Publication Date
7-12-2024
Journal
Science Advances
DOI
10.1126/sciadv.adi4746
PMID
38996023
PMCID
PMC11244552
PubMedCentral® Posted Date
7-12-2024
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Keywords
Animals, Female, Mice, Arcuate Nucleus of Hypothalamus, Estrogen Receptor alpha, Feeding Behavior, Hydroxycholesterols, Neurons, Pro-Opiomelanocortin
Abstract
Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.
Included in
Biochemical Phenomena, Metabolism, and Nutrition Commons, Community Health and Preventive Medicine Commons, Dietetics and Clinical Nutrition Commons, Neurosciences Commons, Nutrition Commons, Pediatrics Commons