Airliner cabin air quality exposure assessment

Susan Louise McFarland, The University of Texas School of Public Health

Abstract

The airliner cabin environment and its effects on occupant health have not been fully characterized. This dissertation is: (1) A review of airliner environmental control systems (ECSs) that modulate the ventilation, temperature, relative humidity (RH), and barometric pressure (PB) of the cabin environment---variables related to occupant comfort and health. (2) A review and assessment of the methods and findings of key cabin air quality (CAQ) investigations. Several significant deficiencies impede the drawing of inferences about CAQ, e.g., lack of detail about investigative methods, differences in methods between investigations, limited assessment of CAQ variables, small sample sizes, and technological deficiencies of data collection. (3) A comprehensive evaluation of the methods used in the subsequent NIOSH-FAA Airliner CAQ Exposure Assessment Feasibility Study (STUDY) in which this author participated. A number of problems were identified which limit the usefulness of the data. (4) An analysis of the reliable 10-flight STUDY data. Univariate and multivariate methods applied to CO2 (a surrogate for air contaminants), temperature, RH, and PB, in association with percent passenger load, ventilation system, flight duration, airliner body type, and measurement location within the cabin, revealed neither the measured values nor their variability exceeded established health-based exposure limits. Regression analyses suggest CO2, temperature, and RH were affected by percent passenger load. In-flight measurements of CO2 and RH were relatively independent of ventilation system type or flight duration. Cabin temperature was associated with percent passenger load, ventilation system type, and flight duration. (5) A synthesis of the implications of the airliner ECS and cabin O2 environment on occupant health. A model was developed to predict consequences of the airliner cabin pressure altitude 8,000 ft limit and resulting model-estimated PO2 on cardiopulmonary status. Based on the PB, altitude, and environmental data derived from the 10 STUDY flights, the predicted PaO2 of adults with COPD, or elderly adults with or without COPD, breathing ambient cabin air could be < 55 mm Hg (SaO2 < 88%). Reduction in cabin PB found in the STUDY flights could aggravate various medical conditions and require the use of in-flight supplemental O2.

Subject Area

Public health|Occupational safety

Recommended Citation

McFarland, Susan Louise, "Airliner cabin air quality exposure assessment" (2005). Texas Medical Center Dissertations (via ProQuest). AAI3198338.
https://digitalcommons.library.tmc.edu/dissertations/AAI3198338

Share

COinS