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Figure	3.2:	Activation	of	Aurora	A	Releases	Kras-Dependency	of	PDAC	Cells	

	

Colony	formation	of	mouse	PDAC	cells.	This	mouse	cell	line	replies	on	Kras	to	grow.	

Adding	doxycycline	 (Doxy)	 induces	 the	 expression	of	Kras.	Expression	of	YAP	has	

been	 shown	 to	 let	PDAC	escape	Kras-dependency.	Here,	TPX2-expressing	PDAC	 is	

tested	for	its	dependency	on	Kras.		

	

	

	

	

	

	

	

	



	 82	

3.3:	Similarity	of	Aurora	A-	and	YAP-Mediated	Cellular	Phenotypes	

Identification	of	YAP	as	a	downstream	substrate	of	Aurora	A	kinase	expands	

our	understanding	of	Aurora	A–mediated	malignancies.	Aurora	A	has	been	reported	

to	 enhance	 not	 only	 the	 cell	 growth,	 but	 also	 cell	 migration/invasion,	 cancer	

metastasis,	properties	of	cancer-initiating	cells,	and	drug	resistance	in	cancers	(119-

122,	124-126).	Of	interest,	YAP	has	also	been	shown	to	be	involved	in	many	similar	

functions	 (52,	 55,	 77-79),	 suggesting	 that	 the	 newly	 identified	 Aurora	 A-YAP	 axis	

may	possess	a	key	role	yet	to	be	explored	in	cancer	development.	

	

3.4:	Enzymatic	Regulators	of	YAP	(Negative	and	Positive	Regulators)	

Canonically,	YAP	activity	is	controlled	strictly	by	LATS	kinase	from	the	Hippo	

pathway;	however,	there	are	several	lines	of	new	evidence	that	YAP	activity	can	also	

be	 regulated	 by	 other	 kinases	 or	 protein	 methyltransferase.	 Here	 we	 review	 the	

literatures	about	this	aspect	to	provide	a	better	understanding	of	post-translational	

regulation	 of	 YAP	 activity.	 Each	modification	 can	 engage	 a	 distinct	 transcriptional	

program	of	YAP,	depending	on	how	YAP-surrounding	complexes	are	altered.	

	

Negative	Regulators:	

LATS	 inhibits	 YAP	 activity	 by	 direct	 phosphorylation	 on	 five	 sites	 of	 YAP.	

Overall,	 it	 renders	 a	 sequestration	 of	 YAP	 in	 the	 cytoplasm	 or	 causes	 the	 protein	

degradation	of	YAP	(59).		
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5'	 AMP-activated	 protein	 kinase	 (AMPK)	 has	 recently	 been	 shown	 to	 inhibit	

YAP	 activity	 when	 cells	 are	 under	 energy	 stress.	 In	 one	 study,	 AMPK	 directly	

phosphorylates	 on	 serine	 94	 residue	 of	 YAP	 and	 this	 abolishes	 the	 interaction	

between	YAP	and	TEADs	(140).	In	another	study,	AMPK	directly	phosphorylates	S61	

while	 this	 inhibits	 YAP	 activity	 by	 an	 unknown	 mechanism	 (141).	 Of	 note,	 the	

second	 paper	 did	 also	 identify	 S94	 of	 YAP	 is	 an	 AMPK	 site	 but	 the	 study	 did	 not	

focus	on	it.	Mutation	of	S61	to	alanine	significantly	diminishes	YAP	activity	but	it	did	

affect	 neither	 the	 localization	 of	 YAP	 nor	 the	 YAP-TEAD	 interaction.	 The	 authors	

suspected	that	other	unknown	dynamics	on	nuclear	YAP-complex	might	be	altered	

by	AMPK.	This	mechanism	 is	 similar	 to	our	 findings	 in	 this	 thesis.	Addressing	 the	

detail	 alteration	 of	 nuclear	 YAP-complex	 under	 different	 stimuli	 may	 possess	 the	

key	to	understand	the	modulation	of	YAP	activity.	

	

Protein	 methylation	 of	 YAP	 can	 also	 inhibit	 YAP	 activity.	 A	 research	 has	

discovered	 that	 SET7	 methyltransferase	 can	 monomethylate	 YAP	 protein	 on	 its	

lysine	494.	The	methylation	promotes	the	cytoplasmic	retention	of	YAP	protein	and	

therefore	the	transcriptional	program	of	YAP	is	turned	off	(142).	

		

Positive	Regulators:	

ABL	 tyrosine	 kinase	 was	 shown	 to	 directly	 phosphorylate	 YAP	 on	 Y357	

residue.	This	phosphorylation	occurs	upon	the	DNA	damage	response.	Mechanically,	

the	phosphorylation	of	YAP-Y357	promotes	the	complex	formation	of	YAP	and	p73	
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and	this	complex	later	recruits	p300	to	help	activate	apoptosis-related	genes	during	

DNA	damage	(143).	

