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Count data are commonly used to report frequency statistics of diverse health 

outcomes. However, some data are marked intentionally to avoid leaking information that 

could be used to identify individuals when population sizes are small. The situation hinders 

the further use from those data in public health research. Thus, an accurate and efficient 

method for dealing with censored count data is needed. 

 We developed Integrated Nested Laplace Approximation algorithm to censored 

Poisson regression model to deal with censored count data and improve the computational 

efficiency. In addition, we applied three methods to deal with censored count data: 1) 

multiple imputation (MI); 2) small area estimation (SAE); 3) censored Poisson regression 

model (CPRM) and compared the accuracy and efficiency of these three methods. 

A series of simulations results in that the censored Poisson regression method 

conducted the closest estimates to the true values (with the relative error = 0.21%), and MI 

had the worst results (with relative error=9.13%) under the censored proportion by 7.9 %. 



 

 
 

After comparing the results under the censored proportion by 33.61% and 54.1%, the 

censored Poisson regression method still showed a smaller relative error than the other two 

methods.  

We also applied these three methods to assess the association between heat wave 

temperature and hospitalization due to cardiovascular diseases in Harris County, Texas, from 

2006 to 2011. By comparing the relative errors and bar plots across different methods under 

different censored proportions, we concluded that by considering the balance of the 

estimation accuracy with computational time, the censored Poisson regression model is the 

best method for dealing with censored count datasets under different censored proportions, 

especially when the censored proportions were less than 30%. 
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BACKGROUND 

Literature Review 

In public health, count data sets are commonly used to report statistics related to 

emerging or existing health problems, and play a significant role in biostatistics. In fact, most 

health reports published by the U.S. Centers for Disease Control and Prevention (CDC) are 

based on count data. For example, the CDC’s Birth Defects Countries and Organizations 

United for Neural Tube Defects Prevention initiative reports that 3,000 pregnancies in the 

United States are affected by neural tube defects each year [1] and estimates that folic acid 

fortification may reduce the prevalence of neural tube defects by 50% or more. In this case, 

count data sets are being used to help prevent neural tube defects, and associated morbidity 

and mortality rates. In addition, the CDC reports count data for cases of Lyme disease by 

county, state, and year, which allows the prevalence of Lyme disease to be analyzed 

geographically and temporally. Data show that cases of Lyme disease are concentrated in the 

Northeast and Upper Midwest regions of the United States, which enables targeting of 

prevention efforts, i.e., those states with a higher prevalence of Lyme disease can dedicate 

more resources to prevent it [2]. 

Across public health disciplines, count data are commonly analyzed using Poisson 

regression models. For example, a study on lung cancer mortality and cigarette smoking used 

a Poisson regression model to estimate lung cancer deaths among physicians who were 

regular cigarette smokers [3].  A cervical cancer study used a generalized linear Poisson 

regression model to assess geographic heterogeneity in human papillomavirus [4]. Loomis, 

Richardson, and Elliott (2005) used a Poisson regression model to examine the association 
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between brain cancer and exposure to magnetic fields among a cohort of 138,905 male 

electrical workers in the United States [5]. A health behavior study used a Poisson regression 

model to examine the relationship between the number of alcoholic drinks and demographic 

characteristics [6]. Lastly, a study of illness and injury surveillance used a Poisson regression 

model to monitor morbidity, and to assess the overall health of the Department of Energy 

workforce [7]. A major part of the count data are used the Poisson regression model; 

however, in reality, the Poisson regression model needs more restrictions because of the 

unique property of Poisson distribution. 

Poisson distribution has a very unique property: the mean of the distribution must be 

equal to the variance of the distribution. If a dataset has a large number of zeros, the over-

dispersion problem (the variance larger than the mean) emerges. Therefore, based on the 

regular Poisson regression model, many other forms related to the Poisson regression model 

have been derived. For example, a study on death notice data in London used zero-adjusted 

generalized Poisson model, in which the dataset has more zeros than expected [8]. An 

occupation injury prevention program used the zero-inflated Poisson regression model with 

random effects to evaluate the injury. Usually, they used the Poisson regression model to 

analyze the injury counts; however, in this case, over 65% of the observations are zeros. So, 

they adopted Newton-Raphson and quasi-Newton algorithms to fit the zero-inflated Poisson 

regression [9]. A paper systematically introduced the zero-inflated model and zero-truncated 

model and gave some comparison criterion for each model [10]. 

Another type of count data is recorded by locations, such as the number of cancer 

cases in each county; and an advanced Poisson regression model is needed to take spatial 
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autocorrelation into account. For example, weighted Poisson regression models use a spatial 

weighting function to estimate spatial variations among Poisson regression parameters. A 

research on geographical distribution of working-age mortality in the Tokyo metropolitan 

area used the weighted Poisson regression to analysis the death count in each area [11]. A 

United Kingdom study used the weighted Poisson regression to model the under-dispersed 

data of clutch sizes. Although the data related to the weather condition and changes in the 

geographical locations, the weighted Poisson regression still fitted the data well [12]. (Spatial 

Poisson regression model overcomes the problem of disparate discretization by relating all 

spatially varying quantities to a random field model.) An research on the effect of traffic 

pollution on respiratory disorders in children used the Spatial Poisson regression through 

Markov chain Monte Carlo method [13]. 

In public health, one situation commonly exists in the count data, especially for 

spatial analysis, is the censored situation in the count data sets. Censored data have two 

fundamental types. One is left censored data, which means that a data point is below a certain 

value, but it is unknown by how much [14]. For example, in the CDC’s Childhood Lead 

Poisoning Prevention Program surveillance database, the number of children with elevated 

blood lead levels in each county is censored by 5 or less [15]. Another one is right censored 

data, which means that an unknown point is somewhere above the certain value. In health 

behavior study, such as those examining alcohol consumption patterns among male college 

students, binge drinking may be defined as “five or more drinks in one sitting” and may code 

the dependent variable as “0,” “1,” “2,” “3,” “4,” or “5 or more drinks”; values greater than 5 

would be censored. In the 2000 US Census individual census report, the question about the 
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number of persons rode to work in one car, truck or van last week, the possible answers will 

be 1, 2, 3, 4, 5, 6 and 7+. The numbers larger than 7 are censored [16]. In a research of 

women’s fertility, the numbers of children that a woman has been censored when the number 

is larger than 5 [16, 17]. 

Censored count data are formed for several reasons. The major one is that the data are 

unreleased on purpose, such as to avoid reporting information that can be used to identify 

individuals when population sizes are small. For example, the Illinois Department of Public 

Health Sexually Transmitted Diseases dataset does not  publish sexually transmitted disease 

data for counties with a population less than 15,000 or with a total birth rate less than 300, so 

the null values in the dataset are censored data [18]. Moreover, the survey design might cause 

censored data.  For example, in some survey design, when the possible answer to a questions 

is 0, 1, 2, 3, and 4+,  then the number larger than 4 is the censored part in this situation [19]. 

The example in 2000 US Census individual census report of the number of persons rode to 

one car, which we mentioned before, is the same situation [16]. Censored count data are 

usually considered as missing data, which are initially excluded in data analysis because of 

the principle of complete case analysis[20]. For example, when Frome (1981) used the 

Poisson regression model to deal with the count data, the censored part was defined as 

missing values[3].   

In previous studies, censored data were considered as missing, however, censored 

data are not actually missing, but just intentionally masked, which may lead to biased results.  

For example, a study applying the Cox regression model on the reduction of blood lead levels 

shows that the results with the censored data are less biased than those without the censored 
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data [21, 22]. Even in the simple linear regression model, removing the censored data could 

cause the bias in the estimation [23]. Furthermore, in a study of hypertension treatment using 

the generalized hierarchical multivariate conditional autoregressive model, when 24 censored 

data points were considered missing, 80% of patients completed the protocol with effective 

control of hypertension and no side effects; however, when the censored data were accounted 

for, the percentage of patients was 44% instead of 80% [24, 25]. 

One way to deal with the censored count data is the multiple imputation method. The 

mission of multiple imputation is to create a complete data set, then statistical models could 

be used as usual. Imputation method was first developed to deal with missing data problem in 

the 1980s [26, 27]. Then, the multiple imputation method begun widely used in practical 

research, including estimating the distribution of time from HIV seroconversion to AIDS, 

completing the health care survey data, and finishing the patients’ information on 

radiographic measurements to detect whether the prosthesis is loosening [28-30]. With the 

development of computer and software, the multiple imputation method was then widely 

used in different software packages and applied to more datasets [31-35]. Zhou et al. (2001) 

compared multiple imputation methods with the mean imputation method and applied the 

multiple imputation in public health research data [36]. The multiple imputation method not 

only use on the outcome variable, but also could be used no the covariates. For example, a 

blood pressure study applied the multiple imputation method to the covariates of missing 

values, including the family income and family earnings. A research on the National Health 

data used multiple imputation to the income variable [37-39]. Nowadays, the multiple 
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imputation method has been developed to solve advanced missing data problems, such as 

nonparametric multiple imputation, multilevel multiple imputation, and so on [39-43] 

A second way to deal with the censored part of the count data, which is frequently 

used in the spatial analysis, is the small area estimation method. Small area estimation is used 

when traditional demographic sample surveys designed for national estimates do not provide 

large enough samples to produce reliable direct estimates for small areas such as counties. 

Small area estimation has a long history. It first existed in 11th century England, then many 

other countries began to have the similar history [44]. All of them focused on demographic 

methods. Nowadays, the statistical methods using for small area estimation developed 

dramatically.  Bayesian unit-level model estimates the prevalence of diabetes at each county 

in the U.S. [45]. This model can analyze the prevalence for each county level considering 

different independent variable layers. For example, the method could estimate the prevalence 

for the specific county, specific gender and specific age group. Then the model was extended 

by changing the distribution of the prevalence from Poisson to Binomial, and estimated the 

diabetes incidence for each county by different layers [46]. A research on chronic obstructive 

pulmonary disease (COPD) developed a multilevel logistic model to generate small-area 

estimates of the prevalence of COPD in different geographic unites [47]. An analysis of the 

drinking pattern used a spatiotemporal model to estimate county-level alcohol use prevalence 

in the U.S [48]. This method considered spatial and temporal information as covariates to 

improve the predictions of all areas, as long as the area with limited sample sizes.  

Censored count data were not analyzed particularly until 1985 when the censored 

Poisson regression model was developed and proposed by using the Newton-Raphson 
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algorithm to estimate unknown parameters [49]. Famoye and Wang (2004) expanded the 

censored Poisson regression model to the censored generalized Poisson regression model to 

handle censored data with over-dispersion or under-dispersion [50]. They used an iterative 

algorithm to get the maximum likelihood estimators, but they did not specify the iterative 

algorithm used. Mahmoud (2010) also developed a censored generalized Poisson regression 

model using a method similar to Famoye and Wang’s method by adopting the Newton-

Raphson algorithm [51].  

