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In the slow progression of Parkinson’s Disease (PD), impairments arise and affect mul-

tiple domains (e.g., motor, cognitive, and behavioral). Mixed types, multivariate longitudinal

data are commonly used in PD studies. Challenges exist in assessing PD status and investi-

gating disease progression due to lack of biomarkers and ubiquitous impairment in the disease.

Collecting disease information from multiple ordinal outcomes (> 10) makes it more diffi-

cult and complicated in modeling disease status, disease progression and progressive treatment

effects. We proposed a model framework by combining the semiparametric approach and multi-

dimensional framework, and used the proposed model to investigate the heterogeneous disease

development and the non-linear treatment effects in the multiple domains predefined in PD.

Furthermore, we extended the semiparametric multidimensional approach to the data

with multi-types endpoints. We investigated the multi-type events (competing risks) simulta-

neously with longitudinal profile in presence of impairment across domains and domain-specific

heterogeneous disease progression. Our approach provides an explicit framework for defining

and estimating the impaired covariate effects, the association between domain-specific longitu-

dinal profile and multi-type endpoints.

Lastly, we addressed the missing data in PD. We extended the multidimensional joint

model to missing data by analyzing two missingness patterns (intermittent and monotone miss-

ingness) jointly in domain levels. We provided a statistical method for simultaneous likelihood



inference on missing data in presence of two missingness pattens and two missing mechanisms,

missing at random (MAR) and missing not at random (MNAR).

In summary, the studies in this dissertation add to current PD studies by focusing on

those ignored or not fully addressed problems in PD. The applications in longitudinal data,

survival data and missing data promote this framework usability in public health research.
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Chapter 1

Background

1.1 Literature Review

Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder that places

substantial burdens on patients. PD’s prevalence is estimated at 0.3% in the general population

[50, 75], and affects about 1% of people older than 60 years in the United States along [101].

Because the risk of PD increases with age, the financial and public health burden of PD is

expected to increase as the population ages [50]. Currently, the pathogenesis of PD is unknown

and there is no cure for PD. Many clinical trials have been conducted to search for effective

treatments to slow disease progression (e.g., the completed Derenyl And Tocopherol Antioxida-

tive Therapy of Parkinsonism (DATATOP) study [83], the Neuroprotection Exploratory Trial

in PD Long-term Study-1 (LS-1) study [48], and the ongoing Parkinson Progression Marker

Initiative (PPMI) study [62]). PD is now considered as a systemic disease because its non-motor

symptoms often precede clinical motor signs [11].

PD is characterized by its impairments among multiple domains (e.g., motor, cognitive,

and behavioral) [55, 92]. The progressions of disease status have different trajectories, impair-

ments exist within and across domains. Researchers can not rely on single clinical outcome
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to define the disease severity and progression. One specific clinical measurement only collects

partial PD information from a certain dimension; the information manifested in this measure-

ment could contradict to those from other measurements. For example, we may observe that

measurements of non-motor experience of daily living have no change while the measurements

of experience of daily living deteriorate fast in the same time. These impairments could happen

in overall trend and in any given time horizon. Therefore, no single health outcome reliably

reflects the full spectrum of disease severity and progression. All PD clinical studies depend on

repeatedly collected multiple health outcomes of mixed types (nominal, ordinal and continuous)

to monitor the status of disease and follow the progression for PD patients. In studying PD,

all statistical models and analysis have to be based on the data with multivariate longitudinal

and clinical outcomes. No robust research and model can be constructed without an effective

approach to extricating the disease information from these multivariate longitudinal and clinical

outcomes.

To describe and infer the severity of disease and further to evaluate treatment effects,

researchers have formulated various frameworks to deal with multivariate and mixed type data.

There are two commonly used approaches. One is based on linear combination of several

outcomes, and the other approach is to conduct tests using one single primary outcome [5,

25, 74]. However, these approaches either are not able to use all the meaningful information

or suffer from other structure flaws. In addition, clinical measurements in PD studies often

include dozens of ordinal responses which require effective and efficient statistical approaches.

Studies based on sum ranking or adjusted ranking [43, 71] are problematic due to the implied

assumption that the scale settings in each item have the same discriminative ability. The

magnitude of difference between consecutive ordinal levels in an item is hard to be structured

consistently for ordinal outcomes. A recent system review showed that the use of any single bio-

marker to define disease progression in PD has insufficient evidence [65]. For multiple ordinal

outcomes, researchers showed that total score is not a good predictor for implied severity of

2



a disease [4]. Furthermore the impairment and heterogeneity in PD are hard to be modeled

in these approaches. A primary and important prerequisite task to infer disease status and

treatment effects from mixed typed data is to construct a working framework to collect the full

information from these multivariate outcomes.

In addition to the challenge that there exists no generally accepted biomarker, researchers

face with the complication originated from natural features of PD, such as inconsistent infor-

mation from different domains, heterogeneous disease progression across patients and domains,

correlations within, and between outcomes. The existing impairments in PD precludes the

conventional analysis approaches which are hard to incorporate the heterogeneity. These PD

impairments from various sources make the PD study complicated when trying to analyze

study results. Bjomestad et al. [7] disclosed that motor complications affected over 50% of

PD patients in the first 5 years. A 5-year study conducted by Krack et al. [51] showed that

there was no consistent clinical improvement for patients across different clinical outcomes.

The impairments occur not only across disease domains, but also across time (heterogeneous

domain-specific progression), researchers showed that treatment effects over time were not con-

stant in clinical studies [31, 53, 105]. In PD studies, we have no evidence to support that disease

progression is constant or linear [38, 97]. Overall, very limited research has been conducted to

directly quantify varied covariate effects, temporal PD progression and continuous trajectories

of treatment effects.

To address the impairment and overcome the problem that no available biomarker in

PD studies, alternative approaches were proposed, low-dimensional interaction model [30] was

introduced to model interaction among high dimensional data. Multivariate marginal models

[15, 29] provide direct inference for marginal treatment effect but have difficult to handle unbal-

anced data. While multivariate random effect models [29, 93] have to overcome computation

difficulties when number of random effects becomes large. Specifically, multilevel item response

theory (MLIRT) model [33, 60, 99] was proposed to analyze the longitudinal scores on the

3



individual items. Verhagen and Fox [96] extended the MLIRT model by accounting for changes

in item characteristics. Schmidt et al. [82] introduced a Pretest-Posttest-Posttest multivariate

MLIRT model to handle repeated measures. Multivariate MLIRT model can utilize the raw

item score based on latent variable model, which provides a better approach compared with

sum-score approach. However, the unidimensional latent variable is questionable on the capa-

bility of capturing the impairment and heterogeneity from different domains. Other researchers

[34, 72] proposed latent variable based multidimensional item response model to assess latent

abilities. This cross sectional multidimensional method can not model longitudinal impairment

information and correlations, nor is this approach capable to describe the disease progression

process. Recently, in order to address the disease impairment in longitudinal item responses,

Wang and Luo [98] developed a multidimensional latent trait linear mixed model (MLTLMM).

This multidimensional approach provides a framework to deal with the complicated diseases

with existing impairment in longitudinal studies. This new approach can effectively utilize a

large number of outcomes and is more computational scalable than multivariate marginal and

random effects models. Additional advantages include: 1) easy handling of unbalanced data

and outcomes of mixed types; 2) explicit accounting for correlation structures using random

effects; 3) seamless incorporation of fixed and random effects; 4) capability to capture the

domain-specific heterogeneous covariate effects in corresponding domains.

Another challenge in PD is that the temporal heterogeneity in PD such as time-dependent

domain level disease progression or treatment effects. In other studies, attempts were made by

researchers to describe the natural disease progression with heterogeneity [8]. Auclair-Ouellet

et al. [3] adressed the cognitive impairment progression over time. Hastie and Tibshirani [39]

introduced a general varying coefficient model which is also known as a time-varying coeffi-

cient model. To apply to PD, these approaches are not capable to capture the heterogeneity

across domains, nor domain-specific continuous temporal effects. In modeling PD progression

or progressive treatment effects, we have to avoid structuring the measurements on one or a
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few biomarkers which methods were found not appropriate [65], besides we have to construct a

method to incorporate the heterogeneous disease progression both across domain and time.

In many clinical studies, participants are monitored longitudinally with respected to

the aforementioned dozens ordinal outcomes plus other outcomes, the observations can be

stopped by occurrence of terminal events, such as worsening of disease, dropout. Joint models

of longitudinal and time-to-event data can be adopted to derive inference about longitudinal

profile with informative drop-out (monotone missing) [41]. This has been an active research area

for past two decades [15, 52]. However, there are two important reasons calling for additional

consideration when modeling these events. First, these events can be viewed as dependent

censoring for the initiation of symptomatic treatment which is related to the patient health

outcomes. Second, events from disease-related dropout generate non-ignorable missing values

in the outcomes. Standard methods for joint modeling of longitudinal and survival data allow

for one types of endpoint or events with a single model of failure and have an assumption

of independent censoring [23, 40]. In PD studies, more than one possible causes of event or

informative censoring typically exist. When there are several causes of event risks, it is known

as competing risks. Moreover, treating the outcome-dependent terminal event as independent

censoring introduces bias into model estimation. To this end, a joint modeling framework for

analyzing all outcomes and events simultaneously is essential, and the requirement to properly

handle the ubiquitous heterogeneity in PD call for extra capability for this framework.

Generally, if the endpoints are disease related, it can lead to underestimation of true

event time and the drive of events. There can be a great deal of diversity in modeling multiple

event risks in PD studies [15, 52]. The extension of classical joint modeling framework were

proposed by researchers. Chi and Ibrahim [13] used a joint model for multivariate longitudinal

and survival data. Elashoff et al. [24] extended the joint model to competing risks data.

Dantan et al. [14] proposed a joint model with latent state for longitudinal data and event data.

However, there is no study addressing the multiple event risks while simultaneously taking into

5



consideration of the impairments across domains, and domain-specific heterogeneous disease

progression.

PD studies can be further complicated by missing data. Missing data in PD clinical

trials can seriously undermine the benefits provided by randomization. In PD study, the occur-

rence of terminal event and other critical events can substantially affect the longitudinal profile

and should be analyzed simultaneously. There are two missing data patterns: monotone miss-

ing data and intermittent (non-monotone) missing data, based on whether or not the patients

will return to the study after the missed visit. Rubin [80] defined three missing data mech-

anisms. If the missingness is independent of the observed and unobserved data, this missing

data mechanism is missing completely at random (MCAR). When missingness is not dependent

on unobserved data, it is missing at random (MAR). The missing data belonging to these two

missing data mechanisms are treated as ‘ignorable’ missingness, which do not cause bias in

statistical inference for likelihood-based estimation. However, when missingness is associated

with the unobserved underlying response process, this missingness is missing not at random

(MNAR). For example, patients’ dropouts are due to worsening of disease or death. MNAR

mechanisms are ‘nonignorable’. Under the MNAR assumption, the missing data mechanism

needs to be modeled simultaneously with the outcome variables to avoid biased parameter

estimates [18].

Estimating parameters with nonignorable missing data is more complex than with ig-

norable missing data. Recently, modeling longitudinal observations with nonignorable missing

data has drawn much attention [56, 57, 106]. Molenberghs et al. discussed a selection model

for longitudinal ordinal data with nonrandom dropout [68]. Ekholm and Skinner proposed a

pattern-mixture model for a longitudinal binary incomplete data set [22]. The full likelihood

approach has been used to specify the joint likelihood of outcomes and missing indicators when

handling nonmonotone pattern of missing data [44]. For example, the random-coefficient-based

selection models were adopted to link dropout time to the longitudinal outcomes through in-
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dividual random effects [16, 79, 104]. Alternatively, pseudo likelihood was proposed to provide

statistical solutions [90]. Elashoff et al. [24] developed the latent random effects model to incor-

porate effects from nonignorable monotone missing data. Most statistical models focus on one

missing data pattern (either monotone or non-monotone missing). Besides, those models are

based on one or two outcomes and use the latent traits as predictors for monotone missing and

other missing observations. Wu et al. [103] proposed a nonlinear mixed-effects model for both

monotone and non-monotone patterns of missing data. In PD study, the missed visits are fre-

quently happened during the long follow-up, both patterns of missing data exist in study. How

to address the missed responses which consist of dozens ordinal response is an open problem in

PD study.

Overall, there are many challenges in studying PD data. Some fundamental problems

are still not solved. The study described in this dissertation used a multidimensional latent

trait model framework to define PD domain-specific severity and trajectory. In addition, we

extended this approach and combined with nonparametric method to jointly analyze PD data

in presence of multi-type terminal events and different missingness patterns. In summary, the

studies added to current PD studies by addressing those ignored or not fully addressed problems

in PD.

1.2 Public Health Significance

In PD studies, researchers and investigators are facing the difficulties to infer true dis-

ease status and treatment effects. Defining disease progression and treatment effects in clinical

trials with multivariate longitudinal outcome data is an open problem. PD data typically con-

sist a lot of binary/ordinal responses from questionnaire. Unfortunately, there is currently no

formal statistical framework can be utilized to define and estimate the treatment effects in clin-

ical trials with multivariate mixed type outcomes. In addition, the traditional unidimensional
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latent variable model does not suffice to incorporate the complexity of PD and to model the

ubiquitous heterogeneity within and across domains. The heterogeneous nature and unknown

pathogenic mechanisms of PD make it impossible to depend on the traditional approaches such

as unidimensional measure or unilatent model to define full spectrum of disease severity and

progression.

The studies described in this dissertation extend the latent trait model, provides quanti-

fied methods for PD impairments, refine the cause-specific competing risk model by incorporat-

ing temporal multidimensional disease trajectories, and provide statistical test for missingness

mechanism. By providing a comprehensive modeling framework to capture the primary fea-

tures of PD with various heterogeneities and complexities, the proposed framework in this

dissertation has considerable impact on the design and analysis of future clinical studies in neu-

rodegenerative disorders where subtle differences in longitudinally measured multiple outcomes

are the primary interest. The development in this dissertation advanced latent trait model and

item response model, enriched the investigating tools for public health investigator by shed-

ding light on methods to identify the impairment, heterogeneity and other major features of in

PD development. Moreover, we provided an open, general and working methodology for the

analysis of PD and can accommodate more sophisticated models.

The overall objectives of the study were to build a more sophisticated class of models

that account for known, and currently ignored problems in PD data. Using multidimensional

latent trait as started approach, we developed model frameworks for three aims. In Aim 1, the

heterogeneous treatment effects with time were defined and investigated based on multivariate

mixed type longitudinal outcomes. We proposed a nonlinear multidimensional latent trait

model to accommodate the heterogeneity in treatment from time horizon and the impairments

across domains. In Aim 2, we extended semiparametric multidimensional latent trait model to

data with failure event. A generalized framework for multiple competing dependent censoring

events was developed while incorporating heterogeneous disease progression. In Aim 3, we
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constructed a model for data in presence of two missingness patterns and MNAR mechanism.

1.3 Specific Aims

1.3.1 Aim 1: To develop a formal semiparametric multidimensional

latent trait linear mixed model to define and estimate the

domain-specific time-dependent treatment effects

To define and understand the treatment effects on neurodegerative disorders, PD clinical

trials depend on collection of various health outcomes data. PD causes impairment in many as-

pects, and it progresses heterogeneously across domains (e.g., motor, cognitive, and behavioral)

and in time. Without a valid biomarker, how to conduct statistical analysis while incorporat-

ing existing impairments and heterogeneity across disease domains is an open problem in PD

studies. The characteristics of PD determine that treatment effects tend to be time-dependent

rather than constant or linear. We combined semiparametric approach and multidimensional

approach, and used the proposed model to investigate the development of disease and treatment

effects in domain level. Aim 1 of this dissertation provides a set of principled analytic tools and

quantitative methods to demonstrate the disease impairment and time-dependent treatment

effects in domain levels. In addition, our semiparametric approach is capable to obtain the

domain-specific heterogeneous temporal treatment effects.

We are the first to propose the semiparametric multidimensional modeling framework to

utilize both continuous and categorical outcomes that provide a high dimensional interpretation

of treatment effects and other covariate effects in domain level. The expectation is that by

collecting multiple outcomes, clinical studies will provide full spectrum of disease progression,

heterogeneous treatment effects, improve the understanding of PD etiology.
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1.3.2 Aim 2: To extend the semiparametric multidimensional latent

trait model to the data with multi-type terminal events

Joint analysis of longitudinal measurements and time-to-event data is an active area of

statistics studies that have received much attention. Joint analysis of the failure times and

repeated longitudinal measurements can provide unbiased interpretation for the longitudinal

profile interrupted by different disease related events. When applying to PD studies, the con-

ventional joint modeling framework are not capable to incorporate the complicated features of

PD, such as impairment within domains, impaired covariate effects, and the heterogeneous dis-

ease progression which are common in PD. In addition, the follow-up of PD patients are subject

to multi-types of endpoints (e.g., worsening of disease, therapy or dropout), and the dependent

censoring can cause the assumption of conventional Cox model being violated. To continue our

works in Aim 1 and extend to joint modeling, we proposed a semiparametric multidimensional

latent trait joint model for joint analysis of longitudinal multivariate, mixed types outcomes

and competing failure time data. Our approach provided an explicit model framework to esti-

mate the domain-specific covariate effects, identify the heterogeneous disease progression and

quantify these impacts on event failure time. We allowed multiple latent variables’ within-item

multidimensionality (one outcome can be a manifestation of more than one latent variable).

This approach provides additional clinical insight by quantify the domain level effects from

longitudinal profile of disease severity and progression on the risks of terminal event, while the

risks are of multiple causes.

We are the first to propose a statistical method to analyze multivariate longitudinal

outcomes data and the association with multiple competing dependent censoring events in the

presence of impairments across domain and heterogeneous disease progression. This study

identified the decomposed effects of PD disease and progression in domain level on the risks of

terminal events of various types (e.g., informative dropout, Symptomatic Therapy).
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1.3.3 Aim 3: To develop an analysis tool that account for parametric

departures from the missing at random (MAR) assumption

Missing data are ubiquitous in longitudinal studies. There are two missing data patterns:

monotone missing data and intermittent (non-monotone) missing data. The missed visits can

lead bias in PD study if not being treated properly, particularly when these missed visits are

missing not at random (MNAR). A number of statistical approaches have been developed to

handle missing data. Few studies provide complete inference to process data existing both

missing patterns, especially, there is no study addressing the missingness in data that consist of

dozens of ordinal responses, no robust test is available to test the missing mechanisms (MNAR

or MAR).

In this aim, we attempted to develop an analysis model for both monotone and non-

monotone missing data in multivariate longitudinal outcomes of mixed types. We proposed a

generalized approach to the analysis of the longitudinal data in the presence of two missing

data patterns along with both missing data mechanisms. We extended multidimensional latent

trait methods to model and test missing data mechanisms based on the responses from dozens

of ordinal outcome. We jointly analyzed the data without excluding MNAR assumption, and

assessed missing data mechanisms under the impacts from heterogeneous disease development

in multiple domains. One objective of this aim is to build a method capable to handle the

data consisting dozens of ordinal responses with existing impairment in multiple domains (e.g.

motor, non-motor in Parkinson’s Disease). This is the first study addressing the multiple ordinal

responses carrying impairment information from multiple domains, and in presence of missing

data with different missingness patterns.
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Chapter 2

JOURNAL ARTICLE 1: Semiparametric

multidimensional latent trait linear mixed model and

application in Parkinson’s Disease study

2.1 Introduction

Parkinson’s disease (PD), is the second most common neurodegenerative progressive

movement disorders [75]. In the Unite States, approximately 60,000 individuals are diagnosed

with PD each year [50]. The deterioration of PD is irreversible. Thus, diagnosis of PD and

accurate assessment of disease progression are critical in treating PD.

PD causes impairment in multiple domains (e.g., motor, cognitive, and behavioral). The

complicated nature of PD and limited knowledge on etiology of the disease make it impossible

to describe severity of PD and disease progression based on one single or a few clinical measure-

ments. United Parkinson’s Disease Rating Scale (UPDRS), which is based on questionnaires

and tests is a relatively effective diagnostic measure. The UPDRS has four parts with 55 (each

with 5 categories) measuring motor and non-motor symptoms, while each item has 5 different

categories. The 44 items in Part I, II and III are most widely used in PD diagnosis and progres-
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sion monitoring. UPDRS Part I has 13 items and it measures mentation, behavior and mood

(MBM), UPDRS Part II has 13 items and it measures activities of daily living (ADL), UPDRS

Part III has 27 items and is used to measure motor examination. More details about UPDRS

can be found in Appendix. Many PD studies and clinical trials have adopted UPDRS as pri-

mary measure. One of the recent studies is Neuroprotective Exploratory Trials in Parkinson’s

Disease Long-Term Study 1 (LS-1) study (n=1741), which was the largest cohort of patients

with early treated PD. This trial was terminated in August 2013 due to futility of creatine, the

targeted medicine.

To describe and infer the severity of disease and further to evaluate treatment effects,

researchers have formulated various frameworks to handle multivariate and mixed type data.

One is based on linear combination of several outcomes. Another approach is to conduct

tests using one single primary outcome [25, 74]. However, these approaches either are not

able to use all the meaningful information or suffer from other structure flaws. The sum-

score of ordinal responses from questionnaires (e.g., UPDRS) is commonly used to provide an

alternative method to deal with ordinal scores. This method leads to loss of information by

ignoring differences between response pattens [36]. Furthermore, the development of disease

varies among different disease domains. For example, non-motor symptoms can occur much

earlier than other symptoms [11]. Both the sum score analysis and linear combination approach

are not able to model the impairment and heterogeneity in PD.

To address these issues in the traditional models and utilize multiple outcomes effec-

tively, alternative approaches were proposed, low-dimensional interaction model [30] was intro-

duced to model interaction among high dimensional data. And multilevel item response theory

(MLIRT) model [33, 60, 99] was proposed to analyze the longitudinal scores on the individual

items. Verhagen and Fox [96] extended the MLIRT model by accounting for changes in item

characteristics. Schmidt et al. [82] introduced a Pretest-Posttest-Posttest multivariate MLIRT

model to handle repeated measures. Multivariate MLIRT model can utilize the raw item score
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based on latent variable model, which provides a better approach compared with sum-score

approach, the unidimensional latent variable is questionable on the capability of capturing the

impairment and heterogeneity from different domains. Other researchers [34, 72] proposed a

latent variable based multidimensional item response model to assess latent abilities. However,

this cross sectional multidimensional method can not model longitudinal impairment informa-

tion and correlations. Recently, in order to address the disease impairment in longitudinal

item responses, Wang and Luo [98] developed a multidimensional latent trait linear mixed

model (MLTLMM). This multidimensional approach provides a framework to deal with the

complicated diseases with impairment in longitudinal studies. This new approach can effec-

tively utilize a large number of outcomes and is more computational scalable than multivariate

marginal and random effects models. Additional advantages include: 1) easy handling of un-

balanced data and outcomes of mixed types; 2) explicit accounting for correlation structures

using random effects; 3) seamless incorporation of fixed and random effects; 4) capability to

capture the domain-specific heterogeneous covariate effects in corresponding domains.

Furthermore, the heterogeneity in PD is not limited to the impairment across domains.

The disease progression and temporal covariate effects are not necessary to be linear or un-

changed over the follow-up period. Researchers demonstrated that complications or side effects

could happen for treatments in clinical studies. For example, Salat et al. [81] disclosed the

impaired treatment effects in different stages in addition to the impaired effects across domains.

Recently, Auclair-Ouellet et al. [3] addressed the cognitive impairment progression over time.

All these studies reveal that it will lead to bias by assessing the treatment effects with the

assumptions of unchanged or linear treatment effects, especially for chronic and progressive

diseases like PD. Attempts were made by researchers to describe the natural PD progression

with heterogeneity [8]. However, previous studies mainly addressed the heterogeneous symp-

toms or focused on assessment of comparisons at several fixed time intervals. To the best of our

knowledge, the issues on the full range heterogeneity of disease progression and covariate effects

14



with time, the different heterogeneous PD trajectories and covariate effects across domains over

the entire PD trials are not addressed. In addition, no study addressed the difference between

short-term and long-term treatment effects in LS-1 study.

In this study, we extended MLTLMM model by proposing a semiparametric multidimen-

sional latent trait linear mixed model that allows domain-specific trajectories of non-linear dis-

ease progression, and within-item multidimensionality (allowing inputs from more than one la-

tent variables). This model has two levels. The first level multivariate latent trait model defines

the relationship between a patient’s multidimensional unobserved disease severity scores and

the observed multivariate outcomes, while the second level semiparametric multidimensional

linear mixed model (SMLMM) connects the high-order latent disease scores (incorporating the

continuous change rate) to covariates, time and subject-specific random effects. Our model

allows the cross dimensional correlated effects (e.g., correlation between MBM and ADL, ADL

and motor, etc.), allows the different temporal covariate effects in different domains. Because

the number of latent disease traits is much smaller than the number of observed outcomes,

models are quite parsimonious, which can improves the computational feasibility and model

interpretability.

