Publication Date

6-1-2023

Journal

Cureus

DOI

10.7759/cureus.41162

PMID

37525761

PMCID

PMC10387167

PubMedCentral® Posted Date

6-29-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

high dose rate interstitial brachytherapy, treatment of cervical cancer, gynecologic and reproductive tumors/malignancies, three-dimensional (3d) printing, dosimetry plan, medical device technology, intracavitary therapy brachytherapy, gynecologic cancers, invasive cervical cancer, prototype design

Abstract

The purpose of this report is to design, develop, and evaluate a cost-effective applicator for interstitial brachytherapy (ISBT) to minimize patient morbidity and facilitate access to curative radiation treatment for gynecologic cancers, especially in low-resource settings. A computer-aided design and prototype were developed of a proposed applicator that incorporates 44 slotted channels to gently guide needles, with or without a tandem, through the vaginal canal, effectively eliminating the need for transcutaneous needle insertions typically employed during ISBT of advanced gynecologic cancer and thus reducing the risk of vaginal laceration and bladder or rectal injury. The tested prototype was developed using AutoCAD software (Autodesk, San Francisco, CA) and 3D printed in Accura Xtreme Gray material using stereolithography. Small-scale iterative tests using a gelatin phantom were conducted on this prototype to confirm the efficacy of the applicator through inter-operator usability, needle stability, and needle arrangement. A promising prototype was developed aimed at addressing key issues with traditional perineum-based templates to facilitate ISBT, including being able to cover bulky tumors with parametrial extension reliably, decrease the risk of tissue or organ injury, and treat women with a prior hysterectomy. Results of preclinical testing demonstrated that the applicator met its purpose, suggesting that it may facilitate ISBT without the morbidity typically associated with the procedure, especially by addressing concerns associated with implementing the procedure in low-resource settings. The applicator shows substantial promise in the treatment of advanced gynecologic cancer. While further testing remains necessary to confirm its translatability to the clinical setting, the applicator appears capable of meeting its design objectives, representing its potential for improving upon current methods.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.