Publication Date

7-19-2024

Journal

iScience

DOI

10.1016/j.isci.2024.110279

PMID

39045104

PMCID

PMC11263717

PubMedCentral® Posted Date

6-18-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Bioinformatics, Cancer

Abstract

Breast cancer is the second leading cause of carcinoma-linked death in women. We developed a multi-modal deep-learning model (BreNet) to differentiate breast cancer from benign lesions. BreNet was constructed and trained on 10,108 images from one center and tested on 3,762 images from two centers in three steps. The diagnostic ability of BreNet was first compared with that of six radiologists; a BreNet-aided scheme was constructed to improve the diagnostic ability of the radiologists; and the diagnosis of real-world radiologists' scheme was then compared with the BreNet-aided scheme. The diagnostic performance of BreNet was superior to that of the radiologists (area under the curve [AUC]: 0.996 vs. 0.841). BreNet-aided scheme increased the pooled AUC of the radiologists from 0.841 to 0.934 for reviewing images, and from 0.892 to 0.934 in the real-world test. The use of BreNet significantly enhances the diagnostic ability of radiologists in the detection of breast cancer.

fx1.jpg (365 kB)
Graphical Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.