The remainder of this article proceeds as follows. In section 2, we discuss the proposed

model, Bayesian inference and model selection. Section 3 presents studies to assess the perfor-

mance of the proposed models. In section 4, we apply our method to the motivating studies and

compare our semiparametric multilatent model to other parametric models. Section 5 provides

concluding remarks and discussion.
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2.2 Model and estimation

2.2.1 Semiparametric multidimensional latent trait linear mixed model

Let yik(t) be the observed outcome k from subject i at time t, where i = 1, . . . , N ,

k = 1, . . . , K, and t = t1, . . . , tJi . All outcomes are properly coded so that larger values

are worse clinical conditions. We assume that there are P (with P < K) latent variables

(LVs), each of which represents the underlying disease severity in a specific domain. We use

θi(t) = (θ
(1)
i (t), . . . , θ

(p)
i (t), . . . , θ

(P )
i (t))′ to denote the domain-specific unobserved disease status

for subject i at time t, where the superscript (p) (p = 1, . . . , P ) denotes the latent variable in

the pth domain. To incorporate mixed types, multivariate outcomes, we construct the first level

generalized linear model as,

G(yik(t)) = ak + b′kθi(t), (2.1)

where G(·) is link function which depends on the types of outcome. In linear regression, it

is identity transformation, while dealing with binary or ordinal responses, it usually takes

the logit transformation. More specifically, for continuous responses, we have yik(t) = ak +

b′kθi(t) + εik(t), where ak and bk are the outcome-specific parameters, while the random errors

εik ∼ N(0, σεk). For the ordinal outcomes (e.g., item responses) we use an extended two-

parameter model, logit
{
p(yik(t) ≤ l|θi(t))

}
= akl − b′kθi(t), where l = 1, 2, . . . , nk − 1 is the

lth level of the kth random variable, which is ordinal with nk levels, while akl and bk are

the difficulty parameter and discrimination parameter (vector) correspondingly. The negative

sign for bk in the ordinal model is to ensure that worse disease severity (higher θi(t) value)

is associated with a more severe outcome (higher yik(t)). The model enables loading of latent

variables from all domains. To model the dependence of severity scores θi(t) on covariates, we
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propose the second level semiparametric multivariate linear mixed model (SMLMM)

θ
(p)
i (t) = X

(p)
i (t)β(p) + f (p)(t)wi +Z

(p)
i (t)u

(p)
i + e

(p)
i (t), (2.2)

where X
(p)
i (t) and Z

(p)
i (t) are the covariates corresponding to the fixed and random effects

respectively. The latent variable θ
(p)
i (t) denotes ith subject’s unobserved disease severity in the

pth domain at time t. We use f (p)(t) to model the time-dependent effects for the covariate w in

the pth domain, which can be easily extended to multiple covariates. The latent variables are

continuous, higher value indicating worse severity of disease. The vector ui = (u
(1)′

i , . . . ,u
(P )′

i )′

contains the random effects for the ith subject, it follows a multidimensional normal distri-

bution, N(0,Σ), where Σ is the covariance matrix with dimension equal to the number of

random effects incorporated. There are several ways to model random effects. For example,

when we incorporate fully correlated random intercepts and random slopes into the framework,

this covariance matrix will have the dimension of 2p× 2p. The residual part e
(p)
i (t) is assumed

to be mutually independent, and e
(p)
i (t) ∼ N(0, σ

(p)
e ).

In this study, we try to investigate the decomposed (domain-specific), time-dependent

treatment effects. We use θ
(p)
i (t) = X

(p)
i (t)β(p) + β

(p)
1 t + f (p)(t)trti + u

(p)
i0 + u

(p)
i1 t + e

(p)
i (t) to

model the domain-specific non-linear treatment effects (can extend to other covariates), where

β
(p)
1 is the average disease progression rate (positive for getting worse) in the pth domain for

participants in control group. The f (p)(t) is the add-on time-dependent treatment effects in the

pth underlying disease domain, denoting the average heterogeneous treatment effects with time

for those in treatment group, adjusted for fixed covariates and subject-specific random effects.

The nonparametric function is structured as f (p)(t) =
∑N

n=1 c
(p)
n Bn,q(t), where Bn,q(t) is order

q spline basis for the nth knot at time t, while c
(p)
n is the penalized coefficient for corresponding

basis in the pth domain, and c
(p)
n ∼ N(0, σ

(p)
c ).

The major feature of this two-level modeling is that all outcomes incorporate the whole
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dimensional θi(t) or disease information from all domains, and multi-type measurements can

be effectively utilized. First, the latent variable of each domain models the impact from other

domains using cross-domain random effects. Besides, this model allows both between-item

multidimensionality and within-item multidimensionality (i.e. one outcome can be a manifes-

tation of more than one latent variable). Information on the impairment of disease is captured

by dimensional latent variables and domain specific heterogeneous temporal effects. Other

researchers discussed the cross-loading concept in the factor analysis and applied in indepen-

dent cluster structure [64, 78]. We extend and generalize this approach by conceptualizing the

cross-domain disease severity interaction with impaired effects, and providing a framework to

incorporate the heterogeneous temporal covariate effects in different domains. Generally, the

domain impact on the clinical outcomes can be regressed by the loading intensity of domain-

specific latent variable in the cross-loading vector. When there is one latent variable (P = 1),

our model reduces to the univariate latent variable model as a special case.

To model cross-loading in the model, we let a = (a′1, . . . ,a
′
k, . . . ,a

′
K)′, and ak =

(ak,1, . . . , ak,nk−1)′ for the kth ordinal outcome with nk categories. We let b = (b1, . . . , bK)′,

a K by P matrix, where bk = (b
(1)
k , . . . , b

(p)
k )′. Because the model is over-parameterized, addi-

tional constraints are required to make it identifiable. The indeterminacy between the latent

variable loadings bk and the scales of the latent variables θi(t) can be fixed by either setting one

element in each column of b to be 1, or letting σ
(p)
e = 1 for p = 1, . . . , P with at least one of the

loadings constrained to be positive for each factor [20]. Finally, to identify parameters a and

intercepts in regression coefficients, we set the constraints on one selected item in each domain,

we let ap,1 = 0 (or other constant) for p = 1, . . . , P ordinal outcomes and the order constraint

ak,1 < . . . < ak,l < . . . < ak,nk−1
must be satisfied. Besides, we set identifiability constraints on

vectors b, for example, when P = 3 and the constraints are put on the first three items, we let

b
(1)
1 = b

(2)
2 = b

(3)
3 = 1, all other elements are 0. In real data analysis, in order to achieve the

better domain calibration and locate the three bases, we have to carefully select the item to
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put constraints for each domain.

2.2.2 Nonparametric function and Likelihood

We use nonparametric functions to model non-linear covariate effects. The smoothness

of nonparametric functions can be adjusted by the number of knots while penalized method

can use a small number of knots. Wu and Zhang [102] suggested using cubic smoothing spline

to achieve better smoothness. Among different spline approaches, the local basis cubic B-spline

has many advantages in numerical computation. Generally, cubic B-spline with 10 to 20 basis

can achieve ideal results with little advantage gained for more than 20 knots [37]. In this study,

we use cubic B-spline with 8 inner knots (total 12 knots including intercept). To avoid over-

fitting, we adopt penalized cubic B-spline function in our model. Penalized approach is based

on Eilers method [21].

Let the parameter vector Θ = {a, b,β,Σ, σεk , σ
(p)
e }. Conditional on the random effects

ui and nonparametric part, all measurements of each subject are assumed to be independent.

We have the full likelihood of subject i as follows:

L(Θ,ui;yi) =

[
Ji∏
j=1

K∏
k=1

p(yik(tij)|ui, c)

]
p(ui|Σ)p(c)p(Σ), (2.3)

where p(ui|Σ) is the density function of random effects vector ui.

2.2.3 Bayesian inference

To make inference on the parameter vector Θ, we use Bayesian methods based on Markov

chain Monte Carlo (MCMC) posterior simulations. We use vague priors on all elements in Θ,

except for the aforementioned constrained parameters, i.e., ap,1 = 0 (or other constant) for

p = 1, . . . , P and b
(p)
p = 1, for all p. Specifically, the prior distributions of unconstrained
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parameters ak of the continuous outcomes is ak ∼ N(0, 10, 000) (SD=100). To obtain the

prior distributions for the threshold parameters of ordinal outcome k, we let ak,1 ∼ N(0, 400)

(SD=20), and ak,l = ak,l−1 + ∆l for l = 2, . . . , nk− 1, with ∆l ∼ N(0, 10, 000)I(> 0) (SD=100),

i.e., normal distribution left truncated at 0. The setting of high SD here is considering the

scenarios that there are rare responses to some top level of items (some items have few re-

sponses to the level 5). Prior distributions for unconstrained elements in b and β are N(0, 400)

(SD=20). We sample the first nonparametric coefficient c
(p)
1 in each domain from N(0, σ

(p)
c ),

while the remained coefficients are sampled using random walk, c
(p)
k ∼ N(ck−1, σ

(p)
c ). We use

the Cholesky factorization method to sample the correlation coefficients, the random effects

covariance matrix is modeled as Σ = σUΣUσ
′
U , where ΣU is the correlation matrix, while σU

is the diagonal matrix of standard deviation of random effects. All variances terms are from

Inverse-Gamma(0.01, 0.01). We have investigated other selections of vague prior distributions

with various hyper-parameters and obtained very similar results.

The posterior samples are obtained from the full conditional of each unknown parameter

using Hamiltonian Monte Carlo (HMC) [19] and No-U-Turn Sampler (NUTS) [42]. Both HMC

and NUTS samplers are implemented in Stan, which is a probabilistic programming language

implementing statistical inference. The model fitting is performed in Stan (version 2.17.0) [87]

by specifying the full likelihood function and the prior distributions of all unknown parameters.

For large datasets, Stan may be more efficient than BUGS language [59] in achieving faster con-

vergence and requiring smaller number of samples [42]. To monitor Markov chain convergence,

we use the trace plots and view the absence of apparent trends in the plot as evidence of con-

vergence. In addition, we use the Gelman-Rubin diagnostic to ensure the scale reduction R̂ of

all parameters are smaller than 1.1 as well as a suite of convergence diagnosis criteria to ensure

convergence [32]. To facilitate reading and implementation of the proposed model, Stan codes

are posted in the supplement part.
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2.2.4 Model selection

To compare the proposed model to other models, we implement model selection in this

study. Among the various model selection methods available in Bayesian inference, we select

the deviance information criterion (DIC), and Watanabe-Akaike information criterion (WAIC).

The deviance information criterion (DIC) assesses model fit based on the posterior mean

of the deviance and a penalty on the model complexity [86]. Due to mixture framework applied

in our model, we choose the DIC3 measurement [10]. The DIC3 is defined as DIC3 = D(θ) +

τD, where D(θ) = −2Eθ|D{log[
∏I

i=1 f(yij|θ)]} is the posterior mean deviance, τD = D(θ) +

2 log{Eθ|D[
∏I

i=1 f(yij|θ)]} is a measure of the effective number of parameters in the model, and

Eθ|D(.) is the expectation with respect to the joint posterior distribution π(θ|D). Thus, we

have DIC3 = −4Eθ|D{log[
∏I

i=1 f(yij|θ)]}+ 2 log{Eθ|D[
∏I

i=1 f(yij|θ)]}. Applying Monte Carlo

approximation, the expression of DIC3 is

D̂IC3 = − 4

M

M∑
m=1

I∑
i=1

log
{
f(yij|θ(m))

}
+ 2 log

{ 1

M

M∑
m=1

I∏
i=1

f(yij|θ(m))
}
.

A smaller value of DIC3 indicates a better-fitting model.

WAIC [100] can be viewed as an improvement on the DIC for Bayesian models. DIC

has gained popularity through its implementation in the graphical modeling package BUGS

[59]. WAIC is fully Bayesian and closely approximates Bayesian cross-validation. Unlike DIC,

WAIC is invariant to parametrization and even works for singular models [91]. The WAIC is

defined as∑I
i=1

(
1
M

∑M
m=1 f(yi|θ(m))

)
−
∑I

i=1 varpost

(
logf(yi|θ)

)
, where M is total sampling times. A

small WAIC value denotes a better model.

21



2.3 Simulation studies

In this section, we conduct simulations studies to investigate the identifiability of the

proposed model. We incorporate 3 domains in simulation. We generate 240 datasets with

N = 800 subjects and eleven visits (baseline and ten follow-up visits) for each subject. The

data have ten ordinal outcomes (K = 10) and each has 5 categories. Data are simulated using

the 3 LVs model: θ
(p)
i (t) = β

(p)
0 +β

(p)
1 t+ f (p)(t)xi +u

(p)
i , where p = 1, 2, 3, the covariate xi takes

value 0 or 1, each with probability 1/2 to mimic the treatment assignment. The time vector

is set as ti = (ti1, . . . , ti11)′ = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)′. We set the regression coefficients to

be β(1) = (β
(1)
0 , β

(1)
1 )′ = (−0.5, 0.5)′, β(2) = (β

(2)
0 , β

(2)
1 )′ = (−0.8, 0.8)′, β(3) = (β

(3)
0 , β

(3)
1 )′ =

(−0.2, 1.2). We are using the following functions, −1.4sin(x/2)−x1.2/5, x0.8/250−1.5sin(x/3)

and −x3/400 + 0.1x to mimic non-linear treatment effects in three domains. We use 3 × 3

covariance matrix to simulate random effects, we set σu = (σ
(1)
u , σ

(2)
u , σ

(3)
u ) = (0.7, 0.8, 1), and

ρ = (0.4, 0.6,−0.1). For this 3LV model, we assign true value to the constrained items, which

are the first three items, a1,1=a2,1=a3,1 = 0, b
(1)
1 = b

(2)
2 = b

(3)
3 = 1. Other parameters’ setting

are presented in Appendix.

2.3.1 Model performance

Table 2.31 displays the simulation results. In the table, bias (the average of posterior

means minus the true parameter values), standard deviation (SD, for the posterior means), and

coverage probabilities (CP) are presented. The summarized parameter estimates for ordinal

items are presented in Appendix. The estimated non-linear functions are visualized in Figure

2.31, which demonstrates the fitting between estimated time-dependent functions and true non-

linear functions. Furthermore, point-wise coverage rates for estimated three domains’ non-linear

functions are presented in Figure 2.32 to assess the performance of the proposed nonparametric
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framework.
Table 2.31: Simulation results based on three domains setting.

Domain 1 Domain 2 Domain 3
EST Bias SD CP EST Bias SD CP EST Bias SD CP

Latent variable
β0 −0.501 −0.001 0.070 0.946 −0.796 0.004 0.103 0.908 −0.184 0.016 0.153 0.929
β1 0.499 −0.001 0.011 0.950 0.799 −0.001 0.017 0.912 1.197 −0.003 0.026 0.912
Random effects
σ 0.699 -0.001 0.031 0.971 0.793 −0.007 0.039 0.950 0.992 -0.008 0.060 0.950
ρ∗ 0.391 −0.009 0.056 0.954 0.592 −0.008 0.046 0.967 −0.112 −0.012 0.071 0.938

* ρ̂12 = 0.391, ρ̂23 = 0.0.592, ρ̂13 = −0.112.

Figure 2.31: Comparison of true functions(solid) and estimated nonparametric functions (dashed)
with 95% credible intervals (dot dash). Left panel: Domain 1. Middle panel: Domain 2. Right panel:
Domain 3.

Figure 2.32: Point-wise coverage probabilities with reference lines (dotted) at 0.95. Left panel:
Domain 1. Middle panel: Domain 2. Right panel: Domain 3.

In summary, the estimated parameters have low bias, and the estimated non-linear

23



functions provide good fit for the true non-linear temporal effects with coverage probabilities

around 95%. We conclude that the proposed model is identifiable, in presence of non-linear

covariate effects.

2.4 Application to LS-1 study

We apply the proposed semiparametric multidimensional latent variable model and

Bayesian framework to LS-1 study. A total of 1741 participants are included in the study.

We use the 44 item responses in UPDRS part I, II and III as outcome responses. Based

on guideline of UPDRS, the 4 items in part I are targeting for MBM, part II’s 13 items

are for ADL, part III’s 27 items are for motor examination. The structured questionnaire

design (part I, II, and III) confines the information manifested by those ordinal responses

in each part to the corresponding disease domains. To fit to the data structure, we refine

our models assuming that item responses in each part manifest the unobserved status of

corresponding disease domains. We add dependency across domains by incorporating fully

correlated random effects (both between and cross domains). Considering the data struc-

ture, we only incorporate between-item multidimensionality in each domain based on UP-

DRS structured parts. As both age and gender are important risk factors for PD [26, 70],

we include age and gender covariates into model. Hence, the latent trait model is updated

as θ
(p)
i (t) = β

(p)
0 + β

(p)
1 agei + β

(p)
2 genderi + β

(p)
3 t + f (p)(t)trti + u

(p)
i0 + u

(p)
i1 t + e

(p)
i (t), where

p = 1, 2, 3 corresponding to disease domains for MBM, ADL and Motor examination, while

f (p)(t) is the domain-specific non-linear treatment effects over time, the covariate trti is treat-

ment indicator, indicating if patient i in treatment group or not (1 for creatine group, 0 for

placebo), u
(p)
i0 and u

(p)
i1 are the random effects on the pth domain. The 2P dimensional vector

Ui = (u
(1)
i0 , u

(1)
i1 , . . . , u

(P )
i0 , u

(P )
i1 )′ is set to follow multivariate normally distribution N2p(0,Σ).

We impose identifiability constraints on one selected item in each domain, so that these three
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items from different domains construct the bases of three dimensions, and calibrate each latent

variable’s measure. We use factor analysis to select these three items. In each UPDRS part

(MBM, ADL and motor), we conduct factor analysis to select the item which has the largest

factor loading. After confirmatory factor analysis, we choose item 1 (Mentation) from UPDRS

Part I, item 7 (Hygiene) from UPDRS Part II and item 18 (Hand grips) from UPDRS Part

III to put constraints. For these selected items, we set ak,1 = 0 (can be other constant) and

b
(p)
k = 1.

Table 2.41 displays the coefficient estimates for the fixed covariates. For participants in

placebo group (not using creatine as therapy), disease is significantly getting worse in all three

domains. The domain-specific time effects show disease progresses the fastest in ADL, and

the slowest in motor examination. Specifically, the participants without creatine therapy have

average 0.437 (95%CI: [0.398, 0.473]) units yearly worsening rate in ADL, and average 0.227

(95%CI: [0.202, 0.253]) units yearly worsening rate in motor, while the average worsening rate in

MBM is 0.263 (95%CI: [0.223, 0.301]) units per year. Other studies show non-motor symptoms

can occur much earlier than other symptoms [11], our study discovers that at the current

stage (during follow-up) non-motor disease progression has the second fastest deterioration

rate among three domains. Besides the significant time effects, we also identify both significant

age and gender (male) effects in all three disease domains. Our model shows that the age

factor has the highest risk intensity in motor examination, and has the least risk intensity

in MBM. Specifically, every one year increase in age associates with 0.106 (95%CI: [0.020,

0.189]) units increase in MBM severity measure (getting worse), 0.146 (95%CI: [0.044, 0.241])

units increase in ADL severity measure, and 0.297 (95%CI: [0.235, 0.359]) units increase in

motor examination. Compared with female, Male would have 0.186 (95%CI: [0.008,0.356])

units of increased MBM severity measurement (getting worse), 0.310 (95%CI: [0.124, 0.504])

units of increased ADL measurement, and 0.183 (95%CI: [0.050, 0.312]) units of increased motor

examination measurement. These results are consistent with other researchers’ conclusion [9,
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70, 77]. The different covariate risk loadings across domains imply the impairment in different

disease domains, and are explicitly displayed in those three-domain coefficient estimations. In

summary, increased ages associates with worse disease severity, and this positive association is

highest in motor examination, least in MBM. The gender effects show that male has significantly

higher risk in disease deterioration compared to female. And this gender related deteriorated

disease effects are the highest in ADL, the least in Motor examination.

Table 2.41: Parameter estimates by domains.
Mentation, behavior and mood Activities of daily living Motor examination

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI
Int. −0.769 0.093 −0.951 −0.593 −1.164 0.103 −1.379 −0.978 −0.146 0.065 −0.262 −0.022
Age (yr) 0.106 0.044 0.020 0.189 0.146 0.049 0.044 0.241 0.297 0.033 0.235 0.359
Male 0.186 0.090 0.008 0.356 0.310 0.100 0.124 0.504 0.183 0.069 0.050 0.312
Time (yr) 0.263 0.020 0.223 0.301 0.437 0.020 0.398 0.473 0.227 0.013 0.202 0.253

Figure 2.41 displays domain-specific treatment effects trajectories over the follow-up

period. Both treatment effects in MBM and ADL progress to the wrong direction, and these

deterioration effects turn to significant at the end of year 5. There is no any treatment benefit

gained in MBM and ADL domains after first year. In a very short time window, there is

some treatment benefit at the start of trial, but the effects are not significant. As regards

to motor examination, there are some insignificant treatment benefits at the beginning, but

generally there is no significant desired treatment effects over the whole follow-up period. The

domain-specific trends show the divergence of short-term (prior year 1) and long-term treatment

effects. This finding is consistent with the conclusion of the exploratory trial on 2001 sponsored

by National Institute of Neurological Disorders and Stroke (NINDS). In that trial, NINDS found

that creatine monohydrate was the only one which pass the futility analysis of 2 clinical trials

[45, 46]. This potential early treatment effects was not being studied furthermore as majority of

studies based on (LS-1) dataset focused on 5-year change from baseline and used this as criteria

to assess long-term effects. Indeed, our finding reaches a partial similar conclusion made by

Fine et al. [27], which disclosed that there was no sustained improvement for patients with

advanced PD undergone unilateral posteroventral medical pallidotomy though there existed
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significant early improvements. The graphic illustration of impaired domain-specific treatment

effects is presented in Appendix A.01. In the end, the three different trajectories show that

the undesired treatment effects in MBM and ADL contribute most for the failure of trial. This

finding is first reported and discovered using our model.

Figure 2.41: Estimated time-dependent treatment effects by domains, estimated functions: dashed
lines; 95% point-wise credible intervals: solid lines. Left panel: Mentation, behavior and mood. Middle
panel: Activities of daily living. Right panel: Motor examination.

Random effects related posterior parameters are presented in Appendix Tables A.03

and A.04. Table A.03 shows similar random intercept variabilities (σ
(1)
0 =1.646, 95% CI: [1.537,

1.773], σ
(2)
0 =1.844, 95% CI: [1.749, 1.943], and σ

(3)
0 =1.250, 95% CI: [1.190, 1.315]) across do-

mains, same findings are with random slope (σ
(1)
1 =0.337, 95% CI: [0.307, 0.349], σ

(2)
1 =0.474,

95% CI: [0.439, 0.507], σ
(3)
1 =0.327, 95% CI: [0.307, 0.351]). The correlation matrix in Appendix

Table A.04 provides additional information of inter-dependency of diseases and correlated (in

high dimensional) subject-specific characteristics between and within domains. Every individ-

ual has 3 pairs of random effect terms sampled from a 6 × 6 covariance matrix, denoting the

random effects in 3 dimensions or domains, each domain has both random intercept and random

slope. For each random effects vector, the 1st and 2nd elements are for MBM domain, the 3rd

and 4th are for domain in ADL, while the last two are for motor examination domain. The only

significant within-domain correlations (between random intercept and random slope in same
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domain, ρ = −0.093, 95% CI: [−0.158,−0.021]) resides in ADL, explained as: if disease status

is worse at the start of the trial, the disease progression is slow in ADL during follow-up. The

intercept between-domain correlations (random intercept vs random intercept) are all positive

and significant. These associations reveal that in the trial if any initial disease status is worse,

the other two are also worse, for example, if a participant’s initial disease status in MBM is

worse compared to the average level at the start of trial, the disease severity levels in ADL and

motor are also worse. Same finding is discovered in the pairwise correlations of within-domain’s

random slopes (random slope vs random slope), if a the participant has faster disease progres-

sion rate compared to the average rate in any domain, his or her disease development in other

domains also progresses faster compared to the average, for example, disease develops fast in

ADL, it also deteriorates fast in MBM and motor examination.

The difficulty and discrimination parameter estimations are presented in Appendix Ta-

bles A.06, A.07 and A.08. All parameter estimates are significant for these ordinal responses.

The results indicate that the unobserved domain-specific disease status is significantly mani-

fested by these 44 ordinal outcomes.

To assess the performance of proposed nonparametric model compared with other para-

metric models, we conduct model comparison using the criteria which are discussed in Section

2.2.4. We test both linear and quadric multidimensional latent trait models. For linear setting,

the multi-dimensional latent trait is θ
(p)
i (t) = β

(p)
0 + β

(p)
1 agei + β

(p)
2 genderi + β

(p)
3 t + β

(p)
4 trti +

β
(p)
5 (t × trti) + u

(p)
i0 + u

(p)
i1 t + e

(p)
i (t), while the quadric setting is θ

(p)
i (t) = β

(p)
0 + β

(p)
1 agei +

β
(p)
2 genderi + β

(p)
3 t + β

(p)
4 trti + β

(p)
5 (t × trti) + β

(p)
6 t2 + β

(p)
7 (t2 × trti) + u

(p)
i0 + u

(p)
i1 t + e

(p)
i (t).

Table 2.42 displays the DIC3 and WAIC values for these three models. The results suggest

nonparametric approach outperforms the other two models for either selection criteria.
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Table 2.42: Model selection criteria for LS-1 study.

Nonparametric Linear Model Quadric Model
DIC3 731124.6 731203.1 731156.7
WAIC 730780.4 730867.3 730794.6

2.5 Discussion

In this study, we propose a semiparametric multidimensional latent trait model to as-

sess domain-wise time-dependent treatment effects and use it to the LS-1 study which was

the longest clinical trial in PD study and included the largest cohort of PD patients. This

model provides a general approach for researchers to investigating impaired covariate effects

and heterogeneous disease progression in domain levels. In this model, the domain-specific

latent variable is served as underlying severity of disease in a certain dimension, manifested by

assorted clinical outcomes. We adopt a Bayesian inference framework based on Markov chain

Monte Carlo (MCMC) to identify the time-dependent treatment effects and trajectories. The

extensive simulation studies show that our model can accurately estimate the domain-specific

non-linear covariate effects in the presence of multidimensionality.

