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ABSTRACT OF THE DISSERTATION 
 
 
 
The current state of health and biomedicine includes an enormity of heterogeneous data 

‘silos’, collected for different purposes and represented differently, that are presently 

impossible to share or analyze in toto. The greatest challenge for large-scale and 

meaningful analyses of health-related data is to achieve a uniform data representation for 

data extracted from heterogeneous source representations. Based upon an analysis and 

categorization of heterogeneities, a process for achieving comparable data content by 

using a uniform terminological representation is developed. This process addresses the 

types of representational heterogeneities that commonly arise in healthcare data 

integration problems. Specifically, this process uses a reference terminology, and 

associated "maps" to transform heterogeneous data to a standard representation for 

comparability and secondary use. The capture of quality and precision of the “maps” 

between local terms and reference terminology concepts enhances the meaning of the 

aggregated data, empowering end users with better-informed queries for subsequent 

analyses. A data integration case study in the domain of pediatric asthma illustrates the 

development and use of a reference terminology for creating comparable data from 

heterogeneous source representations. The contribution of this research is a generalized 

process for the integration of data from heterogeneous source representations, and this 

process can be applied and extended to other problems where heterogeneous data needs 

to be merged. 
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INTRODUCTION TO THE DISSERTATION 
 
The four attached manuscripts collectively represent a PhD dissertation on the integration 

of heterogeneous health care data. The aim of the entire dissertation was to develop a 

generalizable process for transforming data with different native database representations 

into a single uniform representation that would enable comparability of the different data. 

This comparability is required for any subsequent aggregation, manipulation, 

communication, and analyses. The hope was and is that this process be applied to current 

and future problems across multiple domains. Because of these goals, the final process 

and its description in the attached manuscripts are deliberately abstract and focused on 

the process requirements rather than the technological implementations.  

 

Title keywords that need to be defined to appreciate this research are ‘heterogeneous 

databases’ and ‘comparability’. Heterogeneous databases are defined as separate 

autonomous databases, independently created for unique purposes, with substantial 

differences in database schema. [1] It is important to recognize that the content of the 

databases must be considered “semantically” equivalent in a very general sense to be 

considered a heterogeneous database problem. Semantically similar databases reportedly 

contain the same “type” of information or constructs. For example, multiple Emergency 

Department databases with presenting complaint data (however the contents are 

represented) constitute heterogeneous databases, whereas multiple databases from an 

emergency room, a laboratory, and a pharmacy would represent disparate (but not 

necessarily heterogeneous) data sources. Although heterogeneous databases broadly 

contain the same types of semantic content, the content can be represented in many 

different ways, often resulting in semantic differences that are difficult to identify and 

resolve. These different representations across heterogeneous data sources make the data 

incomparable in their native formats. The data tend to be disparate on two levels: data 

models and underlying data content. Data models result from different database designs 

(selected data structures and their inter-relationships). Within each data structure (e.g., 

attribute or field) there are different knowledge representations (e.g., vocabularies) whose 

concepts and relationships differ, and whose uses differ depending upon context (e.g., site 
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of data collection and nature of local coding conventions). The informatics challenges of 

this research are substantial.  

 

Comparability, a notion that is also central to this research, is a word that many use but 

few define. Essentially, comparability examines the character or qualities of two or more 

objects for the purpose of discovering their resemblances or differences. [2] 

Operationally, we define comparability as the same, or homogeneous, representation of 

data from multiple sources that permits the determination of equivalency and other 

relationships (e.g., similarities and differences) between the data. These two definitions 

(heterogeneous databases and comparability) frame this research. The start state is 

heterogeneous data representations, the goal state is a homogeneous data representation, 

and our research result is a process to move from one state to another. Ideally, we would 

like to arrive at a new, homogeneous data representation that addresses the final 

information needs, maintains the intended semantics and data granularity of each local 

source, and captures the similarities and differences across local source representations. 

