Date of Graduation

5-2012

Document Type

Dissertation (PhD)

Program Affiliation

Neuroscience

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Valentin Dragoi, Ph.D.

Committee Member

Daniel J. Felleman, Ph.D.

Committee Member

Anne Sereno, Ph.D.

Committee Member

Harel Shouval, Ph.D.

Committee Member

Kevin Morano, Ph.D.

Abstract

One of the fundamental questions in neuroscience is to understand how encoding of sensory inputs is distributed across neuronal networks in cerebral cortex to influence sensory processing and behavioral performance. The fact that the structure of neuronal networks is organized according to cortical layers raises the possibility that sensory information could be processed differently in distinct layers. The goal of my thesis research is to understand how laminar circuits encode information in their population activity, how the properties of the population code adapt to changes in visual input, and how population coding influences behavioral performance. To this end, we performed a series of novel experiments to investigate how sensory information in the primary visual cortex (V1) emerges across laminar cortical circuits. First, it is commonly known that the amount of information encoded by cortical circuits depends critically on whether or not nearby neurons exhibit correlations. We examined correlated variability in V1 circuits from a laminar-specific perspective and observed that cells in the input layer, which have only local projections, encode incoming stimuli optimally by exhibiting low correlated variability. In contrast, output layers, which send projections to other cortical and subcortical areas, encode information suboptimally by exhibiting large correlations. These results argue that neuronal populations in different cortical layers play different roles in network computations. Secondly, a fundamental feature of cortical neurons is their ability to adapt to changes in incoming stimuli. Understanding how adaptation emerges across cortical layers to influence information processing is vital for understanding efficient sensory coding. We examined the effects of adaptation, on the time-scale of a visual fixation, on network synchronization across laminar circuits. Specific to the superficial layers, we observed an increase in gamma-band (30-80 Hz) synchronization after adaptation that was correlated with an improvement in neuronal orientation discrimination performance. Thus, synchronization enhances sensory coding to optimize network processing across laminar circuits. Finally, we tested the hypothesis that individual neurons and local populations synchronize their activity in real-time to communicate information about incoming stimuli, and that the degree of synchronization influences behavioral performance. These analyses assessed for the first time the relationship between changes in laminar cortical networks involved in stimulus processing and behavioral performance.

Share

COinS