However, as the log likelihood function of the censored generalized Poisson 

regression model has no close form to obtain the maximum likelihood estimates of unknown 

parameters, the Newton-Raphson algorithm cannot guarantee estimates reaching 

convergence because of the nonlinear nature of a problem [52]. Along with the application of 

Bayesian inference, Markov chain Monte Carlo (MCMC) simulation becomes a surrogate of 

the Newton-Raphson algorithm when priors can be pre-determined [53]. MCMC is 

computationally intensive in complex models, an approximate Bayesian inference called the 

integrated nested Laplace approximation (INLA), was developed to provide a more efficient 

algorithm with a lower computational burden [53]. The INLA method was originally used in 

latent Gaussian models. Along with advanced developments, this method has been extended 

to deal with other statistical models with a faster estimating speed and less biases [54], . Fong 

et al. (2010) performed INLA to estimate the parameters in generalized linear mixed models, 

and  compared the estimation results with the ones using penalized quasi-likelihood in 

longitudinal datasets in the number of seizures[55]. Martins and Rue (2012) extended INLA 

to fit the spatial and spatial-temporal models in which the independent variable is no longer 
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Gaussian distributions [56]. Blangiardo et al. (2013) performed INLA to spatial and spatial-

temporal models to analyze the suicides in London [57].  

Public Health Significance 

In public health, count datasets are commonly used to report statistics related to 

emerging or existing health problems, such as the prevalence and trends of various diseases, 

e.g. Lyme disease, Sexually Transmitted disease. As censored count data commonly occur in 

county-level health outcomes and in public health survey data, we need to find the proper 

methods to deal with the censored count data. As the complement of the data collecting, 

county-level datasets, or even smaller geographical area datasets (e.g., census group-level 

datasets), are always very large. Therefore, computational efficiency also needs to be 

improved. In the current research project, we compared three methods for dealing with 

censored count data under different censored proportions to determine which method has the 

best accuracy. In addition, we compared the computational time for each method to find the 

most efficient method to deal with censored count data. Therefore, the most accurate, time-

efficient method helps us to prevent diseases by better determining the risk factors and 

identifying the patterns of disease. 

Specific Aims  

The major objectives of this study were to find and develop some proper methods to 

deal with the censored count data, then compare the accuracy and efficiency of each method 

under different censored proportions. Three specific aims of this dissertation were:  

Aim 1: 
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To compare the results of censored Poisson regression model with the results of 

complete data using Poisson regression model, we need to make the censored part of count 

data complete. To check the performance of Poisson regression with imputed censored part, 

we compared the results of different censored proportion. Multiple imputation method was 

applied to the censored count data. After imputation the censored part, Poisson regression 

model was manipulate to do the parameter estimation. 

Aim 2: 

 To improve the accuracy of the results from Poisson regression model with censored 

data, some geographical information related to the censored data was considered. Therefore, 

small area estimation method was applied to impute the censored count data with spatial 

properties.  

Aim 3: 

To improve the performance of censored Poisson regression in comparison with 

Poisson regression with complete data, new algorithms to estimate the unknown parameters 

for the censored Poisson regression model were developed. To avoid the convergence 

problem caused by Newton-Raphson algorithm, INLA method was developed. We expected 

more accurate results and more computational efficiency in censored Poisson regression 

model, especially with INLA algorithm.  
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METHODS 

Methods for Specific Aim 1  

The multiple imputation method uses a set of values replacing the missing values instead 

of using a single value for each missing datum. The “mi” or “mice” R packages are usually 

used to perform multiple imputation. In these R packages, Bayesian models were used to 

impute the data more precisely by giving multiple values than single values. Based on 

different properties for different data type, R packages provided different functions, i.e., if 

the data were binary, mi.binary() function was used; if the data were count data, mi.count() 

function was used.  

We used multiple imputation to impute the censored count instead of missing data. We 

applied multiple imputation to simulated censored count dataset and real-world count dataset. 

We performed the following steps to impute the censored count data: 

Step 1: Simulated the censored values independently using the estimated mean vector and 

covariance matrix. Censored observation (observation without values) was represented by 

𝑌𝑖(𝑐𝑒𝑛), While the observation with value was represented by 𝑌𝑖(𝑜𝑏𝑠) . An imputed 𝑌𝑖(𝑐𝑒𝑛) was 

drawn from a conditional distribution 𝑌𝑖(𝑐𝑒𝑛)|𝑌𝑖(𝑜𝑏𝑠). 

Step 2: Simulated the posterior population mean vector and covariance matrix X from the 

complete sample estimates using a non-informative prior, which was built in R packages.  

Step 3: Repeated step 1 and step 2 for 5 times as recommended by Robin (1987) [58], 

which was built in R packages. 
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Step 4: Used the Poisson regression model with covariance matrix X and Y to impute the 

censored observation 𝑌𝑖(𝑐𝑒𝑛). 

Step 5: Averaged the values and the standard errors of the parameter estimations across 

the censored value samples in order to obtain a single point estimate.  

R packages “mi” and “mice” were applied to generate the values for the censored 

outcomes in order to produce the complete datasets. After generating the complete datasets, 

we used the Poisson regression model to estimate the coefficients of covariate matrix X.  

Methods for specific Aim 2  

The small area estimation method is a method commonly used in spatial analysis to 

estimate the unknown value for small counties. The idea of small area estimation uses the 

known observations of an outcome to estimate the unknown observations by the stratified 

demographic variables (e.g., age, gender, and race). We used small area estimation to 

estimate the censored count data by stratified demographic variables.  

We assumed 𝑌𝑖𝑗𝑘𝑐 as the count of an outcome variable (e.g. the number of cases) at 

age group 𝑖, race 𝑗, gender 𝑘 in county 𝑐, which follows a Poisson distribution with a mean of 

𝜆𝑖𝑗𝑘𝑐.  Thus, the model was specified as follows,  

𝑙𝑜𝑔(𝜆𝑖𝑗𝑘𝑐) = 𝛼 + 𝛽1𝑖 + 𝛽2𝑗 + 𝛽3𝑘 + 𝑓𝑠𝑝𝑎𝑡(𝑐) + 𝑙𝑜𝑔 (𝑛𝑖𝑗𝑘𝑐),         (1)                                

where 𝛽1𝑖 ,𝛽2𝑗, and 𝛽3𝑘 were fix effects for age, race, and gender, respectively. The spatial 

function 𝑓𝑠𝑝𝑎𝑡(𝑐) was Markov random fields following an intrinsic conditional 
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autoregressive prior [61]. The last term 𝑙𝑜𝑔 (𝑛𝑖𝑗𝑘𝑐) was an offset corresponding to the 

logarithm of the at-risk population index by 𝑖, 𝑗, 𝑘, and c (the total number of individuals 

corresponding to 𝑌𝑖𝑗𝑘𝑐).  We applied INLA algorithm described in Cadwell et al. [45] to 

estimate the censored count data.  

 We defined 𝑁𝑖𝑗𝑘𝑐  and 𝑌𝑖𝑗𝑘𝑐  in equation (1) as age-race-gender-county specific at-risk 

population and those with the specific outcome, respectively. Thus, we derived 𝑍𝑖𝑗𝑘𝑐, the 

number of unobserved individuals (the censored cases) with the specific outcome, indexed by 

age, race, gender, and county straightforwardly. The sum of the observed and unobserved 

cases,  𝑌𝑖𝑗𝑘𝑐  + 𝑍𝑖𝑗𝑘𝑐, was the total count of the outcome, where 

𝑍𝑖𝑗𝑘𝑐|𝑌𝑖𝑗𝑘𝑐 , 𝑛𝑖𝑗𝑘𝑐 , 𝑁𝑖𝑗𝑘𝑐~ Poisson (𝜇𝑖𝑗𝑘𝑐). 

The parameter 𝛶𝑖𝑗𝑘𝑐 was defined as 

𝛶𝑖𝑗𝑘𝑐 = (
�̂�𝑖𝑗𝑘𝑐

𝑛𝑖𝑗𝑘𝑐
) × (𝑁𝑖𝑗𝑘𝑐 − 𝑛𝑖𝑗𝑘𝑐) =

exp(�̂� + �̂�1𝑖 + �̂�2𝑗 + �̂�3𝑘 + 𝑓𝑠𝑝𝑎𝑡(𝑐))

𝑛𝑖𝑗𝑘𝑐
× 

(𝑁𝑖𝑗𝑘𝑐 − 𝑛𝑖𝑗𝑘𝑐).  

We applied the small area estimation method to estimate the censored count data, and 

then analyzed the data with the Poisson regression model to estimate the coefficient of all the 

covariates.  
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Method for Specific Aim 3  

 Multiple imputation method and small area estimation both estimate the censored 

count data to generate the complete dataset, but censored Poisson regression model can deal 

with censored count data directly without estimating the censored part. 

We derived the censored Poisson regression model from the Poisson regression 

model. Suppose a response variable 𝑌𝑖 represents count data, and follows a Poisson 

distribution with a parameter 𝜆𝑖, which can be predicted by covariates 𝒙𝒊 =

(𝑥1, 𝑥2, 𝑥3 … ).  For the Poisson regression model, we have the following equations: 

𝑙𝑜𝑔𝜆 = 𝜷𝒙 + 𝑙𝑜𝑔𝐸 

𝑦𝑖|𝛼, 𝜷, 𝒙𝒊~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖) 

𝜆𝑖 = 𝐸 ∙ 𝑒𝛼+𝜷𝒙𝒊, 

where 𝐸 is a constant of offset. The parameter 𝜆𝑖 equals the expectation and variance of 

Poisson distribution:  

𝐸( 𝑌𝑖|𝒙) = 𝜆𝑖 

𝑉𝑎𝑟( 𝑌𝑖|𝒙) = 𝜆𝑖. 

Censoring occurs when the value of 𝑌𝑖  is less than a constant 𝐶, so we define an 

indicator variable 𝑧𝑖 as 

𝑧𝑖 = {
1         𝑖𝑓  𝑌𝑖 ≤ 𝐶

 0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 , 
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and the probability of 𝑧𝑖 = 1 is:  

𝑃(𝑧𝑖 = 1) = 𝑃(𝑌𝑖 ≤ 𝐶) = ∑ 𝑝(𝜆𝑖) = ∑
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!

𝑐

𝑦𝑖=0

𝑐

𝑦𝑖=0

= 𝑄(𝑦𝑖) 

𝑓(𝑦𝑖) =
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
 

The likelihood function of left-censored Poisson regression model is  

𝑓(𝒚|𝛼, 𝛽) = ∏ (
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
)

1−𝑧𝑖

(𝑄(𝑦𝑖))𝑧𝑖𝑛
𝑖=1  ,      (2) 

and the log-likelihood function is 

𝑙𝑜𝑔𝑓(𝒚|𝛼, 𝛽) = ∑ {(1 − 𝑧𝑖)[−𝜆𝑖 + 𝑦𝑖𝑙𝑜𝑔𝜆𝑖 − log(𝑦𝑖!)] + 𝑧𝑖[−𝜆𝑖 + log (∑
𝜆𝑖

𝑦𝑖

𝑦𝑖!

𝑐
𝑦𝑖=0 )]}𝑛

𝑖=1  . 

We applied INLA algorithm to estimate the unknown parameter in equation (2). 

MCMC algorithm also could be used to estimate the parameter, however, it encountered slow 

convergence and numerical instabilities. The procedure of MCMC was shown in Appendix 

A. 

