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Abstract

Despite current enthusiasm for investigation of gene-gene interactions and gene-environment interactions, the essential
issue of how to define and detect gene-environment interactions remains unresolved. In this report, we define gene-
environment interactions as a stochastic dependence in the context of the effects of the genetic and environmental risk
factors on the cause of phenotypic variation among individuals. We use mutual information that is widely used in
communication and complex system analysis to measure gene-environment interactions. We investigate how gene-
environment interactions generate the large difference in the information measure of gene-environment interactions
between the general population and a diseased population, which motives us to develop mutual information-based
statistics for testing gene-environment interactions. We validated the null distribution and calculated the type 1 error rates
for the mutual information-based statistics to test gene-environment interactions using extensive simulation studies. We
found that the new test statistics were more powerful than the traditional logistic regression under several disease models.
Finally, in order to further evaluate the performance of our new method, we applied the mutual information-based statistics
to three real examples. Our results showed that P-values for the mutual information-based statistics were much smaller than
that obtained by other approaches including logistic regression models.

Citation: Wu X, Jin L, Xiong M (2009) Mutual Information for Testing Gene-Environment Interaction. PLoS ONE 4(2): e4578. doi:10.1371/journal.pone.0004578

Editor: Michael Nicholas Weedon, Peninsula Medical School, United Kingdom

Received September 28, 2008; Accepted December 18, 2008; Published February 24, 2009

Copyright: � 2009 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Grant from National Institutes of Health NIAMS P01 AR052915-01A1, NIAMS P50 AR054144-01 CORT, HL74735, and ES09912, and Grant from Hi- Grant
from National Institutes of Health Tech Research and Development Program of China 863) (2007AA02Z312), Shanghai Commission of Science and Technology
Grant (04dz14003) and Shanghai Commission of Science and Technology (04dz14003). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: momiao@gmail.com

Introduction

Complex diseases are the consequence of the interplay of genetic

and environmental factors. Development of disease is a dynamic

process of gene-gene and gene-environment interactions within a

complex biological system which is organized into complicated

interacting networks [1]. Modern complex theory assumes that the

complexity is attributed to the interactions among the components

of the system, therefore, interaction has been considered as a

sensible measure of complexity of the biological systems. The more

interactions between the components, the more complex system.

We argue that the interactions hold a key for dissecting the genetic

structure of complex diseases. Ignoring gene-environment interac-

tions will likely mask the detection of a genetic effect and may lead to

inconsistent association results across studies [2,3].

Despite current enthusiasm for investigation of gene-environ-

ment interactions, published results that document these interac-

tions in humans are limited, and the essential issue of how to

define and detect gene-environment interactions remains unre-

solved. The concept of gene-environment interactions is often

used, but rarely specified with precision [4]. Over the last three

decades, epidemiologists have debated intensely about how to

define and measure interaction in epidemiologic studies [5]. Many

researchers indicated the importance of distinguishing biological

interaction and statistical interaction [6–10]. Biological interaction

between the gene and environment is often defined as the

interdependent operation of genetic and environmental factors

that cause diseases. In contrast, statistical interaction between the

gene and environment is defined as the interdependence between

the effects of genetic and environmental risk factors in the context

of a statistical model. The effects of disease risk factors are often

measured by relative risks and odds ratios. The classical definition

of statistical interaction has the following limitations. First, both

relative risks and odds ratios are mainly defined for binary

variables. Their extensions to multiple categorical risk factors (for

example, three genotypes and multiple categorical environments)

are cumbersome. Second, statistical interactions are essentially

model dependent. Linear models and generalized linear models

(logistic regressions and log-linear models) of the genetic effects of

the risk factors are often used to define statistical interactions. In

the classical logistic regressions and log-linear models of the gene-

environment interactions, the genetic effects of the risk factors are

decomposed into main effects and interaction effects (or product

term) in the model. But, such decomposition may not reflect the

true nonlinear interaction between the gene and environment. In

addition, in these models, the major part of the true biological

interactions between the gene and environment is often parti-

tioned into the marginal effects. The remaining part of the gene-

environment interactions which is treated as a departure (or

residual) from the logistic regression and log-lineal models is small
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and hard to detect. Third, the classical interaction models can

hardly be applied to study interactions (including pair-wise and

high-order interactions) among the components of the biological

systems and their complexity.

To overcome the limitations of the classical definition of the

statistical interaction, we propose a new definition of interaction that

is based on interdependence among the risk factors causing disease.