 

There are three approaches to achieve comparability from heterogeneous data 

representations. [2] The first most common approach, the implicit approach, uses a 

domain expert or programmer to “recode” instances into a like representation, without 

explicit rules or logic behind the transformation. For example, data instances of 

“difficulty breathing” and “SOB” might both be recoded as “respiratory”, but the 

reasoning behind the transformation is not formalized. While there is likely a 

conceptualization or reference model in the head of the programmer, such implicit 

reference models cannot be examined, verified, and refined, and they are often at high-

risk for the loss of data granularity that results from using a lowest common denominator 

approach. The second way to achieve comparability, pair-wise comparisons, maps 

equivalent terms from multiple heterogeneous data representations on a 2x2 basis. This 

approach, while common, is labor-intensive and time-consuming (requires comparisons 

of each data representation to every other representation in the problem set), and is 

difficult to scale and maintain. Further, any one of the local models may not be 

sufficiently expressive to meet final analysis purposes. The third approach to 
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comparability, the use of a reference model, is the preferred approach for integrating 

heterogeneous data for semantic comparability. The reference model provides one 

representation to capture all (or all that is “important” from) the local representations, and 

the ideal structure and content of this referent representation is determined by the final 

uses of the aggregated data.  

 

A focus of the process generated from this dissertation research is the use of a type of 

reference model called a reference terminology. A reference terminology is a terminology 

(i.e., set of specified concepts and inter-relationships) that functions as the standard for 

comparison of data from heterogeneous representations and/or collected for different 

purposes. [2] A reference terminology names and organizes concepts relevant to purpose 

or “use case”, and provides the “meaning” of the information-units in the structure. As 

such, a reference terminology should be understandable, reproducible, and useful. [3] 

 

Two primary prerequisites drove the development of a generalized process for integrating 

data from heterogeneous representations. The first prerequisite was to understand the 

nature of the heterogeneities, or differences, across sources representations. An 

articulated framework for identifying the types of differences that exist between 

heterogeneous databases was much needed and is a significant contribution of this 

research. This framework of differences, labeled a framework for understanding 

representational heterogeneity, is presented in [4], which identifies and characterizes all 

of the types of representational heterogeneities that exist across multiple database 

representations, and provides a means to organize current data integration approaches and 

identify areas in need of future research. The classification of representational 

heterogeneities typically illustrated across multiple databases was used as a basis for the 

creation and evaluation of the final generalized process presented in [5]. 

 

The second prerequisite for the development of this process was to clearly identify the 

goal of heterogeneous database integration. As mentioned earlier, the goal is 

comparability (i.e., a homogeneous representation), but there are considerations in the 

selection and development of an optimal final representation. In [2] we assert that the 
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goal for integrating heterogeneous databases is to achieve comparable data with a 

homogeneous representation from different source representations. Further, we define 

success as the retention of as much granularity (i.e., depth and detail) and intended 

meaning as possible from each source. To maximize success according to the criteria we 

have defined, our process places a heavy emphasis on the data-driven or bottom-up 

development of the reference terminology.  

 

To develop a generalizable process for achieving comparable data, we needed a setting 

with real data from heterogeneous representations that needed to be integrated. The 

dissertation research presented here was facilitated by the Texas Emergency Department 

Asthma Surveillance (TEDAS) project, funded by the Robert Wood Johnson Foundation 

and managed by investigators from the Baylor College of Medicine Department of 

Pediatric Emergency Medicine. The data used to develop this process was respiratory-

type Presenting Complaints from four Emergency Department (ED) data sets in the 

Houston metropolitan area. These research results promise one mechanism to assure 

uniform data sampling across all study hospitals for TEDAS and other clinical research 

studies. The use of pediatric ED data was a convenient sample to develop this process. 

However, other health care domains and applications would have functioned as well. 

Despite the choice of data for the development of the process, the resultant process for 

creating comparable data from heterogeneous source representations is abstract and 

generalizable, and can be applied to other data and domains. 

 

The process created from this research is discussed throughout the attached manuscripts 

and is presented in Figure 1. This process was the goal and is itself the result of this 

research. Essentially, the process transforms data from native representations to final 

reference model representations. Since by definition a representation is a partial 

conceptualization, or surrogate of ‘reality’, for a given purpose, the ideal representations 

are constructed for specific purposes. Therefore, the first step of this process is to clearly 

define the intended purposes of the integrated data. These defined purposes are critical 

for the selection or construction of the reference models that homogeneously represent 

the final transformed data. 
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Figure 1. Process for Achieving Comparable Data from Heterogeneous Databases 

 
 

After clearly defining the purpose for which the data is to be aggregated, the first step (#1 

in diagram) is to examine and understand the structures and the concepts encoded therein 

for each local data source, as well as explore context issues that can explain 

representational differences. This step is critical and involves examining the intended 

semantic meaning of each data structure. The presence of this step ensures that, as data is 

later transformed to a homogeneous representation, the intended meaning and the native 

data granularity is preserved. 