	

YES	kinase	was	 the	 first	kinase	 found	 to	 interact	with	YAP	protein	while	 the	

functional	regulation	of	YES	on	YAP	activity	was	not	 intensively	pursued	in	earlier	

times.	 In	2004,	one	 study	 showed	 that	YES	kinase	 can	phosphorylate	YAP	protein	

and	this	brings	the	association	of	Runx2	and	YAP.	YAP	functions	as	a	co-suppressor	

of	 Runx2	 protein.	 Upon	 the	 interaction,	 YAP	 suppresses	 Runx2-mediated	 gene	

transcription.	 For	 example,	 osteocalcin	 gene	 is	 a	 target.	 Inhibition	 of	 YES	 kinase	

dissociates	 the	 YAP-Runx2	 complex	 and	 therefore	 those	 suppressed	 genes	 can	 be	

reactivated	(144).	In	2011,	one	study	showed	that	leukemia	inhibitory	factor	(LIF)	

pathway	 regulates	 YAP-TEAD2	 activity	 and	 regulates	 self-renewal	 of	 mouse	

embryonic	 stem	cells	 (145).	This	 activation	 requires	YES	kinase.	 In	2012,	 another	

phenomenal	 paper	 showed	 that,	 in	 colorectal	 cancer	model,	 YES	 kinase	 enhances	

the	loading	of	YAP/beta-catenin	complex	to	promoters	of	BCL2L1	and	BIRC5.	In	this	

study,	 TPX5	 is	 a	 critical	 transcriptional	 activator	 to	 conduct	 signal	 output	 of	

YAP/beta-catenin	complex.	 Interestingly,	YES	kinase	does	not	affect	 the	binding	of	

YAP	and	beta-catenin.	The	exact	mechanism	of	how	YES	kinase	regulates	the	loading	

of	YAP-complex	on	target	genes	is	still	unclear	(54).	

	

Recently,	Homeodomain-interacting	protein	kinases	(HIPKs)	have	been	shown	

to	positively	regulate	YAP	activity	in	flies.	The	two	reports	all	revealed	a	critical	role	

of	HIPKs	 in	 the	potentiation	of	YAP	activity	with	genetic	study.	One	study	showed	
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that	 HIPK	 can	 regulate	 the	 nuclear	 accumulation	 of	 YAP,	 while	 the	 other	 study	

showed	 that	 YAP	 remains	 in	 the	 nucleus	 regardless	 of	 HIPK.	 Inhibition	 of	 HIPK	

kinase	 activity	 reduces	 the	 YAP-mediated	 organ	 growth	 (146,	 147).	 Although	 the	

detail	studies	in	human	cells	were	not	conducted	yet,	HIPK	may	be	also	a	promising	

candidate	to	be	targeted	in	cancers.	

	

3.5:	Chromatin	Remodeling	Complex	and	the	Activity	of	YAP,	TAZ	

Gene	 transcription	 is	 a	 complicate	 process	 that	 involves	 numerous	 protein	

machineries	 to	 determine	 on	 or	 off	 of	 one	 particular	 promoter.	 Chromatin	

remodeling	factors	are	essential	to	control	the	epigenetic	status	of	promoter	areas.	

Human	YAP	homolog,	TAZ,	has	been	reported	to	interact	with	SWI/SNF	complex.	In	

that	study,	TAZ	recruits	SWI/SNF	complex	to	promote	the	lineage	differentiation	of	

breast	 epithelial	 cells	 from	 luminal	 to	 basal	 characteristics	 (148).	 YAP	 protein	 is	

structurally	very	similar	to	TAZ.	It	is	possible	that	YAP	also	uses	similar	machinery	

to	 control	 gene	 expression.	 Interestingly,	 from	 our	 own	 M/S	 analysis	 of	 YAP-

interacting	proteins,	we	 also	observed	many	of	 SWI/SNF	members	 (Table	3.5).	 In	

another	study,	drosophila	Yorkie	promotes	gene	expression	through	recruiting	the	

histone	 methylation	 complex.	 YAP	 interacts	 with	 NcoA6	 to	 induce	 H3K4	

methylation	on	target	genes	(149).	Preliminarily,	we	have	done	a	sucrose	gradient	

separation	of	nuclear	YAP	complex	from	MDA-MB-231	cells	treated	with	an	Aurora	

A	 inhibitor.	The	result	 suggested	 that	Aurora	A	may	alter	 the	size	of	nuclear	YAP-	

complex	 (Figure	 3.5).	 Taken	 together,	 whether	 Aurora	 A	 may	 regulate	 the	
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transcriptional	 activity	 of	 YAP	 through	 affecting	 the	 recruitment	 of	 SWI/SNF	 or	

histone-modifying	proteins	is	certainly	an	interesting	topic	for	further	study.	
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Table	3.5:	Members	of	SWI/SNF	Complex	from	YAP-Interacting	Proteins		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

This	protein	list	was	generated	from	our	M/S	analysis	of	YAP-interacting	proteins.	

