding of the regulatory roles of 

splicing factors in different contexts.   

 

 The splicing regulations of both M1 intron and Taf1 exon 12a 

are both involved in the male germline development. Germ cell 

development and differentiation is one of the most complex 

processes in multi-cell organisms that alternative splicing is 

known to play important roles in (Elliott, 2004; Walker et al., 

1999). By studying splicing regulation, we can understand how 

tissue-specific isoforms are produced and how their alternative 

splicing is employed by such tissues to produce special functions, 

not only for normal germ cell growth and differentiation but also 

for the abnormal incidence of certain types of cancers.  

 

 The mechanism of splicing regulation in molecular level is not 

only an interesting topic but also critical to understand the 

pathology of certain diseases and further provide therapeutic 

choices in clinic. Recently a very promising treatment for spinal 
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muscular atrophy was developed by correcting the abnormal splicing 

of SMN-2 pre-mRNA with antisense oligonucleotides in mouse (Hua et 

al., 2010). More successful cases will be reported to cure diseases 

if the mechanisms of alternative splicing are better understood in 

the future. 
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