 

The systematic examination of the types of heterogeneities as described in the framework 

[4] revealed that heterogeneous databases have two very broad levels of heterogeneities – 

those resulting from different database schema, and those resulting from differences in 

the underlying data content. These two broad groupings of heterogeneities each became a 

target for integration processes, namely database schema integration and data content 

integration. Both require the use of a reference model. The information model (#2 in 



 

  6   

diagram) is a referent model that can assimilate different data structures (e.g., data 

instances, attributes, or tables) into a singular data element. Once the reference 

information model is selected or constructed (#2), local data structures are mapped, or 

transformed, to the new structural representation (#3). Heterogeneous data content (i.e., 

“what is in the fields”) is made homogeneous by mapping the local data instances to 

concepts in a final reference terminology. The development of a reference terminology 

(#4), and associated mappings (#5 and #6) are addressed in [2]. The semantic focus of 

our process adds value to current syntactically-based efforts by suggesting a change in 

focus from purely syntactical solutions toward a semantic-based approach, designed to 

capture the intended meaning and operational definitions of each data structures. The 

process that emerged systematically addresses the specific database schema 

heterogeneities identified in the first framework paper [4], and addresses the importance 

of representing these differences in the final model to facilitate informed queries (#6) and 

analysis of the final data.  

 

 

Using the diagram presented in Figure 1, [5] describes the development of a generalized 

process for integrating heterogeneous data and addresses outstanding issues in the 

database schema integration problem. A part of this process is described in more detail in 

[2], which describes a generalized process using explicit conceptual reference models, 

called reference terminologies, to resolve the content integration problem. The highly 

iterative development of a reference terminology is described fully here, including 

characterizations of changes or iterations in the evolving reference terminology. 

Together, these two papers provide a blueprint process for the meaningful integration of 

heterogeneous data from multiple sources to address specified information needs.  

 

The final paper for this dissertation, a results oriented paper, describes the actual 

implementation and the product of the application of this process to a real health care 

problem. [6] The final paper confronts the inherent lack of comparability across 

heterogeneous emergency department data, and describes the application of the processes 

described above to achieve comparable presenting complaint data where it was 
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previously impossible. The solution is the development of the Houston Asthma Reference 

Terminology (HART), and associated "maps", with which locally-coded pediatric ED 

presenting complaints can be analyzed. The HART solution is empowered by a global 

data schema for ED visits, which includes explicit representation of native database 

schema, and quality and precision information that enhance the meaning of the 

aggregated data, empowering end users with better-informed queries for subsequent 

analyses. Essentially, this publication describes the process that we implemented to create 

the comparable data, and what the implementation of that process created in terms of a 

specific data integration application product. 

 

Together, the four attached papers represent the spectrum of this dissertation research, 

from the problem definition, literature synthesis, exploration of possible methodologies, 

to the actual development, implementation, and evaluation of the final generalizable 

process that was the proposed intent of the research. The four manuscripts that describe 

the development of this process are targeted to different audiences, namely the Computer 

Science and Health Informatics communities. Because of the different audiences, and the 

need for each manuscript to be freestanding, there is overlap in content across the articles, 

as well as some minor changes in terminology and formatting.  

 

The need to integrate data from multiple, heterogeneous source representations in health 

care is pressing and growing. The size and complexity of health care delivery and 

research activities, coupled with the lack of a-priori data representation and storage 

standards, has created a world of isolated data “silos” that to date cannot be analyzed in 

aggregate. Currently, the health care domain is overwhelmed with data that is largely 

incomparable, yet the needs for examining these data are becoming more urgent. Some of 

the rising costs of health care delivery and experimental drug development could be 

curtailed by using existing data sources and observational research designs on large 

populations. Similarly, evidence-based care, which requires monitoring data from 

multiple sources for long periods of time, could move from vision to reality if 

comparable data could be obtained across multiple populations and multiple points in the 

health care system. Issues of patient safety and health care quality are receiving well-
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deserved attention and driving efforts to look at aggregate data from multiple sources to 

monitor health care activities and outcomes. Finally, new attention on bioterrorism 

detection and population surveillance has drawn the spotlight on the current lack of 

integration of health care data for public health monitoring. The use of a generalized 

process to achieve comparable data has enormous potential to positively impact a 

plethora of health care quality and public health activities across the nation and globally. 