	

	

	

	

	

	

SWI/SNF complex 

ARID1A 

ARID1B 

SMARCA2 

SMARCB1 

SMARCC1 

SMARCC2 

SMARCD1 

SMARCD2 

SMARCE1 
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Figure	3.5:	Aurora	A	Affects	the	Size	of	Nuclear	YAP	Protein	Complex	

	

	

	

	

	

	

	

	

	

	

	

	

	

Immunoblot	 of	 YAP	 proteins	 in	 fractions	 collected	 from	 the	 sucrose	 gradient	

separation.	Nuclear	extracts	of	MDA-MB-231	cells	 treated	with/without	MLN8237	

were	used.	EZH2	is	a	nuclear	protein	and	it	servers	as	an	irrelevant	control.	
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3.6:	The	Interplay	of	Aurora	A	and	the	Upstream	Hippo	Pathway	

Aurora	A	kinase,	 in	addition	 to	 interacting	with	YAP	 from	our	discovery,	has	

been	 shown	 to	 interact	 with	 several	 upstream	 Hippo	 regulators.	 MST1/2	

phosphorylates	 Aurora	 A	 to	 regulate	 ciliogenesis	 in	 epithelial	 cells	 (150).	 LATS2	

kinase	was	 shown	 to	be	a	 substrate	of	Aurora	A,	 and	 this	 regulation	 is	 critical	 for	

cytokinesis	(151,	152).	Moreover,	KIBRA,	which	associates	with	LATS	and	regulates	

the	Hippo	pathway,	was	also	reported	as	a	substrate	and	regulator	of	Aurora	A	(29-

32,	153).	These	lines	of	evidence	indicate	a	complex	interplay	between	Aurora	A	and	

the	 Hippo	 upstream	 cascade.	 However,	 how	 Aurora	 A	 may	 directly	 or	 indirectly	

affect	 the	 output	 of	 the	 Hippo	 pathway	 remains	 unanswered.	 It	 is	 plausible	 that	

Aurora	A	may	also	regulate	YAP	activity	through	its	influence	on	Hippo	kinases,	and	

if	 so,	 one	 would	 expect	 to	 see	 a	 change	 in	 localization	 of	 the	 YAP	 protein	 when	

Aurora	 A	 activity	 is	 manipulated.	 However,	 our	 results	 showed	 that	 YAP	 protein	

remains	in	the	nucleus	even	when	Aurora	A	activity	is	abrogated,	suggesting	that,	at	

least	 in	our	system,	Aurora	A	could	not	significantly	 impinge	on	the	Hippo	kinases	

cascade.	

	

3.7:	Distinct	Functions	of	Serine	397	Phosphorylation	on	the	YAP	Protein	

Our	 study	 has	 determined	 that	 the	 serine	 397	 residue	 is	 a	 major	 Aurora	 A	

phosphorylation	site	on	YAP.	This	phosphorylation	seems	to	elevate	YAP	activity.	Of	

note,	 however,	 a	 previous	 report	 clearly	 showed	 that	 the	 same	 site	 could	 be	

phosphorylated	by	LATS	kinase	and	that	 this	phosphorylation	primes	YAP	protein	

for	 sequential	 phosphorylation	 by	 CK1,	 eventually	 resulting	 in	 β-TrCP–mediated	
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protein	degradation	of	YAP	 (59).	Different	 output	 from	 the	 same	phosphorylation	

site	may	reflect	the	intricate	regulation	of	YAP	protein	in	a	cell	context–dependent	

or	 environment	 cues–dependent	 manner.	 The	 previous	 report	 was	 conducted	 in	

noncancerous	NIH-3T3	fibroblast	cells,	and	YAP	protein	stability	was	assessed	in	a	

scenario	 of	 high	 cell	 density.	 In	 our	 results	 (Figure	 4.7),	when	MDA-MB-231	 cells	

were	 grown	 at	 a	 high	 density,	 total	 YAP	 protein	 was	 even	 elevated	 but	 not	

decreased.	However,	 in	accordance	with	 the	previous	report	 (59),	we	also	noticed	

that	 high	 cell	 density	 indeed	 increased	 the	 phosphorylation	 of	 YAP-S127	 and	

consequently	 reduced	 the	 expression	 of	 a	 YAP	 target	 gene,	 CTGF,	 suggesting	

activation	 of	 Hippo	 kinases	 (Figure	 4.7).	 Whether	 the	 conserved	 machinery	 that	

regulates	 YAP	 protein	 stability	 can	 be	 seen	 in	 both	 normal	 and	 cancerous	 cells	

awaits	 further	 investigation.	 From	 another	 aspect,	 we	 observed	 that	

phosphorylation	 of	 YAP	 by	 Aurora	 A	 predominantly	 occurs	 in	 the	 nuclear	

compartment,	 whereas	 the	 MST/LATS	 axis	 conducts	 YAP	 phosphorylation	 in	 the	

cytoplasm	 (15,	 154,	 155).	 It	 is	 possible	 that	YAP	protein,	 even	with	 the	 same	 site	

phosphorylated,	may	be	differentially	regulated	in	the	nucleus	and	cytoplasm.	
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Figure	3.7:	Cell	Density	Does	Not	Decrease	YAP	Protein	Level	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Immunoblot	of	YAP	and	YAP-S127p	 from	 lysates	of	MDA-MB-231	cells	cultured	at	

different	densities.	
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3.8:	Roles	of	the	Nuclear	Aurora	A	kinase	

In	normal	cells,	Aurora	A	expression	 is	mainly	 in	 the	cytoplasm.	However,	 in	

cancerous	cells	and	a	model	system,	some	reports	have	clearly	shown	that	a	 large	

portion	 of	 Aurora	 A	 protein	 localizes	 in	 the	 nucleus.	 In	 head	 and	 neck	 cancers,	

nuclear	Aurora	A	was	shown	to	mediate	oncogenic	transformation	(156).	In	a	skin	

tumor	 model,	 protein	 expression	 of	 Aurora	 A	 was	 shown	 in	 the	 nucleus	 (115).	