A number of studies on LS-1 evaluated the long-term treatment effects by assessing

change in functional performance for a fixed interval such as 5-year duration [5, 48]. However,

the effects comparison based on fixed time interval does not provide the whole picture of the

performance of the targeted treatment. In addition, those studies can not distinguish the

domain-specific treatment effects (i.e. treatment on motor or non-motor, etc.). Compared

to other studies on the LS-1 trial, our semiparametric multidimensional framework discloses

the treatment performance of creatine in depth, such as when the treatment effects become

deteriorated, in which domain the treatment deteriorates and to what extend. Moreover, we

demonstrate the different treatment trajectories in different domains and different time lines

for the wrong treatment effect in sub-domain.
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There are some limitations in our model that we will address in our future studies. In

this article, the domains are pre-specified by the structured UPDRS questionnaires. While in

many multivariate studies, the domains and the number of domains to be used in model will

be hard to define. Using factor analysis can facilitate in determining domains. On the other

hand, how to explain the structured domains clinically, and map responses to these domains

are not straightforward and hard to be evidence-based. In the future study, we will continue to

investigate the method to address these issues. Besides, in modeling random effects, we chosen a

full correlated multivariate normal distribution, it is because the flexibility and interoperability

of the structure while accommodating correlation of both within and between multiple latent

variables. Generally, misspecification of random effects distribution has little impact on the

parameters [63]. In the future, we will investigate the mixture normal distributions based on

Dirichlet process [49].
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Chapter 3

JOURNAL ARTICLE 2: A semiparametric

multidimensional latent trait model to joint analysis of

longitudinal outcomes and competing risks

3.1 Introduction

Parkinson’s disease (PD), is the second most common neurodegenerative disorder. It

is diagnosed in about 1% of individuals over the age of 65 in the United States [6]. PD is an

incurable and progressive disorder. Current understanding of PD suggests that it is a multiorgan

disorder presenting with heterogeneous clinical conditions [47, 67]. PD is not just a complex

motor disorder, it is now considered as a systemic disease due to its non-motor symptoms in

addition to the motor symptoms [11].

The lack of validated biomarkers for PD is the major barrier in PD study [67]. Currently,

the diagnosis method mainly depends on clinical information provided by patients, for example

self-reported motor sign and symptoms (rigidity, tremor, etc.,). The Unified Parkinson’s Disease

Rating Scale (UPDRS) is constructed as a scale measure of neuronal impairment in PD [76].

There are a lot of PD studies and clinical trials using UPDRS to follow the longitudinal course
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of PD [11, 88, 89]. However, there are two major limitations for this version of test: lack of

consistent anchor among subscales and not sufficient emphasis on the non-motor features of

PD. In 2007, a revised UPDRS, the Movement Disorder Society-UPDRS (MDS-UPDRS) was

introduced to provide more comprehensive and more accurate tests than the original UPDRS

[35]. The MDS-UPDRS consists of 65 items, all items are anchored with five categories, from

0 to 4, the higher the score the worse the disease status. The first three parts of MDS-UPDRS

which include 59 items are commonly used in PD studies. Statistical methods are required

to extract useful information from these 59 item responses to define disease status and its

progression.

In PD studies, the items response in UPDRS or MDS-UPDRS are often summed up to

obtain total score, which is treated as a continuous outcome. It is easy to implement but leads

to loss of information by ignoring differences between response item pattens [36]. Alternatively,

multilevel item response theory (MLIRT) model was utilized to analyze the longitudinal scores.

This model links the multiple items to an unobserved disease status structured as a univariate

latent variable. However, the unidimensional framework limits the application of the model in

analyzing PD due to the complication of the disease. PD is characterized by existing impair-

ments across domains, for instance non-motor symptoms often occur decade before the clinical

motor signs[11]. The unidimensional framework does not suffice to define the impairments in

motor and non-motor. To address these issues in the traditional models, multidimensional item

response model was introduced [72]. Though cross-sectional impairments were addressed in

this model, the longitudinal impairment information and correlations are still not fully assessed

in this cross-sectional multidimensional model. Recently, Wang and Luo [98] proposed a new

multidimensional latent trait linear mixed model (MLTLMM) to address the disease impair-

ment in longitudinal study. This new multidimensional latent trait model allows multiple latent

variables and within-item multidimensionality. By adopting latent disease score to reduce the

number of observed outcomes, MLTLMM is more computational scalable than multivariate
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marginal and random effects models.

Though impairments across domains can be modeled in this multidimensional latent

trait model, the temporal impairment or heterogeneous disease progression is not taken into

account in the model framework. Researchers [8, 27] have shown that development of PD is

gradual and not necessary linear, and this heterogeneous progression has different trajectories

in different domains. PD has domain-specific temporal patterns that may be dependent on PD

clinical and/or pathological stages. Overall, to the best of our knowledge, the domain-specific

heterogeneous disease progression is still not adequately addressed in previous studies. In order

to fully assess the temporal patterns of PD in longitudinal study and allow for a more flexible

description of disease development, we propose a semiparametric multidimensional latent trait

model which incorporates domain-specific high-order temporal effects. This semiparametric

MLTLMM provides a coherent and explicit framework to facilitate clinicians and researchers

to evaluate the temporal patterns of disease change [62] and impairment across domains, help

to design precise personal-specific medicine or treatment.

In PD clinical trials, participants are monitored longitudinally with respected to the

aforementioned dozens ordinal outcomes plus other outcomes, the observations can be stopped

by occurrence of terminal events, such as worsening of disease, dropout. Joint analysis of

the failure times and repeated longitudinal measurements can provide solutions to this issue.

However, there are two important reasons calling for additional consideration when modeling

these events. First, they can be viewed as dependent censoring for the initiation of symptomatic

treatment which is related to the patient health outcomes. Second, disease-related dropout

events generate non-ignorable missing values in the outcomes. Standard methods for joint

modeling of longitudinal and survival data allow for one types of endpoint or events with a

single model of failure and have an assumption of independent censoring [23, 40]. When there

are several causes of event risks, it is known as competing risks. Moreover, treating the outcome-

dependent terminal event as independent censoring introduces bias into model estimation. In
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PD studies, participants are exposed to the risks of the terminal events, while the events are

not independent. For example, patients can drop out or receive therapy, any occurrence of

these events can censor the potential of other risks (dependent censoring). Moreover, if the

endpoints are disease related, it can lead to underestimation of true event time of other types

and the drive of events. In clinical trials, researchers expect to gain more efficiency in statistical

inferences with a joint model and utilize multiple types endpoints.

There can be a great deal of diversity in modeling multiple event risks in PD studies,

The extension of classical joint modeling framework were proposed by researchers. Chi and

Ibrahim [13] used a joint model for multivariate longitudinal and survival data. Elashoff et al.

[24] extended the joint model to competing risks data. Dantan et al. [14] proposed a joint model

with latent state for longitudinal data and event data. However, there is no study addressing the

multiple event risks while simultaneously taking into consideration of the impairments across

domains, and domain-specific time-dependent disease progression. To model PD’s longitudinal

impacts on events, or vise versa, we go beyond the standard formulation of joint models. We

extend the proposed semiparametric multidimensional model by incorporating impairment and

heterogeneity to survival sub-models. In addition, we address the cause-specific associations

between multiple types event outcomes (competing events), and the domain-specific disease

status with non-linear disease progression.

The joint model presented in this study differs in several aspects to the previous ap-

proaches. First, our model obtains and utilizes the information in heterogeneous disease pro-

gression manifested in dozens of ordinal responses, which approach helps to ensure the full

range and non-linear longitudinal trajectories to be fully evaluated in the model. Second, our

model decomposes the impairments from different domains and quantify these domain-specific

associations with different types of events. Overall, our model simultaneously takes into account

the impaired covariate effects across domains, heterogeneous domain-specific disease progres-

sion and multiple failure risks. The remainder of this article proceeds as follows. In section
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2 we describe the motivating study and the data structure. Section 3 discusses the proposed

model, Bayesian inference. Section 4 presents simulation studies to assess the performance of

the proposed models. In section 5, we apply our method to the motivating study. Section 6

provides concluding remarks and discussion.

3.2 Motivating clinical study

This methodological development is motivated by Parkinson’s Progression Markers Ini-

tiative (PPMI) study. PPMI is an ongoing longitudinal observational study that aims to identify

one or more markers of progression for PD. The study was launched in 2010. All participants

were grouped into several cohorts, including Parkinson Disease (PD), scans without evidence of

dopaminergic degeneration (SWEDD) and healthy control (HC) etc. At baseline, patients were

not expected to require PD medications within at least 6 months. PD medications without

any restriction on number or type might be initiated at any time based on discretion of the

patients or treating physicians. PD cohort includes 423 subjects. After excluding those having

only one visit, there are 415 subjects in study. Among these 415 subjects, total 40 dropped

out early for different reasons, and 197 individuals underwent Symptomatic Therapy (ST). The

disease progression was mainly assessed using MDS-UPDRS scales plus other measurements.

According to the MDS, the 13 items in Part I are used to measure the disease information in

non-motor aspects of experiences of daily living (nM-EDL), the 13 items in Part II are used

to measure information in motor aspects of experiences of daily living (M-EDL), while the 18

grouped items (some items have setting for right, left or other body parts’ sub-items, total

33 items) in Part III collect information related to motor examination. Items in the different

parts are assumed to be the manifestation of different disease domains (motor, cognitive and

behavior). Due to impairments, the disease progresses heterogeneously both in dimensions and

with time. No study was conducted to identify and define disease progression in domain level,
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such as disease development in motor or non-motor, no continuous comparison was carried for

disease development by domains, though it is known that domain-specific disease trajectory

varies with time, for example, non-motor symptoms precede motor’s [12].

In PPMI study, there exist two types of events which can affect the longitudinal obser-

vations. One is Symptomatic Therapy, the other one is dropout. Though participants have

scheduled visits for more than 6 years, the dropouts stop the planned visits. Besides dropouts,

ST could cause longitudinal observations deviated from the original trajectories. Generally,

researchers treat ST as one type of terminal event [84]. Figure 3.21 shows these two types

of events. The patient 3179 underwent ST at end of year 3, which censored the possibility

for dropout. Patient 3023 dropped out from study before the end of year 5, the longitudinal

observations stopped. When modeling these endpoints in the study, we are trying to answer

these questions, how these events associate with disease development, which domain’s disease

progression has more impacts on the events for this multi-domain disease. Furthermore, we

are going to investigate which domain’s disease status constitutes the primary causes for the

events.
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Figure 3.21: MDS-UPDRS III Trajectories of fifty randomly selected patients in PPMI study. Patient
3179 underwent ST at year 3 (empty circle), patient 3023 dropped out before the end of year 5 (cross).

3.3 Model formulation

3.3.1 Multidimensional latent trait linear mixed model (MLTLMM)

Let yik(t) be the observed outcome k for subject i at time t, where i = 1, . . . , N , k =

1, . . . , K, and t = ti1, . . . , tiJi . All outcomes are coded so that larger values are worse clinical

conditions. To start building the MLTLMM modeling framework, we assume that there are

P (with P < K) latent variables (LVs) representing the underlying disease severity scores

and denote them as θi(t) = (θ
(1)
i (t), . . . , θ

(p)
i (t), . . . , θ

(P )
i (t))′ for subject i at time t, where the

superscript (p) (p = 1, . . . , P ) denotes the pth latent variable. From a clinical perspective, each

latent variable denotes the severity of a PD domain (e.g., non-motor and motor). We introduce
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the first level MLTLMM model for continuous outcomes.

yik(t) = ak + b′kθi(t) + εik(t), (3.1)

where ak and bk = (b
(1)
k , . . . , b

(P )
k )′ are the outcome-specific parameters, and the random errors

εik(t) ∼ N(0, σεk) are independent and identically distributed. Note that ak = E[yik(t)|θi(t) =

0] is the mean of the kth outcome if the disease severity scores are 0 and b
(p)
k = [yik(t

′) −

yik(t)]/θ
(p)
i (t) is the expected increase in the kth outcome for one unit increase in the pth

disease severity score while holding other disease severity scores unchanged. The parameter b
(p)
k

also plays the role of bringing up the pth disease severity score to the scale of the kth outcome.

When vector bk has different entries, the disease severity of different domains (latent scores)

in θi(t) have varied manifestations in the kth outcome. We model the binary outcomes (e.g.,

yes/no in questionnaire) and ordinal outcomes (e.g., each item of MDS-UPDRS) by using a

two-parameter model [58] as follows:

logit
{
p(yik(t) = 1|θi(t))} = ak + b′kθi(t), (3.2)

logit
{
p(yik(t) ≤ l|θi(t))

}
= akl − b′kθi(t), (3.3)

where l = 1, 2, . . . , nk − 1 is the lth level of the kth random variable, which is ordinal with

nk levels. The probability of being in a particular category is p(yik(t) = l) = p(yik(t) ≤

l|θi(t))−p(yik(t) ≤ l−1|θi(t)). Interpretation of parameters is similar to continuous outcomes,

except that modeling is on the log-odds, not the native scale of the data. Note that the negative

sign for bk in the ordinal outcome model is to ensure that worse disease severity (higher θi(t)) is

associated with a more severe outcome (higher yik(t)). A major feature of this model is that bk

plays the role of incorporating θi(t) or explicitly bringing up P dimensional disease severities

to the outcomes. This is one of the simplest ways to conceptualize the disease severity scores

that allows to define the overall treatment effects. To model the dependence of severity scores
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θi(t) on covariates, we propose the second level multivariate linear mixed model (LMM)

θ
(p)
i (t) = X

(p)
i (t)β(p) + f (p)(t) +Z

(p)
i (t)u

(p)
i + e

(p)
i (t), (3.4)

where X
(p)
i (t) and Z

(p)
i (t) are the covariates corresponding to fixed and random effects, re-

spectively, for each latent variable θ
(p)
i (t). The model can include covariates of interest such

as treatment and temporal effects. The vector ui = (u
(1)′

i , . . . ,u
(P )′

i )′ contains all the ran-

dom effects from multi-domains for subject i, which are assumed to be normally distributed

as NP (0,Σ), where Σ is the covariance matrix. The method of modeling random effects can

take other formats, for example, normal mixture [94], t-distribution [73] and Laplace distri-

butions [17]. The correlation among the latent variables and domains are accounted for by

modeling the correlation among the elements in ui. The residuals e
(p)
i (t) are assumed to

be independent to ui and e
(p)
i (t) ∼ N(0, σ

(p)
e ). The non-linear disease progression is mod-

eled using nonparametric formulation as f (p)(t) =
∑N

n=1 c
(p)
n Bn,q(t), where Bn,q(t) is order q

spline basis for the nth knot at time t, while c
(p)
n is the penalized coefficient for corresponding

basis in the pth domain, and c
(p)
n ∼ N(0, σ

(p)
c ). Indeed, we have domain-specific structure,

θ
(p)
i (t) = β(p)xi + f (p)(t) + u

(p)
i0 + u

(p)
i1 t + e

(p)
i (t), where β(p) is the covariate effects on the pth

underlying disease’s domain, and is domain-specific. The null hypothesis of no covariate effects

is H0 : β
(1)
1 = . . . = β

(p)
1 = . . . = β

(P )
1 = 0. This framework allows not only different covariate

effects on multidimensional disease domains to facilitate varied disease progression and progno-

sis, but also the combined covariate effects and overall disease progression to be interpreted on

the scales of the observed outcomes. In addition, this model allows both between-item multidi-

mensionality and within-item multidimensionality (some of the items require input from more

than one latent variables). This provides a method to conceptualize the non-linear disease

progression in different domains. Because the number of outcomes (K) has been reduced to

a smaller number of latent disease severity scores (P , with P < K), models are quite parsi-

39



monious in terms of number of random effects, which improves computational feasibility and

model interpretability.

For notational convenience, we let a = (a′1, . . . ,a
′
k, . . . ,a

′
K)′, and ak = (ak,1, . . . , ak,nk−1)′

for the kth ordinal outcome with nk categories. We let b = (b1, . . . , bK)′, a K by P matrix,

where bk = (b
(1)
k , . . . , b

(p)
k )′. Because the model is over-parameterized, additional constraints

are required to make it identifiable. The indeterminacy between the latent variable loadings

bk and the scales of the latent variables θi(t) can be fixed by either setting one element in

each column of b to be 1, or letting σ
(p)
e = 1 for p = 1, . . . , P with at least one of the loadings

constrained to be positive for each factor [20]. Finally, to identify parameters a and inter-

cepts in regression coefficients, we set the constraints on one selected item in each domain, we

let ap,1 = 0 (or other constant) for p = 1, . . . , P ordinal outcomes and the order constraint

ak,1 < . . . < ak,l < . . . < ak,nk−1
must be satisfied. Besides, we set identifiability constraints on

p orthogonal vectors b, for example, when P = 3 and the constraints are put on the first three

items, we let b
(1)
1 = b

(2)
2 = b

(3)
3 = 1, all other elements are 0. In real data analysis, in order to

achieve the better domain calibration, we have to carefully select the item to put constraints

for each domain.

3.3.2 Non-parametric approach

We use nonparametric functions to model time-dependent covariate effects in each do-

main. The smoothness of nonparametric functions can be adjusted by changing the number of

knots, while penalized method can use a small number of knots. Wu and Zhang [102] suggested

using cubic smoothing spline to achieve better smoothness. Among different spline approaches,

the local basis cubic B-spline has many advantages in numerical computation. Gray [37] sug-

gested that cubic B-spline with 10 to 20 basis can achieve ideal results with little advantage

gained for more than 20 knots. In this study, we use cubic B-spline with 8 knots. To avoid
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over-fitting, we adopt penalized cubic B-spline function in our model. Penalized approach is

based on Eilers method [21].

3.3.3 Cause-specific proportional hazard model

In survival studies, cause-specific proportional hazard model is widely used in modeling

competing risk [23]. There are other competing risk models, such a cumulative incidence

function (CIF) model proposed by Fine and Gray [28] and multi-state model [2]. In this study,

we use cause-specific proportional hazard model. To model the disease-related endpoints, we

link the events to longitudinal observations by assuming that the occurrences of G competing

events dependent on the unobserved disease status and the progression (disease related). Let

survival observation for ith subject be Ci = (Ti, δi) , where δi is the censoring indicator, and Ti

is the failure time. The observed data structure is augmented to (Y, T, δ, U ) while combining

with longitudinal observations. We construct cause-specific proportional hazard functions as,

λgi = lim
h→0

P (Ti<t+h|Ti≥t,Ui,X(t))
h

,

= λ0g(t) exp{W ′
iγg + ν′

gφ(θi),
(3.5)

where λ0g (g = 1, . . . , G) denotes the baseline hazard for gth type risk, and the parameter γg

modulates covariate effect of Wi for ith subject (i = 1, . . . , I) on the gth risk of terminating

follow-up, it can be same or different from the covariate vector X in latent trait. We use

φ(θi) = (φ1(θ1), . . . , φP (θP ))′ for functional form of latent traits. The association parameter

vector is defined as νg = (ν
(1)
g , . . . , ν

(m)
g , . . . , ν

(P )
g )′, while ν

(m)
g denotes the effects of disease

severity and progression in the mth latent score on the hazard of gth type survival outcomes.

This model assumes that the instantaneous hazard is associated with the current ex-

pected disease status at time t. Different to other joint models, each hazard risk incorporates

the full impacts from underlying different disease development which is domain-specific in this
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model. The cross loading of domain-specific impact is conceptualized by parameter vector νg,

which can impose each type’s hazard to receive the influence of P domains longitudinal profile.

Specifically, we incorporate the domain-specific heterogeneous disease progression into cause-

specific propositional hazard model in addition to the impairment across domains. Generally,

a positive value of ν
(p)
g indicates the patient with worse disease status or deteriorate rate in pth

domain is going to undergo event g earlier.

With Ci = (Ti, δi), Lsi = {
∏G

g=1 λg(Ti)
I(δi=g)} exp

[
−
∫ Ti

0

∑G
g=1 λg(s)ds

]
is the condi-

tional likelihood for ith subject. We define the piecewise constant hazard function as λ0g(t) =∑L
l=1 hlIl(t), where Il(t) = 1 if (τl < t ≤ τl+1), and 0 otherwise.

3.3.4 Numerical approach & likelihood

For simplicity, we use the simple form of disease severity function for θi, then the above

hazard function changes to λ0gexp(W
′
iγg +

∑P
1 ν

(p)
g (ω′

iβ
(p) + f(tj)

(p) + u
(p)
i0 + u

(p)
i1 (tj)). The

likelihood for survival observations Ci = (Ti, δi) contributed by ith subject takes the form:

Li = p(Ti, δik|Θs, ui, b),

=
G∏
g=1

λg(Ti)
I(di=g)exp[−

∫ Ti

0

G∑
g=1

λg(s)ds],

=
G∏
g=1

λ0gexp(W
′
iγg +

P∑
1

ν(p)
g (ω′

iβ
(p) + f(Ti)

(p) + u
(p)
i0 + u

(p)
i1 Ti)

I(di=g)

× exp[−
∫ Ti

0

G∑
g=1

λ0gexp(W
′
iγg +

P∑
1

ν(p)
g (ω′

iβ
(p) + f(s)(p) + u

(p)
i0 + u

(p)
i1 s)ds.

(3.6)

There is no explicit form for integration of the high order nonparametric functions (e.g.

cubic nonparametric) to estimate time dependent disease progression in the competing sub-
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model. Our proposed approaches require numerical integration to approximate the calcula-

tion. We use Gauss-Kronrod quadrature method which can provide a very good approximation

in most applications. In practice, the numerical grids and non-parametric knots have to be

processed together in our algorithm to approximate the integration numerically, and acquire

desirable precision.

Finally the full likelihood contribution for the ith subject, conditional on the parameters

and random effects takes the form:

L(yi, Ti, δik|Θ, ui) =
∏K

k=1 p(yik|Θy, ui)
∏G

g=1 p(Ti, δig|Θs, ui),

=
∏K

k=1 p(yik|Θy, ui)
∏G

g=1{λg(Ti)I(δi=g)exp[−
∫ Ti

0

∑G
g=1 λg(s)ds]|Θs, ui},

(3.7)

where Θ = (Θy,Θs) denotes the parameter vector for both longitudinal parameter vector Θy,

and survival parameter vector Θs.

3.3.5 Bayesian inference

To make inference on the parameter vector Θ, we use Bayesian methods based on Markov

chain Monte Carlo (MCMC). We use vague priors on all elements in Θ, except for the afore-

mentioned constrained parameters, i.e., ap,1 = 0 (or other constant) for p = 1, . . . , P and

b
(p)
1 = 1, for all p. Specifically, the prior distributions of unconstrained parameters ak of the

continuous outcomes is ak ∼ N(0, 10, 000) (sd = 100). To obtain the prior distributions for the

threshold parameters of ordinal outcome k, we let ak,1 ∼ N(0, 400), and ak,l = ak,l−1 + ∆l for

l = 2, . . . , nk − 1, with ∆l ∼ N(0, 10, 000)I(> 0), i.e., normal distribution left truncated at 0.

The setting of high SD is considering the scenarios of rare responses to some top level of items

(some items have few responses for the level 5). Prior distributions for unconstrained elements

in b and β are N(0, 400). We sample the first nonparametric coefficient c
(p)
1 in each domain from

N(0, σ
(p)
c ), while the remained coefficients are sampled using random walk, c

(p)
k ∼ N(ck−1, σ

(p)
c ).
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We use the Cholesky factorization to estimate the correlation coefficients, the random effects

covariance matrix is expressed as Σ = σ′
uΣUσu, where ΣU is the correlation matrix, while σ′

u

is the diagonal matrix of standard deviation of random effects. All variance parameters are from

Inverse-Gamma(0.001, 0.001). We sample the association parameter ν
(p)
g using ν

(p)
g ∼ N(0, 400).

The covariate coefficients in the sub-models are using γg ∼ N(0, 400). For piecewise hazards

in the sub-models, we sample them from Gamma (0.01, 0.01). We have investigated other se-

lections of vague prior distributions with various hyper-parameters and obtained very similar

results.

The posterior samples are obtained from the full conditional of each unknown parameter

using Hamiltonian Monte Carlo (HMC) [19] and No-U-Turn Sampler (NUTS) [42]. Both HMC

and NUTS samplers are implemented in Stan, which is a probabilistic programming language

implementing statistical inference. The model fitting is performed in Stan (version 2.17.0 [87])

by specifying the full likelihood function and the prior distributions of all unknown parame-

ters. For large datasets, Stan may be more efficient than BUGS language [59] in achieving faster

convergence and requiring smaller number of samples [42]. To monitor Markov chain conver-

gence, we use the trace plots and view the absence of apparent trends in the plot as evidence

of convergence. In addition, we use the Gelman-Rubin diagnostic to ensure the scale reduction

R̂ of all parameters are smaller than 1.1 as well as a suite of convergence diagnosis criteria to

ensure convergence [32].

3.3.6 Model selection

There are a wide variety of model selection criteria in Bayesian inference. Among the

various model selection methods available in Bayesian inference, we use the deviance information

criterion (DIC), and Watanabe-Akaike information criterion (WAIC).

The deviance information criterion (DIC) assesses model fit based on the posterior mean
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of the deviance and a penalty on the model complexity [86]. Due to mixture framework applied

in our model, we choose the DIC3 measurement [10]. The DIC3 is defined as DIC3 = D(θ) +

τD, where D(θ) = −2Eθ|D{log[
∏I

i=1 f(yij|θ)]} is the posterior mean deviance, τD = D(θ) +

2 log{Eθ|D[
∏I

i=1 f(yij|θ)]} is a measure of the effective number of parameters in the model, and

Eθ|D(.) is the expectation with respect to the joint posterior distribution π(θ|D). Thus, we

have DIC3 = −4Eθ|D{log[
∏I

i=1 f(yij|θ)]}+ 2 log{Eθ|D[
∏I

i=1 f(yij|θ)]}. Applying Monte Carlo

approximation, the Bayesian based DIC3 is

D̂IC3 = − 4

M

M∑
m=1

I∑
i=1

log
{
f(yij|θ(m))

}
+ 2 log

{ 1

M

M∑
m=1

I∏
i=1

f(yij|θ(m))
}
.

