Design of mixed-longitudinal studies

Michael Wright Colopy, The University of Texas School of Public Health

Abstract

Cross-sectional designs, longitudinal designs in which a single cohort is followed over time, and mixed-longitudinal designs in which several cohorts are followed for a shorter period are compared by their precision, potential for bias due to age, time and cohort effects, and feasibility. Mixed longitudinal studies have two advantages over longitudinal studies: isolation of time and age effects and shorter completion time. Though the advantages of mixed-longitudinal studies are clear, choosing an optimal design is difficult, especially given the number of possible combinations of the number of cohorts and number of overlapping intervals between cohorts. The purpose of this paper is to determine the optimal design for detecting differences in group growth rates. The type of mixed-longitudinal study appropriate for modeling both individual and group growth rates is called a "multiple-longitudinal" design. A multiple-longitudinal study typically requires uniform or simultaneous entry of subjects, who are each observed till the end of the study. While recommendations for designing pure-longitudinal studies have been made by Schlesselman (1973b), Lefant (1990) and Helms (1991), design recommendations for multiple-longitudinal studies have never been published. It is shown that by using power analyses to determine the minimum number of occasions per cohort and minimum number of overlapping occasions between cohorts, in conjunction with a cost model, an optimal multiple-longitudinal design can be determined. An example of systolic blood pressure values for cohorts of males and cohorts of females, ages 8 to 18 years, is given.

Subject Area

Biostatistics|Statistics

Recommended Citation

Colopy, Michael Wright, "Design of mixed-longitudinal studies" (1991). Texas Medical Center Dissertations (via ProQuest). AAI9228371.
https://digitalcommons.library.tmc.edu/dissertations/AAI9228371

Share

COinS