Moreover,	in	Tetrahymena	model	system,	nuclear	Aurora	A	was	shown	to	regulate	

the	 phosphorylation	 of	 serine	 10	 on	 histone	 H3.	 This	 histone	 phosphorylation	 is	

critical	for	the	onset	of	mitosis	and	the	control	of	accurate	chromosomal	segregation	

(157).	 In	 our	 results,	 we	 also	 found	 that	 Aurora	 A	 protein	 is	 almost	 exclusively	

present	in	the	nucleus	of	MDA-MB-231	cells.	The	interaction	of	YAP	and	Aurora	A	is	

also	 in	 the	 nucleus,	 suggesting	 a	 new	 function	 of	 nuclear	 Aurora	 A	 in	 oncogenic	

progression.	

	

3.9:	When	Hippo	and	Aurora	A	Collide	on	YAP	Protein	

In	our	study,	we	found	that	Aurora	A	kinase	regulates	YAP	only	in	the	nucleus.	

However,	canonical	Hippo	pathway	was	reported	to	influence	YAP	in	the	cytoplasm.	

Though	we	do	not	have	a	clear	answer	for	how	these	two	regulations	can	coordinate	

with	each	other,	it	is	reasonable	to	speculate	that	Hippo	pathway	may	be	still	more	

dominant	 over	 Aurora	 A-mediated	 YAP	 activity.	 The	 main	 reason	 is	 that	 Hippo	

regulates	 YAP	 localization.	 Once	 YAP	 is	 trapped	 in	 the	 cytoplasm	 due	 to	 the	

activation	of	Hippo,	Aurora	A	can	no	longer	enhance	YAP	activity.	Cytoplasmic	YAP	
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has	been	long	thought	non-functional;	however,	one	interesting	paper	reported	that	

cytoplasmic	accumulated	YAP/TAZ	protein	can	function	as	a	scaffold	to	bridge	beta-

catenin	to	the	destruction	complex	(158).	Whether	cytoplasmic	Aurora	A	may	have	

any	role	to	affect	this	new	regulation	remains	to	be	determined.	

	

3.10:	Future	Directions	

Based	on	our	current	findings,	Aurora	A	kinase	was	identified	as	a	new	kinase	

that	 positively	 regulates	 YAP	 activity	 through	 a	 direct	 phosphorylation	 event.	

Regarding	this	direction,	many	extended	questions	remain	to	be	tested	 for	a	more	

comprehensive	understanding	of	this	new	axis.	The	potential	future	works	can	span	

from	basic	researches	to	the	translational	avenue,	including	the	following:	

		

(1) Which	subset	of	YAP-targeted	genes	is	under	the	control	of	Aurora	A	kinase?		

(2) What	 are	 the	 major	 biological	 outputs,	 in	 addition	 to	 cell	 growth,	 from	

Aurora	A-YAP	axis?	

(3) 	There	 are	 a	 variety	 of	 transcriptional	 factors	 that	 interact	 with	 YAP.	 How	

does	 Aurora	 A	 affect	 YAP	 activity	 through	 the	 interplay	 of	 different	

transcriptional	factors?	At	which	scenarios,	is	Aurora	A	most	critical	for	YAP	

function?		

(4) What	 is	 the	 exact	 mechanism	 for	 Aurora	 A	 to	 augment	 transcriptional	

activity	of	YAP?	How	is	the	dynamics	of	nuclear	YAP	complex	engaged	in	the	

process?	

(5) In	addition	to	TNBC,	does	this	pathway	occur	in	other	cancer	types?	
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(6) Is	 Aurora	 A	 important	 to	 regulate	 YAP-mediated	 malignancy	 in	 animal	

models?	 In	 this	 case,	 does	 the	 treatment	 of	 therapeutic	 Aurora	 A	 inhibitor	

improve	the	disease	control?					
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CHAPTER	4	

MATERIALS	AND	METHODS	
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4.1:	Cell	Lines,	Plasmids,	and	Inhibitors	

All	 cell	 lines,	 except	NIH-3T3,	were	maintained	 in	DMEM	medium	with	10%	

FBS	 plus	 streptomycin	 and	 penicillin.	 NIH-3T3	 was	 purchased	 from	 ATCC	 and	

maintained	in	10%	bovine	serum	in	DMEM.	Plasmids	that	express	FLAG-YAP,	FLAG-

Aurora	 A,	 FLAG-TPX2,	 and	 NTAP-YAP	 were	 constructed	 on	 pCDH-CMV-MCS-EF1-

Puromycin	 vector	 (#CD510B-1;	 System	 Biosciences)	 or	 pCDH-EF1-MCS-IRES-Neo	

vector	 (#CD533A-2;	 System	 Biosciences)	 when	 a	 double-selection	 was	 required.	

Plasmids	used	for	recombinant	protein	production	were	constructed	on	a	pET-32a	

vector.	Site-directed	mutagenesis	was	induced	according	to	a	QuikChange	protocol	

(Agilent	Technologies).	Primer	sequences	and	inserting	sites	are	listed	in	Table	4.1.	

Other	plasmids	that	were	purchased	from	Addgene	are	listed	in	the	Plasmid	section.	