We first defined the posterior distribution of 𝛽 given 𝑦 as 

𝑝(𝛽|𝑦) =
𝑝(𝛼, 𝛽|𝒚)

𝑝(𝛼|𝛽, 𝒚)
∝

𝑓(𝒚|𝛼, 𝛽)𝑝(𝛼)𝑝(𝛽)

𝑝(𝛼|𝛽, 𝒚)
          (3) 

, and the priors of (𝛼, 𝛽) were given by two normal distributions 𝑁(𝜇𝛼0, 𝜎𝛼0
2 ) and 

𝑁(𝜇𝛽0, 𝜎𝛽0
2 ), respectively. According to the Laplace approximation properties, the terms 

depending on 𝛽 in the numerator and denominator (Eq. 3) can cancel out. Thus, we fixed and 
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chose any arbitrary value for 𝛼 in Eq. (3) and a convenient choice is 𝛼 = 𝛼𝑛 as describe in 

Blangiardo’s paper [62]. In order to evaluate the posterior distribution, some 𝛽 are chosen 

based on the grid strategy included in the set {𝛽(𝑗)} and the value of density function is 

computed for each of them as the methods describe in Blangiardo’s et al. [62], 

𝑝(𝛽(𝑗)|𝑦) ∝ 𝑝(𝑦|𝛼 = 𝛼𝑛, 𝛽 = 𝑓(𝛽(𝑗))) ∙ 𝑝(𝛼 = 𝛼𝑛) ∙ 𝑝(𝛽(𝑗)) 

Then we evaluated of the full conditional distribution 𝑝(𝛼|𝛽, 𝒚) for each value of 𝛽 in 

{𝛽(𝑗)} and of 𝛼 in the set of {𝛼(𝑙)} . Thus, we evaluated 𝑝(𝛼 = 𝛼(𝑙)|𝛽 = 𝛽(𝑗), 𝒚). We 

estimated the marginal posterior distribution 𝑝(𝛼|𝒚) by integrating out 𝛽 from the joint 

posterior 𝑝(𝛼, 𝛽|𝒚) through a finite weighted mean as the following equation, where ∆𝑗=

1

∑ 𝑝(𝛽(𝑗)|𝑦)𝑗
: 

𝑝(𝛼 = 𝛼(𝑙)|𝑦) ∝ ∑ 𝑝(𝛼 = 𝛼(𝑙)|𝛽 = 𝛽(𝑗), 𝒚)𝑗 𝑝(𝛽 = 𝛽(𝑗)|𝑦)∆𝑗 . 

We used the R package “INLA” to do the parameter estimations.  

 

Simulation Study  

Simulation Procedure 

First, we simulated the censored count dataset for all three methods using the 

following steps.  

Step 1: Created the independent variables (covariate matrix X) in the censored count 

dataset. We assumed that there were 3 independent variables in the covariate matrix X in our 
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data, which were X1, X2, and X3. Then we assumed that X1, X2, and X3 followed normal 

distributions, which were N(0.05,0.2), N(0.1,0.1), and N(0.2,0.05), respectively. We 

simulated 1000 values in each X1, X2, and X3, so there were 1000 rows and 3 columns (X1, X2, 

and X3) in our covariate matrix X. 

Step 2: Created the outcome variable (Y) in the censored count dataset.  The outcome 

variable Y followed Poisson (𝜆) distribution and  λ = exp(𝑏1 + 𝑏2𝑥1𝑖 + 𝑏3𝑥2𝑖 + 𝑏4𝑥3𝑖 +

𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑒𝑥𝑝 (𝑏𝑋 + 𝑜𝑓𝑓𝑠𝑒𝑡). Offset was the population of the sample size, and in our 

simulation the offset was a constant. When we set up the true value 𝑏1, 𝑏2, 𝑏3, and 𝑏4 as 1, 2, 

3, and 4, respectively, we generated our outcome count variable Y based on true value of b 

and covariate matrix X. We created 1000 values of Y corresponding to 1000 rows of covariate 

matrix X. By doing this, we obtained the complete count dataset including Y, X1, X2, and X3, 

and each variable had 1000 rows. Therefore, the complete dataset was a matrix with 1000 

rows and 4 columns (Y, X1, X2, and X3). 

Step 3: Created censored count dataset. We chose three censored points, which were 

7, 10, and 12, in order to make the censored proportion to be around 10%, around 30%, and 

around 50%, respectively. When Yi was less than the censored point c, which means Yi is 

censored, we made Yi to be the smallest value in censored region (Yi = 1). Then we assigned 

an indicator Z:  Z=1 represented Yi censored (Yi < c), otherwise, Z=0. Then we saved the 

censored count datasets, including censored count outcome Y, independent variables X1, X2, 

X3 and indicator variable Z. Therefore, the censored count dataset was a matrix of 1000 rows 

and 5 columns (Y, X1, X2, X3, and Z). 
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Step 4: Repeated Step 1 to Step 3 for 1000 times to create 1000 censored datasets. 

Second, after creating the censored count datasets, we applied multiple imputation 

method, small area estimation method and censored Poisson regression model method to deal 

with censored count dataset. Then we saved the estimations of each parameter and we 

compared the accuracy of three methods, by using the relative error and bar plots. Relative 

error was represented as follows 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
|𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠−𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒|

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
∗ 100%, 

and bar plots were used to compare the coefficients. 

Application of Multiple Imputation to Simulated Censored Count Datasets 

We applied R packages “mi” and “mice” to perform the multiple imputation on the 

simulated censored count datasets. Function mice() was applied to impute data, then pool() 

function was used to take average of imputed data. After generating the complete dataset, we 

applied Poisson regression model to the complete data and estimated the parameters for 

covariate matrix, whose true values were 𝑏1, 𝑏2, 𝑏3,  and  𝑏4. We calculated the relative error 

for each estimation, then we saved the estimation results for accuracy comparison. 

Application of Small Area Estimation to Simulated Censored Count Datasets  

We applied small area estimation, which used the existing individual demographic 

variables to estimate the unknown outcome observations. We completed the following steps: 

Step 1: Used the demographic variables to estimate the censored count data. We used 

stratified demographic variables, such as age group and race, to build up the model to 
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estimate the censored count data. We used R packages “inla” to do the small area estimation. 

We used function inla() to estimate the full dataset of outcome dataset, then we extracted the 

fitted value from demographic model. According to the indicator variable Z, we identified 

the censored outcome data. 

Step 2: Completed censored outcome data. We tried the following two ways to 

complete the censored part of the dataset. First, we used the estimated Y, even if it exceeded 

the censored point. For example, when the censored point was 7, the values lower than 7 

were censored. When the fitted outcome was 8, we still used 8 to impute the censored value, 

even though 8 was larger than 7. Second, when the estimated Y exceeded the censored point, 

we used the censored point instead of the estimated Y. For example, when the censored point 

was 7, but the imputed value was 8 (larger than 7), we used 7 (the censored point) to impute 

the values instead of 8 (the fitted value). 

Step 3: Estimated the coefficients for covariate matrix. We used Poisson regression 

model to estimate the coefficient of independent variables. We used glm() function to 

manipulate Poisson regression model and estimated the parameters, whose true values were 

𝑏1, 𝑏2,  𝑏3,  and  𝑏4. We repeated 1000 datasets to calculate the average of mean and standard 

deviation for each coefficient.  

We plotted bar plots to show the value of different estimation for small area 

estimation under different censored proportions, which were 7, 10, and 12 mentioned in 

Section 2.4.1. We compared the accuracy of results of parameter estimations by calculating 

the relative errors.  
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Application of Censored Poisson Regression to Censored Count Dataset 

We used R package “INLA” and directly applied a censored Poisson regression model 

to the existing censored count datasets. We used INLA algorithm to estimates the coefficients 

(𝑏1, 𝑏2,  𝑏3,  and 𝑏4), whose true values were 1, 2, 3, and 4, respectively. Then we compared 

the accuracy of this method using relative error, and plotted bar charts to depict the 

estimation results.   
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Case study 

Data Description 

 We wanted to compare the performance of multiple imputation, small area 

estimation, and censored Poisson regression dealing with censored count data using real-

world data. Thus, we applied these three methods to assess the association between heat 

wave and cardiovascular diseases using hospital admission data from Harris County, Texas, 

from 2006 to 2011. In this dataset, we collected the individual-level data for every admission. 

We collected the county-level complete count dataset for cardiovascular disease. In this 

analysis, we considered the estimations using the complete count dataset as our “true value”, 

so that we were able to compare the estimation results for censored count data with the true 

value (estimations under the complete results).  

First, we collected hospital admissions data for the period 2006-2011 from the Texas 

Department of State Health Services. Hospital admission data are individual-level data, 

including gender, age, race, record ID, diagnosis code, patients’ home address and type of 

admission. The diagnosis code represented different diseases (health outcomes) that caused 

hospital admission, and were based on the International Statistical Classification of Diseases 

and Related Health Problems 9th Revision code (known as ICD-9 code). Thus, different 

diseases had different ICD-9 codes, ranging from 100.000 to 999.999. ICD-9 code for 

cardiovascular diseases ranged from 390 to 429. Therefore, if the diagnostic code (ICD-9 

code) fell between 390 and 429, we defined the variable “Cardiovascular” as 1 for the 

corresponding individual, otherwise, “Cardiovascular” was defined as 0. 
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Second, we aggregated hospital admission data for cardiovascular outcomes by Federal 

Information Processing Standard (FIPS) codes at the county level and by admission date 

based on the patient who was diagnosed with cardiovascular disease. After aggregating, there 

were a total of 2,191 rows in Harris County data. The number of individuals who were 

diagnosed with cardiovascular disease by county by date was the outcome in our model. We 

defined different censored values, so that the data had different censored proportion based on 

different censored values. We compared the results under different censored proportions with 

the results using the complete dataset in order to compare the accuracy of different methods 

dealing with censored count data. 

Third, we obtained weather data from the National Center for Climatic Center through 

the Integrated Surface Database [60]. We used the maximum temperature for each day in 

Harris County to analyze how the highest temperature for each day affected the 

cardiovascular outcomes. There were no missing values in maximum temperature data.   

Lastly, we combined the daily hospital admission data with weather extreme data by 

FIPS code and date to get the complete count dataset. In the complete count dataset, our 

health outcome of interest was the number of individuals who were diagnosed with 

cardiovascular disease was the outcome of interest, while the maximum temperature was the 

covariate in the dataset. Because heat waves may affect diseases with several days of delay, 

we added three lag terms in our model. For example, when the lag term equals to 1, the heat 

wave affects the disease one day after the heat wave. In addition, time should be considered 

in our data, and since time could not be taken as linear term, we added polynomial term for 

time effect. In sum, in our case study, the outcome was the number of individuals who were 
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diagnosed with cardiovascular disease for Harris County by date, and the covariates were the 

maximum temperature, the three lag terms for heat effect, and three polynomial terms for 

time. 

Data Analysis 

Before data analysis, we chose different censored points to create different censored 

proportions, so we could compare the estimation results under different censored proportions. 

In this analysis, we chose the censored points equal to 7, 8, 9, 10, 11, 12, 13, and 14, then we 

used these 8 datasets to calculate the estimates and compared the results. 

We applied multiple imputation and small area estimation to impute the censored part 

to 8 datasets with different censored proportions. Then we used Poisson regression model to 

estimate the coefficients of 7 covariates, which are maximum heat, lag 1 for heat, lag 2 for 

heat, lag 3 for heat, polynomial term time 1, polynomial term time 2, and polynomial term 

time 3.  For the censored Poisson regression model, we directly applied the INLA algorithm 

to estimate the coefficients of the 7 covariates.  

To justify the results, we also estimated the coefficients of 7 covariates under the 

condition of complete datasets, which were taken as the true values during comparison. We 

applied Poisson regression model to complete count data to estimate the coefficients under 

the perfect condition (no censored, no missing values in the count datasets). Also, we used 

the “old method” of dealing with censored count data, which considers the censored values 

as missing values. In this method, we directly applied the Poisson regression model to 

censored count data to estimate the coefficients. 
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We plotted the bar plot for each estimated coefficient under 8 different censored 

proportion of following 5 models: (1) Poisson regression model under complete datasets; (2) 

Poisson regression model directly applied to censored count data (censored data with Poisson 

regression model, short as CDPRM); (3) multiple imputation method dealing with censored 

count data (MI method); (4) small area estimation method dealing with censored count data 

(SAE); (5) censored Poisson regression model (CPRM).  

