Faculty, Staff and Student Publications
Publication Date
5-24-2022
Journal
Cell Reports
Abstract
CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5' overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond.
Keywords
Animals, CRISPR-Cas Systems, DNA, Deoxyribonuclease I, Drosophila, Gene Drive Technology, Gene Editing