Gene transfer by viral vectors

Siqing Fu, The University of Texas Graduate School of Biomedical Sciences at Houston

Abstract

To initiate our clinical trial for chemotherapy protection, I established the retroviral vector system for human MDR1 cDNA gene transfer. The human MDR1 cDNA continued to be expressed in the transduced bone marrow cells after four cohorts of serial transplants, 17 months after the initial transduction and transplant. In addition, we used this retroviral vector pVMDR1 to transduce human bone marrow and peripheral blood CD34$\sp+$ cells on stromal monolayer in the presence of hematopoietic growth factors. These data suggest that the retroviral vector pVMDR1 could modify hematopoietic precursor cells with a capacity for long-term self renewal. Thus, it may be possible to use the MDR1 retroviruses to confer chemotherapeutic protection on human normal hematopoietic precursor cells of ovarian and breast cancer patients in whom high doses of MDR drugs may be required to control the diseases. Another promising vector system is recombinant adeno-associated virus (rAAV) vector. An impediment to use rAAV vectors is that production of rAAV vectors for clinical use is extremely cumbersome and labor intensive. First I set up the rAAV vector system in our laboratory and then, I focused on studies related to the production of rAAV vectors for clinical use. By using a self-inactivating retroviral vector carrying a selection marker under the control of the CMV immediate early promoter and an AAV genome with the deletion of both ITRs, I have developed either a transient or a stable method to produce rAAV vectors. These methods involve infection only and can generate high-titer rAAV vectors (up to 2 x 10$\sp5$ cfu/ml of CVL) with much less work. Although recombinant adenoviral vectors hardly infect early hematopoietic precursor cells lacking $\alpha\sb v\beta\sb5$ or $\alpha\sb v\beta\sb3$ integrin on their surface, but efficiently infect other cells, we can use these properties of adenoviral vectors for bone marrow purging as well as for development of new viral vectors such as pseudotyped retroviral vectors and rAAV vectors. Replacement of self-inactivating retroviral vectors by recombinant adenoviral vectors will facilitate the above strategies for production of new viral vectors. In order to accomplish these goals, I developed a new method which is much more efficient than the current methods to construct adenoviral vectors. This method involves a cosmid vector system which is utilized to construct the full-length recombinant adenoviral vectors in vitro. First, I developed an efficient and flexible method for in vitro construction of the full-length recombinant adenoviral vectors in the cosmid vector system by use of a three-DNA fragment ligation. Then, this system was improved by use of a two-DNA fragment ligation. The cloning capacity of recombinant adenoviral vectors constructed by this method to develop recombinant adenoviral vectors depends on the efficiency of transfection only. No homologous recombination is required for development of infectious adenoviral vectors. Thus, the efficiency of generating the recombinant adenoviral vectors by the cosmid method reported here was much higher than that by the in vitro direct ligation method or the in vivo homologous recombination method reported before. This method of the in vitro construction of recombinant adenoviral vectors in the cosmid vector system may facilitate the development of adenoviral vector for human gene therapy. (Abstract shortened by UMI.)

Subject Area

Molecular biology|Surgery

Recommended Citation

Fu, Siqing, "Gene transfer by viral vectors" (1996). Texas Medical Center Dissertations (via ProQuest). AAI9707551.
https://digitalcommons.library.tmc.edu/dissertations/AAI9707551

Share

COinS