Limitations 

This study has some important limitations. First, we did not identify trends or pattern 

in the fluctuation of relative errors as the censored proportion increased across all methods. 

Second, we used a real-world censored count datasets may generate results than other real-

world censored count datasets. Thus, we only provided a reference instead of a standard for 

determining the best performance under different specific censored proportions. In the future, 

these methods could be applied to additional real-world censored count datasets to identify a 

relatively precise standard for different censored proportions. Third, we used censored count 

datasets that met Poisson distribution assumption, which provided better simulation results 

than real-world results. In the future, more accurate models to deal with censored count data 

with less distribution assumptions could be developed.  

Strengths 

Despite the limitations, this study has some strengths. First, to our knowledge, this 

study is the first to compare all the methods dealing with censored count data considering 

both estimation accuracy and computational efficiency simultaneously. Thus, we identified 
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the best method under different censored proportions, which provides a means for 

determining the best method to use based on the size of the censored count dataset and of the 

censored proportion. Second, we improved computational efficiency of CPRM by using 

INLA algorithm rather than the other typically used algorithms (i.e., MCMC and Newton 

Raphson) [61] for parameter estimates.  
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APPENDICES 

Appendix A 

MCMC Method to estimate the parameters in censored Poisson regression model 

Among Monte Carlo Markov Chain (MCMC) methods, we adopted the Metropolis-

Hasting (M-H) algorithm to estimate the unknown parameters (𝛼, 𝛽). In M-H algorithm, 

equation (3) was the target density 𝑓, equation (4) was used during the calculation. The 

candidate densities 𝑞 are independent normally distributed, which were the priors of (𝛼, 𝛽) .  

M-H algorithm was as follow: 

1. Generated initial values ( 𝛼0, 𝛽0) from two normal distributions, 

𝑁(�̂�, 𝑣𝑎𝑟(�̂�)) and 𝑁(�̂�, 𝑣𝑎𝑟(�̂�)), which could be gained from the regular Poisson 

regression model. 

2. Acceptted this candidate with a probability  

𝑟( 𝛼0, 𝛽0) = min (
𝐿( 𝛼(0), 𝛽(0)

|𝒚)𝑞( 𝛼(𝑡−1),𝛽(𝑡−1))

𝐿( 𝛼(𝑡−1),𝛽(𝑡−1)|𝒚)𝑞( 𝛼(0),𝛽(0))
, 1). 

3. Generated a random number 𝑢 from a uniform distribution 𝑈(0, 1). 

4. If 𝑢 ≤ 𝑟( 𝛼0, 𝛽0), set ( 𝛼(𝑡), 𝛽(𝑡)) =  (𝛼(0), 𝛽(0)). Otherwise, set  ( 𝛼(𝑡), 𝛽(𝑡)) =

 (𝛼(𝑡−1), 𝛽(𝑡−1)) 

, where t represented the times of iterations, ( 𝛼(𝑡), 𝛽(𝑡)) mean the estimated (𝛼, 𝛽) 

from the tth iteration. 𝐿 was the likelihood function, which had the same function as 

𝑓. 𝑟 was the probability of accepting the candidates. 𝑢 was a criterion for judging if 

we could stop the circulation. 
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Abstract  

Background: Poisson regression models are commonly used in the statistical analysis of 

count data, but sometimes data are censored. Previous work usually defined the censored part 

as the missing data and removed them from statistical analysis, which reduced the power 

apparently.  

Methods: The censored Poisson model was developed to analyze the censored count data, 

but the estimating algorithm is hard to reach convergence in practical research. This study 

developed algorithms based on integrated nested Laplace approximation (INLA) for 

estimating unknown parameters in the censored Poisson model. We simulated the censored 

count datasets under different censored proportions and compared the results under different 

censored proportions with the results obtained from Poisson regression model using complete 

count dataset. We applied censored Poisson regression model and INLA algorithm to assess 

the association between heat wave and cardiovascular diseases using hospital admission data 

from Harris County, Texas, from 2006 to 2011 

Results: We found that with the censored proportion getting larger, the estimated 

coefficients of INLA were still close to the true values. The average relative error for the 

estimation is under 1% even the censored proportion was greater than 50%.  

Conclusions The INLA provides an efficient algorithm to conduct accurate estimates in the 

censored Poisson model regardless the proportions of censorship. 

Key words: censored count data, censored Poisson regression model, INLA 
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Introduction 

Poisson regression models are commonly used in the statistical analysis of count data, 

but sometimes data are censored when the number of count observations is below a certain 

value because of confidentiality. Different from data masking containing specific techniques 

to substitute, shuffle, or encrypt accessible data, censored data are hidden when they satisfy 

some conditions. For example, the Illinois Department of Public Health Sexually Transmitted 

Diseases dataset does not  publish sexually transmitted disease data for counties with a 

population less than 15,000 or with a total birth rate less than 300, so the null values in the 

dataset are censored data [1]. Censored counts often appear in the CDC county-level datasets. 

In the Centers for Disease Control and Prevention Lead Poisoning Prevention Program 

surveillance database, the number of children with elevated blood lead levels in each county 

was censored by 5 or less [2].  

Logically, censored data are not missing, but just intentionally masked when people 

want to access them. Hence, regarding censored data as missing data in statistical analysis 

may lead biased results. A study analyzed censored data defined as missing data, and 

concluded that the bias of estimations increases as the proportion of censored data increases 

[3]. Medical research in blood lead level reduction shows that the results of including the 

censored data are more reasonable than the ones excluding the censored data [4, 5].  

Censorship has been taken care in survival analysis, whatever times to death [6] or 

times to infection [7], while the development in the Poisson regression model is still limited. 

In 1985, Terza first defined the censored Poisson regression model, and used the Newton-

Raphson algorithm to estimate unknown parameters [8]. The author compared the results 
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with Frome’s paper [6], in which excluded the censored data, and found a bias in excess of 

100% when censoring ignored. A couple of studies had applied the Newton-Raphson method 

to estimate unknown parameters of censored generalized Poisson regression model [7].  

Because the log likelihood function of the censored Poisson model has no close form 

to obtain the maximum likelihood estimates of unknown parameters, applying an iteration 

algorithm is reasonable. The Newton-Raphson method can conveniently find better 

approximations to the zero of a log likelihood function; however, estimates may not reach 

convergence because of the nonlinear nature of a problem [9]. Along with the application of 

Bayesian inference, Monte Carlo Markov Chain (MCMC) simulation technique becomes a 

surrogate of the Newton-Raphson method when priors can be pre-determined [10]. However, 

MCMC is computationally intensive in complex models; thus, a new method called 

integrated nested Laplace approximation (INLA) was developed to provide a more efficient 

algorithm with a lower computational burden [10].  

In this paper, we developed the censored Poisson regression model to deal with 

censored count data under different censored proportions, and used INLA methods to 

estimate unknown parameters. A simulation was proposed to compare the performance of 

INLA algorithm with true values under different censored proportions. In addition, we 

applied INLA algorithm in censored Poisson regression model to real-world censored count 

datasets under different censored proportions to assess the association between heat wave and 

cardiovascular diseases using hospital admission data from Harris County, Texas, from 2006 

to 2011. 
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Methods 

Statistical Model and Parameter Estimation 

We derived the censored Poisson regression model from the Poisson regression 

model. Suppose a response variable 𝑌𝑖 represents count data, and follows a Poisson 

distribution with a parameter 𝜆𝑖, which can be predicted by covariates 𝒙𝒊 =

(𝑥1, 𝑥2, 𝑥3 … ).  For the Poisson regression model, we have the following equations: 

𝑙𝑜𝑔𝜆 = 𝜷𝒙 + 𝑙𝑜𝑔𝐸 

𝑦𝑖|𝛼, 𝜷, 𝒙𝒊~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖) 

𝜆𝑖 = 𝐸 ∙ 𝑒𝛼+𝜷𝒙𝒊, 

where 𝐸 is a constant of offset. The parameter 𝜆𝑖 equals the expectation and variance of 

Poisson distribution:  

𝐸( 𝑌𝑖|𝒙) = 𝜆𝑖 

𝑉𝑎𝑟( 𝑌𝑖|𝒙) = 𝜆𝑖. 

Censoring occurs when the value of 𝑌𝑖  is less than a constant 𝐶, so we define an 

indicator variable 𝑧𝑖 as 

𝑧𝑖 = {
1         𝑖𝑓  𝑌𝑖 ≤ 𝐶

 0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 , 

and the probability of 𝑧𝑖 = 1 is:  
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𝑃(𝑧𝑖 = 1) = 𝑃(𝑌𝑖 ≤ 𝐶) = ∑ 𝑝(𝜆𝑖) = ∑
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!

𝑐

𝑦𝑖=0

𝑐

𝑦𝑖=0

= 𝑄(𝑦𝑖) 

𝑓(𝑦𝑖) =
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
 

The likelihood function of left-censored Poisson regression model is  

𝑓(𝒚|𝛼, 𝛽) = ∏ (
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
)

1−𝑧𝑖

(𝑄(𝑦𝑖))𝑧𝑖𝑛
𝑖=1  ,      (2) 

and the log-likelihood function is 

𝑙𝑜𝑔𝑓(𝒚|𝛼, 𝛽) = ∑ {(1 − 𝑧𝑖)[−𝜆𝑖 + 𝑦𝑖𝑙𝑜𝑔𝜆𝑖 − log(𝑦𝑖!)] + 𝑧𝑖[−𝜆𝑖 +𝑛
𝑖=1

log (∑
𝜆𝑖

𝑦𝑖

𝑦𝑖!

𝑐
𝑦𝑖=0 )]} (3). 

We applied INLA algorithm to estimate the unknown parameter in equation (3). We 

first defined the posterior distribution of 𝛽 given 𝑦 as 

𝑝(𝛽|𝑦) =
𝑝(𝛼, 𝛽|𝒚)

𝑝(𝛼|𝛽, 𝒚)
∝

𝑓(𝒚|𝛼, 𝛽)𝑝(𝛼)𝑝(𝛽)

𝑝(𝛼|𝛽, 𝒚)
          (3) 

, and the priors of (𝛼, 𝛽) were given by two normal distributions 𝑁(𝜇𝛼0, 𝜎𝛼0
2 ) and 

𝑁(𝜇𝛽0, 𝜎𝛽0
2 ), respectively. According to the Laplace approximation properties, the terms 

depending on 𝛽 in the numerator and denominator (Eq. 3) can cancel out. Thus, we fixed and 

chose any arbitrary value for 𝛼 in Eq. (3) and a convenient choice is 𝛼 = 𝛼𝑛 as describe in 

Blangiardo’s paper [11]. In order to evaluate the posterior distribution, some 𝛽 are chosen 
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based on the grid strategy included in the set {𝛽(𝑗)} and the value of density function is 

computed for each of them as the methods describe in Blangiardo’s et al. [12], 

𝑝(𝛽(𝑗)|𝑦) ∝ 𝑝(𝑦|𝛼 = 𝛼𝑛, 𝛽 = 𝑓(𝛽(𝑗))) ∙ 𝑝(𝛼 = 𝛼𝑛) ∙ 𝑝(𝛽(𝑗)) 

Then we evaluated of the full conditional distribution 𝑝(𝛼|𝛽, 𝒚) for each value of 𝛽 in 

{𝛽(𝑗)} and of 𝛼 in the set of {𝛼(𝑙)} . Thus, we evaluated 𝑝(𝛼 = 𝛼(𝑙)|𝛽 = 𝛽(𝑗), 𝒚). We 

estimated the marginal posterior distribution 𝑝(𝛼|𝒚) by integrating out 𝛽 from the joint 

posterior 𝑝(𝛼, 𝛽|𝒚) through a finite weighted mean as the following equation, where ∆𝑗=

1

∑ 𝑝(𝛽(𝑗)|𝑦)𝑗
: 

𝑝(𝛼 = 𝛼(𝑙)|𝑦) ∝ ∑ 𝑝(𝛼 = 𝛼(𝑙)|𝛽 = 𝛽(𝑗), 𝒚)𝑗 𝑝(𝛽 = 𝛽(𝑗)|𝑦)∆𝑗 . 