Interactions between genes and the environment can generally be

defined as a stochastic dependence between genetic and environ-

mental risk factors in causing phenotypic variation among individ-

uals. This definition does not require specifying the statistical models

of the risks, and is similar, although not exactly identical, to the

definition of biological interaction. The concept of mutual informa-

tion proposed by Shannon [11] can serve as a general measure of

interaction (dependence) between two random variables [12–14]. An

additional asset is that mutual information measures more than linear

dependence [15–16]. As we will show in the methods section, mutual

information between the gene and environment has a close

relationship with the classical measures of the gene-environment

interactions such as odds ratio and relative risk.

As Liu [17] pointed out, ‘‘the success of investigation of G6E

interactions depends greatly on the selection of the optimal study

design, the most accurate and precise assessment of genetic and

environmental factors, and the most efficient statistical analysis’’.

Developing efficient analytic methods for evaluation of the gene-

environment interactions is critical to the investigation of gene-

environment interactions [18].

Odds ratio calculations, logistic regression analysis, data mining

and multifactor dimensionality reduction (MDR) are some of the

existing methods available to evaluate the gene-environment

interactions [19–30]. These methods have their merits, but also

they have limitations. As an alternative to these widely used

methods for testing gene and environment interactions, we

propose mutual information-based methods to detect gene and

environment interactions.

The main purpose of this report is to use information theory as a

general framework for developing statistical methods to detect gene-

environment interactions. To accomplish this, we first developed a

novel definition of gene-environment interactions. Then we studied

how to use mutual information to measure gene-environment

interactions. We investigated how gene-environment interactions

generate the large difference in aforementioned measures between

the general population and disease population. This provided the

motivation to develop mutual information-based statistics for testing

gene-environment interactions. Using extensive simulation studies,

we validated the null distribution and type 1 error rates of the mutual

information-based statistics for testing gene-environment interac-

tions. To reveal the merit and limitation of the mutual information-

based statistics to detect gene-environment interactions, we

compared their power for detecting gene-environment interactions

with the logistic regression. We found that the new test statistics have

higher power than the traditional logistic regression under several

disease models. Finally, in order to further evaluate the performance

of our new method, we applied the mutual information-based

statistics to real data examples. Our results showed that P-values for

the mutual information-based statistics were smaller than that

obtained by other approaches including logistic regression models.

Methods

Information measure of the gene-environment
interaction

Consider a disease susceptibility locus G and an environment E.

The locus G has three genotypes coded as 0, 1, and 2. The

environmental exposure is coded as E = 1, otherwise E is coded as

0. Let D be an indicator of disease. Mutual information measures

dependence between two random variables. The mutual informa-

tion between the gene and environment in the general population

is defined as

I G; Eð Þ~
X2

i~0

X1

j~0

P G~i,E~jð Þlog
P G~i,E~jð Þ

P G~ið ÞP E~jð Þ: ð1Þ

Information theory [11] shows that mutual information I G; Eð Þ is

equal to zero if and only if

P G~i,E~jð Þ~P G~ið ÞP E~jð Þ, i~0,1,2; j~0,1ð Þ

i.e., gene and environment variables are independent.

The mutual information between the gene and environment in

the disease population is given by

I G; E Djð Þ~
X2

i~0

X1

j~0

P G~i,E~j D~1jð Þ

log
P G~i,E~j D~1jð Þ

P G~i D~1jð ÞP E~j D~1jð Þ

ð2Þ

while Equation (2) can be reduced to

I G; E Djð Þ~
X2

i~0

X1

j~0

P G~i,E~j D~1jð Þlog
P G~i,E~jð Þ

P G~ið ÞP E~jð Þ

z
X2

i~0

X1

j~0

P G~i,E~j D~1jð Þ

log
P D~1 G~i,E~jjð Þ=PD

P D~1 G~ijð Þ
PD

P D~1 E~jjð Þ
PD

ð3Þ

where PD~P D~1ð Þ is the prevalence of the disease.

Equation (3) shows that mutual information I G; E Djð Þ has two

components. The first term in equation (3) is due to the

dependence between the gene and environment in the general

population. The second term in equation (3) is due to interaction.

Thus, we define information measure of the interaction between

the gene and environment as

IGE~
X2

i~0

X1

j~0

P G~i,E~j D~1jð Þ

log
P D~1 G~i,E~jjð Þ=PD

P D~1 G~ijð Þ
PD

P D~1 E~jjð Þ
PD

ð4Þ

which implies that IGE~0 if and only if

P D~1 G~i,E~jjð Þ
PD

~

P D~1 G~ijð Þ
PD

P D~1 E~jjð Þ
PD

i~0,1,2,j~0,1ð Þ:
ð5Þ

Information measure of interaction has two remarkable

features. First, it is defined in terms of penetrance and hence

Gene-Environment Interaction
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related to the cause of the disease. Second, the interaction is

measured by the interdependent operation of the gene and

environment in causing disease. Absence of the gene and

environment interaction indicates that equation (5) should hold.