A smaller value of DIC3 indicates a better-fitting model.

WAIC [100] can be viewed as an improvement on the DIC for Bayesian models. DIC

has gained popularity through its implementation in the graphical modeling package BUGS

[59]. WAIC is fully Bayesian based and closely approximates Bayesian cross-validation. Unlike

DIC, WAIC is invariant to parametrization and even works for singular models [91]. The WAIC

is defined as
∑I

i=1

(
1
M

∑M
m=1 f(yij)|θ(m)

)
−
∑I

i=1 V arpost

(
logf(yij)|θ(m)

)
, where M is total

sampling times. A small WAIC value denotes a better model.

3.4 Simulation

We conduct simulation studies to investigate the identifiability and performance of the

proposed model. In longitudinal part, we simulate both continuous and ordinal outcomes, we

generate eight ordinal responses, each has 5 levels, and three continuous outcomes. All these

responses are predicted by disease status from two domains. Two cause-specific terminal events

are generated. Specifically, we have θ
(p)
i (t) = β

(p)
0 +β

(p)
1 agei+f

(p)(t)+u
(p)
i0 +u

(p)
i1 t+e

(p)
i (t), and the

survival part as λgi(t) = λ0g(t)exp[ν
′
gθ(t)], where g = 1, 2 and p = 1, 2 denoting two competing
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risks and two latent domains. We simulate datasets for 1300 subjects. Each subject could have

17 longitudinal observations in maximum. For two competing events we set the parameters

for hazards as λ01 = 0.010, λ02 = 0.008, and linking parameters as ν1 = (0.65, 0.2)′, while

ν2 = (0.3, 0.5)′. The censoring time is generated from exponential distribution with mean 50 in

additional to the administrating censoring time 10. The approximate censoring rate is 35% of

total events. The latent traits are simulated with β0 = (1.5, 1)′, β1 = (−0.4, 0.2)′. and the ran-

dom errors from N(0, 0.64) and N(0, 0.36). The heterogeneous disease progression is modeled

using f (1)(t) = t1.5/5 and f (2)(t) = log(1 + 2t)/2, one concave and one convex function. The

three continuous longitudinal responses follow normal distributions with variance at (4, 16, 25).

We set the random effects vector’s distribution as U i
iid∼ N4(0,Σ) where the covariance matrix

Σ = {(1, 0.04, 0, 0)′, (0.04, 0.01, 0, 0)′, (0, 0, 0.64,−0.008)′, (0, 0,−0.008, 0.01)′}. The simulation

is conducted using Bayesian approaches via Markov Chain Monte Carlo, and implemented in

STAN. We run 240 replications with two chains, each has 2700 iterations with 1700 burn in.

Table 3.41 presents the simulation results for the parametric coefficients, random effects

and association parameters. The biases (the average of posterior means minus the true values)

are small, and empirical coverage probabilities are around 95%. The estimates of ordinal

parameters and continuous parameters are presented in Appendix B.01.

Table 3.41: Results of semiparametric multidimensional latent trait model in simulation setting.

Domain 1 Domain 2
EST BIAS SE SD CP EST BIAS SE SD CP

Latent variables
β0 1.495 −0.005 0.044 0.044 0.938 1.000 0.000 0.036 0.036 0.938
β1 −0.400 0.000 0.034 0.033 0.924 0.201 0.001 0.025 0.025 0.952
εe 0.635 −0.005 0.040 0.036 0.910 0.358 −0.002 0.025 0.023 0.914
Random effects
σ0 0.999 −0.001 0.066 0.060 0.933 0.635 −0.005 0.042 0.040 0.933
σ1 0.010 0.000 0.002 0.002 0.957 0.010 0.000 0.001 0.001 0.967
Cause-specific
ν1 0.659 0.009 0.044 0.044 0.957 0.197 −0.003 0.053 0.055 0.962
ν2 0.297 −0.003 0.052 0.051 0.962 0.504 0.004 0.065 0.066 0.957
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The nonparametric part results are presented in Figure 3.41. In the plots, the solid line

is the true function, the middle dotted line is the mean of estimated function over the 200

replicates, the two boundary lines are the 95% confidence bands.

Figure 3.41: The joint model’s estimates of nonparametric functions in simulation setting, solid:
true functions, dash: mean estimated functions, dot dash: 95% point-wise credible intervals. Left
panel: Domain 1. Right Panel Domain 2.

In addition, we present the point-wise coverage plots in Figure 3.42. The empirical cov-

erage probabilities are calculated at each equally spaced grid points. The coverage probabilities

are around 95%.

In summary, the biases of the parameter estimates for the nonparametric function and

parametric coefficients are small. The confidence intervals based on the proposed standard error

estimates have appropriate coverage probabilities. The proposed semiparametric MLTLMM

joint competing risk model is identifiable and provides satisfactory performance.
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Figure 3.42: Point-wise coverage probabilities with reference lines (dotted horizontal lines). Left
panel: coverage probabilities for f (1)(t). Right panel: coverage probabilities for f (2)(t).

3.5 Application to the PPMI study

We applied our semiparametric multidimensional time-dependent latent trait model to

PPMI study. The data used in this study were downloaded on Nov. 28, 2017. We use the first

three parts of MDS-UPDRS as ordinal responses. In addition, we use Symbol Digit Modalities

test score (SDM) as the continuous outcome. SDM score serves as a cognitive measure in PD

studies [1], with large value reflecting better clinical outcomes in the original scale (we keep the

original scale). Overall, we include 59 items, each has 5 levels responses in longitudinal part.

In addition, one continuous response (SDM) is incorporated. Each individual could have two

types of endpoints, one is dropout, the other one is ST. These two types of endpoints compete

each other, or either one can censor another type.

All questionnaires in MDS-UPDRS (part I, II, and III) are structured (grouped) to

collect the domain-specific information manifested by those ordinal responses in each part. We
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refine our models to accommodate these structured responses, and adjust latent traits model

with the updated assumption that item responses in each of the three predefined parts manifest

the unobserved status of corresponding disease domain. We add dependency across domains by

incorporating fully correlated random effects. Because of data structure, we only incorporate

between-item multidimensionality based on MDS-UPDRS sub-scale parts. While modeling two

cause-specific failure risks and the longitudinal continuous outcomes, we incorporate within-

domain multidimensionality in survival models by cross loading these three-dimension disease

status and progression (each outcome captures the effects of these three latent traits). For

simplicity, we use identity form of φ(θ) in cox models. Because the model for ordinal part is

over-parameterized, we impose identifiability constraints on one selected item in each domain,

so that these three items from different domains construct the basis of three dimensions, and

calibrate each latent variable. We use factor analysis to select these three items. In each MDS-

UPDRS part, we conduct factor analysis to select the item which has the largest factor loading.

After confirmatory factor analysis, we choose item 3 (Depressed mood) from nM-EDL part,

item 4 (Eating tasks) from M-EDL and item 11 (Hand movement) from Motor Examination

to put constraints. For these selected items, we set (a
(1)
3,1, a

(2)
4,1, a

(3)
11,1) = (1.5, 0.8,−0.4) based on

observed frequency of the aforementioned item’s first level. Besides we preassign all bk = 1.

We compare the different covariate combinations in latent trait model. The general

latent trait model is θi(t)
(p) = X(p)β(p) + f (p)(t) + u

(p)
i0 + u

(p)
i1 t + ei(t)

(p). We conduct model

selection for different fixed covariate X settings, model 1 includes one covariate in latent trait,

model 2 has two covariates, while model 3 incorporates three covariates in latent trait model.

The fixed covariates to be considered include age, gender, disease duration and Hoehn and

Yahr Scale (HY) score. The DIC and WAIC of different covariate combinations are shown in

Appendix B.03. The model with one covariate in latent trait has both the lowest DIC and

WAIC among all the models. We then use cross loading to incorporate all three domains in

competing risk model based on the optimal latent trait model. The estimate results with three
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domains are displayed in Appendix Table B.04. The estimated association coefficients show

that only disease status and development in M-EDL significantly affect the occurrence of the

events. We run reduced model, keeping the domain which has significant association with the

terminal events. Table 3.51 displays the estimates of coefficients. We find significant age effects

in nM-EDL domain and M-EDL domain. Several studies addressed role of age in PD severity

with mixed results [54]. In this study, we find domain-specific age effects, with significance in

nM-EDL and M-EDL. The results from competing sub-model show both terminal events are

significantly associated with the decomposed disease status and development in M-EDL.

Table 3.51: Posterior estimations for reduced model.
nM-EDL M-EDL Motor examination

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI
Disease Status
Int. −0.036 0.088 −0.242 0.116 −0.312 0.104 −0.516 −0.124 −0.180 0.207 −0.598 0.227
Age (yr) 0.105 0.053 0.007 0.219 0.126 0.070 0.001 0.261 0.254 0.156 −0.016 0.559
Competing risks’ Linking Parameters
Dropout - - - - 0.258 0.054 0.151 0.367 - - - -
ST - - - - 0.326 0.110 0.119 0.536 - - - -

The Figure 3.51 displays domain-specific disease progression. The identified time-dependent

disease progression are all significantly progressing to worse status in three domains (justified

by uncertainty bands). The progression of disease varies across domains (varied development

trend). Specifically, disease in nM-EDL has approximately linear trend. The disease in M-EDL

has one accelerating stage, which happens between year 2 to year 4, while the disease in motor

examination also has one accelerating stage between year 2 to year 3.5. These new findings and

the aforementioned finding of domain specific age effects signify the unique advantage of our

semiparametric multidimensional latent trait framework: ability to capture the domain-specific

disease continuous progression and the impaired covariate effects across domains.
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Figure 3.51: Time-dependent disease progression by domains. Dot lines: 95% confident band, Solid
lines: mean estimate temporal function. Left panel: nM-EDL . Middle panel: M-EDL. Right panel:
motor examination.

To interpret the clinical information carried in domain-specific latent disease measures,

we refer to the estimated coefficients in continuous outcomes. Appendix Table B.05 shows

the dimensional latent variable effects on SDM. One unit increase in nM-EDL disease sta-

tus (worsening) associates with 1.248 (Mean=−1.248, CI: [−1.936, −0.575], negative sign for

worsening) units decrease in SDM (worsening) while keeping other two sub-domain disease sta-

tus unchanged; One unit increase in M-EDL disease status (worsening) associates with 1.040

(Mean=−1.040, CI: [−1.600, −0.475]) units decrease in SDM (worsening) while other two

sub-domain disease status unchanged; One unit increase in Motor Examination (worsening) is

associating with 0.190 (Mean=−0.190, CI: [−0.374, 0.013]) units decrease in SDM (worsening)

while holding other two sub-domain disease status unchanged. Overall, the domain-specific

disease statuses have different manifestation on SDM. The influence on SDM from nM-EDL is

larger than that from M-EDL, while the influence from Motor Examination is not significant.

Our finding provides evidence that this cognitive measure does manifest more information from

non-motor domain than from motor domain.

Random effects related posterior parameters are presented in Appendix Tables B.06 and

B.07. Every individual has 3 pairs of random effect terms, denoting the 3 dimensional random
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effects, each domain has its own domain-specific random intercept and random slope. For each

vector of random effects, the 1st and 2nd elements are for nM-EDL domain, the 3rd and 4th are

for domain in M-EDL, while the last two are for motor examination domain. The correlation

matrix (Appendix Table B.07) provides additional information of inter-dependency of diseases

and correlated (in high dimension) subject-specific characteristics between and within domains.

The significant within-domain correlations (random intercept vs random slope in same domain)

reside in nM-EDL (ρ01 = −0.204, 95% CI: [−0.341,−0.043]), in M-EDL (ρ01 = −0.168, 95%

CI: [−0.311,−0.028]) and in motor examination (ρ01 = −0.426, 95% CI: [−0.544,−0.295]),

explained as: if a participant’s nM-EDL disease status is worse at the start of the study, his

or her nM-EDL’s disease progression is slower during follow-up. Same interpretation is for

disease in other two domains. The intercepts between-domain correlations are all positive and

significant (random intercept vs random intercept, ρ = (0.625, 0.194, 0.375) for nM-EDL vs

M-EDL, nM-EDL vs Motor and M-EDL vs Motor respectively), these associations reveal that

in the study if any initial disease status is worse, the other two are also worse, for example,

the initial disease status in nM-EDL is worse, the disease severities in M-EDL and motor

examination are also worse. Same finding is identified in the correlations of between-domain

random slope (random slope vs random slope, and ρ = (0.627, 0.200, 0.639) for nM-EDL vs M-

EDL, nM-EDL vs Motor and M-EDL vs Motor respectively), if disease progresses fast in any

domain, it also develops fast in other domains, for example, if disease develops fast in M-EDL,

it also deteriorates fast in nM-EDL and motor examination.

The parameter estimates for all 59 items are displayed in Appendix Tables B.09-B.011,

and all parameters are significant.
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3.6 Discussion

In this study, we address many important features in PD. Our model incorporate the

domain-specific covariate effects, time-dependent disease progression and multiple terminal

events. There are limited studies addressed these issues all together. In this modeling frame-

work, we use multidimensional latent trait model to identify the impaired covariate effects

across domain based on multivariate and mixed type data. In addition, we use nonparametric

approach to the domain-specific heterogeneous disease progression (temporal effects) which is

one of primary objective of PPMI study. In the end, we simultaneously analyze the longitudinal

outcomes and terminal events of multiple types, under the impacts of impaired disease status

and heterogeneous disease progression across domains.

Our multidimensional latent variable model are capable to incorporate the domain-

specific disease information, obtain the impaired information originated in heterogeneous co-

variate effects and disease progression across domains. We extend our methods to survival

sub-model and assess the association intensities on terminal event in domain level. The com-

peting risk sub-models enable researchers to handle dependent censoring. Moreover, it provides

simultaneous inference on both longitudinal observations and survival endpoints for multi-

domain diseases, which are typically characterized with impairment and heterogeneity both in

domains and time. This is the first study in PD to quantify the impacts of high dimensional

disease development in motor and non-motor on terminal events of multiple types. We propose

a Bayesian framework for joint modeling of longitudinal and competing events based on time-

dependent disease progression. The proposed Bayesian method has appealing features, it can

easily handle multi-dimensional (domain-specific) disease status, time-dependent progression

which are difficult under the frequentist framework.

Our study has some limitations. We assume multivariate normal distribution of random
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effects in the models. Robustness against the departure from the normality assumption were

studied by several researchers [85, 107]. There are other methods to model random effects,

we will investigate the other forms of random effects in future study, such as mixture normal

distributions based on Dirichlet process or Laplace distribution.
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Chapter 4

Bayesian joint analysis for longitudinal studies with

nonignorable missing data and applications to

Parkinson’s disease study

4.1 Introduction

Parkinson’s disease (PD) is one of the common neurodegenerative disorders [75]. It is

diagnosed in about 1% of individuals over the age of 60 worldwide [6]. PD is an incurable,

complex and heterogeneous progressive disorder that gradually robs the individual of motor

control. It is now considered as a systemic disease due to its non-motor symptoms in addition

to the motor symptoms [11].

There is no validated biomarker for PD [66], the diagnosis method mainly depends on

clinical information provided by patients, for example self-reported motor sign and symptoms

(rigidity, tremor, etc.). The Unified Parkinson’s Disease Rating Scale (UPDRS) is one widely

used scale for clinical ratings of PD [76]. There are a lot of PD studies and clinical trials using

UPDRS to follow the longitudinal course of PD [11, 88, 89]. In 2007, a revised UPDRS, the

Movement Disorder Society-UPDRS (MDS-UPDRS) was introduced to provide more compre-
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hensive and accurate tests than the original UPDRS [35]. The MDS-UPDRS consists of 65

items, all items are anchored with five categories, from 0 to 4, the higher the score the worse

the status. The first three parts of MDS-UPDRS are commonly used in PD studies, which in-

clude 59 items. Statistical methods are required to extract useful information to define disease

and its progression based on these 59 item responses.

The ordinal response in MDS-UPDRS are often summed up to obtain total score, which

is treated as a continuous outcome. It is easy to implement but leads to loss of information by

ignoring differences between item pattens [36]. Alternatively, multilevel item response theory

(MLIRT) model was utilized to analyze the longitudinal scores. This model links the multiple

items to the unobserved disease status structured as a univariate latent variable. However,

the unidimensional framework limits the application of the model in analyzing PD due to

the complication of disease such as the impairment and heterogeneity. PD is characterized

by existing impairment across domains, for instance, non-motor symptoms often occur many

years before the clinical motor signs[11]. To address these issues in the traditional models,

multidimensional item response model was introduced [72]. Though cross-sectional impairment

was addressed in this model, the longitudinal impairment information and correlations are not

able to assessed in this cross-sectional multidimensional model. Recently, Wang and Luo [98]

proposed a new multidimensional latent trait linear mixed model (MLTLMM) to address the

disease impairment in longitudinal study. This new multidimensional latent trait model allows

multiple latent variables and within-item multidimensionality. By adopting latent disease score

to reduce the number of observed outcomes, MLTLMM is more computational scalable than

multivariate marginal and random effects models.

In PD studies, participants are monitored longitudinally with respected to the afore-

mentioned dozens ordinal outcomes plus other outcomes. During the follow-up, outcomes to be

collected can be missing due to subjects’ non-response, missed visits, dropout and etc. Rubin

[80] defined three missing data mechanisms. If the missingness is independent of the observed
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and unobserved data, this missing data mechanism is missing completely at random (MCAR).

When missingness is not dependent on unobserved data, it is missing at random (MAR). The

missing data belonging to these two missing data mechanisms are treated as ‘ignorable’ miss-

ingness, which do not cause bias in statistical inference for likelihood-based estimation. In

this study, we use MAR to denote the ignorable missingness, as MCAR is rare and can be

handled in same way as MAR in analysis. However, when missingness is associated with the

unobserved underlying response process, this missingness is missing not at random (MNAR).

For example, patients’ dropouts are due to worsening of disease or death. MNAR mechanisms

are ‘nonignorable’. Under the MNAR assumption, the missing data mechanism needs to be

modeled simultaneously with the outcome variables to avoid biased parameter estimates [18].

In addition to these missing data mechanisms, there exist two patterns of missing data.

The first missing data pattern is the ‘intermittent missing data’ or non-monotone missing data,

for example, an individual may miss some visits before the last visit. While the other pattern

is ‘monotone missing data’, denoting the data with the pattern that an individual leaves the

study and never returns, or the observations are completely disrupted by some events (e.g.

dropout or initiation of symptomatic treatment ). Generally, the aforementioned two missing

data patterns could have varied missing data mechanisms, which are difficult to justify whether

the missing data mechanisms are MAR or MNAR. The possibility of missing data being MNAR

can hardly be ruled out.

Estimating parameters with nonignorable missing data is more complex than with ig-

norable missing data. Recently, modeling longitudinal observations with nonignorable missing

data has drawn much attention [56, 57, 106]. Many models are proposed, these models can

be classified into three types: selection model, pattern-mixture model and shared-parameter

model [57]. The selection approach combines the hypothetical complete data together with

the missing data process based on likelihood. The pattern-mixture approach models the dis-

tribution of the data conditional on the missing data pattern. While the shared-parameter

57



approach incorporates the dependence between measurements and missingness processes by

the means of random effects, it can be extended to latent variable models. Molenberghs et al.

discussed a selection model for longitudinal ordinal data with nonrandom dropout [68]. Ekholm

and Skinner proposed a pattern-mixture model for a longitudinal binary incomplete data set

[22]. The full likelihood approach has been used to specify the joint likelihood of outcomes

and missing indicators when handling nonmonotone pattern of missing data [44]. For exam-

ple, the random-coefficient-based selection models were adopted to link dropout time to the

longitudinal outcomes through individual random effects [16, 79, 104]. Alternatively, pseudo

likelihood was proposed to provide statistical solutions [90]. Elashoff et al. [24] developed the

latent random effects model to incorporate effects from nonignorable monotone missing data.

Most statistical models focus on one missing data pattern (either monotone or non-monotone

missing). Besides, those models are based on one or two outcomes and use the latent traits as

predictors for monotone missing and other missing observations. Wu et al. [103] proposed a

nonlinear mixed-effects model for both monotone and non-monotone patterns of missing data.

In PD study, the missed visits are frequently happened during the long follow-up, both patterns

of missing data exist in study. How to address the missed responses which consist of dozens

ordinal response is an open problem in PD study.

In this study, we present a generalized approach to the longitudinal data in the presence

of two missing data patterns with both missing data mechanisms. We extend multidimensional

latent trait methods to model and test missing data mechanisms based on the responses from

dozens of ordinal outcome. We jointly analyze the data without excluding MNAR assumption,

and assess missing data mechanisms under the impacts from heterogeneous disease development

in multiple domains. This is the first study addressing the multiple ordinal responses (59 ordinal

responses) carrying impairment information from multiple domains, and in presence of missing

data with different missingness patterns. The remainder of this article proceeds as follows. In

section 2, we describe motivating study and the data. Section 3 discusses the proposed model,
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and Bayesian inference. Section 4 presents studies to assess the performance of the proposed

models. In section 5, we apply our method to the motivating studies. Section 6 provides

concluding remarks and discussion.

4.2 Motivating clinical studies

This methodological development is motivated by Parkinson’s Progression Markers Ini-

tiative (PPMI) study. PPMI is an ongoing longitudinal observational study that aims to identify

one or more markers of progression for Parkinson’s disease (PD). All participants were grouped

into several cohorts. At baseline, patients were not expected to require PD medications within

at least 6 months. In PPMI study, MDS-UPDRS scale is used to assess the disease status and

progression. In clinical trial, the first three parts of MDS-UPDRS (59 items) are commonly

used in study. According to the Movement Disorder Society (MDS), the 13 items in Part I

are intended to measure the non-motor aspects of experience of daily living (nM-EDL), the 13

items in Part II are used to measure motor aspects of experiences of daily living (M-EDL), while

the 18 grouped items (total 33 items, several with right, left or other body parts’ sub-items)

in Part III focus on the information from motor examination. Items of the different subscales

are assumed to be manifestation of different disease domains (motor, cognitive and behavior).

MDS-UPDRS provides a relatively good measure to follow and define PD progression. Fitting

MDS-UPDRS longitudinal observations into multidimensional latent trait model, we are able to

characterize the natural disease progression of PD patients in PPMI study. In the study, when

a participant fails to answer one or more items out of total 59 items, those partial or complete

non-responses constitute missing data. Although PD studies are designed to collect complete

data on all participants, missing data commonly happen and impact the analysis results.

Besides, during the long course of follow up, the repeated observations are subject to the

risks of endpoints, the follow-up of patients might be terminated long before the end of study
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for different reasons, which can be treated as aforementioned monotone pattern of missing

data. First, the longitudinal observations can be stopped because of dependent censoring

(e.g., dropout, death), in addition, the symptomatic therapy (ST) can cause the repeated

observations being interrupted (the following observations after ST will not reflect the natural

PD progression). In PD studies, ST is generally being treated as one type of endpoint [84].

These events are likely informative for disease progression and status. When modeling these

endpoints, we are making statistical inference on whether these events associated with disease

status or not. Generally, we are not able to exclude the possibilities that these events as disease-

related or the monotone pattern of missing data belongs to MNAR. Figure 4.21 uses sum score

of MDS-UPDRS part III to illustrate the two missing data patterns. Patient 3 had the last

visit at end of year 2 (monotone missing pattern), while patient 299 has three intermittent

missed visits (intermittent missing pattern). Indeed, we do not need an explicit model for

the probabilities of missingness if missing data are MAR. However, we can not just conduct

analysis based on MAR or MCAR assumption, and we need a statistical framework to test

these hypothesis, and model the missing data simultaneously with outcome variables to avoid

biased parameter estimates [18].
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Figure 4.21: 50 randomly selected patients from PPMI study. Patient 299 had three missed visits
before the last visit (intermittent pattern of missing data), patient 3 dropped out at end of year two
(monotone pattern of missing data).

4.3 Model and estimation

4.3.1 Latent trait model

Let yik(t) be the observed outcome k from ith subject at time t, where i = 1, . . . , N ,

k = 1, . . . , K, and t = ti1, . . . , tiJi . All outcomes are coded so that larger values are worse

clinical conditions.

To start building the MLTLMM modeling framework, we assume that there are P (with P <

K) latent variables (LVs) representing the underlying disease severity scores and denote them

as θi(t) = (θ
(1)
i (t), . . . , θ

(p)
i (t), . . . , θ

(P )
i (t))′ for subject i at time t, where the superscript (p =
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1, . . . , P ) denotes the pth latent variable. From a clinical perspective, each latent variable de-

notes the disease severity of a PD domain (e.g., non-motor and motor). We introduce the linear

model for continuous outcomes, logistic model for binary outcomes, and ordinal logistic model

for ordinal responses.

yik(t) = ak + b′kθi(t) + εik(t), (4.1)

logit
{
p(yik(t) = 1|θi(t))} = ak + b′kθi(t), (4.2)

logit
{
p(yik(t) ≤ l|θi(t))

}
= akl − b′kθi(t), (4.3)

where ak and bk are the outcome-specific parameters, while the random errors εik ∼ N(0, σεk),

are independent and identically distributed. Note that for continuous outcome, ak = E[yik(t)|θi(t) =

0] is the mean of the kth outcome if the disease severity scores are 0. The parameter bk also

plays the role of bringing up disease severity score to the scale of the kth outcome. The negative

sign for bk in the ordinal outcome model is to ensure that worse disease severity (higher θi(t)) is

associated with more severe outcomes (higher yik(t)). For ordinal responses, the probability of

being in a particular category is p(yik(t) = l) = p(yik(t) ≤ l|θi(t))−p(yik(t) ≤ l−1|θi(t)), where

l = 1, 2, . . . , nk − 1 is the lth level of the kth random variable, which is ordinal with nk levels.