We used the R package “INLA” to do the parameter estimations.  

Simulation Study 

Figure 1 shows how we simulated the censored dataset in a flow chart. We simulated 

the censored count datasets using the following steps: 

Step 1: Created the independent variables (covariate matrix X) in the censored count 

dataset. We assumed that there were 3 independent variables in the covariate matrix X in our 

data, which were X1, X2, and X3. Then we assumed that X1, X2, and X3 followed normal 

distributions, which were N(0.05,0.2), N(0.1,0.1), and N(0.2,0.05), respectively. We 

simulated 1000 values in each X1, X2, and X3, so there were 1000 rows and 3 columns (X1, X2, 

and X3) in our covariate matrix X. 
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Step 2: Created the outcome variable (Y) in the censored count dataset.  The outcome 

variable Y followed Poisson (𝜆) distribution and  λ = exp(𝑏1 + 𝑏2𝑥1𝑖 + 𝑏3𝑥2𝑖 + 𝑏4𝑥3𝑖 +

𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑒𝑥𝑝 (𝑏𝑋 + 𝑜𝑓𝑓𝑠𝑒𝑡). Offset was the population of the sample size, and in our 

simulation the offset was a constant. When we set up the true value 𝑏1, 𝑏2, 𝑏3, and 𝑏4 as 1, 2, 

3, and 4, respectively, we generated our outcome count variable Y based on true value of b 

and covariate matrix X. We created 1000 values of Y corresponding to 1000 rows of covariate 

matrix X. By doing this, we obtained the complete count dataset including Y, X1, X2, and X3, 

and each variable had 1000 rows. Therefore, the complete dataset was a matrix with 1000 

rows and 4 columns (Y, X1, X2, and X3). 

Step 3: Created censored count dataset. We chose three censored points, which were 

7, 10, and 12, in order to make the censored proportion to be around 10%, around 30%, and 

around 50%, respectively. When Yi was less than the censored point c, which means Yi is 

censored, we made Yi to be the smallest value in censored region (Yi = 1). Then we assigned 

an indicator Z:  Z=1 represented Yi censored (Yi < c), otherwise, Z=0. Then we saved the 

censored count datasets, including censored count outcome Y, independent variables X1, X2, 

X3 and indicator variable Z. Therefore, the censored count dataset was a matrix of 1000 rows 

and 5 columns (Y, X1, X2, X3, and Z). 

Step 4: Repeated Step 1 to Step 3 for 1000 times to create 1000 censored datasets. 

After creating 1000 censored count datasets, we applied censored Poisson regression 

to the 1000 simulated censored count datasets and used INLA algorithm to estimate the 

coefficient of covariate matrix X. Then we took the average of each estimations for 1000 
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datasets as the estimation of covariate matrix X and the average of standard errors of the 

parameter estimations as the standard deviation.  

We used the relative error to compare the estimation results with true values for 

censored Poisson regression model. Relative error was represented as follows 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
|𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠−𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒|

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
∗ 100%. 

 

Case Study 

We applied censored Poisson Regression model to assess the association between heat 

wave and cardiovascular diseases using hospital admission data from Harris County, Texas, 

from 2006 to 2011. In this dataset, we collected the individual-level data for every admission. 

We collected the county-level complete count dataset for cardiovascular disease. In this 

analysis, we considered the estimations using the complete count dataset as our “true value”, 

so that we were able to compare the estimation results for censored count data with the true 

value (estimations under the complete results).  

First, we collected hospital admissions data for the period 2006-2011 from the Texas 

Department of State Health Services. Hospital admission data are individual-level data, 

including gender, age, race, record ID, diagnosis code, patients’ home address and type of 

admission. The diagnosis code represented different diseases (health outcomes) that caused 

hospital admission, and were based on the International Statistical Classification of Diseases 

and Related Health Problems 9th Revision code (known as ICD-9 code). Thus, different 
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diseases had different ICD-9 codes, ranging from 100.000 to 999.999. ICD-9 code for 

cardiovascular diseases ranged from 390 to 429. Therefore, if the diagnostic code (ICD-9 

code) fell between 390 and 429, we defined the variable “Cardiovascular” as 1 for the 

corresponding individual, otherwise, “Cardiovascular” was defined as 0. 

Second, we aggregated hospital admission data for cardiovascular outcomes by Federal 

Information Processing Standard (FIPS) codes at the county level and by admission date 

based on the patient who was diagnosed with cardiovascular disease. After aggregating, there 

were a total of 2,191 rows in Harris County data. The number of individuals who were 

diagnosed with cardiovascular disease by county by date was the outcome in our model. We 

defined different censored values, so that the data had different censored proportion based on 

different censored values. We compared the results under different censored proportions with 

the results using the complete dataset in order to compare the accuracy of different methods 

dealing with censored count data. 

Third, we obtained weather data from the National Center for Climatic Center through 

the Integrated Surface Database [13]. We used the maximum temperature for each day in 

Harris County to analyze how the highest temperature for each day affected the 

cardiovascular outcomes. There were no missing values in maximum temperature data.   

Lastly, we combined the daily hospital admission data with weather extreme data by 

FIPS code and date to get the complete count dataset. In the complete count dataset, our 

health outcome of interest was the number of individuals who were diagnosed with 

cardiovascular disease was the outcome of interest, while the maximum temperature was the 
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covariate in the dataset. Because heat waves may affect diseases with several days of delay, 

we added three lag terms in our model. For example, when the lag term equals to 1, the heat 

wave affects the disease one day after the heat wave. In addition, time should be considered 

in our data, and since time could not be taken as linear term, we added polynomial term for 

time effect. In sum, in our case study, the outcome was the number of individuals who were 

diagnosed with cardiovascular disease for Harris County by date, and the covariates were the 

maximum temperature, the three lag terms for heat effect, and three polynomial terms for 

time. 

Before data analysis, we chose different censored points to create different censored 

proportions, so we could compare the estimation results under different censored proportions. 

In this analysis, we chose the censored points equal to 7, 8, 9, 10, 11, 12, 13, and 14, then we 

used these 8 datasets to calculate the estimates and compared the results. 

We applied censored Poisson regression model to 8 datasets with different censored 

proportions. Then we used INLA algorithm to estimate the coefficients of 7 covariates, 

which are maximum heat, lag 1 for heat, lag 2 for heat, lag 3 for heat, polynomial term time 

1, polynomial term time 2, and polynomial term time 3. 

To justify the results, we also estimated the coefficients of 7 covariates under the 

condition of complete datasets, which were taken as the true values during comparison. We 

compared the estimation results from censored Poisson regression model with the estimation 

results from the complete datasets using relative errors, which were described in simulation 

study section. 
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Results 

Simulation Study 

Tables 1 presents the simulation results of censored Poisson regression method under 

different proportions of censored count datasets. We chose the censored point equal to 7, 10, 

and 12, resulting in censored proportion by 7.9%, 33.6%, and 54.1%, respectively. 

When the censored proportion was 7.9%, 33.6%, and 54.1%, the average relative 

errors of parameter estimations were 0.21%, 0.32%, and 0.41%, respectively (shown in Table 

1). When the censored proportion was increasing, the relative error of the parameter 

estimation was increasing. Although the censored proportion was greater than 50%, the 

relative error for censored Poisson regression model was still less than 1%. The standard 

deviation for each parameter estimation remained the same as the censored proportion was 

increasing.  

Case Study  

Table 2 – Table 3 present the case study results of the censored Poisson regression 

model to compare the accuracy of the parameter estimations under different censored 

proportions. We chose the censored points equal to 7, 8, 9, 10, 11, 12, 13, and 14, resulting in 

censored proportion by 4.56%, 8.08%, 12.96%, 20.41%, 28.07%, 37.88%, 48.65%, and 

59.33%, respectively.  

Table 1 presents the results when the censored proportion were 4.56%, 8.08%, 

12.96%, and 20.41% comparing the results with complete data using censored Poisson 

regression model. The average relative errors of censored Poisson regression model were 
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20.99%, 21.07%, 16.21%, and 8.63%, respectively (shown in Table 3). The average relative 

error was around 16% when the censored proportion under 25% (data was not shown on the 

table). The standard deviation remained the same when the censored proportion was 

increasing. The signs of parameter estimation of time3 (polynomial term for time) were 

opposite from the true value when the censored proportions were greater than 12.96%. Since 

this polynomial term was an adjustment term for time effect and time 3 did not carry any 

concrete information, the opposite sign could be acceptable in this situation.  

Table 3 presents the results when the censored proportion were 28.07%, 37.88%, 

48,65%, and 59.33% comparing the results with complete data using censored Poisson 

regression model. The average relative errors of censored Poisson regression model were 

78.91%, 154.38%, 151.21%, and 98.90%, respectively (shown in Table 3). Comparing with 

the results under the censored proportion less than 20.41%, the relative errors were 

dramatically increasing and fluctuated. The standard deviation still remained the same when 

the censored proportion was increasing. The signs of parameter estimation of time3 

(polynomial term for time) were still opposite from the true value when the censored 

proportions were greater than 12.96%. The sign of Max Heat turned to the opposite side 

since the censored proportion was larger than 37.88%, which would provide an opposite 

effect when analyzing the association between maximum heat and hospitalization. Thus, the 

estimation results under the censored proportion greater than 37.88% were not reasonable in 

this real-world censored count dataset. 

Discussion 
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In our simulation study, the simulated censored count data represented an ideal 

scenario, in which the outcome variable followed a Poisson distribution with a controlled 

mean and variance (the mean was equal to the variance).Under this condition, the censored 

Poisson regression model performed exceptionally well (relative error less than 1%) even 

when the censored proportion was greater than 50% censored proportion. 

In our case study, we assessed the association between heat wave temperature and 

hospitalization due to cardiovascular diseases in Harris County, Texas, from 2006 to 2011. 

When the censored proportion was less than 30%, censored Poisson regression model had the 

average relative error less than 20%. Since censored Poisson regression model directly dealt 

with censored count data without imputing or deleting, so it kept all the information of the 

censored count datasets.  

The relative errors for censored Poisson regression model were less than 1% even 

when the censored proportions were greater than 50% in the simulated censored count 

datasets, while in the real-world censored count datasets, the relative error dramatically 

increased (from 16% to 80%) when the censored proportion was larger than 30%. This 

finding indicates a weakness of censored Poisson regression model. Censored Poisson 

regression model is restricted by the distribution assumption of the censored count datasets. 