For	YAP	and	Aurora	A	knockout	cells	used	in	the	experiment,	each	line	is	a	pool	of	at	

least	 4	 individual	 knockout	 clones	 to	 minimize	 clonal	 variation.	 The	 knockout	

efficiency	was	confirmed	by	immunoblotting.	A	CRISPR	plasmid	targeting	GFP	was	

used	 as	 a	 control.	 The	 chemical	 inhibitor	 for	 Aurora	 A	 kinase,	 MLN8237,	 was	

obtained	 from	 Selleck	 Chemicals.	 MLN8237	 (100nM)	 was	 used	 throughout	 the	

study.	
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Table	4.1:	Primers	for	Cloning	and	Mutagenesis	

Name Purpose Site  Sequence (5’ to 3’) 

FLAG-Aurora A/F Mammalian expression Xba1 

ATA TAT TCT AGA CCA CCA TGG ACT 
ACA AGG ACG ACG ATG ACA AGA TGG 
ACC GAT CTA AAG AAA ACT GCA TTT 
CAG G 

Aurora A/R Mammalian expression BamH1 ATA TAT GGA TCC CTA AGA CTG TTT 
GCT AGC TGA TTC TTT GTT TTG GC 

FLAG-YAP1/F Mammalian expression EcoR1 
ATA TAT GAA TTC CCA CCA TGG ACT 
ACA AGG ACG ACG ATG ACA AGA TGG 
ATC CCG GGC AGC AGC CGC 

YAP1/R Mammalian expression Not1 
ATA TAT GCG GCC GCC TAT AAC CAT 
GTA AGA AAG CTT TCT TTA TCT AGC 
TTG G 

NTAP/F Mammalian expression Xba1 ATA TAT TCT AGA ATG GCA GGC CTT 
GCG CAA CAC G 

NTAP/R Mammalian expression Xba1 ATA TAT TCT AGA TCC AAC GTT AAC 
TGC GGT ACC TAG C 

YAP1(for NTAP)/F Mammalian expression EcoR1 
ATA TAT GAA TTC CCA CCA TGG ACT 
ACA AGG ACG ACG ATG ACA AGA TGG 
ATC CCG GGC AGC AGC CGC 

YAP(1-270)/F Bacterial expression EcoR1 ATA TAT GAA TTC ATG GAT CCC GGG 
CAG CAG CCG C 

YAP(1-270)/R Bacterial expression Not1 ATA TAT GCG GCC GCG TTC ATG GCA 
AAA CGA GGG TCA AGC 

YAP(271-504)/F Bacterial expression EcoR1 ATA TAT GAA TTC AAC CAG AGA ATC 
AGT CAG AGT GCT CC 

YAP(271-504)/R Bacterial expression Not1 ATA TAT GCG GCC GCT AAC CAT GTA 
AGA AAG CTT TCT TTA TCT AGC TTG G 

YAP(270-370)/F Bacterial expression EcoR1 ATA TAT GAA TTC AAC CAG AGA ATC 
AGT CAG AGT GCT CC 

YAP(270-370)/R Bacterial expression Not1 ATA TAT GCG GCC GCC ATC CCG GGA 
GAA GAC ACT GGA TTT TGA G 

YAP(371-504)/F Bacterial expression EcoR1 ATA TAT GAA TTC TCT CAG GAA TTG 
AGA ACA ATG ACG ACC 

YAP(371-504)/R Bacterial expression Not1 ATA TAT GCG GCC GCT AAC CAT GTA 
AGA AAG CTT TCT TTA TCT AGC TTG G 

YAP(410-504)/F Bacterial expression EcoR1 ATA TAT GAA TTC CCT CGA ACC CCA 
GAT GAC TTC C 

YAP(410-504)/R Bacterial expression Not1 ATA TAT GCG GCC GCT AAC CAT GTA 
AGA AAG CTT TCT TTA TCT AGC TTG G 

FLAG-TPX2/F Mammalian expression NheI 
ATA TAT GCT AGC CCA CCA TGG ACT 
ACA AGG ACG ACG ATG ACA AGA TGT 
CAC AAG TTA AAA GCT CTT ATT CC 

FLAG-TPX2/R Mammalian expression BamH1 ATA TAT GGA TCC TTA GCA GTG GAA 
TCG AGT GGA G 

YAP-397A/F Mutagenesis  
GAT GAG GCT ACA GAC AGT GGA CTA 
AGC ATG 

YAP-397A/R Mutagenesis  
GTC TGT AGC CTC ATC TCG AGA GTG 
ATA GGT G 

YAP-S127A/F Mutagenesis  GCT CAT GCC TCT CCA GCT TCT CTG C 

YAP-S127A/R Mutagenesis  
TGG AGA GGC ATG AGC TCG AAC ATG 
CTG 
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Aurora A-K162R/F Mutagenesis  
GCT CTT CGA GTG TTA TTT AAA GCT 
CAG CTG G 

Aurora A-K162R/R Mutagenesis  
TAA CAC TCG AAG AGC CAG AAT AAA 
CTT GCT TTG C 
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4.2:	Transfection,	RNAi,	CRISPR,	and	Lentiviral	Infection	