Interpretation of parameters is similar with continuous outcomes, except that modeling is on

the log-odds, not the native scale of the data. Because the ordinal model is over-parameterized,

additional constraints are required to make model identifiable. Using this model, we are able to

explicitly combine information from all outcomes, specifically those dozens of ordinal outcomes.

This is one of the simplest ways to conceptualize the disease severity scores that allows to define

the disease status and progression when there is no gold standard. To model the severity scores

θi(t), we propose the second level multivariate linear mixed model,

θ
(p)
i (t) = X

(p)
i (t)β(p) +Z

(p)
i (t)u

(p)
i + e

(p)
i (t), (4.4)
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where X
(p)
i (t) and Z

(p)
i (t) are the covariates corresponding to fixed and random effects respec-

tively, latent variable θ
(p)
i (t) denotes ith subject’s unobserved disease severity in the pth domain

at time t. The latent variables are continuous, higher value indicating worse disease severity.

The vector ui = (u
(1)′

i , . . . ,u
(P )′

i )′ contains the random effects for the ith subject, it follows

a multidimensional normal distribution, N(0,Σ), where Σ is the covariance matrix with di-

mension equal to the number of random effects incorporated. There are several ways to model

random effects. For example, when we incorporate fully correlated random intercepts and ran-

dom slopes in framework (4.4), this covariance matrix will have the dimension of 2p× 2p. The

residual term e
(p)
i (t) is assumed to be mutually independent, and e

(p)
i (t) ∼ N(0, σ

(p)
e ).

For notational convenience, we let a = (a′1, . . . ,a
′
k, . . . ,a

′
K)′, and ak = (ak,1, . . . , ak,nk−1)′

for the kth ordinal outcome with nk categories. We let b = (b1, . . . , bK)′, a K by P matrix,

where bk = (b
(1)
k , . . . , b

(p)
k )′. Because the model is over-parameterized, additional constraints

are required to make it identifiable. The indeterminacy between the latent variable loadings

bk and the scales of the latent variables θi(t) can be fixed by either setting one element in

each column of b to be 1, or letting σ
(p)
e = 1 for p = 1, . . . , P with at least one of the loadings

constrained to be positive for each factor [20]. Finally, to identify parameters a and intercepts

β in regression coefficients, we set the constraints on one selected item in each domain, we

let ap,1 = 0 (or other constant) for p = 1, . . . , P ordinal outcomes and the order constraint

ak,1 < . . . < ak,l < . . . < ak,nk−1
must be satisfied. Besides, we set identifiability constraints on

p vectors b, for example, when P = 3 and the constraints are put on the first three items, we

let b
(1)
1 = b

(2)
2 = b

(3)
3 = 1, all other elements are 0. In real data analysis, in order to achieve the

better domain calibration and locate the three presumptive optimal bases, we have to carefully

select the item to put constraints for each domain.
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4.3.2 Model for monotone missing data

For the monotone missing data, we use proportional hazard model to incorporate this

missing data pattern. Here, we use yikj to denote the jth scheduled outcome k from subject

i. When yikj belongs to monotone missing data, yikq is missing for all q ≥ j, or it is the first

missing observation for following consecutive missed visits. We use δi to code this missing data

pattern, let Ci = (Ti, δi) be the endpoint observation for ith subject, where δi = 0 indicating

the latest visit and the following visits are still on going, δi = 1 for event (either dropout or

ST) and no following observation. To quantify the effect of θi(tj) on the risks for events, we

build the Cox model as,

λi(t) = lim
h→0

P [t≤Ti<t+h|Ti≥t,θi,ν,Xi(t),γ]
h

,

= λ0(t)exp{γ′Wi + ν′θi(t)},
(4.5)

where λ0(t) is the baseline hazard, Wi is a vector of fixed effect covariates, γ is the vector

of regression coefficients. The regression coefficient ν ′ = (ν(1), . . . , ν(P )) links event times and

the domain-specific disease status. In this model, λi(t) is the instantaneous failure rate at

time t given the covariates Wi and latent traits θi. More precisely, if ν = 0, this monotone

missingness is not disease related, categorized as MAR.

4.3.3 Model for intermittent missing data

To incorporate intermittent missingness, we use a mixed effect logistic regression model

to model the conditional probability of missed visit. Intermittent missing observations for yikj

are those yikj being missing, while yikq is observed for at least one q > j. We use intermittent

missing indicator rij = 1 to code this missed visit. We now obtain the augmented data (yij, rij),

where rij = 1 or 0, denoting whether ith subject’s jth visit is missing or fully recorded respec-
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tively. For example, the outcome yikj (j < Ji, Ji is the last visit) is missing for k = 1, . . . , K,

when rij = 1, in this setting riJi = 0 or yikJi (the last) must be observed.

logit(P (rij = 1|θij)) = α′Xi + η′θi(tj), (4.6)

where Xi is the vector of covariates and α is the corresponding vector of regression coefficients.

The parameter η′ = (η(1), . . . , η(P )) governs the association between the intermittent missing

data process and the domain-specific disease severity process modeled by latent variable. Both

yi(tj) and rij are censored by censoring time Ti or monotone missingness. Moreover, the param-

eter η plays the role of sensitivity parameters to test MAR assumption for intermittent missing.

When η = 0 the missing data mechanism is MAR, otherwise it is MNAR, this is because the

parameter can be used to test whether missingness (modeled missed visit probability) depends

on unobserved data or not.

4.3.4 Likelihood

By combining all the sub-models, the joint missing data models incorporate two miss-

ingness patterns into frameworks without excluding nonignorable mechanism assumption. We

provide statistical test for MAR. If both ν and η are zero (based on statistical tests) we can not

reject MAR, or misingness will be independent of unobserved disease status, in this scenario the

missing data are ignorable, both intermittent sub-model and cox sub-model (for monotone mis-

ingness) can be removed from the full likelihood. If just one of them is zero, the corresponding

sub-model can be removed from the full likelihood.

For intermittent missing, the conditional likelihood function for the ith subject given

parameters, covariates and random effects X,U is Li = f(yi|X,U,Θ)f(ri|X,U,Θ). The

validity of likelihood is based on the assumption of independence of yi and ri given the latent
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variable (or random effect). The combined likelihood for ith subject by incorporating both

monotone missing data and non-monotone missing data is,

Li = f(yi|X,U,Θ)f(ri|X,U,Θ)f(Ti, δi|X,U,Θ)f(U). (4.7)

4.3.5 Bayesian inference

To make inference on the parameter vector Θ, we use Bayesian methods based on Markov

chain Monte Carlo (MCMC) posterior simulations. We use vague priors on all elements in Θ,

except for the aforementioned constrained parameters, i.e., a1,1 = 0 (or other constant) , and

b
(p)
1 = 1, for the selected item to ensure the item response model identifiable. To obtain the

prior distributions for the threshold parameters of ordinal outcome k, we let a1,1 ∼ N(0, 20),

and ak,l = ak,l−1 + ∆l for l = 2, . . . , nk − 1, with ∆l ∼ N(0, 10000)I(> 0) (SD=100), i.e.,

normal distribution left truncated at 0. The setting of high SD for the following difficulty

parameters is considering the scenarios that there are rare responses to some top level of items

(some items have few responses for the level 5). Prior distributions for unconstrained elements

in b and β are from N(0, 20). We use the Cholesky factorization to estimate the correlation

coefficients, the random effects covariance matrix is expressed as Σ = σ′
uΣUσu, where ΣU is

the correlation matrix. All variances are from Inverse-Gamma(0.01, 0.01). We have investigated

other selections of vague prior distributions with various hyper-parameters and obtained very

similar results.

The posterior samples are obtained from the full conditional likelihood of each unknown

parameter using Hamiltonian Monte Carlo (HMC) [19] and No-U-Turn Sampler (NUTS) [42].

Both HMC and NUTS samplers are implemented in Stan (version 2.17.0) [87], which is a

probabilistic programming language implementing statistical inference. For large datasets, Stan

may be more efficient than BUGS language [59] in achieving faster convergence and requiring

66



smaller number of samples [42]. To monitor Markov chain convergence, we use the trace plots

and view the absence of apparent trends in the plot as evidence of convergence. In addition, we

use the Gelman-Rubin diagnostic to ensure the scale reduction R̂ of all parameters are smaller

than 1.1 as well as a suite of convergence diagnosis criteria to ensure convergence [32].

4.4 Simulation

We conduct simulation studies to evaluate the proposed method and compare the method

with the naive method (ignoring intermittent missing). We generate two continuous outcomes

and a series of ordinal responses with 10 items, each item has five levels. To mimic the char-

acteristics of PD study data, we let the outcome responses to be predicted by the latent

traits from two domains. These twelve outcomes are longitudinal outcomes. Each response

is predicted by two latent variables (cross loading). Here, we use multidimensional latent

trait model [98] to model longitudinal observations. Now, the updated latent trait model is

θ
(p)
i (t) = β

(p)
0 +β

(p)
1 Xi+β

(p)
2 t+u

(p)
i +e

(p)
i (t), Cox model is λi(t)|θi(t) = λ0(t)exp(γVi+ν

′θi(t)),

and intermittent missing data model is logit(P (rij = 1|θi(t)) = w + η′θi(tj), where p = 1, 2

denoting two disease domains, the vector u′
i = (u

(1)
i , u

(2)
i ) ∼ N(0,Σ). We simulate 1000

subjects. Each subject could have 16 sequential longitudinal observations in maximum. The

latent variables are simulated with (β
(1)
0 , β

(1)
1 , β

(2)
1 , β

(2)
0 ) = (−0.2, 0.2, 0.5,−0.5), the time effects

(β
(1)
2 , β

(2)
2 ) = (0.4, 0.7). The random effects are from N2(0,Σ), where diagonal elements of

Σ (variance part) are (1, 1.69), while the off-diagonal element (covariance) is 0.52, or equiv-

alent to (σ(1), σ(2), ρ) = (1, 1.69, 0.4). We simulate random errors from independent normal

distribution N(0, ε(p)), while (ε(1), ε(2)) = (1, 0.64). For monotone missing data, we use Cox

model to generate endpoints (dropout). We set the parameters for the covariates as γ = 1,

baseline hazards as λ0 = 0.006, association parameter ν ′ = c(0.4, 0.2). The censoring time

is generated from exponential distribution with mean 50 in additional to the administrative
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censoring time 10. About 29% of total events (monotone missingness) are generated. For in-

termittent missing, we use logit[P (rij = 1)] = W + ηθi(tj) to generate missing indicators. We

let (W, η(1), η(2)) = (−4, 0.5, 0.7) to generate around 20% intermittent missing data (based on

the summaries of 240 datasets). For comparison purpose, we generate another set of data with

around 30% intermittent missing by letting (W, η(1), η(2)) = (−3, 0.5, 0.7). Taking into account

the monotone missing, there are total about 30% missed data in the first setting, and about

40% in the second setting. The other parameter settings for continuous outcomes and ordinal

outcomes are presented in Appendix. Total 240 datasets are generated.

In addition, we run naive model, treating missing as ignorable and only use the observed

observations (intermittent missing data are ignored) for comparison purpose. The simulation

analysis is conducted using a Bayesian approach via MCMC. Two chains are used in each

setting, each has 4000 iterations with 3000 burn-in. For each estimated parameter, we compute

percent bias as follows, for parameter βj, percent bias= 100(β̂j − βj)/βj. The biases is the

average over all simulations. The simulation results are presented in the Table 4.41, more

results are in Appendix Table C.01.
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Table 4.41: Simulation results with different intermittent missing proportions.

Naive (setting 1) Joint (setting 1) Naive (setting 2) Joint. (setting 2)

BIAS % SD CP BIAS % SD CP BIAS % SD CP BIAS % SD CP

β
(1)
0 = −0.2 13.000 0.045 0.900 0.000 0.044 0.949 31.000 0.044 0.691 0.000 0.046 0.930

β
(2)
0 = 0.2 −9.000 0.051 0.927 2.500 0.050 0.927 −24.500 0.049 0.845 2.000 0.052 0.940

β
(1)
1 = 0.5 0.200 0.034 0.959 0.800 0.037 0.967 0.400 0.037 0.973 −0.200 0.038 0.973

β
(2)
1 = −0.5 −2.000 0.043 0.950 −0.600 0.044 0.953 −2.600 0.044 0.955 −0.600 0.045 0.958

β
(1)
2 = 0.4 −4.250 0.008 0.568 −0.250 0.009 0.953 −3.500 0.009 0.677 −0.250 0.009 0.963

β
(2)
2 = 0.7 −2.714 0.011 0.677 −0.143 0.013 0.963 −3.000 0.013 0.668 −0.143 0.014 0.963

ρ = 0.4 −7.000 0.034 0.873 −0.250 0.033 0.940 −9.000 0.036 0.823 −0.500 0.034 0.953

σ
(1)
1 = 1 −5.600 0.065 0.827 −1.100 0.066 0.935 −6.500 0.065 0.782 −0.800 0.069 0.953

σ
(2)
2 = 1.69 −4.970 0.100 0.818 0.059 0.100 0.953 −7.278 0.097 0.723 −0.118 0.104 0.940

ε(1)= 1 −2.100 0.058 0.886 −0.600 0.053 0.935 −2.400 0.055 0.905 −0.400 0.057 0.930

ε(2)= 0.64 2.500 0.033 0.927 0.000 0.034 0.935 −3.750 0.034 0.882 0.000 0.036 0.963

η(1)=0.5 - - - 1.400 0.034 0.926 - - - 0.400 0.032 0.940

η(2)=0.7 - - - 0.286 0.026 0.944 - - - 0.285 0.024 0.953

γ = 1 −0.800 0.171 0.959 −0.400 0.185 0.963 −0.600 0.185 0.973 −0.200 0.186 0.986

ν(1) = 0.4 6.250 0.061 0.900 4.000 0.056 0.926 6.500 0.057 0.918 4.000 0.057 0.926

ν(2) = 0.2 6.000 0.038 0.923 −0.500 0.035 0.958 6.500 0.036 0.932 0.000 0.036 0.935

λ0= 0.006 0.000 0.001 0.945 0.000 0.001 0.949 0.000 0.001 0.935 0.000 0.001 0.935

Simulation results show that parameter estimations from joint model outperform the

naive model in both setting. Generally, joint model has small bias (except one, but have

better coverage probability), and coverage rate. Indeed, the simulation results show that the

proposed joint model can accurately estimate the covariate coefficients with the presence of

both monotone missing and intermittent missing data.

4.5 Application to PPMI study

In this section, we use our proposed models to handle PPMI data which carry both

monotone and nonmonotone missing data. The dataset used in this study was downloaded

on Nov. 9, 2017. In PPMI study, all subjects were grouped into several cohorts, Parkinson

Disease (PD), Scans Without Evidence of Dopaminergic Degeneration (SWEDD) and Healthy
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Control (HC) etc. We use the PD cohort, which includes 423 subjects. Excluding those having

only one visit, there are 415 subjects in our study. Among these subjects, total 40 dropped

out early for different reasons, and 197 individuals underwent ST. There are 3151 observations

with complete recorded responses, and 151 missed records. We combine the events of dropout

and ST, treating them as the initiation of monotone missing observation. There are total 237

individuals underwent events (dropouts or having ST) which are treated as having monotone

missing data, and 158 missed visits which are recorded as the intermittent pattern of missing

data. All the item responses in MDS-UPDRS part I, II and III are used as outcome responses.

The structured questionnaire design (part I, II, and III) confines the information manifested

by those ordinal responses in each part to the corresponding domains. To fit to the data

structure, and incorporate the impairment of disease status across domains, we adept our models

based on the assumption that item responses in three parts manifest the unobserved status of

corresponding do- mains. We add dependency across domains by incorporating correlated

random effects. Specifically, the full models for the two missingness patterns are logit
{
p(rij =

1|θi(tj))} = Wk+η′
kθi(tj), and λi(t) = λ0(t)exp(γVi+ν

′θi(t)), where vector ηk
′ = (η1, η2, η3),

and vector ν ′ = (ν1, ν2, ν3), corresponding to domain-specific coefficients for testing different

missing data patterns. This domain-specific setting enables us to incorporate the impairment

across domains and regress the effects of heterogeneity of disease development across domains.

To avoid over fitting, we first run full model incorporating all three domains into our missing

data sub-models. We check the domain-specific missing data association, and run the reduced

model while keeping the domains which significantly impact the missingness in missing data

sub-models.
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Table 4.51: Parameter estimates for PPMI with two missing patterns.

nM-EDL M-EDL Motor Examination

MEAN SD 95 % CI MEAN SD 95% CI MEAN SD 95% CI

Disease Status (Latent Variable)

Int. 0.013 0.057 −0.092 0.109 0.154 0.063 0.0483 0.259 0.222 0.095 0.064 0.388

Age (yr) 0.163 0.034 0.106 0.236 0.154 0.033 0.083 0.209 0.199 0.058 0.094 0.335

Time (yr) 0.290 0.016 0.259 0.318 0.452 0.015 0.425 0.483 0.678 0.041 0.602 0.767

Intermittent pattern of missing data

η 0.206 0.074 0.014 0.314 - - - - - - - -

Monotone pattern of missing data

ν - - - - 0.248 0.041 0.161 0.337 - - - -

*: random intercept

**: random slope

Table 4.51 shows the domain-specific parameter estimates and the 95% confidence in-

tervals based on reduced model. We find significant age effects in all domains. Several studies

addressed the role of age in PD severity with mixed results [54]. In this study, our analysis

which is based on a small cohort of early stage PD patients discloses that age is an important

factor in PD, and it significantly impacts both motor and non-motor progression. The time

effects are significant in all three domains. Specifically, the disease is getting worse at average

rate of 0.290 units per year (CI: [0.259, 0.318]) in nM-EDL domain, the disease progresses to

worse status at average rate of 0.452 units per year (CI: [0.425, 0.483]) in M-EDL domain, while

in Motor Examination domain, the disease is getting worse at average rate of 0.678 units per

year (CI: [0.602, 0.767]). The intermittent missingness pattern is significant associated with

disease status and development in nM-EDL with log odd increased 0.206 (CI=[0.014, 0.314])

for ever unit worsening of disease in nM-EDL while controlling other two disease status un-

changed. The occurrence of monotone missingness is significantly associated with the disease
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status and progression in M-EDL, the log hazard ratio increases 0.248 units (CI=[0.161, 0.337])

for every unit worsening of disease in M-EDL while controlling other two disease status un-

changed. Overall, we can not exclude the MNAR for both missing data patterns. This new

finding signifies the unique advantage of our model.

The correlation matrix (Appendix Table C.04) provides additional information of inter-

dependency of diseases and correlated (in high dimension) subject-specific characteristics be-

tween and within domains. Every individual has 3 pairs of random effect terms sampled from

a 6 × 6 covariance matrix, denoting the random effects in 3 dimensions or domains, each do-

main has its domain-specific random intercept and random slope. For each random effects

vector, the 1st and 2nd elements are for nM-EDL domain, the 3rd and 4th are for domain

in M-EDL, while the last two are for motor examination domain. The within-domain cor-

relations are significant (between random intercept and random slope) in two domains, for

nM-EDL we have (ρ01 = −0.179, 95% CI: [−0.324,−0.027]), while for motor examination we

have (ρ01 = −0.387, 95% CI: [−0.516,−0.258]), explained as: if a participant’s nM-EDL dis-

ease status is worse at the start of the trial, his or her nM-EDL’s disease progression is slow

during follow-up. Same interpretation is for disease in Motor Examination domain. The inter-

cepts between-domain correlations are all positive and significant (random intercept vs random

intercept), these associations reveal that in the study if any initial disease status is worse, the

other two are also worse, for example, the initial disease status in nM-EDL is worse, the dis-

ease severities in M-EDL and motor examination are also worse. Same finding is discovered

in the correlations of within-domain random slope (random slope vs random slope), if disease

progresses fast in any domain, it also develops fast in other domains, for example, disease de-

velops fast in M-EDL, it also deteriorates fast in nM-EDL and motor examination. Overall, our

high dimensional random effect matrix (6X6) reveals the internal, hidden, between and within

domain disease correlation.
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4.6 Discussion

This study provides a joint model approach to the longitudinal data in presence of two

missing data patterns without excluding MNAR assumption. We provide a framework on mod-

eling two missing data patterns (monotone and intermittent) simultaneously. We use a logistic

model to describe the intermittent missing data pattern, while modeling the monotone missing

data pattern using Cox model. We use latent trait to link outcome responses and missing data

measures (indices and events). In addition, our model provides a statistical test for missing

data mechanism in sub-models for the two missing data patterns, we simplify this process to

covariate effect hypothesis test. Moreover, in analyzing multiple mixed types data, our model

incorporates domain-specific variability for disease. To incorporate the impairment across do-

mains, we refine our model to obtain the heterogeneity of disease from different domains. We

quantify the impact on missing data mechanisms from domain-specific disease status, and pro-

vide a direct interpretation for the impacts. This is the strength of our proposed model. In

addition, our model can be extended to incorporate the high order impact, such as those from

time-dependent disease progression. This approach can also be extended to competing risk

model for multiple cause of endpoints.

We apply our approach to PPMI study, our model discloses that the intermittent miss-

ingness pattern is significantly associated with the disease development in nM-EDL, while the

monotone missing pattern are mainly affected by the disease status in M-EDL. Specifically,

both missingness patterns can not exclude MNAR. However, these two missingness patterns

are not related to the disease progression in motor examination. One possible reason may be

from the design of study, and cohort used in this study, as the goal of PPMI is to identify, test

and verify markers of progression for early-stage Parkinson’s disease, at which stage, motor

impairment is less severe compared with non-motor impairment.
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Our model has some limitations. Our joint analysis is based on latent traits to provide

inference for nonignorable missingness with fully correlated random effects cross domain. We do

not provide a method to address the partial missing data. To assess the underlying association

when patients intentionally avoid certain medical tests or just answer part of questions, we need

build a more general approach to the partial missing data, and test the missing data mechanism.

In this study we provide a statistical test to test missing data mechanism, there are other models

with different frameworks, we do not provide comparison of test results to other applicable

models, such as selection model and mixture model. In general, local sensitivity analysis can

be use to evaluate the robustness of inference of departure from assumption [61, 69, 95].
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Table A.01: Unified Parkinson’s Disease Rating Scale (UPDRS).

Items 0 1 2 3 4

Part I: Mentation, Behavior and Mood (4 items)

Intellectual

Impair-

ment

None Mild Moderate memory loss Severe memory loss

with disorientation for

time and often to place

Severe memory loss

with orientation

preserved to person

only

Thought

Disorder

None vivid dreaming ”Benign”

hallucinations with

insight retained

Occasional to frequent

hallucinations or

delusions

Persistent

Hallucinations,

delusions, or florid

psychosis.

Depression Not

present

Periods of sadness or

guilt greater than

normal, never

sustained for days or

weeks.

sustained depression Sustained depression

with vegetative

symptoms

Sustained depression

with vegetative

symptoms and suicide

thoughts or intent

Motivation/

Initiative

Normal Less assertive than

usual, more passive.

Loss of initiative or

disinterest in elective

activities

Loss of initiative or

disinterest in day to day

activities

Withdraw, complete

loss of motivation.

Part II: Activities of Daily Living (13 items)

Speech Normal Mildly affected Moderately affected Severely affected Unintelligible most of

the time

Salivation Normal Slight but definitely

excess of saliva in

mouth

Moderately excessive

saliva

Marked excess of saliva

with some drooling

Marked drooling,

requires constant tissue

or handkerchief.

Swallowing Normal Rare choking Occasional choking Requires soft food Requires NG tube or

gastrotomy feeding

Handwriting Normal Slightly slow or small Moderately slow or

small; all words are

legible.

Severely affected; not all

words are legible.

The majority of words

are not legible

Cutting

Food &

Handling

Utensils

Normal Somewhat slow and

clumsy, but no help

needed.

Can cut most foods,

although clumsy and

slow; some help

needed.

Food must be cut by

someone, but can still

feed slowly.

Needs to be fed

Dressing Normal Somewhat slow, but

no help needed.

Occasional assistance

with buttoning,

getting arms in

sleeves.

Considerable help

required, but can do

some things alone.

Helpless

continued
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Table A.01: Unified Parkinson’s Disease Rating Scale (UPDRS).

Items 0 1 2 3 4

Hygiene Normal Somewhat slow, but

no help needed.

Needs help to slower

or bathe; or very slow

in hygienic care.

Requires assistance for

washing, brushing teeth,

combing hair, going to

bathroom.

Foley catheter or other

mechanical aids

Turning in

bed and

Adjusting

Bed clothes

Normal Somewhat slow and

clumsy, but no help

needed

Can turn alone or

adjust sheets, but with

great difficulty.

Can initiate, but not

turn or adjust sheets

alone.

Helpless

Falling None Rare falling Occasionally falls, less

than once per day.

Falls an average of once

daily.

Falls more than once

daily

Freezing

when

Walking

None Rare freezing Occasional freezing Frequently freezing Frequently falls from

freezing

Walking Normal Mild difficult Moderate difficulty,

but requires little or

no assistance.

Severe disturbance of

walking, requiring

assistance.

Can not walk at all,

even with assistance.

Tremor Absent Slight and infrequently

present

Moderate; bothersome

to patient.

Severe; interferes with

many activities.

Marked; interferes with

most activities.

Sensory

Complaints

Related to

Parkinson-

ism

None Occasionally has

numbness, tingling, or

mild aching.

Frequently has

numbness, tingling, or

aching; not distressing.

Frequent painful

sensations

Excruciating pain

Part III: Motor Examination (27 items)

Speech Normal Slight loss of

expression, diction and

/or volume.

Monotone, slurred but

understandable;

moderately impaired.

Marked impairment,

difficult to understand

Unintelligible

Facial

Expression

Normal Minimal hypomimia,

could be normal

“Poker Face”.

