Publication Date

3-15-2023

Journal

IEEE Sensors Journal

DOI

10.1109/jsen.2023.3241410

PMID

37868826

PMCID

PMC10586015

PubMedCentral® Posted Date

3-15-2024

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Keywords

Concern about falling, posture behavior pattern, topic modelling, telehealth, wearable accelerometer

Abstract

Concern about falling is prevalent in older population. This condition would cause a series of adverse physical and psychological consequences for older adults' health. Traditional assessment of concern about falling is relied on self-reported questionnaires and thus is too subjective. Therefore, we proposed a novel multi-time-scale topic modelling approach to quantitatively evaluate concern about falling by analyzing triaxial acceleration signals collected from a wearable pendent sensor. Different posture segments were firstly recognized to extract their corresponding feature subsets. Then, each selected feature related to concern about falling was clustered into discrete levels as feature letters of artificial words in different time scales. As a result, all older participants' signal recordings were converted to a collection of artificial documents, which can be processed by natural language processing methodologies. The topic modelling technique was used to discover daily posture behavior patterns from these documents as discriminants between older adults with different levels of concern about falling. The results indicated that there were significant differences in distributions of posture topics between groups of older adults with different levels of concern about falling. Additionally, the transitions of posture topics over daytime and nighttime revealed temporal regularities of posture behavior patterns of older adult's active and inactive status, which were substantially different for older adults with different levels of concern about falling. Finally, the level of concern about falling was accurately determined with accuracy of 71.2% based on the distributions of posture topics combined with the mobility performance metrics of walking behaviors and demographic information.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.