If we assume that the gene and environment variables in the

general population are independent, then

I G; E Djð Þ~IGE :

In this case, the mutual information between the gene and

environment in the disease population is equal to the information

measure of the interaction between gene and environment. This

provides an easy way to calculate the information measure of

gene-environment interactions.

To gain understanding of the information measure of the gene

and environment interaction, we studied several special cases.

Case 1: G is not the disease locus. If we assume that G is only a

marker and will not cause disease, then we have

P D~1 G~i,E~jjð Þ~P D~1 E~jjð Þ and P D~1 G~ijð Þ~PD

which implies that

P D~1 G~i,E~jjð Þ=PD

P D~1 G~ijð Þ
PD

P D~1 E~jjð Þ
PD

~1:

Thus, we obtain IGE~0. In other words, if the locus G is a marker,

there is no interaction between the locus G and environment. The

interaction measure IGE between the marker and environment

should be equal to zero. Hence, our information measure of the gene-

environment interactions correctly characterizes the marker case.

Case 2: Environmental exposure will not cause disease. If the

environmental exposure will not cause disease, there will be no

interaction between the gene and environment. We expect that the

information measure of gene and environment interaction should

be equal to zero. Indeed, by the same argument as provided in

case 1, we can show this.

Test statistics
In the previous section, we show that the information measure

of the gene-environment interactions is related to the dependency

of the gene and environment variables in the disease population.

The interaction can be detected by testing the independence of the

gene and environment. Before defining the test statistic, we

introduce the following notations. Let

fij~P G~i,E~jð Þlog
P G~i,E~jð Þ

P G~ið ÞP E~jð Þ i~0,1,2,j~0,1ð Þ

and fDij
~P G~i,E~j D~1jð Þlog

P G~i,E~j D~1jð Þ
P G~i D~1jð ÞP E~j D~1jð Þ

i~0,1,2,j~0,1ð Þ. Let f ~ f11,f12,f21,f22,f31,f32½ �T and fD~

fD11
,fD12

,fD21
,fD22

,fD31
,fD32

½ �T Pij~P G~i,E~jð Þ and PDij
~P G~ð

i,E~j D~1j Þ. Define

P~ P11,P12,P21,P22,P31,P32½ �T and

PD~ PD11
,PD12

,PD21
,PD22

,PD31
,PD32

½ �T :

The joint probabilities of the gene and environment variables in both

the general population and disease population follow multinomial

distributions with the following covariance matrices.

S~diag Pð Þ{PPT and SD~diag PDð Þ{PDPD
T :

Let the Jacobean matrices of f and fD with respect to P and PD be

B~ LfD

LPT
D

� �
and C~ Lf

LPT

� �
, respectively. It is easy to see that

Lfij

LPij

~log
Pij

Pi:P:j
{

Pij

Pi:
{

Pij

P:j
z1,

Lfij

LPil
l=jð Þ

~{
Pij

Pi:
,

Lfij

LPkj

k=ið Þ

~{
Pij

P:j
,

Lfij

LPkl
k=i,l=jð Þ

~0

where Pi:~
P1
j~0

Pij , and P:j~
P2
i~0

Pij . The partial derivatives of the

function fDij
with respect to PDkl

can be similarly defined. Let nA be

the number of sampled individuals in the cases and nG be the number

of sampled individuals in the controls. Define

L~
BSDBT

nA

z
CSCT

nG

:

The statistic for testing the gene-environment interactions is then

defined as

TGE~ f̂f D{f̂f
� �T

L̂L{ f̂f D{f̂f
� �

ð12Þ

where f̂f , f̂fD, and L̂L are the estimators of f , fD, and L. L̂L{ is a

generalized inverse of the matrix L̂L
When the sample size is sufficiently large enough to ensure

application of the large sample theory, the test statistic TGE is

asymptotically distributed as a central x2
2ð Þ distribution under the

null hypothesis of the no gene-environment interactions, if we

assume that the gene and environment variables in the general

population are independent (Appendix S1).