Plasmid	 DNA	 transfection	 was	 conducted	 with	 use	 of	 FuGENE6	 (Promega)	

according	 to	 the	 manufacturer’s	 instructions.	 siRNA	 transfection	 was	 conducted	

with	use	of	Amexa	Nucleofactor	II	(Lonza	Group	Ltd.,	Basel,	Switzerland)	according	

to	 the	manufacturer’s	 instructions.	Lentiviral	 shRNA	 targeting	YAP	was	purchased	

from	 the	 GIPZ	 lentiviral	 shRNA	 library	 (shRNA	 and	 OFRome	 Core,	 MD	 Anderson	

Cancer	Center,	Houston,	TX).	The	GIPZ	lentiviral	vector	with	a	non-targeting	shRNA	

was	used	as	a	scramble	control.	All	siRNAs	were	obtained	from	Sigma-Aldrich.	The	

plasmid	 used	 for	 cloning	 a	 custom-designed	 CRISPR	 system	 was	 obtained	 from	

Addgene	(#52961.	For	YAP	knockout	cells	(sequence:	catcagatcgtgcacgtccg)	used	in	

the	 experiment,	 4	 individual	 knockout	 clones	 were	 pooled	 to	 minimize	 clonal	

variation.	 The	 knockout	 efficiency	 was	 confirmed	 by	 immunoblotting.	 A	 CRISPR	

plasmid	targeting	GFP	was	used	as	a	control.	

	Sequences	of	RNA	interference	are	listed	in	the	Table	4.2.	Lentiviral	packaging	

was	 conducted	 in	 293FT	 cells	 (Thermofisher	 Scientific)	 with	 co-transfection	 of	

pCMV-VSV-G	and	pCMV-dR8.2	dvpr.	 72	hours	 after	 transfection,	 and	medium	 that	

contained	 viruses	 was	 used	 to	 infect	 target	 cells	 (with	 8	 µg/ml	 Polybrene)	 for	 2	

days.	After	infection,	cells	were	selected	with	2	µg/ml	puromycin	or	1	mg/ml	G418	

until	the	non-infected	control	cells	were	eliminated.	
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Table	4.2:	Information	about	qPCR,	ChIP,	RNAi,	and	CRISPR	Systems	
	

Name Purpose Sequences or other information 
CTGF/F qPCR CGTGTGCACCGCCAAAGATG 
CTGF/R qPCR TGCTCTGGAAGGACTCTCCG 
GAPDH/F qPCR GGT GAA GGT CGG AGT CAA CGG 
GAPDH/R qPCR ACC AGA GTT AAA AGC AGC CCT GG 
CTGF/F (for q-PCR) ChIP-qPCR TCT GTG AGC TGG AGT GTG CC 
CTGF/R (for q-PCR) ChIP-qPCR CTC GCC AAT GAG CTG AAT GG 
CTGF/F (for PCR) ChIP-PCR TCT GTG AGC TGG AGT GTG CC 
CTGF/R (for PCR) ChIP-PCR ACG CGC CGG GCT GTC G 
YAP_1 siRNA SASI_Hs01_00182403; Clone ID (From Sigma-Aldrich) 
YAP_2 siRNA SASI_Hs01_00182405; Clone ID (From Sigma-Aldrich) 
Aurora A_1 siRNA SASI_Hs01_00241477; Clone ID (From Sigma-Aldrich) 
Aurora A_2 siRNA SASI_Hs01_00241478; Clone ID (From Sigma-Aldrich) 
YAP_1 shRNA from pGIPZ library #247011 
YAP_2 shRNA from pGIPZ library #65508 
YAP1 CRISPR-sgRNA C ATC AGA TCG TGC ACG TCC G 
Aurora A CRISPR-sgRNA T GAG TCA CGA GAA CAC GTT T 
EGFP CRISPR-sgRNA GGG CGA GGA GCT GTT CAC CG 
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4.3:	Immunoblotting	and	Antibodies	

An	 immunoblot	assay	was	 conducted	according	 to	 standard	procedures.	The	

blocking	 agent	 used	 throughout	 the	 experiment	 was	 4%	 bovine	 serum	 albumin	

(BSA).	Detailed	information	about	all	of	the	antibodies	used	in	the	current	study	is	

listed	in	the	Table	4.3.	
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Table	4.3:	List	of	Antibodies	Used	in	this	Study	

	
	
Protein Company Purpose Catalog number 
YAP Cell Signaling WB, IF, IP, ChIP 14074S 
YAP Santa Cruz WB, IF Sc-271134 
YAP-S397p Cell Signaling WB, IHC 13619S 
YAP-S127p Epitomics WB 2209-1 
Actin Sigma Aldrich WB A2066 
CTGF Santa Cruz WB sc-14939 
Aurora A Cell Signaling WB, IF 4718S 
Aurora A-T288p Cell Signaling WB 3079S 
MCM5 GeneTex WB 114090 
FLAG Sigma Aldrich WB, IF, IP, ChIP F3165 
PLK1-T210p Epitomics WB 3646-1 
TPX2 Cell Signaling IHC 12245S 
Cyclin B1 Santa Cruz WB sc245 
Cyclin E Santa Cruz WB sc247 
Lamin A Santa Cruz WB sc20680 
Tubulin Sigma Aldrich WB T5168 
TEAD1 Cell Signaling WB 12292S 
EZH2 Cell Signaling WB 5246S 
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4.4:	Purification	of	Recombinant	Proteins	and	Kinase	Assay	

Recombinant	 proteins	 (all	 are	 his-tagged	 proteins)	were	 produced	 in-house.	