In simulated censored count datasets, the outcomes followed a Poisson distribution, but in the 

real-world censored count datasets, the outcomes cannot reach the ideal scenario. Thus, the 

relative errors of censored Poisson regression fluctuated when the censored proportion 

exceeded 30%.  Second, the censored Poisson regression had the censored proportion 

limitations. When the censored proportion exceeds some value (in this paper, the censored 
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proportion was greater than 37.88%), we cannot rely on the estimations results of censored 

Poisson regression.  

Despite the limitations, this study has some strengths. First, we found that censored 

Poisson regression model had stable performances under different censored proportions, 

especially under the censored proportion of 30% in real-world data, which provided a strong 

method to deal with censored count datasets in spatial analysis. Second, we improved 

computational efficiency of Censored Poisson regression model by using INLA algorithm 

rather than the other typically used algorithms (i.e., MCMC and Newton Raphson) [10] for 

parameter estimates.  

In conclusion, censored Poisson regression model had stable and accurate estimations 

dealing with censored count data under different censored proportions, especially under the 

censored proportion less than 30%. In the future, we could compare more different methods 

to deal with censored count data and compare the results of parameter estimations, in order to 

find a most accurate and efficient method to deal with censored datasets.   
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Tables for Journal Article #1 

Table 1. Simulation results for censored Poisson regression model under different censored 

proportions 

 

Table 2. Case study results for censored Poisson regression model under different censored 

proportions 

 

 

Table 3. Case study results for censored Poisson regression model under different censored 

proportions 
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Figures for Journal Article #1 

 

Figure 1. Flow Chart for Simulating Censored Dataset 
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Abstract  

Background: Count data are typically used to report frequency statistics of diverse health 

outcomes. However, some data are marked on purpose to avoid leaking information that 

could be used to identify individuals when population sizes are small. The situation hinders 

the further use from those data in public health research. Thus, an accurate and efficient 

method for dealing with censored count data is needed. 

Methods: We applied three methods 1) multiple imputation (MI) method; 2) small area 

estimation (SAE) method; 3) censored Poisson regression model (CPRM) method on both 

simulated censored count datasets and real-world censored count datasets to the association 

between heat wave and cardiovascular diseases using hospital admission data from Harris 

County, Texas, from 2006 to 2011 under different censored proportions. We calculated the 

relative errors, depicted graph the bar charts, and recorded the computational time to 

compare the accuracy and efficiency of these three methods.  

Results:  In the simulation study, we found that CPRM had the lowest relative error and MI 

method had the shortest computational time. In the case study, when the censored proportion 

was less than 30%, CPRM had the best accuracy, but when the censored proportion was 

greater than 30% but less than 40%, SAE yielded the most accurate parameter estimates of 

all the methods.  

Conclusions: By balancing the computational time and estimation accuracy, CPRM is the 

most appropriate method to deal with censored count data.  
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Key words: censored count data, censored Poisson regression model, multiple 

imputation (MI), small area estimation (SAE) 

Introduction 

In public health, count data sets are commonly used to report statistics related to 

emerging or existing health problems, and play a significant role in biostatistics. In fact, most 

health reports published by the U.S. Centers for Disease Control and Prevention (CDC) are 

based on count data. For example, the CDC’s Birth Defects Countries and Organizations 

United for Neural Tube Defects Prevention initiative reports that 3,000 pregnancies in the 

United States are affected by neural tube defects each year [1] and estimates that folic acid 

fortification may reduce the prevalence of neural tube defects by 50% or more. In this case, 

count data sets are being used to help prevent neural tube defects, and associated morbidity 

and mortality rates. In addition, the CDC reports count data for cases of Lyme disease by 

county, state, and year, which allows the prevalence of Lyme disease to be analyzed 

geographically and temporally. Data show that cases of Lyme disease are concentrated in the 

Northeast and Upper Midwest regions of the United States, which enables targeting of 

prevention efforts, i.e., those states with a higher prevalence of Lyme disease can dedicate 

more resources to prevent it [2]. 

One situation commonly exists in the count data in public health, especially for 

spatial analysis, is the censored situation in the count data sets. In spatial analysis, the 

majority of censored situations are left censored, which means that a data point is below a 

certain value, but it is unknown by how much [3]. For example, in the CDC’s Childhood 
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Lead Poisoning Prevention Program surveillance database, the number of children with 

elevated blood lead levels in each county is censored by 5 or less [4]. 

In previous studies, censored data were considered as missing, however, censored 

data are not actually missing, but just intentionally masked, which may lead to biased results.  

For example, a study applying the Cox regression model on the reduction of blood lead levels 

shows that the results with the censored data are less biased than those without the censored 

data [5, 6]. Even in the simple linear regression model, removing the censored data could 

cause the bias in the estimation [7]. Furthermore, in a study of hypertension treatment using 

the generalized hierarchical multivariate conditional autoregressive model, when 24 censored 

data points were considered missing, 80% of patients completed the protocol with effective 

control of hypertension and no side effects; however, when the censored data were accounted 

for, the percentage of patients was 44% instead of 80% [8, 9].  

In this study, we want to apply three methods dealing with censored count data and 

find the most accurate the efficient method. One way to deal with the censored count data is 

the multiple imputation method. The mission of multiple imputation is to create a complete 

data set, then statistical models could be used as usual. Imputation method was first 

developed to deal with missing data problem in the 1980s [10,11]. Compared with the mean 

imputation method multiple imputation methods had a better performance and was applied in 

public health research data [12]. In addition, the multiple imputation method has been 

developed to solve advanced missing data problems, such as nonparametric multiple 

imputation, multilevel multiple imputation, and so on [13-17]. In this paper, we applied 

multiple imputation method to censored count data instead of missing data. 
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A second way to deal with the censored part of the count data, which is frequently 

used in the spatial analysis, is the small area estimation method. Small area estimation is used 

when traditional demographic sample surveys designed for national estimates do not provide 

large enough samples to produce reliable direct estimates for small areas such as counties. 

The statistical methods using for small area estimation developed dramatically in recent 

years.  Bayesian unit-level model estimates the prevalence of diabetes at each county in the 

U.S. [18]. This model can analyze the prevalence for each county level considering different 

independent variable layers. For example, the method could estimate the prevalence for the 

specific county, specific gender and specific age group. Then the model was extended by 

changing the distribution of the prevalence from Poisson to Binomial, and estimated the 

diabetes incidence for each county by different layers [19]. A research on chronic obstructive 

pulmonary disease (COPD) developed a multilevel logistic model to generate small-area 

estimates of the prevalence of COPD in different geographic unites [20]. An analysis of the 

drinking pattern used a spatiotemporal model to estimate county-level alcohol use prevalence 

in the U.S [21]. This method considered spatial and temporal information as covariates to 

improve the predictions of all areas, as long as the area with limited sample sizes.  

 The third way to deal with the censored count data is censored Poisson regression 

model. The model was first developed by Terza (1985) and Newton-Raphson algorithm was 

used to estimate unknown parameters [22]. Famoye and Wang (2004) expanded the censored 

Poisson regression model to the censored generalized Poisson regression model to handle 

censored data with over-dispersion or under-dispersion [23]. They used an iterative algorithm 

to get the maximum likelihood estimators, but they did not specify the iterative algorithm 
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used. Mahmoud (2010) also developed a censored generalized Poisson regression model 

using a method similar to Famoye and Wang’s method by adopting the Newton-Raphson 

algorithm [24]. In this paper, we used integrated nested Laplace approximation (INLA) to 

estimate unknown parameters in censored Poisson regression to deal with censored count 

data. 

 In this paper, we compared the estimation results and the computational time of three 

different methods, which are MI, SAE and CPRM dealing with both simulation censored 

count datasets and real-world censored count datasets under different censored proportions, 

in order to find the most accurate and efficient method to prevent diseases by better 

determine the risk factors and know the patterns of disease. 

Methods 

Statistical Methods 

Multiple Imputation 

The multiple imputation method uses a set of values replacing the missing values instead 

of using a single value for each missing datum. The “mi” or “mice” R packages are usually 

used to perform multiple imputation. In these R packages, Bayesian models were used to 

impute the data more precisely by giving multiple values than single values. Based on 

different properties for different data type, R packages provided different functions, i.e., if 

the data were binary, mi.binary() function was used; if the data were count data, mi.count() 

function was used.  
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We used multiple imputation to impute the censored count instead of missing data. We 

applied multiple imputation to simulated censored count dataset and real-world count dataset. 

We performed the following steps to impute the censored count data: 

Step 1: Simulated the censored values independently using the estimated mean vector and 

covariance matrix. Censored observation (observation without values) was represented by 

𝑌𝑖(𝑐𝑒𝑛), While the observation with value was represented by 𝑌𝑖(𝑜𝑏𝑠) . An imputed 𝑌𝑖(𝑐𝑒𝑛) was 

drawn from a conditional distribution 𝑌𝑖(𝑐𝑒𝑛)|𝑌𝑖(𝑜𝑏𝑠). 

Step 2: Simulated the posterior population mean vector and covariance matrix X from the 

complete sample estimates using a non-informative prior, which was built in R packages.  

Step 3: Repeated step 1 and step 2 for 5 times as recommended by Robin (1987) [58], 

which was built in R packages. 

Step 4: Used the Poisson regression model with covariance matrix X and Y to impute the 

censored observation 𝑌𝑖(𝑐𝑒𝑛). 

Step 5: Averaged the values and the standard errors of the parameter estimations across 

the censored value samples in order to obtain a single point estimate.  

R packages “mi” and “mice” were applied to generate the values for the censored 

outcomes in order to produce the complete datasets. After generating the complete datasets, 

we used the Poisson regression model to estimate the coefficients of covariate matrix X.  

Small Area Estimation 
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The small area estimation method is a method commonly used in spatial analysis to 

estimate the unknown value for small counties. The idea of small area estimation uses the 

known observations of an outcome to estimate the unknown observations by the stratified 

demographic variables (e.g., age, gender, and race). We used small area estimation to 

estimate the censored count data by stratified demographic variables.  

We assumed 𝑌𝑖𝑗𝑘𝑐 as the count of an outcome variable (e.g. the number of cases) at 

age group 𝑖, race 𝑗, gender 𝑘 in county 𝑐, which follows a Poisson distribution with a mean of 

𝜆𝑖𝑗𝑘𝑐.  Thus, the model was specified as follows,  

𝑙𝑜𝑔(𝜆𝑖𝑗𝑘𝑐) = 𝛼 + 𝛽1𝑖 + 𝛽2𝑗 + 𝛽3𝑘 + 𝑓𝑠𝑝𝑎𝑡(𝑐) + 𝑙𝑜𝑔 (𝑛𝑖𝑗𝑘𝑐),         (1)                                

where 𝛽1𝑖 ,𝛽2𝑗, and 𝛽3𝑘 were fix effects for age, race, and gender, respectively. The spatial 

function 𝑓𝑠𝑝𝑎𝑡(𝑐) was Markov random fields following an intrinsic conditional 

autoregressive prior [61]. The last term 𝑙𝑜𝑔 (𝑛𝑖𝑗𝑘𝑐) was an offset corresponding to the 

logarithm of the at-risk population index by 𝑖, 𝑗, 𝑘, and c (the total number of individuals 

corresponding to 𝑌𝑖𝑗𝑘𝑐).  We applied INLA algorithm described in Cadwell et al. [45] to 

estimate the censored count data.  

