Date of Graduation

5-2012

Document Type

Dissertation (PhD)

Program Affiliation

Microbiology and Molecular Genetics

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Theresa M. Koehler

Committee Member

Edward P. Nikonowicz

Committee Member

William Margolin

Committee Member

Peter J. Christie

Committee Member

Richard G. Brennan

Abstract

Coordinated expression of virulence genes in Bacillus anthracis occurs via a multi-faceted signal transduction pathway that is dependent upon the AtxA protein. Intricate control of atxA gene transcription and AtxA protein function have become apparent from studies of AtxA-induced synthesis of the anthrax toxin proteins and the poly-D-glutamic acid capsule, two factors with important roles in B. anthracis pathogenesis. The amino-terminal region of the AtxA protein contains winged-helix (WH) and helix-turn-helix (HTH) motifs, structural features associated with DNA-binding. Using filter binding assays, I determined that AtxA interacted non-specifically at a low nanomolar affinity with a target promoter (Plef) and AtxA-independent promoters. AtxA also contains motifs associated with phosphoenolpyruvate: sugar phosphotransferase system (PTS) regulation. These PTS-regulated domains, PRD1 and PRD2, are within the central amino acid sequence. Specific histidines in the PRDs serve as sites of phosphorylation (H199 and H379). Phosphorylation of H199 increases AtxA activity; whereas, H379 phosphorylation decreases AtxA function. For my dissertation, I hypothesized that AtxA binds target promoters to activate transcription and that DNA-binding activity is regulated via structural changes within the PRDs and a carboxy-terminal EIIB-like motif that are induced by phosphorylation and ligand binding. I determined that AtxA has one large protease-inaccessible domain containing the PRDs and the carboxy-terminal end of the protein. These results suggest that AtxA has a domain that is distinct from the putative DNA-binding region of the protein.

My data indicate that AtxA activity is associated with AtxA multimerization. Oligomeric AtxA was detected when co-affinity purification, non-denaturing gel electrophoresis, and bis(maleimido)hexane (BMH) cross-linking techniques were employed. I exploited the specificity of BMH for cysteine residues to show that AtxA was cross-linked at C402, implicating the carboxy-terminal EIIB-like region in protein-protein interactions. In addition, higher amounts of the cross-linked dimeric form of AtxA were observed when cells were cultured in conditions that promote toxin gene expression. Based on the results, I propose that AtxA multimerization requires the EIIB-like motif and multimerization of AtxA positively impacts function.

I investigated the role of the PTS in the function of AtxA and the impact of phosphomimetic residues on AtxA multimerization. B. anthracis Enzyme I (EI) and HPr did not facilitate phosphorylation of AtxA in vitro. Moreover, markerless deletion of ptsHI in B. anthracis did not perturb AtxA function. Taken together, these results suggest that proteins other than the PTS phosphorylate AtxA. Point mutations mimicking phosphohistidine (H to D) and non-phosphorylated histidine (H to A) were tested for an impact on AtxA activity and multimerization. AtxA H199D, AtxA H199A, and AtxA H379A displayed multimerization phenotypes similar to that of the native protein, whereas AtxA H379D was not susceptible to BMH cross-linking or co-affinity purification with AtxA-His. These data suggest that phosphorylation of H379 may decrease AtxA activity by preventing AtxA multimerization.

Overall, my data support the following model of AtxA function. AtxA binds to target gene promoters in an oligomeric state. AtxA activity is increased in response to the host-related signal bicarbonate/CO2 because this signal enhances AtxA multimerization. In contrast, AtxA activity is decreased by phosphorylation at H379 because multimerization is inhibited. Future studies will address the interplay between bicarbonate/CO2 signaling and phosphorylation on AtxA function.

Keywords

Bacillus anthracis, Anthrax, AtxA, phosphotransferase system, protein-protein interaction

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.