Date of Graduation


Document Type

Dissertation (PhD)

Program Affiliation

Biochemistry and Molecular Biology

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Michael R. Blackburn, Ph.D.

Committee Member

Scott Drouin, Ph.D.

Committee Member

Christopher M. Evans, Ph.D.

Committee Member

Renhao Li, Ph.D.

Committee Member

Jayasimha N. Murthy, M.D.


Chronic lung diseases and acute lung injuries are two distinctive pulmonary disorders that result in significant morbidity and mortality. Adenosine is a signaling nucleoside generated in response to injury and can serve both protective and destructive functions in tissues and cells through interaction with four G-protein coupled adenosine receptors: A1R, A2AR, A2BR, and A3R. However, the relationship between these factors is poorly understood. Recent findings suggest the A2BR has been implicated in the regulation of both chronic lung disease and acute lung injury. The work presented in this dissertation utilized the adenosine deaminase-deficient mouse model and the bleomycin-induced pulmonary injury model to determine the distinctive roles of the A2BR at different stages of the disease. Results demonstrate that the A2BR plays a protective role in attenuating vascular leakage in acute lung injuries and a detrimental role at chronic stages of the disease. In addition, tissues from patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were utilized to examine adenosine metabolism and signaling in chronic lung diseases. Results demonstrate that components of adenosine metabolism and signaling are altered in a manner that promotes adenosine production and signaling in the lungs of these patients. Furthermore, this study provides the first evidence that A2BR signaling can promote the production of inflammatory and fibrotic mediators in patients with these disorders. Taken together, these findings suggest that the A2BR may have a bi-phasic effect at different stages of lung disease. It is protective in acute injury, whereas pro-inflammatory and pro-fibrotic at the chronic stage. Patients with acute lung injury or chronic lung disease may both benefit from adenosine and A2BR-based therapeutics.


Adenosine, Lung, COPD, Pulmonary Fibrosis

Included in

Biochemistry Commons