We can also develop a statistic for testing interaction between each

genotype and environment. For example, for genotype G~i, let

fi~
fi1

fi2

" #
and fDi

~
fDi1

fDi2

" #
,

Ci~
Lfi

LPT

� �
, Bi~

LfDi

LPT
D

� �
, Li~

BiSDBi
T

nA

z
CiSCi

T

nG

i~1,2,3ð Þ

then, the statistic for testing interaction between the genotype G~i
and environment is defined as

TGiE~ f̂f Di
{f̂f i

� �T

L̂L{
i f̂f Di

{f̂f i

� �
: ð13Þ

Under the null hypothesis of no interaction between the genotype

G~i and the environment the statistic TGiE is asymptotically

distributed as a central x2
1ð Þ distribution.

Results

Null distribution of test statistics
In the previous section we stated that the test statistic TGE and

TGiE under the null hypothesis are asymptotically distributed as a

Gene-Environment Interaction
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central x2
2ð Þ distribution and a central x2

1ð Þ distribution, respective-

ly, if we assume that the gene and environment variables are

independent in the general population. To validate this statement

we performed a series of simulation studies. The computer

program SNaP [31] was used to generate the genotype data of the

individuals and MATLAB was used to randomly generate the

environment data of the individuals. Individuals (n = 100,000) with

independent genotype and environmental exposure where the

frequencies of two alleles at the locus were equal, and the

frequency of the environmental exposure was equal to 0.2

(P E~1ð Þ~0:2) were generated and equally divided into cases

and controls. A total of 20,000 simulations were repeated. We plot

Figures 1–4 showing the histograms of the test statistics TGE and

TGiE for testing the interaction between the gene and environ-

ment, with sample sizes nA~nG~400, where nA and nG are the

number of sampled individuals in the cases and controls. Figures 1–

4 show that the null distributions of the test statistics

TGE ,TG1E ,TG2E and TG3E are similar to the theoretical central

x2
2ð Þ and x2

1ð Þ distributions, respectively.

Type I error rates were calculated by random sampling 200–

1,000 individuals from each of the cases and controls. In Tables 1

and 2 we listed type I error rates for TGE and TGiE , assuming

ORg~1 and ORe~1. In Table 3 we listed type I error rates for

TGE , assuming ORg~2 and ORe~2 (For TGiE , in case of

ORg~2 and ORe~2 we can obtain the similar results (data not

shown). Tables 1–3 demonstrated that the estimated Type I error

rates for the statistics TGE and TGiE to test the gene and

environment interactions were not appreciably different from the

nominal levels a~0:05, a~0:01 and a~0:001, which were

independent of the gene and environment odds ratios ORg and

ORe.

Power evaluation
To evaluate the performance of the mutual information-based

statistic for testing gene-environment interactions, we compared its

power to that of the logistic model. The computer program SNaP

[31] was used to generate the genotype data of the sampled

individuals and MATLAB was used to randomly generate the

environmental data of the sampled individuals. A population of

500,000 individuals with independent genotype and environmen-

tal exposure where the minor allele frequency (MAF) at the locus

were equal to 0.3 and the frequency of the environmental

exposure was equal to 0.2 (P E~1ð Þ~0:2) was generated. The

model of the disease with the gene and environment interaction

was defined by the penetrance. Gene-environment interactions

effects were simulated with penetrance functions as given in

Appendix S2. We assume the prevalence of the disease

P D~1ð Þ~0:01.

We consider two cases: (1) genetic and environmental odds

ratios: ORg~1 and ORe~1, and (2) ORgw1 and ORew1. In

case (1), definition of the absence of the gene-environment

interactions by information measure and gene-environment odds

ratio in the logistic regression model is equivalent. In case (2), the

information measure of interaction covers more situations which

are interacted under the definition of information measure, but not

interacted under definition of logistic models.

With this disease model, we randomly generated a disease

population with 10,000 affected individuals and a general

population with 10,000 unaffected individuals from the population

Figure 1. Null Distribution of the statistic TGE for 400 cases and
controls respectively.
doi:10.1371/journal.pone.0004578.g001

Figure 3. Null Distribution of the statistic TG2E for 400 cases
and controls respectively.
doi:10.1371/journal.pone.0004578.g003

Figure 2. Null Distribution of the statistic TG1E for 400 cases
and controls respectively.
doi:10.1371/journal.pone.0004578.g002

Gene-Environment Interaction
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of 500,000 individuals. We then randomly sampled 500 individ-

uals (cases) from the disease population and 500 individuals

(controls) from the general population. We repeated 20,000

simulations. We presented six panels of Figures to compare the

power of the proposed mutual information-based statistic and

logistic regression models. Power calculation of logistic regression

is based on the model P D~1 G,Ejð Þ~ eazbg GzbeEzbgeGE

1zeazbg GzbeEzbgeGE .