 We defined 𝑁𝑖𝑗𝑘𝑐  and 𝑌𝑖𝑗𝑘𝑐  in equation (1) as age-race-gender-county specific at-risk 

population and those with the specific outcome, respectively. Thus, we derived 𝑍𝑖𝑗𝑘𝑐, the 

number of unobserved individuals (the censored cases) with the specific outcome, indexed by 

age, race, gender, and county straightforwardly. The sum of the observed and unobserved 

cases,  𝑌𝑖𝑗𝑘𝑐  + 𝑍𝑖𝑗𝑘𝑐, was the total count of the outcome, where 
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𝑍𝑖𝑗𝑘𝑐|𝑌𝑖𝑗𝑘𝑐 , 𝑛𝑖𝑗𝑘𝑐 , 𝑁𝑖𝑗𝑘𝑐~ Poisson (𝜇𝑖𝑗𝑘𝑐). 

The parameter 𝛶𝑖𝑗𝑘𝑐 was defined as 

𝛶𝑖𝑗𝑘𝑐 = (
�̂�𝑖𝑗𝑘𝑐

𝑛𝑖𝑗𝑘𝑐
) × (𝑁𝑖𝑗𝑘𝑐 − 𝑛𝑖𝑗𝑘𝑐) =

exp(�̂� + �̂�1𝑖 + �̂�2𝑗 + �̂�3𝑘 + 𝑓𝑠𝑝𝑎𝑡(𝑐))

𝑛𝑖𝑗𝑘𝑐
× 

(𝑁𝑖𝑗𝑘𝑐 − 𝑛𝑖𝑗𝑘𝑐).  

We applied the small area estimation method to estimate the censored count data, and 

then analyzed the data with the Poisson regression model to estimate the coefficient of all the 

covariates.  

Simulation Study and Case Study 

 The procedure of simulating the censored count datasets was shown in the previous 

section. For multiple imputation method, we applied R packages “mi” and “mice” to perform 

the multiple imputation on the simulated censored count datasets. Function mice() was 

applied to impute data, then pool() function was used to take average of imputed data. After 

generating the complete dataset, we applied Poisson regression model to the complete data 

and estimated the parameters for covariate matrix, whose true values were 𝑏1, 𝑏2, 𝑏3,  and  𝑏4. 

We calculated the relative error for each estimation, then we saved the estimation results for 

accuracy comparison. 

For small area estimation methods, we used the existing individual demographic 

variables to estimate the unknown outcome observations. We completed the following steps: 
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Step 1: Used the demographic variables to estimate the censored count data. We used 

stratified demographic variables, such as age group and race, to build up the model to 

estimate the censored count data. We used R packages “inla” to do the small area estimation. 

We used function inla() to estimate the full dataset of outcome dataset, then we extracted the 

fitted value from demographic model. According to the indicator variable Z, we identified 

the censored outcome data. 

Step 2: Completed censored outcome data. We tried the following two ways to 

complete the censored part of the dataset. First, we used the estimated Y, even if it exceeded 

the censored point. For example, when the censored point was 7, the values lower than 7 

were censored. When the fitted outcome was 8, we still used 8 to impute the censored value, 

even though 8 was larger than 7. Second, when the estimated Y exceeded the censored point, 

we used the censored point instead of the estimated Y. For example, when the censored point 

was 7, but the imputed value was 8 (larger than 7), we used 7 (the censored point) to impute 

the values instead of 8 (the fitted value). 

Step 3: Estimated the coefficients for covariate matrix. We used Poisson regression 

model to estimate the coefficient of independent variables. We used glm() function to 

manipulate Poisson regression model and estimated the parameters, whose true values were 

𝑏1, 𝑏2,  𝑏3,  and  𝑏4. We repeated 1000 datasets to calculate the average of mean and standard 

deviation for each coefficient.  

For censored Poisson regression model, we used R package “INLA” and directly 

applied a censored Poisson regression model to the existing censored count datasets. We used 
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INLA algorithm to estimates the coefficients (𝑏1, 𝑏2,  𝑏3,  and 𝑏4), whose true values were 1, 

2, 3, and 4, respectively. Then we compared the accuracy of this method using relative error, 

and plotted bar charts to depict the estimation results.  

Case study datasets are the same as the methods describe, we first complied the 

individual level admission data to county level data. Second, we chose different censored 

point to make different censored proportion. We compared the results from the following 5 

models: (1) Poisson regression model under complete datasets; (2) Poisson regression model 

directly applied to censored count data (censored data with Poisson regression model, short 

as CDPRM); (3) multiple imputation method dealing with censored count data (MI method); 

(4) small area estimation method dealing with censored count data (SAE); (5) censored 

Poisson regression model (CPRM).  

We plotted bar plots to show the value of different estimation for small area estimation 

under different censored proportions for both simulation and case study. We compared the 

accuracy of results of parameter estimations by calculating the relative errors. We used R 

version 3.2.3 for all the statistical analysis.  

Results 

Simulation Study 

Tables 1 presents the simulation results of the multiple imputation method, small area 

estimation method, and censored Poisson regression method to compare the accuracy of the 

estimation of parameters under different proportions of censored count datasets. We chose 
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the censored point equal to 7, 10, and 12, resulting in censored proportion by 7.9%, 33.6%, 

and 54.1%, respectively. 

When the censored proportion was 7.9%, the average relative error of MI, SAE, and 

CPRM were 9.13%, 4.93%, and 0.21%, respectively (shown in Table 2). MI had the largest 

relative error in all estimated parameters, while CPRM had the smallest relative error. Across 

the three methods, the standard deviations were similar for b0 to b2. For b3, however, the 

standard deviation for MI was larger than that for SAE and CPRM. In terms of computational 

time among the three methods, SAE had longest time (124.11s, data not shown in the table), 

whereas MI had the shortest time (19.30s, data not shown in the table). The average 

computational time for MI, SAE, and CPRM for different censored proportions was shown in 

table 1.  

When the censored proportion was 33.6%, the average relative error of MI, SAE, and 

CPRM were 33.62%, 6.01%, and 0.32%, respectively (shown in Table 2). When the censored 

proportion was 54.1%. The average relative error of MI, SAE, and CPRM were 52.88%, 

33.00%, and 0.41%, respectively (shown in Table 2). Across different censored proportions, 

MI had the largest relative error in all estimated parameters, while CPRM had the smallest 

relative error. Even under the censored proportion of 50%, the relative errors for CPRM were 

still less than 1%. Across the three methods, the standard deviations were similar for b0 to b2. 

For b3, however, the standard deviation for MI was larger than that for SAE and CPRM. In 

terms of computational time among the three methods across different censored proportions, 

SAE had longest time, where MI had the shortest time.  
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To facilitate the comparison of parameter estimation across methods, Appendix 

Figure 1 shows the bar plot for all three methods under different censored proportions. 

Appendix Figure 2 shows the bar plot for the standard deviation for parameter estimations 

across three methods under different censored proportions.  

Case Study  

Figures 1-8 present the case study results of the following five methods: (1) Poisson 

regression model (2) censored data PRM (3) MI (4) SAE (5) CPRM to compare the accuracy 

of the parameter estimations under different censored proportions. We chose the censored 

points equal to 7, 8, 9, 10, 11, 12, 13, and 14, resulting in censored proportion by 4.56%, 

8.08%, 12.96%, 20.41%, 28.07%, 37.88%, 48.65%, and 59.33%, respectively. The details of 

the results shows in Appendix Table 1 – Table 8. 

Figure 1 presents the results when the censored proportion was 4.56%. The average 

relative error of censored data PRM, MI, SAE, and CPRM were 77.39%, 126.58%, 86.58%, 

and 20.99%, respectively (shown in Table 3). MI had the largest relative error in all 

estimated parameters, while CPRM had the smallest relative error.  Because the estimation of 

the parameters were quite small (i.e., the coefficient for Max Heat is 0.0001) in our complete 

data, the relative error was large under this situation (when the true value is small). However, 

the relative error still could provide a standard for judging the accuracy of different methods, 

at the same time, we need to consider the sign of the estimation, since relative error is an 

absolute value. The signs of the coefficient estimation for MI and CPRM were the same as 

that of the true values. The sign of lag1heat for censored data PRM was the opposite from the 
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true value and the sign of lag1heat and time3 were opposite from the true value  Across the 

four methods, the standard deviations were similar for Max Heat, lag1heat, lag2heat, 

lag3heat, time1, and time2 with the standard deviations of true values. For time3, however, 

the standard deviation for censored data CPM was smaller than the other methods, which 

have the similar results with the true value.  Figure 9 shows the bar plot for standard 

deviation for Max Heat under different proportions, the other standard deviation shows in the 

Appendix Table 1 - 8. The computational time were 0.02s, 1.32s, 10.42s, and 5.79s for 

censored data PRM, MI, SAE, and CPRM, respectively. The computational time for each 

method remained almost the same under different censored proportion. 

 For results shown in Figure 2–7, we found the following results: when the censored 

proportion was less than 10%, the relative errors for censored data PRM, MI were around 

200%, which were not appropriate for handling the censored count data anymore; when the 

censored proportion was greater than 10% but less than 30%, CPRM had the lowest relative 

errors; when the censored proportion was greater than 30% but less than 45%, SAE had the 

lowest relative errors. When the censored proportion exceeds 45%, all the methods had large 

relative errors and the sign of the parameters turned to the opposite, which means the 

estimation results under the censored proportion of 45% were not reasonable. Figure 10 

shows the relative errors for different methods under different censored proportions. We 

found that for overall proportions, CPRM had relative low relative errors. In addition, all 

relative errors for different methods were fluctuated. The standard deviations for all the 

coefficients across all the methods were similar, except the one for time3 using censored data 

PRM, which was smaller than the others. The computational time did not change with the 
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censored proportion. Censored data PRM had the shortest computational time, while SAE 

had the longest computational time. 

Discussion 

We evaluated the performance of multiple imputation (MI), small area estimation 

method (SAE) and censored Poisson regression method (CPRM) in dealing with censored 

count data. Using both simulated and real-world censored count data, the censored Poisson 

regression method performed the best, yielding the most accurate parameter estimates with 

an efficient computational time. 

In our simulation study, the simulated censored count data represented an ideal 

scenario, in which the outcome variable followed a Poisson distribution with a controlled 

mean and variance (the mean was equal to the variance).Under this condition, the censored 

Poisson regression model performed exceptionally well (relative error less than 1%) even 

when the censored proportion was greater than 50% censored proportion. SAE was restricted 

by the stratified demographic variables. When the censored proportion was less than 40%, 

the relative errors of SAE were fluctuated at around 5%. MI was only applicable when the 

censored proportion was less than 10%, when MI was applied, its performance was worse 

than that of SAE and CPRM. The computational time of MI was the shortest dealing with 

large censored datasets. Overall, as the censored proportion increased. The relative errors 

also increased. Specifically, when the censored proportion increased from 33.6% to 54.1%, 

the relative errors of MI and SAE dramatically increased, but the relative error of CPRM 
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remained the same. Thus, CPRM offers the best performance for dealing with censored count 

datasets under ideal conditions. 

In our case study, we assessed the association between heat wave temperature and 

hospitalization due to cardiovascular diseases in Harris County, Texas, from 2006 to 2011. 

We found that each method (censored data PRM, MI, SAE, CPRM) had both strengths and 

weakness under different censored proportions.  

