Global patterns of DNA polymorphism in noncoding regions in human populations
Abstract
DNA sequence variation is currently a major source of data for studying human origins, evolution, and demographic history, and for detecting linkage association of complex diseases. In this dissertation, I investigated DNA variation in worldwide populations from two ∼10 kb autosomal regions on 22q11.2 (noncoding) and 1q24 (introns). A total of 75 variant sites were found among 128 human sequences in the 22q11.2 region, yielding an estimate of 0.088% for nucleotide diversity (π), and a total of 52 variant sites were found among 122 human sequences in the 1q24 region with an estimated π value of 0.057%. The data from these two regions and a 10 kb noncoding region on Xq13.3 all show a strong excess of low-frequency variants in comparison to that expected from an equilibrium population, indicating a relatively recent population expansion. The effective population sizes estimated from the three regions were 11,000, 12,700, and 8,600, respectively, which are close to the commonly used value of 10,000. In each of the two autosomal regions, the age of the most recent common ancestor (MRCA) was estimated to be older than 1 million years among all the sequences and ∼600,000 years among non-African sequences, providing first evidence from autosomal noncoding or intronic regions for a genetic history of humans much more ancient than the emergence of modern humans. The ancient genetic history of humans indicates no severe bottleneck during the evolution of humans in the last half million years; otherwise, much of the ancient genetic history would have been lost during a severe bottleneck. This study strongly suggests that both the “out of Africa” and the multiregional models are too simple for explaining the evolution of modern humans. A compilation of genome-wide data revealed that nucleotide diversity is highest in autosomal regions, intermediate in X-linked regions, and lowest in Y-linked regions. The data suggest the existence of background selection or selective sweep on Y-linked loci. In general, the nucleotide diversity in humans is low compared to that in chimpanzee and Drosophila populations.
Subject Area
Genetics
Recommended Citation
Zhao, Zhongming, "Global patterns of DNA polymorphism in noncoding regions in human populations" (2000). Texas Medical Center Dissertations (via ProQuest). AAI9977101.
https://digitalcommons.library.tmc.edu/dissertations/AAI9977101