Slight but definitely

abnormal diminution

of facial expression

Moderate hypomimia;

lips parted some of the

time.

Masked or fixed facies

with severe or complete

loss of facial

expression; lips parted

1/4 inch or more.

Tremor at

Rest (head,

upper, and

lower ex-

tremities, 5

items)

Absent Slight and infrequently

present

Mild in amplitude and

persistent. Or

moderate in

amplitude, but only

intermittently present.

Moderate in amplitude

and present most of the

time

Marked in amplitude

and present most of the

time

continued
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Table A.01: Unified Parkinson’s Disease Rating Scale (UPDRS).

Items 0 1 2 3 4

Action or

Postural

Tremor of

Hands

(right &

left, 2

items)

Absent Slight; present with

action

Moderate in

amplitude, present

with action.

Moderate in amplitude

with posture holding as

well as action

Marked in amplitude;

interferes with feeding

Rigidity

(major

joints, 5

items)

Absent Slight or detectable

only when activated

by mirror or other

movements

Mild to moderate Marked, but full range

of motion easily

achieved.

Severe, range of motion

achieved with difficulty.

Finger

Taps (right

& left, 2

items)

Normal Mild slowing and/or

reduction in amplitude

Moderately impaired.

Definite and early

fatiguing. May have

occasional arrests in

movement.

Severely impaired.

Frequent hesitation in

initiating movements or

arrests in ongoing

movement

Can barely perform the

task

Hand

Movements

(right &

left, 2

items)

Normal Mild slowing and/or

reduction in amplitude

Moderately impaired.

Definite and early

fatiguing. May have

occasional arrests in

movement.

Severely impaired.

Frequent hesitation in

initiating movements or

arrests in ongoing

movement

Can barely perform the

task

Rapid Al-

ternating

Movements

of Hands

(right &

left, 2

items)

Normal Mild slowing and/or

reduction in amplitude

Moderately impaired.

Definite and early

fatiguing. May have

occasional arrests in

movement.

Severely impaired.

Frequent hesitation in

initiating movements or

arrests in ongoing

movement

Can barely perform the

task

Leg Agility

(right &

left, 2

items)

Normal Mild slowing and/or

reduction in amplitude

Moderately impaired.

Definite and early

fatiguing. May have

occasional arrests in

movement.

Severely impaired.

Frequent hesitation in

initiating movements or

arrests in ongoing

movement.

Can barely perform the

task

Arising

from Chair

Normal Slow; or may need

more than one

attempt.

Pushes self up from

arms of seat

Tends to fall back and

may have to try more

than one time, but can

get up without help.

Unable to arise without

help

continued
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Table A.01: Unified Parkinson’s Disease Rating Scale (UPDRS).

Items 0 1 2 3 4

Posture Normal

erect

Not quite erect,

slightly stooped

posture; could be

normal for older

person.

Moderately stooped

posture, definitely

abnormal; can be

slightly leaning to one

side.

Severely stooped

posture with kyphosis;

can be moderately

leaning to one side.

Marked flexion with

extreme abnormality of

posture

Gait Normal Walks slowly, may

shuffle with short

steps, but no

festination (hastening

steps) or propulsion.

Walks with difficulty,

but requires little or

no assistance; may

have some festination,

short steps, or

propulsion.

Severe disturbance of

gait, requiring

assistance.

Cannot walk at all,

even with assistance.

Postural

Stability

Normal Retropulsion, but

recovers unaided.

Absence of postural

response; would fall if

not caught by

examiner.

Very unstable, tends to

lose balance

spontaneously.

Unable to stand

without assistance

Body

Bradykine-

sia and

Hypokine-

sia

None Minimal slowness,

giving movement a

deliberate character;

could be normal for

some persons. Possibly

reduced amplitude.

Mild degree of

slowness and poverty

of movement which is

definitely abnormal.

Alternatively, some

reduced amplitude.

Moderate slowness,

poverty or small

amplitude of movement.

Marked slowness,

poverty or small

amplitude of movement
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Table A.02: Results of simulation for ordinal parameters.

EST Bias SD CP RMSE

Difficult parameters

a1,2 = 2.000 2.001 0.001 0.032 0.950 0.032

a1,3 = 2.500 2.503 0.003 0.040 0.942 0.040

a1,4 = 3.500 3.503 0.003 0.048 0.958 0.047

a2,2 = 2.000 2.001 0.001 0.029 0.933 0.029

a2,3 = 2.500 2.502 0.002 0.035 0.917 0.035

a2,4 = 3.500 3.500 −0.000 0.047 0.933 0.047

a3,2 = 2.000 2.000 0.000 0.027 0.942 0.027

a3,3 = 2.500 2.499 −0.001 0.029 0.967 0.029

a3,4 = 3.500 3.503 0.003 0.039 0.967 0.039

a4,1 = 2.000 1.997 −0.003 0.074 0.983 0.074

a4,2 = 3.000 2.995 −0.005 0.081 0.992 0.081

a4,3 = 3.500 3.494 −0.006 0.086 0.967 0.086

a4,4 = 4.500 4.494 −0.006 0.089 0.992 0.088

a5,1 = 0.800 0.800 −0.000 0.082 0.942 0.082

a5,2 = 1.800 1.804 0.004 0.089 0.942 0.089

a5,3 = 2.300 2.307 0.007 0.092 0.925 0.092

a5,4 = 3.300 3.307 0.007 0.093 0.950 0.093

a6,1 = 0.500 0.506 0.006 0.069 0.925 0.069

a6,2 = 1.500 1.508 0.008 0.077 0.933 0.077

a6,3 = 2.000 2.009 0.009 0.081 0.933 0.081

a6,4 = 3.000 3.016 0.016 0.105 0.917 0.106

a7,1 = 0.300 0.292 −0.008 0.058 0.967 0.058

a7,2 = 1.300 1.294 −0.006 0.059 0.975 0.059

a7,3 = 1.800 1.793 −0.007 0.058 0.983 0.058

a7,4 = 2.800 2.794 −0.006 0.062 0.983 0.062
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Table A.02 – continued from previous page

EST Bias SD CP RMSE

a8,1 = 0.600 0.605 0.005 0.071 0.917 0.071

a8,2 = 1.600 1.606 0.006 0.072 0.933 0.072

a8,3 = 2.100 2.108 0.008 0.073 0.925 0.073

a8,4 = 3.100 3.112 0.012 0.079 0.900 0.080

a9,1 = 1.200 1.210 0.010 0.076 0.925 0.077

a9,2 = 2.200 2.214 0.014 0.077 0.967 0.078

a9,3 = 2.700 2.717 0.017 0.085 0.950 0.086

a9,4 = 3.700 3.712 0.012 0.116 0.967 0.116

a10,1 = 1.500 1.507 0.007 0.068 0.975 0.068

a10,2 = 2.500 2.511 0.011 0.072 0.975 0.072

a10,3 = 3.000 3.015 0.015 0.073 0.967 0.074

a10,4 = 4.000 4.023 0.023 0.079 0.942 0.082

Discrimination parameters

b
(1)
4 = 0.600 0.607 0.007 0.043 0.942 0.043

b
(1)
5 = 0.700 0.705 0.005 0.048 0.900 0.048

b
(1)
6 = 0.200 0.202 0.002 0.040 0.958 0.040

b
(1)
7 = 0.500 0.501 0.001 0.033 0.925 0.033

b
(1)
8 = 0.100 0.105 0.005 0.036 0.925 0.036

b
(1)
9 = −0.300 −0.304 −0.004 0.052 0.925 0.052

b
(1)
10 = 0.300 0.311 0.011 0.033 0.967 0.035

b
(2)
4 = −0.100 −0.102 −0.002 0.045 0.975 0.045

b
(2)
5 = 0.600 0.600 −0.000 0.060 0.925 0.060

b
(2)
6 = 0.200 0.197 −0.003 0.049 0.975 0.049

b
(2)
7 = −0.200 −0.199 0.001 0.040 0.958 0.040

b
(2)
8 = 0.200 0.201 0.001 0.043 0.942 0.043
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Table A.02 – continued from previous page

EST Bias SD CP RMSE

b
(2)
9 = 0.300 0.301 0.001 0.065 0.933 0.065

b
(2)
10 = −0.400 −0.409 −0.009 0.047 0.925 0.048

b
(3)
4 = 0.200 0.199 −0.001 0.026 0.992 0.026

b
(3)
5 = −0.400 −0.401 −0.001 0.034 0.950 0.034

b
(3)
6 = −0.300 −0.298 0.002 0.029 0.942 0.029

b
(3)
7 = 0.100 0.098 −0.002 0.023 0.925 0.023

b
(3)
8 = 0.100 0.099 −0.001 0.025 0.925 0.025

b
(3)
9 = −0.200 −0.199 0.001 0.035 0.875 0.035

b
(3)
10 = 0.400 0.404 0.004 0.026 0.950 0.026
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Table A.03: Estimated random ef-
fects.

Mean SD 95% CI

σ
(1)
0 1.646 0.060 1.537 1.773

σ
(1)
1 0.337 0.019 0.302 0.373

σ
(2)
0 1.844 0.048 1.749 1.943

σ
(2)
1 0.474 0.017 0.439 0.507

σ
(3)
0 1.250 0.032 1.190 1.315

σ
(3)
1 0.327 0.011 0.307 0.349

σ0 : random intercept.
σ1 : random slope.
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Table A.04: Correlation coefficient estimates for random effects correlation matrix.

MBM ADL Motor



1.000 −0.069∗0.054 0.4490.027 0.0650.035 0.2040.030 0.0960.035 MBMsd

[−0.170, 0.036]∗∗ [0.398, 0.501] [0.000, 0.138] [0.147, 0.263] [0.032, 0.172] 95%CI

1.000 −0.0870.044 0.7340.034 0.0060.043 0.4970.042 MBMsd

[−0.176, 0.003] [0.664, 0.799] [−0.074, 0.094] [0.409, 0.575] 95%CI

1.000 −0.0930.035 0.6280.018, −0.0340.035, ADLsd

[−0.158,−0.021] [0.591, 0.663] [−0.099, 0.032] 95%CI

1.000 −0.0250.033 0.8610.016 ADLsd

[−0.091, 0.038] [0.828, 0.892] 95%CI

1.000 −0.0090.033 Motorsd

[−0.070, 0.056] 95%CI

1.000 Motor

* −0.0690.054: correlation coefficient mean estimate=−0.069, SD=0.054.

** [−0.170, 0.036]: 95% CI=[−0.171, 0.040] for the above element (−0.0690.054).
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Table A.05: Estimated random errors in three UPDRS parts.

Mean SD 95% CI

σ
(1)
e 0.006 0.002 0.003 0.010

σ
(2)
e 0.280 0.019 0.247 0.317

σ
(3)
e 0.310 0.016 0.282 0.342
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Figure A.01: Impaired domain-specific and heterogeneous treatment effects in time horizon for
UPDRS I, II and III. MBM: mentation, behavior and mood. ADL: activities of daily living.
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Table A.06: Estimated difficulty parameters in UPDRS Part I: MBM.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Mentation* 0.400 3.937 6.669 8.675 1.000 0.000 1.000 1.000
Thought Disorder 0.787 3.127 5.402 7.717 0.496 0.025 0.445 0.546
Depression 1.010 3.651 5.511 8.717 0.705 0.035 0.636 0.773
Motivation/Initiative 0.827 3.026 4.644 8.110 0.831 0.039 0.753 0.905

ak,l : item k’s level l.
*: item to put constraints.
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Table A.07: Estimated difficulty parameters in UPDRS Part II: ADL.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Speech −0.578 1.321 3.764 7.654 0.605 0.017 0.573 0.639

Salivation −0.017 1.938 4.115 6.378 0.462 0.015 0.434 0.492

Swallowing 1.571 2.964 5.966 7.653 0.348 0.015 0.318 0.379

Handwriting −1.570 0.335 2.007 4.340 0.576 0.016 0.546 0.606

Cutting food −0.021 3.405 6.341 10.102 0.896 0.023 0.852 0.943

Dressing −0.913 2.655 6.508 10.169 1.036 0.026 0.987 1.089

Hygiene* 0.396 5.093 7.503 10.728 1.000 0.000 1.000 1.000

Turing in bed 0.027 3.064 6.272 9.143 0.850 0.023 0.806 0.895

Falling 2.455 4.272 6.223 7.275 0.536 0.020 0.497 0.575

Freezing 1.643 3.193 5.032 7.745 0.628 0.020 0.590 0.667

Walking −1.563 2.595 4.766 8.101 0.705 0.020 0.668 0.743

Tremor −1.492 0.825 4.022 6.112 0.045 0.009 0.028 0.064

Sensory symptoms 0.531 2.002 3.499 6.604 0.195 0.011 0.173 0.216

ak,l : item k’s level l.

*: item to put constraints.
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Table A.08: Estimated parameters in UPDRS Part III: motor.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Speech −0.595 2.450 5.633 9.603 0.773 0.021 0.735 0.815

Facial Expression −1.867 0.775 3.662 7.253 0.744 0.021 0.705 0.785

Tremor at rest: face, lips,chin 2.557 4.393 6.615 89.269 0.273 0.024 0.229 0.319

Tremor at rest: right hands 0.640 1.586 3.417 6.645 0.077 0.013 0.052 0.103

Tremor at rest: left hands 0.851 1.843 3.840 7.247 0.076 0.014 0.048 0.104

Tremor at rest: right feet 2.197 3.584 5.670 8.395 0.098 0.021 0.057 0.138

Tremor at rest: left feet 2.404 3.659 5.702 8.893 0.145 0.021 0.106 0.186

Action tremor: right 0.773 2.996 4.505 8.945 0.237 0.015 0.207 0.265

Action tremor: left 0.562 2.821 4.732 7.867 0.222 0.014 0.195 0.248

Rigidity: neck −0.170 1.740 4.420 6.348 0.827 0.022 0.785 0.870

Rigidity: right upper extremity −1.034 0.978 4.476 7.835 0.605 0.019 0.566 0.644

Rigidity: left upper extremity −0.706 1.298 4.722 8.354 0.757 0.020 0.717 0.799

Rigidity: right lower extremity 0.163 1.968 5.196 8.746 0.775 0.023 0.729 0.821

Rigidity: left lower extremity 0.166 2.005 5.342 8.137 0.869 0.024 0.824 0.912

Finger taps: right −1.093 1.335 3.940 6.974 0.770 0.023 0.726 0.815

Finger taps: left −1.169 1.180 3.906 7.147 0.942 0.023 0.899 0.987

Hand grips: right −0.582 2.089 5.115 8.425 0.892 0.026 0.844 0.940

Hand grips: left* −0.643 1.829 4.698 7.847 1.000 0.000 1.000 1.000

Hand pronate: right −0.400 2.074 4.569 7.707 0.858 0.024 0.814 0.907

Hand pronate: left −0.516 1.800 4.244 6.775 0.967 0.024 0.920 1.014

Leg agility: right 0.244 2.760 5.369 7.800 0.872 0.025 0.824 0.920

Leg agility: left 0.054 2.348 5.041 7.455 0.949 0.023 0.903 0.992

Arise from chair 2.120 4.262 5.899 6.645 0.900 0.028 0.847 0.954

Posture −0.445 2.364 5.311 7.502 0.811 0.022 0.771 0.854

Gait 0.458 3.471 5.630 8.088 0.923 0.025 0.874 0.972

Postural stability 1.713 3.421 5.360 6.643 0.706 0.024 0.663 0.752

Body bradykinesia −2.496 0.755 4.040 7.735 1.162 0.031 1.104 1.226

ak,l : item k’s level l.

*: item to put constraints.
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STAN code

data {

int<lower=0> num_subject;

int<lower=0> num_obs;

int<lower=1> num_rho;

int subject[num_obs];

int<lower=1> num_basis;

int<lower=1> num_pred;

int<lower=0> K;

int<lower=1> Y[num_obs, K];

int<lower=0> n_ordi;

int<lower=0> n_theta;

vector [n_theta] a0;

real<lower=0> time_obs[num_obs];

int<lower=0> treat_obs[num_obs];

vector<lower=0> [num_basis] time_obs_Bt [num_obs];

vector [num_basis] pred_t_Bt [num_pred];

}

parameters {

vector <lower=-10, upper=10> [2] beta [n_theta];

vector[n_theta] U[num_subject];

vector <lower=0> [n_theta] Var_U;

corr_matrix[n_theta] Omega;

vector[n_theta] e[num_obs];

vector <lower=0> [n_theta] Var_e;

vector [K-n_theta] a_random;

vector[n_theta] b_random[K-n_theta];

vector<lower=0>[n_ordi-2] delta[K];

vector [num_basis] cc [n_theta];
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vector <lower=0> [n_theta] Var_spline ;

}

transformed parameters {

cov_matrix [n_theta] Sigma_U;

ordered[n_ordi-1] a[K];

vector[n_theta] b[K];

vector [n_theta] fbt [num_obs];

vector[n_theta] theta[num_obs];

vector <lower=0> [n_theta] sig;

vector <lower=0> [n_theta] sd_spline;

vector <lower=0> [n_theta] sd_e;

vector [K] y_ordi_hat [num_obs];

for (i in 1:num_obs) {

for(p in 1:n_theta) {

fbt[i,p] <- cc[p]’*time_obs_Bt[i] ;

theta[i,p]<- beta[p,1] + beta[p,2]*time_obs[i] + fbt[i,p]*treat_obs[i] + U[subject[i],p]+e[i,p];

}

}

for (k in 1:n_theta) {

a[k,1] <- a0[k];

for (l in 2:(n_ordi-1)) {

a[k, l] <- a[k, l-1] + delta[k, l-1] ;

}

}

for (k in (n_theta+1):K) {

a[k, 1] <- a_random[k-n_theta];

for (l in 2:(n_ordi-1)) a[k, l] <- a[k, l-1] + delta[k, l-1];

}

b[1, 1] <- 1;

b[1, 2] <- 0;
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b[1, 3] <- 0;

b[2, 1] <- 0;

b[2, 2] <- 1;

b[2, 3] <- 0;

b[3, 1] <- 0;

b[3, 2] <- 0;

b[3, 3] <- 1;

for (k in (n_theta+1):K)

b[k] <- b_random[k-n_theta]; // b[k] is a vector

for (i in 1: num_obs){

for (k in 1:K) y_ordi_hat[i,k]<- b[k]’* theta[i];

}

sig = sqrt(Var_U);

sd_spline = sqrt(Var_spline);

Sigma_U = quad_form_diag(Omega, sig);

sd_e = sqrt(Var_e);

}

model {

vector [n_theta] zero=[0,0,0]’;

U ~ multi_normal(zero, Sigma_U);

for (i in 1:num_obs) e[i] ~ normal(0, sd_e);

for(p in 1:n_theta) {

cc[p,1] ~ normal(0, 10); // intercept and first c initialization

for (j in 2: num_basis) cc[p,j]~ normal(cc[p, j-1], sd_spline[p]);
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}

for(i in 1:num_obs){

for (k in 1:K) Y[i,k] ~ ordered_logistic(y_ordi_hat[i,k], a[k]);

}

for (k in 1:K) {

for (l in 1:(n_ordi-2)) {

delta[k, l] ~ normal(0, 100) T[0,] ;

}

}

for (k in 1:(K-n_theta)) {

b_random[k] ~ normal(0, 20);

}

;

a_random ~ normal(0, 20);

beta ~ normal(0,20);

for (p in 1:n_theta) beta[p] ~ normal(0,20);

Var_U ~ inv_gamma(0.01, 0.01);

Omega ~ lkj_corr(2.0);

Var_spline ~ inv_gamma(0.01,0.01);

Var_e ~ inv_gamma(0.01, 0.01);
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Appendix B

Appendix for article 2

Table B.01: Results of simulation for ordinal parameters.

EST Bias SD CP

Difficult parameters

a1,2 = 1.700 1.699 −0.001 0.025 0.948

a1,3 = 2.500 2.496 −0.004 0.031 0.943

a1,4 = 3.500 3.496 −0.004 0.042 0.919

a2,2 = 1.700 1.699 −0.001 0.024 0.929

a2,3 = 2.500 2.499 −0.001 0.030 0.914

a2,4 = 3.500 3.498 −0.002 0.036 0.943

a3,2 = 1.800 1.800 0.000 0.040 0.929

a3,3 = 2.600 2.597 −0.003 0.042 0.957

a3,4 = 3.600 3.599 −0.001 0.050 0.967

a4,1 = 0.100 0.102 0.002 0.035 0.971

a4,2 = 1.800 1.801 0.001 0.041 0.952

a4,3 = 2.600 2.602 0.002 0.046 0.938

a4,4 = 3.600 3.605 0.005 0.053 0.957
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Table B.01 – continued from previous page

EST Bias SD CP

a5,1 = −0.100 −0.098 0.002 0.037 0.952

a5,2 = 1.600 1.601 0.001 0.041 0.952

a5,3 = 2.400 2.400 0.000 0.044 0.948

a5,4 = 3.400 3.400 0.000 0.049 0.962

a6,1 = 0.200 0.200 0.000 0.034 0.952

a6,2 = 1.900 1.900 0.000 0.037 0.962

a6,3 = 2.700 2.702 0.002 0.043 0.943

a6,4 = 3.700 3.701 0.001 0.053 0.952

a7,1 = −0.200 −0.199 0.001 0.035 0.938

a7,2 = 1.500 1.503 0.003 0.038 0.952

a7,3 = 2.300 2.303 0.003 0.041 0.948

a7,4 = 3.300 3.305 0.005 0.052 0.943

a8,1 = 0.300 0.298 −0.002 0.038 0.943

a8,2 = 2.000 1.998 −0.002 0.041 0.933

a8,3 = 2.800 2.801 0.001 0.046 0.943

a8,4 = 3.800 3.799 −0.001 0.062 0.924

Discrimination parameters

b
(1)
4 = 0.200 0.202 0.002 0.014 0.938

b
(1)
5 = 0.500 0.502 0.002 0.018 0.933

b
(1)
6 = 0.100 0.100 0.000 0.013 0.933

b
(1)
7 = −0.200 −0.202 −0.002 0.014 0.924

b
(1)
8 = 0.200 0.199 −0.001 0.013 0.962

b
(2)
4 = −0.300 −0.302 −0.002 0.018 0.933
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Table B.01 – continued from previous page

EST Bias SD CP

b
(2)
5 = −0.200 −0.200 0.000 0.018 0.924

b
(2)
6 = 0.200 0.200 0.000 0.015 0.962

b
(2)
7 = 0.300 0.303 0.003 0.015 0.952

b
(2)
8 = −0.100 −0.100 0.000 0.017 0.938
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Table B.02: Results of simulation for continuous parameters.

EST BIAS SD CP
Outcome specific parameters
a1 −4.020 −0.020 0.065 0.962
a2 −2.017 −0.017 0.080 0.948
a3 1.980 −0.020 0.103 0.967

b
(1)
1 1.006 0.006 0.030 0.952

b
(2)
1 0.504 0.004 0.029 0.938

b
(1)
2 1.511 0.011 0.046 0.929

b
(2)
2 1.506 0.006 0.039 0.943

b
(1)
3 1.006 0.006 0.040 0.957

b
(2)
3 1.003 0.003 0.049 0.938

Random errors
ε(1) 0.635 −0.005 0.040 0.910
ε(2) 0.358 −0.002 0.025 0.914
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Table B.03: Model selection criteria for PPMI study.

Model 1 Model 2 Model 3
DIC3 323,306 323,321 323,319
WAIC 323,668 323,702 323,687
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Table B.04: Posterior estimations with three domains.

nM-EDL M-EDL Motor examination
Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

Disease Status
Int. 0.055 0.086 −0.110 0.216 −0.315 0.107 −0.502 −0.102 −0.265 0.182 −0.621 0.094
Age (yr) 0.105 0.060 −0.018 0.226 0.131 0.076 −0.044 0.273 0.271 0.157 −0.005 0.588
Competing risks’ Linking Parameters
Dropout 0.083 0.183 −0.275 0.441 0.309 0.158 0.004 0.630 0.010 0.061 −0.105 0.131
ST 0.076 0.101 −0.127 0.277 0.194 0.083 0.029 0.362 0.013 0.027 −0.038 0.062
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Table B.05: Estimated coefficients for continuous outcome (SDM).

Mean SD 95% CI

a 41.221 0.310 40.611 41.853

b(1) −1.248 0.350 −1.936 −0.575

b(2) −1.040 0.284 −1.600 −0.475

b(3) −0.190 0.098 −0.374 0.013

σ 10.404 0.196 10.009 10.815
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Table B.06: Estimated random ef-
fects.

Mean SD 95% CI

σ
(1)
0 1.174 0.072 1.045 1.317

σ
(1)
1 0.243 0.021 0.204 0.284

σ
(2)
0 1.528 0.082 1.386 1.706

σ
(2)
1 0.358 0.029 0.308 0.415

σ
(3)
0 3.485 0.171 3.154 3.837

σ
(3)
1 0.545 0.039 0.475 0.624

σ0 : random intercept.
σ1 : random slope.
superscript (k): kth domain.
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Table B.07: Estimated correlation coefficients for random effects.

nM-EDL M-EDL Motor



1.000 −0.204∗0.078 0.6250.037 −0.1050.074 0.1940.051 0.0140.074 nM − EDLsd

[−0.341,−0.043]∗∗ [0.547, 0.694] [−0.254, 0.041] [0.092, 0.296] [−0.130, 0.152] 95%CI

1.000 −0.0430.082 0.6270.062 −0.1050.077 0.2000.089 nM − EDLsd

[−0.203, 0.119] [0.499, 0.734] [−0.246, 0.057] [0.030, 0.374] 95%CI

1.000 −0.1680.073 0.3750.045 −0.0800.072 M − EDLsd

[−0.311,−0.028] [0.284, 0.460] [−0.213, 0.067] 95%CI

1.000 −0.1290.073 0.6390.065 M − EDLsd

[−0.278, 0.021] [0.507, 0.755] 95%CI

1.000 −0.4260.064 motorsd

[−0.544,−0.295] 95%CI

1.000 Motor

* −0.2040.078: correlation coefficient mean estimate=−0.204, SD=0.078.