Directly applying a Poisson regression model to censored count dataset (censored 

data PRM) represented the typical method used to handle censored count data. When the 

censored proportion was less than 5%, the censored data PRM was more accurate than MI 

and SAE, but less accurate than CPRM. In addition, censored data PRM had the shortest 

computational time of all methods. When dealing with large censored count datasets with a 

censored proportion less than 5%, censored data PRM is a strong method that balances 

accuracy with computational efficiency. However, when the censored proportion is greater 

than 5%, the accuracy of the censored data PRM decreases, because it does not account for 

the censored counts, which are not actually missing values and thus need to be accounted for. 

Furthermore, under all censored proportions in our case study, even less than 5%, MI 

yielded inaccurate parameter estimates. The results were probably caused by the following 

reasons. First, we could not control the imputed values within the censored interval. For 

example, if the values were less than 10, the values were censored. However, the imputed 

values could be greater than 10, which exceed the censored interval. Second, we could not 

control the distribution of the imputed outcomes. Since we assumed that the outcomes 
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followed Poisson distribution where the mean is equal to the variance, the imputed outcomes 

cannot meet the distribution assumption. Therefore, although the computational time of MI 

was short, the accuracy for MI was low under each censored proportion. 

Moreover, when the censored proportion was greater than 30% but less than 40%, 

SAE yielded the most accurate parameter estimates of all the methods.  SAE was the only 

method that considered the demographic information when estimating the censored count 

outcomes. This use of demographic information is both a strength and a weakness of SAE. 

According to Barker et al. [46], the more stratified the demographic levels are, the better the 

performance of SAE. For example, the estimations for data with more stratified demographic 

variables, i.e., gender and race (the number of male white, female white, male black, and 

female black) were better than the estimations for data with fewer stratified demographic 

variable i.e. gender only (the number of male and female). The weakness of SAE co-occurred 

with the strengths. First, the more stratified demographic levels included, the slower the 

computational time. If the sample size was extremely large, the computational time would be 

extremely long and may not be obtainable, because it exceeds the computational ability. 

Second, for most real-world datasets, we cannot extract all the demographic information we 

need, which also restricts the accuracy of SAE method.   

Lastly, when the censored proportion was less than 30%, CPRM had the best 

performance of all methods by balancing accuracy with computational efficiency. The 

relative error of CPRM remained stable (around 16%) and was the lowest among all the 

methods.  CPRM directly dealt with censored count data without imputing or deleting, so it 

kept all the information of the censored count datasets. The relative errors for CPRM were 
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less than 1%even when the censored proportions were greater than 50% in the simulated 

censored count datasets, while in the real-world censored count datasets, the relative error 

dramatically increased (from 16% to 80%)when the censored proportion was larger than 

30%. This finding indicates a weakness of CPRM. CPRM is restricted by the distribution 

assumption of the censored count datasets. In simulated censored count datasets, the 

outcomes followed a Poisson distribution, but in the real-world censored count datasets, the 

outcomes cannot reach the ideal scenario. Thus, the relative errors of censored Poisson 

regression fluctuated when the censored proportion exceeded 30%.  

This study has some important limitations. First, we did not identify trends or pattern 

in the fluctuation of relative errors as the censored proportion increased across all methods. 

Second, we used a real-world censored count datasets may generate results than other real-

world censored count datasets. Thus, we only provided a reference instead of a standard for 

determining the best performance under different specific censored proportions. In the future, 

these methods could be applied to additional real-world censored count datasets to identify a 

relatively precise standard for different censored proportions. Third, we used censored count 

datasets that met Poisson distribution assumption, which provided better simulation results 

than real-world results. In the future, more accurate models to deal with censored count data 

with less distribution assumptions could be developed.  

Despite the limitations, this study has some strengths. First, to our knowledge, this 

study is the first to compare all the methods dealing with censored count data considering 

both estimation accuracy and computational efficiency simultaneously. Thus, we identified 

the best method under different censored proportions, which provides a means for 



 

68 
 

determining the best method to use based on the size of the censored count dataset and of the 

censored proportion. Second, we improved computational efficiency of CPRM by using 

INLA algorithm rather than the other typically used algorithms (i.e., MCMC and Newton 

Raphson) for parameter estimates [25].  

In conclusion, considering the balance of the estimation accuracy with computational 

time, the censored Poisson regression model is the best method for dealing with censored 

count datasets under different censored proportions, especially when the censored 

proportions were less than 30%. However, when the censored proportions were greater than 

30% and stratified demographic data can be collected, the small area estimation method 

performed well, but it had longer computational time. MI method had the shortest 

computational time, but only applicable when the sample size was large and the censored 

proportion was low (less than 5%). Future research is need to identify trends or patterns in 

the fluctuation of relative errors as the censored proportion increase. In addition, more 

accurate models to deal with censored count data with less distribution assumptions could be 

developed.
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Tables for Journal Article #2 

 

Table 1. Parameter estimation results across three methods under different censored 

proportions 

a Results are calculated using the second method for SAE described in Method Section. 

Results of estimation for the two ways of SAE did not differ significantly. 

 

 

Table 2. Average relative errors for different methods under different censored proportions 

 

 

Table 3. Average relative errors for all methods under different censored proportions 
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Figures for Journal Article #2 

 

Figure 1. Bar plot for estimations under censored point = 7 (censored proportion = 4.56%) 
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Figure 2. Bar plot for estimations under censored point = 8 (censored proportion = 8.08%)  
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Figure 3. Bar plot for estimations under censored point = 9 (censored proportion = 12.96%)  
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Figure 4. Bar plot for estimations under censored point = 10 (censored proportion = 20.41%)  
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Figure 5. Bar plot for estimations under censored point = 11 (censored proportion = 28.07%)  
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Figure 6. Bar plot for estimations under censored point = 12 (censored proportion = 37.88%)  
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Figure 7. Bar plot for estimations under censored point = 13 (censored proportion = 48.65%)  
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Figure 8. Bar plot for estimations under censored point = 14 (censored proportion = 59.33%) 
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Figure 9. Bar plot for S.D. of Maximum heat estimates under different censored proportions  
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Figure 10. Relative errors under different censored proportion across methods   
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Appendix  

Figures for Journal Article #2 

Figure 1. Bar plot for parameter estimation for different methods under different proportions 

Note: The red dashed line shows the true value. 

 

 

 

Figure 2. Bar plot for standard deviation for parameter estimation for different methods under 

different proportions 
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Appendix  

Tables for Journal Article #2 

 

Table 1. Case study results under censored point = 7 (censored proportion = 4.56%) 

 

Table 2. Case study results under censored point = 8 (censored proportion = 8.08%) 
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Table 3. Case study results under censored point = 9 (censored proportion = 12.96%) 

 

Table 4. Case study results under censored point = 10 (censored proportion = 20.41%) 

 

 

Table 5. Case study results under censored point = 11 (censored proportion = 28.07%) 
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Table 6. Case study Results under censored point = 12 (censored proportion = 37.88%) 

 

Table 7. Case study results under censored point = 13 (censored proportion = 48.65%) 

 

 

Table 8. Case study results under censored point = 14 (censored proportion = 59.33%) 



 

84 
 

References 

 

[1] Cordero A, Mulinare J, Berry R, Boyle C, Dietz W, Johnston Jr R, et al. CDC Grand 

Rounds: additional opportunities to prevent neural tube defects with folic acid fortification. 

Morbidity and mortality weekly report. 2010;59:980-4. 

[2] Prevention CfDCa. Lyme Disease Home. 2017. 

[3] Zeileis A, Kleiber C, Jackman S. Regression models for count data in R. Journal of 

statistical software. 2008;27:1-25. 

[4] Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and 

stroke statistics—2008 update. Circulation. 2008;117:e25-e146. 

[5] Whitehead NS, Leiker R. Case management protocol and declining blood lead 

concentrations among children. Prev Chronic Dis [serial online]. 2007. 

[6] Dignam TA, Lojo J, Meyer PA. Reduction of elevated blood lead levels in children in 

North Carolina and Vermont, 1996–1999. Environmental health perspectives. 2008;116:981. 

[7] Schmee J, Hahn GJ. A simple method for regression analysis with censored data. 

Technometrics. 1979;21:417-32. 

[8] Shih WJ. Problems in dealing with missing data and informative censoring in clinical 

trials. Current Controlled Trials in Cardiovascular Medicine. 2002;3:4. 

[9] Jin X, Carlin BP, Banerjee S. Generalized hierarchical multivariate CAR models for areal 

data. Biometrics. 2005;61:950-61. 

[10] Rubin DB. Inference and missing data. Biometrika. 1976;63:581-92. 

[11] Rubin DB. Multiple imputation for nonresponse in surveys: John Wiley & Sons; 2004. 

[12] Zhou XH, Eckert GJ, Tierney WM. Multiple imputation in public health research. 

Statistics in medicine. 2001;20:1541-9. 



 

85 
 

[13] Bartlett JW, Seaman SR, White IR, Carpenter JR. Multiple imputation of covariates by 

fully conditional specification: accommodating the substantive model. Statistical methods in 

medical research. 2015;24:462-87. 

[14] Ymann C, Wrbach A, Gomann S, Geissler F, Bela A. Nonparametric Multiple 

Imputation for Questionnaires with Individual Skip Patterns and Constraints: The Case of 

Income Imputation in the National Educational Panel Study. Sociological Methods & 

Research. 2017;46:864-97. 

[15] Li P, Stuart EA, Allison DB. Multiple imputation: a flexible tool for handling missing 

data. Jama. 2015;314:1966-7. 

[16] Eekhout I, de Vet HC, Twisk JW, Brand JP, de Boer MR, Heymans MW. Missing data 

in a multi-item instrument were best handled by multiple imputation at the item score level. 

Journal of clinical epidemiology. 2014;67:335-42. 

[17] Enders CK, Mistler SA, Keller BT. Multilevel multiple imputation: A review and 

evaluation of joint modeling and chained equations imputation. Psychological methods. 

2016;21:222. 

[18] Cadwell BL, Thompson TJ, Boyle JP, Barker LE. Bayesian small area estimates of 

diabetes prevalence by US county, 2005. Journal of Data Science. 2010;8:171-88. 

[19] Barker LE, Thompson TJ, Kirtland KA, Boyle JP, Geiss LS, McCauley MM, et al. 

Bayesian small area estimates of diabetes incidence by United States county, 2009. Journal 

of data science: JDS. 2013;11:269. 

[20] Zhang X, Holt JB, Lu H, Wheaton AG, Ford ES, Greenlund KJ, et al. Multilevel 

regression and poststratification for small-area estimation of population health outcomes: a 



 

86 
 

case study of chronic obstructive pulmonary disease prevalence using the behavioral risk 

factor surveillance system. American journal of epidemiology. 2014;179:1025-33. 

[21] Dwyer-Lindgren L, Flaxman AD, Ng M, Hansen GM, Murray CJ, Mokdad AH. 

Drinking patterns in US counties from 2002 to 2012. American journal of public health. 

2015;105:1120-7. 

[22] Terza JV. A Tobit-type estimator for the censored Poisson regression model. Economics 

Letters. 1985;18:361-5. 

[23] Famoye F, Wang W. Censored generalized Poisson regression model. Computational 

statistics & data analysis. 2004;46:547-60. 

[24] Mahmoud MM, Alderiny MM. On estimating parameters of censored generalized 

Poisson regression model. Applied Mathematical Sciences. 2010;4:623-35. 

[25] Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian 

models by using integrated nested Laplace approximations. Journal of the royal statistical 

society: Series b (statistical methodology). 2009;71:319-92. 

 

 

 

 

 

 

 


	Censored Count Data Analysis – Statistical Techniques And Applications
	Recommended Citation

	tmp.1553293277.pdf.YnFHD