Figures 5–7 plot the power of the test statistic TGE and logistic

regression to detect the gene-environment interactions in case (1)

(ORg~1 and ORe~1) as a function of the gene-environment

interactions odds ratios under the significance level a~0:05 for

sample sizes 300, 400 and 500, respectively. Figures 8–10 plot the

power of the test statistic TGE and logistic regression to detect the

gene-environment interactions in case (2) (ORg~2 and ORe~2)

as a function of the gene-environment interactions odds ratios

under the significance level a~0:05 for sample sizes 300, 400 and

500, respectively. These figures showed that the power of the

mutual information-based statistic is much higher than that of the

logistic regression even if in case (1) where the definition of absence

of the gene-environment interactions by both the information

measure and odds ratio in the logistic regression is equivalent. We

also find that the difference in the power between the mutual

information-based statistic and the logistic regression model

became larger as the significance level increases (data are not

shown).

Application to real data example
To further evaluate its performance for testing gene-environ-

ment interactions, the mutual information-based statistics TGE and

TGiE were applied to real data examples. The first example studied

the interaction between the polymorphism of the gene excision

repair cross-complementing group 2 (ERCC2) and smoking

exposure in lung cancer [32], where two ERCC2 polymorphisms

Asp312Asn and Lys751Gln were typed in 1,092 Caucasian lung

cancer patients and 1,240 spouse and friend controls collected at

Massachusetts General Hospital. Both ERCC2 polymorphisms in

the controls were in Hardy-Weinberg equilibrium. Smoking

exposure was classified into four categories: non smoking, mild

smoking, moderate smoking and heavy smoking. For simplicity of

comparison, we performed only crude analysis. In other words,

analysis was performed only for the raw data that were not

adjusted for age and gender. Both the mutual information-based

statistics and logistic regression analysis were used to test

interaction between the polymorphism of ERCC2 and smoking

in lung cancer. The results were summarized in Table 4. In

Table 1. Type 1 error rates for the test statistic TGE to test
gene-environment interaction, assuming ORg~1 and
ORe~1.

Sample size Nominal levels

a~0:05 a~0:01 a~0:001

200 0.04641 0.00845 0.00076

300 0.04618 0.00871 0.00089

400 0.05033 0.00964 0.00098

500 0.04811 0.00902 0.00082

600 0.05012 0.01002 0.00082

700 0.04991 0.00948 0.00096

800 0.04804 0.00953 0.00098

900 0.04737 0.00840 0.00088

1000 0.04926 0.00979 0.00107

doi:10.1371/journal.pone.0004578.t001

Table 2. Type 1 error rates for the test statistic TGiE to test gene-environment interaction, assuming ORg~1 and ORe~1.

Sample size TG1 E TG2 E TG3 E

a~0:05 a~0:01 a~0:001 a~0:05 a~0:01 a~0:001 a~0:05 a~0:01 a~0:001

200 0.0495 0.0097 0.0010 0.0507 0.0104 0.0013 0.0486 0.0093 0.0009

300 0.0482 0.0094 0.0008 0.0503 0.0100 0.0010 0.0473 0.0094 0.0009

400 0.0494 0.0092 0.0009 0.0490 0.0103 0.0011 0.0493 0.0098 0.0010

500 0.0491 0.0089 0.0008 0.0493 0.0105 0.0014 0.0479 0.0095 0.0010

600 0.0480 0.0096 0.0010 0.0498 0.0098 0.0011 0.0494 0.0096 0.0010

700 0.0500 0.0100 0.0012 0.0492 0.0095 0.0008 0.0484 0.0102 0.0009

800 0.0494 0.0097 0.0011 0.0494 0.0096 0.0010 0.0474 0.0090 0.0008

900 0.0489 0.0092 0.0008 0.0497 0.0103 0.0013 0.0494 0.0095 0.0009

1000 0.0482 0.0095 0.0009 0.0506 0.0108 0.0013 0.0488 0.0090 0.0007

doi:10.1371/journal.pone.0004578.t002

Figure 4. Null Distribution of the statistic TG3E for 400 cases
and controls respectively.
doi:10.1371/journal.pone.0004578.g004
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general, the logistic regression will not be used to test interaction

between a single genotype and environment, thus there was no p-

value to test interaction between the single genotype and

environment for logistic regression in Table 4. Two features

emerge from Table 4. First, in general, the p-values of the global

test statistic TGE were smaller than that of the TGiE for testing

interaction between the particular genotype (single genotype) and

environment. Second, in most cases, the p-values of the mutual

information-based global test statistic TGE were smaller than that

of the logistic regression analysis. ERCC2 is a major DNA repair

gene. DNA repair genes play a key role in protecting the genome

from damage caused by smoking [32].