** [−0.341,−0.040]: 95% CI=[−0.341,−0.040] for the above element (−0.2040.078).
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Table B.08: Estimated random errors in latent traits.

Mean SD 95% CI

σ
(1)
e 0.276 0.022 0.238 0.319

σ
(2)
e 0.527 0.028 0.478 0.588

σ
(3)
e 1.250 0.050 1.157 1.345
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Table B.09: Estimated parameters in MDS-UPDRS Part I: nM-EDL.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Cognitive Impairment 1.319 3.682 5.358 7.435 0.952 0.061 0.836 1.070

Hallucinations 3.398 5.696 6.625 8.570 0.818 0.079 0.665 0.969

Depressed Mood* 1.500 3.524 5.171 7.343 1.000 0.000 1.000 1.000

Anxious Mood 1.039 3.134 4.827 7.372 0.824 0.056 0.717 0.935

Apathy 2.093 3.909 6.033 8.380 1.183 0.077 1.035 1.331

Dopamine Dysregulation 3.932 5.689 8.415 90.597 0.761 0.093 0.579 0.953

Sleep Problem −0.049 1.333 2.651 4.611 0.783 0.056 0.675 0.895

Daytime Sleepiness −0.214 1.488 5.053 7.480 1.009 0.071 0.876 1.151

Pain & other sensations −0.153 2.024 3.351 5.244 0.772 0.054 0.666 0.882

Urinary −0.019 1.980 3.560 5.185 0.716 0.053 0.613 0.822

Constipation 0.567 2.825 4.462 9.388 0.758 0.057 0.650 0.870

Light Headedness 1.324 3.370 5.126 7.856 0.937 0.066 0.809 1.071

Fatigue 0.223 3.108 5.199 7.167 1.623 0.102 1.427 1.831

ak,l : item k’s level l.

*: Constrained item.
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Table B.010: Estimated difficulty parameters in MDS-UPDRS Part II: M-EDL.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Speech 0.708 2.277 4.640 8.771 0.774 0.044 0.691 0.864

Saliva & Drooling 0.722 1.608 2.970 4.864 0.661 0.040 0.588 0.742

Chewing & Swallowing 1.968 4.537 5.429 9.624 0.664 0.043 0.583 0.748

Eating Tasks* 0.800 3.748 7.361 89.451 1.000 0.000 1.000 1.000

Dressing 0.396 4.243 8.742 11.359 1.454 0.073 1.310 1.604

Hygiene 1.342 6.471 9.243 11.172 1.098 0.059 0.984 1.220

Handwriting −0.618 1.388 3.173 5.374 0.701 0.040 0.625 0.786

Doing Hobbies 0.563 3.283 5.657 7.297 1.142 0.057 1.037 1.256

Turning in Bed 0.961 4.899 7.265 10.462 0.940 0.053 0.838 1.049

Tremor −1.681 1.083 3.382 6.185 0.199 0.024 0.154 0.247

Getting out of bed 0.344 3.785 6.325 10.470 1.238 0.068 1.108 1.376

Walking & Balance 0.509 4.053 5.063 7.937 0.917 0.053 0.818 1.031

Freezing 3.725 5.811 7.743 10.101 1.134 0.076 0.991 1.288

ak,l : item k’s level l.

*: Constrained item.
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Table B.011: Estimated parameters in MDS-UPDRS Part III: Motor Examination.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Speech −0.101 2.646 6.271 89.377 0.212 0.013 0.187 0.241

Facial Expression −2.197 0.868 3.326 6.835 0.303 0.015 0.273 0.332

Rigidity-Neck −0.089 1.471 4.218 7.014 0.305 0.016 0.274 0.339

Rigidity-RUE −1.204 0.292 2.750 7.141 0.012 0.008 0.001 0.028

Rigidity-LUE −0.501 1.721 5.156 11.291 0.624 0.027 0.575 0.677

Rigidity-RLE −0.073 1.284 3.284 6.303 0.069 0.010 0.049 0.091

Rigidity-LLE 0.639 2.220 4.578 8.417 0.464 0.021 0.423 0.509

Finger Tapping-Right −1.148 0.527 2.204 4.981 0.034 0.009 0.017 0.052

Finger Tapping-Left −1.108 2.259 5.362 9.806 0.987 0.040 0.912 1.066

Hand Movement-Right −0.713 0.992 2.727 5.982 0.049 0.009 0.029 0.067

Hand Movement-Left* −0.400 2.976 6.212 10.896 1.000 0.000 1.000 1.000

Pronation-Right −0.672 0.987 2.857 6.351 0.009 0.006 0.000 0.024

Pronation-Left −0.121 2.674 5.404 9.380 0.846 0.035 0.784 0.921

Toe Tapping-Right −0.664 1.100 2.955 5.608 0.060 0.010 0.042 0.079

Toe Tapping-Left −0.660 1.946 4.481 8.348 0.680 0.028 0.626 0.739

Leg Agility-Right 0.171 2.153 4.194 6.525 0.099 0.011 0.078 0.120

Leg Agility-Left 0.731 3.178 5.688 8.685 0.649 0.030 0.593 0.710

Arising from chair 1.701 3.748 5.429 7.087 0.221 0.018 0.186 0.257

Gait −0.717 2.461 4.723 6.944 0.186 0.013 0.158 0.211

Freezing of Gait 4.589 6.339 6.942 7.323 0.340 0.045 0.256 0.429

Postural Stability 2.232 3.269 3.843 6.160 0.175 0.019 0.138 0.212

Posture −0.474 1.853 4.027 6.047 0.201 0.013 0.175 0.227

Body Bradykinesia −2.558 0.373 2.855 7.860 0.349 0.017 0.317 0.383

Postural Tremor-Right 0.611 2.460 4.606 15.133 0.002 0.002 0.000 0.006

Postural Tremor-Left 1.088 3.204 5.537 88.653 0.241 0.016 0.211 0.274

Kinetic Tumor-Right 0.748 3.163 6.364 88.931 0.023 0.011 0.003 0.045

Kinetic Tumor-Left 0.891 3.174 6.997 9.451 0.264 0.017 0.232 0.297

Rest Tumor-RUE 0.303 0.929 2.292 8.589 0.001 0.001 0.000 0.002

Rest Tumor-LUE 0.987 1.921 3.727 88.939 0.274 0.016 0.244 0.306

Rest Tumor-RLE 1.933 3.100 5.258 90.632 0.003 0.003 0.000 0.012

Rest Tumor-LLE 2.226 3.430 6.258 87.425 0.124 0.018 0.088 0.159

Rest Tumor-Lip 2.623 4.045 6.946 89.971 0.093 0.022 0.052 0.139

Constancy of Rest −0.804 0.200 0.927 2.222 0.018 0.009 0.003 0.036

ak,l : item k’s level l.

*: Constrained item.
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STAN code

functions {

real expit(real x){

real ps;

ps=exp(x)/(1+exp(x));

return ps;

}

vector convert_p(real[] psi){

int N= size(psi);

vector [N+1] pr;

pr[1]= psi[1];

for (k in 2:N) pr[k]=psi[k]-psi[k-1];

pr[N+1]=1-psi[N];

return pr;

}

real Sum_const_nupart (vector nu_vect, vector u0_vect, vector beta_vect, real cov_x_v) {

real sum_const_nupart;

sum_const_nupart=nu_vect’ *(u0_vect + cov_x_v * beta_vect); // vector operation scalar * vector

return sum_const_nupart;

}

real pointV( vector nu_vect, vector u1_vect, real tee_X15_v, vector ft_vect){

real sub_fk;

sub_fk=nu_vect’ * (tee_X15_v * u1_vect+ft_vect);

return sub_fk;

}

}

data {
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int<lower=1> num_subject;

int<lower=1> num_obs;

int<lower=1> num_conti;

int<lower=1> KK;//KK=15 Gauss_Kronrod points #

int<lower=1> num_long;

int<lower=1> num_basis;

int<lower=1> num_pw;

int<lower=1> num_pred;

int<lower=1> num_part1;

int<lower=1> num_part2;

int<lower=1> num_part3;

int<lower=1> num_ordi; // level of each question

int<lower=0> num_theta; // num of domain

int subj_long[num_obs]; // subject ID in long fmt

int<lower=1> updrs1[num_obs, num_part1];

int<lower=1> updrs2[num_obs, num_part2];

int<lower=1> updrs3[num_obs, num_part3];

vector [num_conti] SDM ;

int conti_match[num_conti] ;

vector[num_theta] a0;

real<lower=0> time_obs[num_obs];

real age_norm[num_subject]; // normalized data

int <lower=0, upper=1> gender_subj[num_subject];

real <lower=0> tee [num_subject];

int <lower=0> event[num_subject]; // possible value 0, 1, 2

int <lower=1, upper=num_pw> tee_id [num_subject]; // use to indicate with piece h to use

vector [KK] c15;

vector <lower=0> [KK] tee_X15 [num_subject]; //tee_x15 for each subject, 15 pts matrix

vector <lower=0> [num_basis] teeX15_long_Bt [num_long]; // num_long= num_subj * 15, long X15 bs format Matrix

vector <lower=0> [num_basis] tee_Bt [num_subject]; // use to construct fb_tee nonpar basis for tee
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int <lower=1, upper=num_pw> pwht_X15_ind [num_subject, KK];//indicator for piecewise h, indicator for which pw for each x15 point

vector<lower=0> [num_basis] time_obs_Bt [num_obs];

vector <lower=0> [num_basis] pred_t_Bt [num_pred];

}

parameters {

vector [num_theta*2] U[num_subject];

corr_matrix[2*num_theta] Omega; // cholesky correlation matrix only intercept

vector<lower=0> [2*num_theta] Var_U; // random scale

real<lower=0> Var_conti;

vector[num_theta] ee [num_obs];

vector<lower=0>[num_theta] Var_e;

vector [num_theta] beta0;

real a_conti;

vector [num_theta] b_conti;

vector [num_part1] a_random1;

vector [num_part2] a_random2;

vector [num_part3] a_random3;

vector <lower=0> [num_part1] b_random1;

vector <lower=0> [num_part2] b_random2;

vector <lower=0> [num_part3] b_random3;

vector<lower=0> [num_ordi-2] delta1[num_part1];

vector<lower=0> [num_ordi-2] delta2[num_part2];

vector<lower=0> [num_ordi-2] delta3[num_part3];

vector [num_basis] cc [num_theta]; // B-spline

vector <lower=0> [num_theta] Var_spline ;

vector [2] gam ;

vector <lower=0> [num_pw] h_pw [2];
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vector [num_theta] nu[2];

}

transformed parameters {

cov_matrix [2*num_theta] Sigma_U;

vector<lower=0> [2*num_theta] sd_U;

real<lower=0> sd_conti;

vector [num_conti] mu_SDM;

vector<lower=0> [num_theta] sd_e;

ordered[num_ordi-1] a_ordi_part1[num_part1];

ordered[num_ordi-1] a_ordi_part2[num_part2];

ordered[num_ordi-1] a_ordi_part3[num_part3];

vector [num_part1] b_ordi_part1 ;

vector [num_part2] b_ordi_part2 ;

vector [num_part3] b_ordi_part3 ;

vector [num_theta] ft [num_obs];

vector[num_theta] theta[num_obs];

vector <lower=0> [num_theta] sd_spline;

vector [num_part1] updrs1_ordi_hat [num_obs];

vector [num_part2] updrs2_ordi_hat [num_obs];

vector [num_part3] updrs3_ordi_hat [num_obs];

vector [num_subject] exp_const[2];

vector [num_theta] U0 [num_subject];

vector [num_theta] U1 [num_subject];

vector [num_theta] fb_tee [num_subject];
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vector [num_basis] fb1_X15_long [num_subject, KK];

vector [num_basis] fb2_X15_long [num_subject, KK];

vector [num_basis] fb3_X15_long [num_subject, KK];

vector [3] temp_ft_tee;

vector [KK] Y1_15 [num_subject];

vector [KK] Y2_15 [num_subject];

vector [num_subject] K1_15 ;

vector [num_subject] K2_15 ;

real h[num_subject];

vector [num_pw] integral_pw1 [num_subject];

vector [num_pw] integral_pw2 [num_subject];

real log_S1 [num_subject];

real log_S2 [num_subject];

real LL [num_subject];

for (i in 1:num_obs) {

for(p in 1:num_theta) {

ft[i,p] = cc[p]’*time_obs_Bt[i] ;

theta[i,p]= beta0[p]*age_norm[subj_long[i]] + ft[i,p] + U[subj_long[i],(2*p-1)] + U[subj_long[i],(2*p)]*time_obs[i]+ee[i,p]; // intercept included in nonpar part

}

}

for(i in 1: num_conti) mu_SDM[i]= a_conti+ b_conti’* theta[conti_match[i]];

for (k in 1:num_part1) {

a_ordi_part1[k, 1] = a_random1[k];

for (lev in 2:(num_ordi-1)) a_ordi_part1[k, lev] = a_ordi_part1[k, lev-1] + delta1[k, lev-1];

}

for (k in 1:num_part2) {
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a_ordi_part2[k, 1] = a_random2[k];

for (lev in 2:(num_ordi-1)) a_ordi_part2[k, lev] = a_ordi_part2[k, lev-1] + delta2[k, lev-1];

}

for (k in 1:num_part3) {

a_ordi_part3[k, 1] = a_random3[k];

for (lev in 2:(num_ordi-1)) a_ordi_part3[k, lev] = a_ordi_part3[k, lev-1] + delta3[k, lev-1];

}

a_ordi_part1[3,1]=a0[1];

for(lev in 2:(num_ordi-1)) a_ordi_part1[3, lev] = a_ordi_part1[3, lev-1] + delta1[3, lev-1];

a_ordi_part2[4,1]=a0[2];

for(lev in 2:(num_ordi-1)) a_ordi_part2[4, lev] = a_ordi_part2[4, lev-1] + delta2[4, lev-1];

a_ordi_part3[11,1]=a0[3];

for(lev in 2:(num_ordi-1)) a_ordi_part3[11, lev] = a_ordi_part3[11, lev-1] + delta3[11, lev-1];

b_ordi_part1 = b_random1;

b_ordi_part2 = b_random2;

b_ordi_part3 = b_random3;

b_ordi_part1[3] = 1;

b_ordi_part2[4] = 1;

b_ordi_part3[11] = 1;

for (i in 1: num_obs){

for (k in 1: num_part1) updrs1_ordi_hat[i, k]= b_ordi_part1[k]* theta[i,1];

for (k in 1: num_part2) updrs2_ordi_hat[i, k]= b_ordi_part2[k]* theta[i,2];

for (k in 1: num_part3) updrs3_ordi_hat[i, k]= b_ordi_part3[k]* theta[i,3];

}
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for (i in 1:num_subject){

for(p in 1: num_theta) {

U0[i,p]= U[i, (2*p-1)];

U1[i,p]= U[i, 2*p ];

fb_tee[i, p]= cc[p]’ * tee_Bt[i]; //for event 1, 2

}

exp_const[1,i]<- exp(gam[1]*gender_subj[i]+ Sum_const_nupart(nu[1], U0[i], beta0, age_norm[i]) );

exp_const[2,i]<- exp(gam[2]*gender_subj[i]+ Sum_const_nupart(nu[2], U0[i], beta0, age_norm[i]) );

for(k in 1: KK){ //KK=15 for x15

fb1_X15_long[i,k] <- cc[1] .* teeX15_long_Bt[(i-1)*15 + k] ;

fb2_X15_long[i,k] <- cc[2] .* teeX15_long_Bt[(i-1)*15 + k] ;

fb3_X15_long[i,k] <- cc[3] .* teeX15_long_Bt[(i-1)*15 + k] ;

temp_ft_tee= [sum(fb1_X15_long[i,k]), sum(fb2_X15_long[i,k]), sum(fb3_X15_long[i,k])]’ ; // build temp vector for function pointV

Y1_15[i,k] = h_pw[1, pwht_X15_ind[i,k]]* exp( pointV(nu[1], U1[i], tee_X15[i,k], temp_ft_tee) ); // f1(x15) for ith subj kth point

Y2_15[i,k] = h_pw[2, pwht_X15_ind[i,k]]* exp( pointV(nu[2], U1[i], tee_X15[i,k], temp_ft_tee) ); // f2(x15)

}

K1_15[i] <- Y1_15[i]’ * c15;

K2_15[i] <- Y2_15[i]’ * c15;

sd_spline = sqrt(Var_spline);

sd_e = sqrt(Var_e);

sd_U = sqrt(Var_U);

Sigma_U = quad_form_diag(Omega, sd_U);

sd_conti= sqrt(Var_conti);

}
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for(i in 1: num_subject){

log_S2[i] = - K2_15[i] *tee[i] /2 * exp_const[2,i]; //Gauss_krnorod integration

log_S1[i] = - K1_15[i] *tee[i] /2 * exp_const[1,i];

if (event[i]==2) h[i] = h_pw[2,tee_id[i]] * exp_const[2,i]*exp(pointV(nu[2], U1[i], tee[i], fb_tee[i]));

if (event[i]==1) h[i] = h_pw[1,tee_id[i]] * exp_const[1,i]*exp(pointV(nu[1], U1[i], tee[i], fb_tee[i]));

if (event[i]==0) h[i] = 1;

LL[i] = log(h[i]) + log_S1[i] + log_S2[i];

}

}

model {

vector [2*num_theta] Zero=[0,0,0,0,0,0]’;

U ~ multi_normal(Zero, Sigma_U);

for(i in 1:num_obs) ee[i] ~ normal(0, sd_e); // this constrain exclude other onstrains

for(p in 1:num_theta) {

cc[p,1] ~ normal(0, 10); //no intercept

for (j in 2: num_basis) cc[p,j]~ normal(cc[p, j-1], sd_spline[p]);

}

SDM ~ normal(mu_SDM, sd_conti);
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for(i in 1:num_obs){

for (k in 1: num_part3) updrs3[i, k] ~ ordered_logistic(updrs3_ordi_hat[i, k], a_ordi_part3[k]) ;

for (k in 1: num_part2) updrs2[i, k] ~ ordered_logistic(updrs2_ordi_hat[i, k], a_ordi_part2[k]) ;

for (k in 1: num_part1) updrs1[i, k] ~ ordered_logistic(updrs1_ordi_hat[i, k], a_ordi_part1[k]) ;

}

target +=LL;

beta0 ~ normal(0,20);

beta1 ~ normal(0,20);

a_conti ~ normal(0,100);

b_conti ~ normal(0,100);

for (l in 1:(num_ordi-2)) {

for (k in 1: num_part1) delta1[k, l] ~ normal(0, 100) T[0,] ;

for (k in 1: num_part2) delta2[k, l] ~ normal(0, 100) T[0,] ;

for (k in 1: num_part3) delta3[k, l] ~ normal(0, 100) T[0,] ;

}

for (k in 1:(num_part1)) b_random1[k] ~ normal(0, 20);

for (k in 1:(num_part2)) b_random2[k] ~ normal(0, 20);

for (k in 1:(num_part3)) b_random3[k] ~ normal(0, 20);

a_random1 ~ normal(0, 20);

a_random2 ~ normal(0, 20);

a_random3 ~ normal(0, 20);

Var_U ~ inv_gamma(0.01, 0.01);

Var_conti ~ inv_gamma(0.01, 0.01);

Omega ~ lkj_corr(2.0); //Omega=L_Omega*L_Omega’
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Var_spline ~ inv_gamma(0.01,0.01);

Var_e ~ inv_gamma(0.01, 0.01);

for(i in 1: 2){

h_pw[i] ~ gamma(0.01, 0.01); // piecewise base havard

nu[i] ~ normal(0,20);

gam[i] ~ normal(0,20);

}

}
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Appendix C

Appendix for article 3

Table C.01: Simulation results with different intermittent missing proportions.

Naive (setting 1) Joint (setting 1) Naive (setting 2) Joint (setting 2)

BIAS % SD CP BIAS % SD CP BIAS % SD CP BIAS % SD CP

Parameters for continuous outcomes

a
(1)
1 = −4 0.475 0.053 0.959 0.125 0.051 0.967 0.525 0.055 0.950 0.175 0.055 0.967

a
(2)
1 = −2 0.950 0.070 0.914 0.300 0.066 0.949 0.800 0.070 0.927 0.350 0.070 0.935

b
(1)
1 = 1 0.800 0.038 0.923 0.800 0.038 0.930 1.200 0.040 0.909 0.800 0.039 0.921

b
(2)
1 = 1.5 0.800 0.050 0.950 0.667 0.049 0.953 1.000 0.052 0.923 0.600 0.051 0.949

b
(1)
2 = 1.5 0.867 0.031 0.923 0.067 0.031 0.921 1.467 0.034 0.905 0.133 0.033 0.949

b
(2)
2 = 1 0.800 0.032 0.936 0.000 0.031 0.953 1.400 0.034 0.905 0.100 0.034 0.949

Parameters for ordinal outcomes**

a3,1 = 0.1 −3.000 0.029 0.936 −1.000 0.029 0.935 −5.000 0.031 0.932 −2.000 0.030 0.940

a4,1 = −0.1 1.000 0.027 0.936 −1.000 0.027 0.930 1.000 0.029 0.914 −0.000 0.029 0.921

a5,1 = 0.2 3.500 0.032 0.955 1.500 0.032 0.967 4.500 0.032 0.964 1.500 0.032 0.963

a6,1 = −0.2 −1.000 0.023 0.959 0.500 0.021 0.977 −1.500 00.023 0.950 −1.000 0.023 0.953

a7,1 = 0.3 0.333 0.031 0.964 −1.000 0.031 0.963 1.333 0.033 0.955 −0.333 0.032 0.944

a8,1 = −0.3 −1.000 0.023 0.950 −0.667 0.023 0.953 −0.667 0.024 0.964 −0.333 0.024 0.958

a9,1 = 0.4 0.500 0.026 0.945 0.500 0.025 0.949 1.000 0.025 0.945 0.500 0.025 0.949

a10,1 = −0.4 1.250 0.034 0.968 0.750 0.033 0.977 1.750 0.035 0.959 0.500 0.034 0.972

a1,2 = 1.5 −0.067 0.029 0.950 −0.067 0.027 0.972 −0.067 0.029 0.950 −0.133 0.029 0.963

a2,2 = 1.5 −0.200 0.030 0.959 −0.133 0.030 0.963 −0.200 0.032 0.959 −0.067 0.032 0.963

a3,2 = 1.6 −0.188 0.033 0.955 0.125 0.032 0.967 −0.188 0.036 0.950 0.062 0.035 0.958

a4,2 = 1.4 −0.071 0.031 0.927 0.000 0.032 0.926 −0.071 0.032 0.923 0.071 0.033 0.926

a5,2 = 1.7 0.471 0.038 0.936 0.294 0.037 0.949 0.706 0.040 0.936 0.353 0.040 0.940

a6,2 = 1.3 0.231 0.026 0.968 0.000 0.026 0.972 0.385 0.027 0.964 0.231 0.027 0.963

a7,2 = 1.8 0.222 0.038 0.959 0.000 0.037 0.963 0.333 0.038 0.968 0.000 0.038 0.967

a8,2 = 1.2 0.250 0.027 0.941 0.167 0.026 0.944 0.167 0.028 0.923 0.083 0.028 0.949

a9,2 = 1.9 0.053 0.034 0.936 0.000 0.034 0.940 0.158 0.036 0.941 0.053 0.036 0.935

a10,2 = 1.1 −0.273 0.033 0.973 −0.091 0.034 0.967 −0.636 0.035 0.968 −0.182 0.035 0.953

a1,3 = 2 −0.100 0.037 0.941 −0.100 0.035 0.944 −0.100 0.036 0.945 −0.100 0.035 0.953

a2,3 = 2 −0.050 0.034 0.941 0.000 0.033 0.949 −0.150 0.036 0.945 0.000 0.036 0.940

a3,3 = 2.1 −0.095 0.037 0.950 0.095 0.037 0.949 −0.095 0.040 0.945 0.095 0.039 0.944

a4,3 = 1.9 −0.105 0.033 0.955 −0.053 0.034 0.949 −0.105 0.037 0.941 −0.053 0.038 0.935

a5,3 = 2.2 0.364 0.040 0.945 0.227 0.039 0.949 0.545 0.042 0.959 0.273 0.043 0.967

a6,3 = 1.8 0.278 0.029 0.959 0.111 0.029 0.963 0.389 0.030 0.950 0.278 0.030 0.958

a7,3 = 2.3 0.261 0.041 0.950 0.087 0.040 0.958 0.391 0.042 0.964 0.130 0.041 0.967

a8,3 = 1.7 0.176 0.029 0.941 0.176 0.029 0.935 0.118 0.030 0.936 0.059 0.030 0.940

a9,3 = 2.4 0.042 0.040 0.936 0.042 0.040 0.926 0.083 0.042 0.950 0.042 0.042 0.944

a10,3 = 1.6 −0.188 0.037 0.968 −0.062 0.038 0.958 −0.437 0.039 0.968 −0.125 0.039 0.963

a1,4 = 2.5 −0.080 0.040 0.941 −0.040 0.038 0.949 −0.080 0.039 0.950 0.000 0.038 0.972

a2,4 = 2.5 −0.040 0.041 0.945 0.040 0.040 0.958 −0.080 0.041 0.936 0.040 0.041 0.949

a3,4 = 2.6 −0.077 0.043 0.932 0.038 0.043 0.940 −0.115 0.044 0.950 0.038 0.044 0.958

a4,4 = 2.4 −0.042 0.037 0.959 −0.042 0.038 0.958 −0.125 0.041 0.909 −0.042 0.042 0.926

a5,4 = 2.7 0.296 0.044 0.950 0.185 0.044 0.949 0.481 0.047 0.959 0.296 0.047 0.958

a6,4 = 2.3 0.348 0.033 0.964 0.217 0.033 0.958 0.391 0.034 0.968 0.304 0.034 0.972

a7,4 = 2.8 0.250 0.044 0.950 0.107 0.043 0.958 0.357 0.046 0.945 0.143 0.046 0.944

a8,4 = 2.2 0.182 0.033 0.932 0.136 0.033 0.926 0.136 0.035 0.932 0.136 0.035 0.940

a9,4 = 2.9 0.103 0.045 0.950 0.103 0.045 0.958 0.138 0.046 0.955 0.138 0.046 0.958

a10,4 = 2.1 −0.143 0.040 0.964 0.000 0.041 0.977 −0.333 0.041 0.968 −0.095 0.042 0.967

b
(1
3 = 0.5 0.400 0.021 0.927 0.200 0.022 0.916 0.400 0.022 0.936 0.000 0.022 0.935

b
(1
4 = 0.4 1.000 0.018 0.955 0.750 0.018 0.935 1.000 0.019 0.950 0.750 0.019 0.953

b
(1
5 = −0.4 1.250 0.019 0.950 0.750 0.019 0.949 1.000 0.020 0.945 0.500 0.020 0.958

b
(1
6 = −0.2 1.000 0.014 0.950 0.500 0.014 0.949 1.000 0.016 0.918 0.500 0.016 0.935

b
(1
7 = −0.5 1.200 0.022 0.918 0.800 0.020 0.944 1.200 0.022 0.945 0.600 0.021 0.944

b
(1
8 = 0.2 0.000 0.015 0.932 0.000 0.015 0.935 0.500 0.016 0.927 0.500 0.016 0.930

b
(1
9 = −0.3 1.000 0.016 0.918 0.667 0.016 0.940 1.333 0.017 0.941 0.667 0.017 0.949

b
(1
10 = 0.6 0.833 0.023 0.936 0.333 0.022 0.958 0.667 0.024 0.964 0.167 0.023 0.967

b
(2)
3 = −0.3 0.667 0.013 0.964 0.333 0.013 0.944 1.333 0.014 0.941 −0.000 0.014 0.967

b
(2)
4 = −0.2 1.500 0.011 0.955 1.000 0.011 0.958 2.000 0.012 0.941 0.500 0.012 0.967

b
(2)
5 = 0.6 1.167 0.017 0.927 0.500 0.017 0.949 1.667 0.019 0.927 0.500 0.018 0.940

b
(2)
6 = 0.2 1.500 0.010 0.941 1.000 0.010 0.949 2.000 0.011 0.941 1.000 0.011 0.958

b
(2)
7 = 0.5 1.200 0.016 0.936 0.400 0.015 0.967 1.800 0.016 0.955 0.400 0.016 0.977

b
(2)
8 = 0.1 1.000 0.010 0.955 0.000 0.010 0.953 1.000 0.010 0.950 0.000 0.010 0.963

b
(2)
9 = 0.1 1.000 0.011 0.945 1.000 0.011 0.944 2.000 .012 0.927 0.000 0.012 0.930

b
(2)
10 = −0.5 1.200 0.017 0.945 0.400 0.016 0.953 1.600 0.018 0.923 0.400 0.018 0.967