Basically,	 one	 colony	 of	 transformed	 BL21-CodonPlus	 (DE3)-RILP	 cells	 (Agilent	

Technologies)	was	 inoculated	 in	 2xYT	medium	 and	 shake-incubated	 at	 30°C	 until	

O.D.	 600	 reached	 0.6.	 Recombinant	 proteins	 were	 then	 purified	 according	 to	 a	

QiaexpressionistTM	protocol	(Qiagen).	Eluted	proteins	were	semi-quantified	on	SDS-

PAGE	 and	 compared	 with	 a	 BSA	 control.	 Enzyme	 active	 Aurora	 A	 kinase	 was	

purchased	 from	 EMD	 Millipore	 (Cat.	 #14-511).	 GST-tagged	 YAP1	 protein	 was	

purchased	 from	 Novus	 (Cat.	 #	 H00010413-P01).	 The	 in	 vitro	 kinase	 assay	 was	

performed	at	30°C	for	20	minutes	by	mixing	25	ng	of	Aurora	A	kinase	with	750	ng	of	

YAP	proteins	in	kinase	buffer	(50	mM	HEPES-7.3;	15	mM	MgCl2;	20	mM	KCl;	2	mM	

EGTA;	 1	 mM	 DTT;	 100	 µM	 ATP)	 containing	 ATP	 gamma-32P.	 Reactions	 were	

quenched	by	heating	at	95°C	for	5	minutes	in	the	presence	of	SDS-loading	buffer	and	

then	analyzed	by	SDS-PAGE	followed	by	exposure	on	x-ray	films.	

	

4.5:	Tandem-Affinity	Purification	

To	 purify	 YAP-binding	 proteins,	 we	 used	 the	 tandem	 affinity	 purification	

(TAP)	 tag	 system,	 which	 consists	 of	 protein	 A	 and	 calmodulin-binding	 peptide	

sequences	 separated	 by	 TEV	 protease	 cleavage	 site	 (159).	 	 The	 N-terminal	 TAP-

tagged	YAP	or	 an	 empty	vector	was	 stably	 expressed	 in	MDA-MB-231	 cells.	Then,	

the	cells	were	grown	in	50	plates	of	150	mm	culture	dishes,	and	lysed	in	TAP	lysis	

buffer	 (50	 mM	 Tris-HCl	 pH8.0,	 150	 mM	 NaCl,	 1%	 Triton	 X-100,	 2	 mM	 EGTA,	
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protease	 inhibitor	 mixture,	 and	 phosphatase	 inhibitor	 mixture).	 After	 sonication	

and	 centrifugation,	 the	 cleared	 cell	 lysates	 were	 subjected	 to	 purification	 as	

described	 previously	 (159).	 In	 brief,	 the	 lysates	 were	 applied	 to	 the	 first	 affinity	

purification	with	 rabbit	 IgG	agarose	beads.	After	 the	beads	were	washed,	 the	YAP	

protein	 complex	 was	 eluted	 with	 TEV	 protease	 and	 applied	 to	 second	 affinity	

purification	with	calmodulin	beads	 in	 calmodulin	binding	buffer	 (10	mM	Tris-HCl,	

pH	 8.0,	 150	mM	NaCl,	 1	mM	Mg(CH3COO)2,	 2	mM	CaCl2,	 and	 0.1%	Triton	 X-100).	

After	the	beads	was	washed,	the	YAP	protein	complex	was	eluted	with	EGTA	elution	

buffer	 (10	mM	 β-mercaptoethanol,	 10	mM	Tris-HCl,	 pH	 8.0,	 150	mM	NaCl,	 1	mM	

Mg(CH3COO)2,	 1	 mM	 imidazole,	 3	 mM	 EGTA).	 The	 eluted	 proteins	 were	 then	

concentrated	with	Ultrafree®	Centifugal	Filter	(Millipore),	separated	by	SDS-PAGE,	

and	stained	by	Coomassie	blue.	The	bands	were	cut	out	from	the	gel	and	subjected	

to	trypsin	digestion	and	subsequent	mass	spectrometry	analysis.	

	

4.6:	Plasmids	

The	 plasmids	 for	 the	 reporter	 assay,	 pGL2-GAL4-UAS-Luc	 (Addgene	 plasmid	

#33020)(160)	 and	 pCMX-Gal4-TEAD4	 (Addgene	 plasmid	 #	 33105)	 (52),	 were	

obtained	from	Addgene.	A	β-actin	promoter-driven	renilla	luciferase	construct	was	

used	 as	 an	 internal	 control	 in	 the	 reporter	 assay.	 The	 plasmid	 used	 for	 cloning	 a	

custom-designed	CRISPR	system	was	obtained	from	Addgene	(#52961)	(161).	The	

CRISPR	targeting	sequences	of	YAP	and	Aruroa	A	were	listed	in	the	Table	4.2.	
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4.7:	Immunoprecipitation,	ChIP	assay,	and	Mass	Spectrometry	