The second example is to study the interaction between the

gene SULT1A1 and smoking/alcohol consumption for squamous

cell carcinoma of the oesophagus [33]. The gene SULT1A1

catalyses sulfation that is related to the metabolism of a broad

range of compounds such as phenolic xenobiotics, hydroxylated

aromatic amines and drugs. The gene SULT1A1 is suspected to

play a role in oesophageal cancer (OC). We applied the developed

mutual information-based statistics and logistic regression to this

dataset to test for gene-environment interactions in causing OC.

The data in Table 5 were from Dandara’s Table 4 [33] for the

Mixed Ancestry South African group. The P-values in Dandara’s

Table 4 were obtained by the statistic based on odds ratios which

tested for both the gene and environment interaction effects and

the genetic effect. Thus, instead of using the P-values provided by

Dandara, we used logistic regression to recalculate the P-values to

test for interaction between the gene SULT1A1 and smoking or/

and alcohol consumption using data from Table 4 in Dandara

[33]. The P-values of both mutual information-based statistics and

logistic regressions were listed in Table 5. We can see that using

the mutual information-based statistics we detected the interaction

between the gene SULT1A1 and smoking, or the combination of

smoking and alcohol consumption in causing OC in the Mixed

Ancestry South African group, however logistic regression analysis

failed to make a similar detection. The mutual information-based

statistic also needs much less time than logistic regression analysis.

For this example, if we use Intel Pentium(R) (D CPU

2.66 GHz62.66 GHz, 2G memory, Windows XP) the computa-

tion time for the mutual information-based statistic and logistic

Figure 5. Power of the statistic TI and logistic regression analysis for 300 cases and controls respectively.
doi:10.1371/journal.pone.0004578.g005

Table 3. Type 1 error rates for the test statistic TGE to test
gene-environment interaction, assuming ORg~2 and
ORe~2.

Sample size Nominal levels

a~0:05 a~0:01 a~0:001

300 0.0513 0.0102 0.0012

400 0.0473 0.0096 0.0007

500 0.0470 0.0087 0.0011

600 0.0482 0.0100 0.0008

700 0.0513 0.0102 0.0015

800 0.0479 0.0100 0.0011

900 0.0493 0.0089 0.0005

1000 0.0494 0.0102 0.0010

doi:10.1371/journal.pone.0004578.t003

Gene-Environment Interaction
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Figure 6. Power of the statistic TI and logistic regression analysis for 400 cases and controls respectively.
doi:10.1371/journal.pone.0004578.g006

Figure 7. Power of the statistic TI and logistic regression analysis for 500 cases and controls respectively.
doi:10.1371/journal.pone.0004578.g007
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Figure 8. Power of the statistic TI and logistic regression analysis for sample size 300, ORG~2 and ORE~2.
doi:10.1371/journal.pone.0004578.g008

Figure 9. Power of the statistic TI and logistic regression analysis for sample size 400, ORG~2 and ORE~2.
doi:10.1371/journal.pone.0004578.g009
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regression analysis was about 2.8161024 seconds and

1.5961022 seconds, respectively.

The third example is case-control study of interaction between

smoking and HLA-DR SE (shared epitope) gene in the

development of anticitrulline antibody-positive rheumatoid arthri-

tis (RA) in the Swedish Epidemiological Investigation of

Rheumatoid Arthritis (EIRA) study [34,35]. The major environ-

mental risk factor and genetic risk factor are smoking and HLA-

DA shared epitope (SE) gene, respectively. We analyzed data from

Klareskog [34] which consisted of 827 RA patients and 1216

controls and from Kallberg [35] which consisted of 1883 RA

patients and 1589 controls. Clearly, the second study [35] is the

extension of the first study [34]. Both the mutual information-

based statistic and logistic regression were applied to the dataset to

test for interaction between the smoking and HLA-DR SE genes in

the development of anticitrulline antibody-positive RA. The

results were summarized in Table 6. They confirmed the recently

pronounced interaction between smoking and the HLA-DR SE

gene in the development of RA[34,36–37]. We also see that as the

sample size increased in the second dataset, the P-values became

Figure 10. Power of the statistic TI and logistic regression analysis for sample size 500, ORG~2 and ORE~2.
doi:10.1371/journal.pone.0004578.g010

Table 4. Comparison of p-values for the mutual information-based statistics and logistic regression to the interaction between
ERCC2 polymorphisms and smoking in lung cancer.