Setting 1: Total 31.27% missing, 20.73% intermittent miss.
Setting 2: Total 39.10% missing, 29.30% intermittent miss.
ak,l: item k’s level l.
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Table C.02: Parameter estimates for PPMI’s three domains.

nM-EDL M-EDL Motor Examination
MEAN SD 95 % CI MEAN SD 95% CI MEAN SD 95% CI

Disease Status (Latent Variable)
Int. 0.011 0.079 −0.149 0.152 −0.045 0.089 −0.213 0.124 0.046 0.189 −0.333 0.392
Age (yr) 0.093 0.058 −0.024 0.200 0.113 0.070 −0.021 0.245 0.254 0.148 −0.031 0.531
Time (yr) 0.289 0.023 0.246 0.333 0.416 0.033 0.355 0.479 0.656 0.044 0.571 0.745
Random effects
ρ −0.179 0.077 -0.324 −0.027 −0.120 0.074 −0.259 0.028 −0.387 0.067 −0.516 -0.258

σi
* 1.160 0.065 1.037 1.286 1.484 0.083 1.327 1.655 3.506 0.177 3.172 3.860

σs
** 0.246 0.021 0.206 0.287 0.360 0.031 0.302 0.422 0.576 0.042 0.500 0.662

σe 0.264 0.025 0.215 0.309 0.532 0.030 0.477 0.596 1.280 0.051 1.179 1.393
Intermittent pattern of missing data
η 0.237 0.107 0.030 0.452 −0.056 0.093 −0.234 0.125 −0.013 0.030 −0.074 0.046
Monotone pattern of missing data
ν 0.105 0.086 −0.061 0.273 0.183 0.072 0.044 0.326 0.009 0.025 −0.038 0.058
*: random intercept
**: random slope
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Table C.03: Estimated random ef-
fects.

Mean SD 95% CI

σ
(1)
0 1.160 0.065 1.037 1.286

σ
(1)
1 0.246 0.021 0.206 0.287

σ
(2)
0 1.484 0.083 1.327 1.655

σ
(2)
1 0.360 0.031 0.302 0.422

σ
(3)
0 3.506 0.177 3.172 3.860

σ
(3)
1 0.576 0.042 0.500 0.662

σ0 : random intercept.
σ1 : random slope.
superscript (k): kth domain.
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Table C.04: Estimated correlation coefficients for random effects.

nM-EDL M-EDL Motor



1.000 −0.179∗0.077 0.6260.037 −0.0790.077 0.1870.053 0.0390.076 nM − EDLsd

[−0.324,−0.027]∗∗ [0.553, 0.695] [−0.236, 0.064] [0.082, 0.288] [−0.111, 0.180] 95%CI

1.000 −0.0170.082 0.6650.060 −0.0900.073 0.2460.087 nM − EDLsd

[−0.212, 0.110] [0.509, 0.751] [−0.263, 0.033] [0.025, 0.382] 95%CI

1.000 −0.1200.074 0.3700.046 −0.0450.074 M − EDLsd

[−0.259, 0.028] [0.279, 0.460] [−0.192, 0.100] 95%CI

1.000 −0.1050.075 0.6690.057 M − EDLsd

[−0.245, 0.042] [0.549, 0.772] 95%CI

1.000 −0.3870.067 motorsd

[−0.516,−0.258] 95%CI

1.000 Motor

* −0.1790.077: correlation coefficient mean estimate=−0.179, SD=0.077.

** [−0.324,−0.027]: 95% CI=[−0.324,−0.027] for the above element (−0.1790.077).
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Table C.05: Estimated random errors in three MDS-UPDRS parts.

Mean SD 95% CI

σ
(1)
e 0.264 0.025 0.215 0.309

σ
(2)
e 0.532 0.030 0.477 0.596

σ
(3)
e 1.280 0.051 1.179 1.393
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Table C.06: Estimated parameters in Cox
model and Logistic model.

Mean SD 95% CI

w −3.081 0.095 −3.299 −2.902

γ 0.036 0.139 −0.239 0.304
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Table C.07: Estimated parameters in MDS-UPDRS Part I: nM-EDL.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Cognitive Impairment 1.326 3.686 5.357 7.418 0.957 0.061 0.843 1.079

Hallucinations 3.400 5.705 6.636 8.583 0.824 0.081 0.673 0.993

Depressed Mood* 1.500 3.516 5.164 7.306 1.000 0.000 1.000 1.000

Anxious Mood 1.047 3.140 4.832 7.372 0.838 0.051 0.743 0.947

Apathy 2.103 3.912 6.038 8.393 1.201 0.073 1.065 1.345

Dopamine Dysregulation 3.934 5.692 8.394 17.407 0.778 0.091 0.605 0.958

Sleep Problem −0.038 1.348 2.669 4.633 0.804 0.050 0.713 0.907

Daytime Sleepiness −0.201 1.500 5.071 7.500 1.030 0.059 0.922 1.156

Pain & other sensations −0.142 2.034 3.360 5.254 0.790 0.049 0.701 0.886

Urinary −0.010 1.987 3.561 5.183 0.730 0.048 0.642 0.823

Constipation 0.576 2.823 4.459 9.246 0.772 0.049 0.683 0.872

Light Headedness 1.341 3.388 5.150 7.885 0.961 0.061 0.850 1.082

Fatigue 0.247 3.135 5.228 7.204 1.658 0.091 1.487 1.845

ak,l : item k’s level l.

*: item to put constrains.
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Table C.08: Estimated difficulty parameters in MDS-UPDRS Part II: M-EDL.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Speech 0.721 2.291 4.657 8.769 0.789 0.046 0.703 0.884

Saliva & Drooling 0.734 1.619 2.978 4.867 0.673 0.041 0.597 0.754

Chewing & Swallowing 1.978 4.548 5.436 9.460 0.679 0.047 0.593 0.778

Eating Tasks* 0.800 3.722 7.312 17.501 1.000 0.000 1.000 1.000

Dressing 0.422 4.279 8.786 11.422 1.491 0.078 1.348 1.650

Hygiene 1.363 6.501 9.286 11.097 1.124 0.063 1.001 1.250

Handwriting −0.602 1.402 3.186 5.395 0.717 0.040 0.641 0.799

Doing Hobbies 0.588 3.318 5.701 7.350 1.177 0.062 1.065 1.304

Turning in Bed 0.980 4.924 7.291 10.441 0.963 0.054 0.863 1.077

Tremor −1.675 1.086 3.380 6.175 0.202 0.024 0.158 0.252

Getting out of bed 0.369 3.831 6.381 10.508 1.278 0.069 1.154 1.424

Walking & Balance 0.529 4.079 5.096 7.973 0.941 0.054 0.835 1.048

Freezing 3.743 5.827 7.765 10.113 1.159 0.076 1.010 1.311

ak,l : item k’s level l.

*: item to put constrains.
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Table C.09: Estimated parameters in MDS-UPDRS Part III: Motor Examination.

Difficulty Parameters Discrimination Parameters

ak,1 ak,2 ak,3 ak,4 Mean SD 95% CI

Speech −0.123 2.626 6.233 15.871 0.210 0.014 0.183 0.237

Facial Expression −2.227 0.837 3.294 6.819 0.301 0.016 0.271 0.331

Rigidity-Neck −0.120 1.437 4.186 6.981 0.302 0.016 0.270 0.333

Rigidity-RUE −1.208 0.289 2.745 7.108 0.012 0.008 0.001 0.028

Rigidity-LUE −0.567 1.656 5.093 11.130 0.618 0.026 0.568 0.669

Rigidity-RLE −0.079 1.276 3.282 6.279 0.069 0.010 0.049 0.091

Rigidity-LLE 0.592 2.171 4.529 8.329 0.460 0.022 0.417 0.506

Finger Tapping-Right −1.153 0.524 2.198 4.971 0.034 0.009 0.017 0.052

Finger Tapping-Left −1.216 2.163 5.278 9.738 0.982 0.041 0.908 1.063

Hand Movement-Right −0.718 0.984 2.716 5.964 0.048 0.009 0.029 0.067

Hand Movement-Left* −0.500 2.894 6.149 10.839 1.000 0.000 1.000 1.000

Pronation-Right −0.671 0.987 2.857 6.351 0.009 0.006 0.000 0.024

Pronation-Left −0.213 2.579 5.300 9.249 0.837 0.032 0.773 0.901

Toe Tapping-Right −0.670 1.097 2.954 5.595 0.060 0.010 0.042 0.079

Toe Tapping-Left −0.735 1.879 4.413 8.294 0.676 0.029 0.622 0.734

Leg Agility-Right 0.160 2.141 4.183 6.517 0.098 0.011 0.078 0.120

Leg Agility-Left 0.661 3.107 5.612 8.586 0.642 0.030 0.585 0.702

Arising from chair 1.676 3.721 5.395 7.055 0.219 0.017 0.187 0.252

Gait −0.736 2.443 4.704 6.936 0.185 0.013 0.158 0.211

Freezing of Gait 4.554 6.320 6.934 7.321 0.339 0.045 0.256 0.429

Postural Stability 2.215 3.252 3.825 6.147 0.173 0.019 0.136 0.214

Posture −0.494 1.832 4.010 6.015 0.199 0.013 0.176 0.224

Body Bradykinesia −2.594 0.337 2.815 7.802 0.346 0.017 0.314 0.381

Postural Tremor-Right 0.611 2.460 4.606 15.133 0.002 0.002 0.000 0.006

Postural Tremor-Left 1.065 3.184 5.508 15.839 0.239 0.015 0.210 0.269

Kinetic Tumor-Right 0.745 3.158 6.384 15.842 0.024 0.011 0.003 0.045

Kinetic Tumor-Left 0.863 3.139 6.961 9.357 0.261 0.016 0.233 0.293

Rest Tumor-RUE 0.304 0.929 2.292 8.589 0.001 0.001 0.000 0.002

Rest Tumor-LUE 0.959 1.894 3.698 15.552 0.272 0.016 0.242 0.304

Rest Tumor-RLE 1.932 3.100 5.261 15.389 0.003 0.003 0.000 0.012

Rest Tumor-LLE 2.213 3.417 6.228 16.244 0.122 0.018 0.086 0.156

Rest Tumor-Lip 2.617 4.038 6.963 16.347 0.094 0.021 0.055 0.136

Constancy of Rest −0.806 0.200 0.927 2.222 0.019 0.009 0.003 0.036

ak,l : item k’s level l.

*: item to put constrains.
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STAN code

functions {

real expit(real x){

real ps;

ps=exp(x)/(1+exp(x));

return ps;

}

vector convert_p(real[] psi){

int N= size(psi); // use rows(psi) if define psi as vector

vector [N+1] pr;

pr[1]= psi[1];

for (k in 2:N) pr[k]=psi[k]-psi[k-1];

pr[N+1]=1-psi[N];

return pr;

}

real Sum_const_nupart (real nu_v, real int_v, real beta_v, real cov_x_v, real u0_v) {

real sum_const_nupart;

sum_const_nupart=nu_v *( int_v+ cov_x_v * beta_v + u0_v); // vector operation scalar * vector

return sum_const_nupart;

}

real Theta_Const_nupart (vector nu_vect, vector int_vect , vector beta1_vect, real cov_x1_v, vector u0_vect) {

real sum_const;

sum_const=nu_vect’*( int_vect+ cov_x1_v * beta1_vect + u0_vect ); // vector operation scalar * vector

return sum_const;

}

real pointV( real nu_v, real ft_v, real tee_v, real ut_v){

real sub_fk;

sub_fk=nu_v * (ft_v+tee_v*ut_v);

return sub_fk;

}
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real cox_time_nupart( vector nu_vect, vector alpha_vect, vector u1_vect){

real time_eff;

time_eff= nu_vect’*(alpha_vect +u1_vect);

return time_eff;

}

real exp_intgl(real start_t_v, real end_t_v, real time_effect_v){

real pw_integal;

pw_integal= (exp(time_effect_v*end_t_v)-exp(time_effect_v*start_t_v))/time_effect_v;

return pw_integal;

}

real sum_intgl(int k_v, vector h0_vect, vector tee_sect_vect, real time_effect_v){

vector [k_v] piece_intgl;

vector [k_v] piece_h0;

real sum_pw;

for(i in 1: k_v) {

piece_intgl[i]=exp_intgl(tee_sect_vect[i], tee_sect_vect[i+1], time_effect_v);

piece_h0[i]=h0_vect[i];

}

sum_pw=piece_h0’*piece_intgl;

return sum_pw;

}

vector h0_vct( int k_v, vector h0_vect){

vector [k_v] piece_h0;

for(i in 1: k_v) piece_h0[i]=h0_vect[i];

return piece_h0;

}

}

data {

int<lower=1> num_subject;

int<lower=1> NN;
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int<lower=1> num_obs;

int<lower=1> num_mis;

int<lower=1> num_ordi;

int<lower=1> num_part1;

int<lower=1> num_part2;

int<lower=1> num_part3;

int <lower=1, upper=num_subject>subj_long[NN];

int <lower=-1, upper=num_ordi> Y_ordi_part1[NN, num_part1];

int <lower=-1, upper=num_ordi> Y_ordi_part2[NN, num_part2];

int <lower=-1, upper=num_ordi> Y_ordi_part3[NN, num_part3];

vector [3] a0;

real<lower=0> time[NN];

real age_norm[num_subject];

real gender_subj[num_subject];

real<lower=0> HY_subj[num_subject];

real duration_subj[num_subject];

real <lower=0> tee [num_subject];

int <lower=0> event[num_subject];

//int <lower=1, upper=num_pw> tee_id [num_subject];

int <lower=1, upper=NN> obs_ind [num_obs];

int <lower=1, upper=NN> mis_ind [num_mis];

int rr [NN];

int num_pw;

int <lower=1> subj_pw_ind [num_subject];

vector <lower=0> [num_pw+1] tee_pw [num_subject];

}

parameters {
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vector [6] U [num_subject];

corr_matrix [6] Omega;

vector<lower=0> [6] Var_U;

vector [3] beta0;

vector [3] beta1;

vector [3] alpha;

vector [num_part1] a_random1;

vector [num_part2] a_random2;

vector [num_part3] a_random3;

vector <lower=0> [num_part1] b_random1;

vector <lower=0> [num_part2] b_random2;

vector <lower=0> [num_part3] b_random3;

vector<lower=0> [num_ordi-2] delta1[num_part1];

vector<lower=0> [num_ordi-2] delta2[num_part2];

vector<lower=0> [num_ordi-2] delta3[num_part3];

real w;

vector [3] eta;

real gam ; // survival gender num_risk

vector <lower=0> [num_pw] h0 ;

vector [3] nu ;

}

transformed parameters {

cov_matrix [6] Sigma_U;

vector<lower=0> [6] sd_U;

ordered[num_ordi-1] a_ordi_part1[num_part1]; // this is required to use ordered_logistic

ordered[num_ordi-1] a_ordi_part2[num_part2];

ordered[num_ordi-1] a_ordi_part3[num_part3];

vector [num_part1] b_ordi_part1 ;
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vector [num_part2] b_ordi_part2 ;

vector [num_part3] b_ordi_part3 ;

vector [3] theta [NN];

vector [3] U0 [num_subject];

vector [3] U1 [num_subject];

real<lower=0, upper=1> psi1[NN, num_part1, num_ordi];

vector<lower=0, upper=1>[num_ordi] prob_y1[NN, num_part1];

real<lower=0, upper=1> psi2[NN, num_part2, num_ordi];

vector<lower=0, upper=1>[num_ordi] prob_y2[NN, num_part2];

real<lower=0, upper=1> psi3[NN, num_part3, num_ordi];

vector<lower=0, upper=1>[num_ordi] prob_y3[NN, num_part3];

vector [num_subject] cox_const;

real cox_time [num_subject] ;

vector [num_subject] sum_pw_intgl;

real h[num_subject];

real log_S [num_subject];

real LL [num_subject];

for (i in 1:NN) {

for(p in 1:3) {

U0[subj_long[i],p]= U[subj_long[i], (2*p-1)];

U1[subj_long[i],p]= U[subj_long[i], (2*p) ];

theta[i,p]= beta0[p] + beta1[p]*age_norm[subj_long[i]] + alpha[p]*time[i] + U0[subj_long[i],p] + U1[subj_long[i],p]*time[i]; // intercept included in nonpar part

}

}
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for (k in 1:num_part1) {

a_ordi_part1[k, 1] = a_random1[k];

for (lev in 2:(num_ordi-1)) a_ordi_part1[k, lev] = a_ordi_part1[k, lev-1] + delta1[k, lev-1];

}

for (k in 1:num_part2) {

a_ordi_part2[k, 1] = a_random2[k];

for (lev in 2:(num_ordi-1)) a_ordi_part2[k, lev] = a_ordi_part2[k, lev-1] + delta2[k, lev-1];

}

for (k in 1:num_part3) {

a_ordi_part3[k, 1] = a_random3[k];

for (lev in 2:(num_ordi-1)) a_ordi_part3[k, lev] = a_ordi_part3[k, lev-1] + delta3[k, lev-1];

}

a_ordi_part1[3,1]=a0[1];

for(lev in 2:(num_ordi-1)) a_ordi_part1[3, lev] = a_ordi_part1[3, lev-1] + delta1[3, lev-1];

a_ordi_part2[4,1]=a0[2];

for(lev in 2:(num_ordi-1)) a_ordi_part2[4, lev] = a_ordi_part2[4, lev-1] + delta2[4, lev-1];

a_ordi_part3[11,1]=a0[3];

for(lev in 2:(num_ordi-1)) a_ordi_part3[11, lev] = a_ordi_part3[11, lev-1] + delta3[11, lev-1];

b_ordi_part1 = b_random1;

b_ordi_part2 = b_random2;

b_ordi_part3 = b_random3;

b_ordi_part1[3] = 1;

b_ordi_part2[4] = 1;

b_ordi_part3[11] = 1;

for (i in 1:NN) {
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for (k in 1:num_part1) {

for (l in 1:(num_ordi-1)) psi1[i, k, l] = inv_logit(a_ordi_part1[k, l] - b_ordi_part1[k]*theta[i,1]);

psi1[i, k, num_ordi] = 1;

prob_y1[i, k, 1] = psi1[i, k, 1];

for (l in 2:num_ordi) prob_y1[i, k, l] = psi1[i, k, l] - psi1[i, k, l-1];

}

for(k in 1: num_part2){

for (l in 1:(num_ordi-1)) psi2[i, k, l] = inv_logit(a_ordi_part2[k, l] - b_ordi_part2[k]*theta[i,2]);

psi2[i, k, num_ordi] = 1;

prob_y2[i, k, 1] = psi2[i, k, 1];

for (l in 2:num_ordi) prob_y2[i, k, l] = psi2[i, k, l] - psi2[i, k, l-1];

}

for (k in 1: num_part3){

for (l in 1:(num_ordi-1)) psi3[i, k, l] = inv_logit(a_ordi_part3[k, l] - b_ordi_part3[k]*theta[i,3]);

psi3[i, k, num_ordi] = 1;

prob_y3[i, k, 1] = psi3[i, k, 1];

for (l in 2:num_ordi) prob_y3[i, k, l] = psi3[i, k, l] - psi3[i, k, l-1];

}

}

for (i in 1:num_subject){

cox_const[i]= gam*HY_subj[i] + Theta_Const_nupart(nu, beta0, beta1, age_norm[i] , U0[i]);

cox_time[i] = cox_time_nupart(nu, alpha, U1[i]);

sum_pw_intgl[i]=sum_intgl(subj_pw_ind[i], h0, tee_pw[i], cox_time[i]) ; // integral part

log_S[i] = - exp(cox_const[i])*sum_pw_intgl[i]; //piecewise summision
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if (event[i]==1) h[i] = h0[subj_pw_ind[i]] * exp(cox_const[i]+ cox_time[i]*tee[i]);

if (event[i]==0) h[i] = 1;

LL[i] = log(h[i]) + log_S[i] ;

}

sd_U = sqrt(Var_U);

Sigma_U = quad_form_diag(Omega, sd_U);

}

model {

vector [num_ordi] ll_ordi1_mis_temp;

vector [num_ordi] ll_ordi2_mis_temp;

vector [num_ordi] ll_ordi3_mis_temp;

vector [6] zero=[0,0,0,0,0,0]’;

U ~ multi_normal(zero, Sigma_U);

for(i in 1: NN) {

rr[i] ~ bernoulli_logit(w + eta’ * theta[i]);

if(rr[i]==0){

for (n in 1: num_part1) target += categorical_lpmf(Y_ordi_part1[i, n]| prob_y1[i,n]) ;

for (n in 1: num_part2) target += categorical_lpmf(Y_ordi_part2[i, n]| prob_y2[i,n]) ;

for (n in 1: num_part3) target += categorical_lpmf(Y_ordi_part3[i, n]| prob_y3[i,n]) ;

}

if(rr[i]==1){
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for(n in 1: num_part1){

for (k in 1: num_ordi) ll_ordi1_mis_temp[k]= categorical_lpmf(k| prob_y1[i,n] );

target +=2*log_sum_exp(ll_ordi1_mis_temp) ;

}

for (n in 1: num_part2){

for (k in 1: num_ordi) ll_ordi2_mis_temp[k]= categorical_lpmf(k| prob_y2[i,n] );

target +=2*log_sum_exp(ll_ordi2_mis_temp) ;

}

for (n in 1: num_part3){

for (k in 1: num_ordi) ll_ordi3_mis_temp[k]= categorical_lpmf(k| prob_y3[i,n] );

target +=2*log_sum_exp(ll_ordi3_mis_temp) ;

}

}

}

target +=LL;

beta0 ~ normal(0,20);

beta1 ~ normal(0,20);

alpha ~ normal(0,20);

w ~ normal(0,20);

eta ~ normal(0,20);

for (l in 1:(num_ordi-2)) {

for (k in 1: num_part1) delta1[k, l] ~ normal(0, 100) T[0,] ;

for (k in 1: num_part2) delta2[k, l] ~ normal(0, 100) T[0,] ;

for (k in 1: num_part3) delta3[k, l] ~ normal(0, 100) T[0,] ;

}
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b_random1 ~ normal(0, 20);

b_random2 ~ normal(0, 20);

b_random3 ~ normal(0, 20);

a_random1 ~ normal(0, 20);

a_random2 ~ normal(0, 20);

a_random3 ~ normal(0, 20);

Var_U ~ inv_gamma(0.01, 0.01);

Omega ~ lkj_corr(2.0); //Omega=L_Omega*L_Omega’

h0 ~ gamma(0.1, 0.1);

nu ~ normal(0,20);

gam ~ normal(0,20);

}
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