For	 immunoprecipitation,	 cell	 lysates	 were	 obtained	 with	 modified	 RIPA	

buffer	(25	mM	Tris-HCl-pH	7.6,	150	mM	NaCl,	1%	NP40,	1	mM	DTT).	We	used	1	mg	

of	 cell	 lysate	 in	 each	 IP	 reaction.	 Protein	 complexes	 were	 pulled	 down	 from	

antibody/lysate	 (overnight	 incubation	 at	 4°C)	 by	 protein	 A/G	 beads.	 Protein	

complexes	 were	 then	 washed	 3	 times	 and	 subsequently	 released	 by	 SDS-loading	

buffer	or	eluted	by	FLAG	peptide	(100	µg/ml),	if	FLAG-tag	is	used.	A	ChIP	assay	was	

conducted	 as	 described	 earlier	 (162).	 A	 total	 of	 2x107	 cells	 were	 used	 for	 one	

reaction.	Cellular	DNA	was	sheared	 in	Bioruptor®	(Diagenode)	until	average	DNA	

sizes	were	about	500	bp.	After	eluting	 the	DNA	 from	washed	beads,	 the	DNA	was	

further	 purified	 by	 Qiaquick	 spin	 columns	 (Qiagen),	 and	 5%	 of	 precipitated	 DNA	

was	 used	 for	 q-PCR	 analysis.	 Primers	 for	 ChIP	 are	 listed	 in	 Table	 4.2.	 Mass	

spectrometric	analysis	was	performed	as	previously	described	(163).		

	

4.8:	RT-PCR,	q-PCR,	and	PCR	

Total	cellular	RNAs	were	extracted	by	Trizol	reagent	(Thermofisher	Scientific).	

We	 converted	 1	 µg	 of	 RNA	 to	 20	 µl	 cDNA	 with	 a	 SuperScript®	 VILO™	 cDNA	

Synthesis	 Kit,	 according	 to	 the	 manufacturer’s	 instructions	 (Thermofisher	

Scientific).	cDNA	that	has	been	converted	from	1	µg	of	RNA	can	be	used	for	a	total	of	

60	 reactions	 in	 q-PCR	 analysis.	 q-PCR	 was	 conducted	 with	 iQ™	 SYBR®	 Green	

Supermix	 (Bio-Rad)	 and	 analyzed	 by	 a	 CFX96	 Touch™	 Real-Time	 PCR	 Detection	

System	 (Bio-Rad).	 Regular	 PCR	 amplification	 used	 Phusion®	 polymerase	 (NEB).	

Primers	that	were	used	are	listed	in	Table	4.2.	



	 106	

	

4.9:	Reporter	Assay	

The	 reporter	 assay	 was	 conducted	 as	 previously	 described(164)	 by	 co-

transfection	of	plasmids	in	293FT	cells	(Thermofisher	Scientific).	

	

4.10:	Immunohistochemistry	

IHC	staining	was	performed	by	Dr.	Weiya	Xia	as	previously	described	 (165).	

Human	triple-negative	breast	cancer	tissue-microarray	slides	(n=114)	were	stained	

with	antibodies	against	TPX2	and	YAP-397p	(Cell	Signaling).	The	tissue	microarrays	

were	obtained	and	used	according	 to	 the	guidelines	 approved	by	 the	 Institutional	

Review	 Board	 at	MD	 Anderson	 Cancer	 Center	 (IRB	 Protocol	 #	 LAB05-0127).	 The	

Pearson	 Chi-Square	 test	 was	 used	 for	 statistical	 analysis	 with	 SPSS	 software.	

According	 to	 histological	 scoring,	 the	 intensity	 of	 staining	 was	 ranked	 into	 four	

groups:	high	(score	3),	medium	(score	2),	low	(score	1),	and	negative	(score	0).	

		

4.11:	Soft	Agar	Assay	

Cells	 (5x103	 to	1x	104)	were	 first	mixed	with	0.3%	agar/DMEM	at	42°C	and	

were	then	laid	on	top	of	0.5%	solidified	agar/DMEM	in	12-well	plates.	After	the	top	

layer	solidified,	we	added	1	ml	of	fresh	medium	on	top	of	it.	Cells	were	cultured	in	

the	incubator	with	continuous	changes	of	fresh	medium	every	5	days	until	the	end	

point	 was	 reached.	 MTT	 (thiazolyl	 blue;	 1	 mg/ml)	 diluted	 in	 fresh	 medium	 was	

added	to	stain	colonies	embedded	in	the	agar.	
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4.12:	Confocal	Microscopy	

Cells	were	seeded	on	cover	slides,	treated,	and	then	fixed	in	4%	

paraformaldehyde/PBS	at	room	temperature	for	12	minutes.	Fixed	cells	were	

permeabilized	with	0.5%	Trion-X100/PBS	for	another	5	minutes.	Antibodies	against	

proteins	of	interest	were	added	to	the	cells,	followed	by	an	overnight	incubation	at	

4°C.	Secondary	antibodies	were	applied	for	1	hour	at	room	temperature.	PBS	was	

used	during	the	washing	process	to	remove	traces	of	paraformaldehyde,	Triton,	or	

unbound	antibodies.	Slides	were	mounted	with	mounting	solution	that	contained	

DAPI.	Images	were	captured	by	a	multiphoton	confocal	laser-scanning	microscope	

(Carl	Zeiss,	Thornwood,	NY,	USA).	
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