Genotype Smoking

Mild Moderate Heavy

P-values P-values P-values

TGE or TGi E Logistic regression TGE or TGi E Logistic regression TGE or TGi E Logistic regression

Asp312Asn 0.0028 0.0151 5.70 E-4 0.0114 ,10210 2.53E-05

Asp/Asp 0.0679 0.3447 0.00051

Asp/Asn 0.1116 0.2462 0.4735

Asn/Asn 0.0082 0.0094 0.0036

Lys751Gln 0.0535 0.1611 1.24E-08 5.24E-01 ,10210 0.00197

Lys/Lys 0.2010 0.0872 0.00095

Lys/Gln 0.6391 0.3875 0.2417

Gln/Gln 0.2364 0.4702 0.0399

doi:10.1371/journal.pone.0004578.t004
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much smaller (from 0.000925 to ,10210). The results also again

showed that the P-values of the mutual information-based statistics

are usually smaller than that of the logistic regression and that the

P-values of the global test statistic TGE using all information at the

locus are in general smaller than that of the test statistic TGiE .

Discussion

Over the last three decades, epidemiologists have debated intensely

about how to define and measure interaction in epidemiologic studies

[5]. The distinction between biological interaction and statistical

interaction becomes an important issue [6,39]. Biological interaction

is often defined as interdependent operation of genetic and

environmental factors that cause diseases. In other words, biological

interaction means that joint presence of the genetic and environ-

mental factors is the necessary condition for causing disease.

Due to the complexity of the development of the diseases, as

Rothman [38] pointed out, there is no way to directly observe

biological interactions. Biological interactions are often indirectly

inferred. Our aim is to estimate the magnitude of the biological

interaction as accurate as possible and develop efficient statistics to

detect biological interactions. The purpose of this report is to

address several issues for achieving this goal.

The first issue is how to define biological interaction

mathematically. The major challenge is to come up with a

definition that is mathematically explicit. In this report, we chose

to use the classical concept of conditional probability to define

biological interaction. A key component to biological interaction is

the dependence of developing disease with the presence of both

genetic and environmental factors. Therefore, the conditional

dependence of the genetic factor on the environmental factor in

causing disease is a natural expression for biological interaction.

This mathematical definition is an alternative to the definition of

biological interaction as a departure from additivity [38,39]. With

this definition, interaction has a broader meaning and divergent

statistical and computational tools available for further analysis.

The second issue we addressed is how to measure gene-

environment interactions. Mutual information is widely used in

communication systems and complex adaptive systems analysis as

a general measure of stochastic dependence between two random

variables. In this report, we extended mutual information to

measure gene-environment interactions. Widely used measures of

interaction include relative risks or odds ratios which were

originally defined for binary data. As a consequence, we often

code genetic and environmental factors as binary variables for

calculation of relative risks and odds ratios even if the genetic and

environmental factors take multiple values or even continuous

values. Mutual information can be defined for genetic and

environmental factors with multiple values (or even continuous

values, but not discussed here). Therefore, mutual information can

cover broader cases than the relative risks and odds ratios.

The third issue addressed how to develop efficient statistics to

detect gene-environment interactions. Despite current enthusiasm

for investigation of interactions between the gene and environment,

the essential issue of how to detect gene-environment interactions

remains unresolved. Developing efficient analytical methods for

evaluation of the gene-environment interactions is central to the

investigation of gene-environment interactions [18]. Logistic

regression is predominantly used to test for gene-environment

interactions in epidemiology [38]. It depends on how to decompose

the genetic effect. Most researchers use logistic regressions to model

odds as the additive combination of main effects of a single-locus

and the environment, and a residual term. The residual term in the

model is defined as a statistical interaction between the gene and

environment. As a consequence, the major part of functional (or

biological) gene-environment interactions may be included in the

main effects. The remaining part of the functional gene-environ-

ment interactions which is treated as a residual term in the

mathematical model is small and hard to detect.

In this report, we presented mutual information-based statistics to

detect gene-environment interactions. Through extensive simula-

tion studies, we showed that the null distribution of the mutual

information-based statistics was close to a central x2 distribution.

We also calculated type 1 error rates of the mutual information-

based statistic by simulation. Our results showed that type 1 error

rates were close to the nominal significance levels. We also

investigated the power of the new statistic to detect the gene-

environment interactions by analytical methods. It showed that the

mutual information-based test statistics have a much higher power

in detecting the interaction than logistic regression methods even

when ORg~1 and ORe~1 where definition of absence of

interaction by both the information measure and odds ratio

measure in the logistic regression are equivalent. To further

evaluate their performance to detect the gene-environment

interactions, the proposed mutual information-based statistics were

applied to three published data sets. Our results showed that, in

many cases, P-values of the mutual information-based statistics were

much smaller than the results of the logistic regression analysis.

