Publication Date

1-1-2024

Journal

Therapeutic Advances in Rare Disease

DOI

10.1177/26330040241245725

PMID

38681799

PMCID

PMC11047245

PubMedCentral® Posted Date

4-25-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

CACNA1A, developmental and epileptic encephalopathy, epilepsy, rare disorder

Abstract

CACNA1A-related disorders are rare neurodevelopmental disorders linked to variants in the CACNA1A gene. This gene encodes the α1 subunit of the P/Q-type calcium channel Cav2.1, which is globally expressed in the brain and crucial for fast synaptic neurotransmission. The broad spectrum of CACNA1A-related neurological disorders includes developmental and epileptic encephalopathies, familial hemiplegic migraine type 1, episodic ataxia type 2, spinocerebellar ataxia type 6, together with unclassified presentations with developmental delay, ataxia, intellectual disability, autism spectrum disorder, and language impairment. The severity of each disorder is also highly variable. The spectrum of CACNA1A-related seizures is broad across both loss-of-function and gain-of-function variants and includes absence seizures, focal seizures with altered consciousness, generalized tonic-clonic seizures, tonic seizures, status epilepticus, and infantile spasms. Furthermore, over half of CACNA1A-related epilepsies are refractory to current therapies. To date, almost 1700 CACNA1A variants have been reported in ClinVar, with over 400 listed as Pathogenic or Likely Pathogenic, but with limited-to-no clinical or functional data. Robust genotype-phenotype studies and impacts of variants on protein structure and function have also yet to be established. As a result, there are few definitive treatment options for CACNA1A-related epilepsies. The CACNA1A Foundation has set out to change the landscape of available and effective treatments and improve the quality of life for those living with CACNA1A-related disorders, including epilepsy. Established in March 2020, the Foundation has built a robust preclinical toolbox that includes patient-derived induced pluripotent stem cells and novel disease models, launched clinical trial readiness initiatives, and organized a global CACNA1A Research Network. This Research Network is currently composed of over 60 scientists and clinicians committed to collaborating to accelerate the path to CACNA1A-specific treatments and one day, a cure.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.