Publication Date

4-3-2024

Journal

Quantitative Imaging in Medicine and Surgery

Abstract

BACKGROUND: It is crucial to distinguish unstable from stable intracranial aneurysms (IAs) as early as possible to derive optimal clinical decision-making for further treatment or follow-up. The aim of this study was to investigate the value of a deep learning model (DLM) in identifying unstable IAs from computed tomography angiography (CTA) images and to compare its discriminatory ability with that of a conventional logistic regression model (LRM).

METHODS: From August 2011 to May 2021, a total of 1,049 patients with 681 unstable IAs and 556 stable IAs were retrospectively analyzed. IAs were randomly divided into training (64%), internal validation (16%), and test sets (20%). Convolutional neural network (CNN) analysis and conventional logistic regression (LR) were used to predict which IAs were unstable. The area under the curve (AUC), sensitivity, specificity and accuracy were calculated to evaluate the discriminating ability of the models. One hundred and ninety-seven patients with 229 IAs from Banan Hospital were used for external validation sets.

RESULTS: The conventional LRM showed 11 unstable risk factors, including clinical and IA characteristics. The LRM had an AUC of 0.963 [95% confidence interval (CI): 0.941-0.986], a sensitivity, specificity and accuracy on the external validation set of 0.922, 0.906, and 0.913, respectively, in predicting unstable IAs. In predicting unstable IAs, the DLM had an AUC of 0.771 (95% CI: 0.582-0.960), a sensitivity, specificity and accuracy on the external validation set of 0.694, 0.929, and 0.782, respectively.

CONCLUSIONS: The CNN-based DLM applied to CTA images did not outperform the conventional LRM in predicting unstable IAs. The patient clinical and IA morphological parameters remain critical factors for ensuring IA stability. Further studies are needed to enhance the diagnostic accuracy.

Keywords

Intracranial aneurysms (IAs), computed tomography angiography (CTA), convolutional neural network (CNN), deep learning, stability

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.