Since the computation time for the mutual information-based

statistic is small, it is feasible to perform the genome-wide gene-

environment interaction analysis using PC machines. As we

reported in the previous section that the computation time for the

mutual information-based statistic to test one interaction between

the gene and environment (94 cases and 94 controls) was only

2.8161024 sec, the total time required for testing the gene-

envronment interaction for 1,000.000 SNPs and thousands of

cases and controls will be about one hour.

Table 5. Comparison of p-values for the mutual information-
based statistics and logistic regression to the interaction
between the gene SULT1A1 and smoking (alcohol
consumption) in the Mixed Ancestry South African group.

SULT1A1
genotype Patients Controls P-values

TGE or
TGi E

Logistic
regression

Tobacco smoking

no yes no yes 0.0194 0.5196

SULT1A1*1/*1 3 45 15 37 0.0536

SULT1A1*1/*2 1 16 2 27 0.0096

SULT1A1*2/*2 2 27 3 10 0.9152

Alcohol consumption

no yes no yes 0.0863 0.1847

SULT1A1*1/*1 12 36 31 21 0.2443

SULT1A1*1/*2 2 15 13 16 0.4105

SULT1A1*2/*2 9 20 5 8 0.1648

Both smoking and alcohol consumption

no yes no yes 0.0017 0.1902

SULT1A1*1/*1 2 35 15 21 0.0082

SULT1A1*1/*2 1 15 2 16 0.0124

SULT1A1*2/*2 2 20 2 7 0.4310

doi:10.1371/journal.pone.0004578.t005
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Although the preliminary results are appealing, the mutual

information-based statistics for detection of gene-environment

interactions also suffer from several limitations. First, they require

an assumption that the genetic and environmental variables in the

general population are independent. Deviation from independent

assumption will affect the false positive rates. Second, they need to

calculate the generalized inverse of the singular covariance matrix,

which may lead to instability of numerical calculations. Third, in

this report, we only compared the power of the mutual information-

based statistic with that of the logistic regression. A comparison with

other methods including methods based on defining interaction as a

departure from additive effects is in progress.

Gene-environment interactions are an important, but complex

concept. There are a number of ways to define gene-environment

interactions. How the definition of gene-environment interactions in

population level reflects their biochemical or physiological interaction

Table 6. Comparison of p-values for the mutual information-based statistics and logistic regression to the interaction between
smoking and HLA-DR SE genes in the development of anticitrulline antibody-positive RA.

Sex, anti-CCP
status and
HLA-DR SE genes Case Control P-values

Never
smoked

Ever
smoked

Never
smoked

Ever
smoked TGE or TGi E

Logistic
regression

The data were from Klareskog [34]

Male and Female

Anti-CCP+ 9.25E-04 0.0198

No SE 20 58 87 184 0.01490

Single SE 72 192 104 146 0.7090

Double SE 36 126 31 31 0.03250

Anti-CCP2 0.2245 0.1989

No SE 65 84 87 184 0.2037

Single SE 64 76 104 146 0.4170

Double SE 18 18 31 31 0.4585

Female

Anti-CCP+ 0.2180 0.1378

No SE 18 41 74 115 0.4437

Single SE 58 130 75 109 0.4989

Double SE 30 89 25 25 0.08492

Anti-CCP2 0.3128 0.8859

No SE 50 62 74 115 0.4577

Single SE 45 52 75 109 0.9805

Double SE 15 11 25 25 0.8092

Male

Anti-CCP+ 6.72E-10 0.1172

No SE 2 17 13 69 2.55E-09

Single SE 14 63 29 37 0.0574

Double SE 6 37 6 6 0.2240

Anti-CCP2 0.0273 0.01472

No SE 15 24 13 69 0.0244

Single SE 19 24 29 37 0.1519

Double SE 3 7 6 6 0.1423

Date were from Kallberg [35]

Anti-CCP+ ,10210 0.0059

No SE 35 71 137 242 0.0240

Single SE 105 270 138 198 0.6392

Double SE 61 179 39 39 0.0455

Anti-CCP2 0.3844 0.2979

No SE 86 115 140 242 0.2795

Single SE 87 123 138 198 0.3946

Double SE 25 26 39 39 0.6170

doi:10.1371/journal.pone.0004578.t006
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is still a mystery. We hope that this work provides further motivation

to conduct theoretical research and large-scale data analysis in

deciphering the genetic and physiological meaning of gene-environ-

ment interactions and to develop more statistical methods for testing

gene-environment interactions. In the coming years, to integrate gene-

environment interactions into genome-wide association analysis will

be a major task in genetic studies of complex diseases.
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