 

Informatics theory and practice as a whole deals with the notion of uniform data 

representations to overcome lack of terminology and data representation standards in 

medicine and health care. Indeed, the development, use, and evaluation of many 

controlled healthcare vocabularies, such as SNOMED, LOINC, and GALEN, represent a 

large body of informatics research. The UMLS, a major accomplishment and significant 

contribution of health informatics to address the lack of standardization for health care 

concept representation, was created to provide a much needed linkage between these 

different vocabularies. In one sense, the Semantic Network of the UMLS acts in itself as 

a reference model. The broad nature of the stated purposes of the UMLS however, has 

shaped a conceptual model that is relatively abstract, which can create a loss of data 

granularity for many purposes. This process, focused on the semantics and granularity of 

local data, allows for the development of reference models from the actual data, thereby 

retaining semantics and granularity that are important to the final intended uses of the 

combined data. 

 

Inherently, the process created by this research facilitates the use of data for purposes 

other than that which it was collected. In so doing, we are required to represent the 

context and quality of the local data that impacts its use it at another level. The need to 

examine the semantics, or intended meaning, for each concept in the local data is often 

overlooked in contemporary syntactically-based data integration solutions. The explicit 

examination of semantics included in this process provides a foundation for a formalized 

(i.e., machine-readable) examination of semantics, facilitating repeatability, and more 

importantly, automation. The potential for repeatability and automation is a significant 

advantage of our process that is not possible of many current data aggregation methods.  



 

  9   

 

The true result, and the re-usable knowledge, of this research is a generalizable and 

repeatable process that transforms data from different source representations into a 

homogeneous format in which they can be compared and subsequently combined, 

aggregated, and integrated in sensible ways. The long-term goal (and the result of 

applying this process) is automation; specifically an understanding of when, how, and to 

what extent automation is possible. It is evident that the entire process cannot be 

automated, as human domain and context experts are a critical component of the process. 

Yet, as informatics moves toward more formalized and sharable conceptual models of 

health care knowledge, it is likely that parts of the process can be automated, reducing the 

time and resources required for future data integration endeavors. Future validation of the 

process in other domains and validation of resultant data representations and their value 

in applied research areas are future activities for this research. 
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Abstract 
Representational differences across heterogeneous databases can arise from several 
sources, causes numerous types of data conflicts, many semantic in nature, and is the 
source of the majority of difficulties in the database integration problem. To facilitate 
the resolution of these heterogeneities, an understanding and characterization of the 
differences between heterogeneous databases must be defined. A framework for 
classifying the many representational and semantic differences across heterogeneous 
databases is presented here. This framework will support the development of tools 
and processes for which to integrate heterogeneous data while preserving the intended 
semantics and granularity of the native data sources. 

 
 

Introduction 
The goal for integrating heterogeneous databases is to achieve compiled data with a 
homogeneous representation from different source representations while preserving 
native data granularity and semantics. This requires resolution of multiple 
heterogeneities. Often, these heterogeneities are difficult to identify and require domain 
expertise to detect. An analysis and organization of the general types of heterogeneities 
encountered across heterogeneous databases is required to support pragmatic and 
research activities in this area. This paper provides a classification for the variety of 
heterogeneities that arise from heterogeneous data sources, and surveys common 
approaches to overcome them. Heterogeneities encountered across multiple databases are 
of 3 major types: physical, data model, and representational.  The most challenging and 
outstanding heterogeneous database integration issues are in the identification and 
resolution of representational heterogeneity and the resultant semantic data conflicts that 
often arise. This framework presents a classification and description of types of 
representational heterogeneity by the source (database schema, measurement or concept 
systems, and context) and by the types of data conflicts that emerge (format, naming, 
structural, semantic, precision, missing content, and semantic). This framework will 
support the development and classification of much-needed tools and processes for which 
to integrate heterogeneous databases in a variety of domains. 
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Background/Definitions 
Heterogeneous Databases 

Heterogeneous databases can be defined as separate autonomous databases, 
independently created for unique purposes, with substantial differences in both abstract 
data models, which represent the underlying paradigm of the database (e.g., flat-file, 
relational, hierarchical, object-oriented), and database schema, which represent the 
developer’s conceptual model of the data structures and their interrelationships.[1] It is 
important to recognize that the content of the databases must be considered 
“semantically” equivalent in a very general sense to be considered a heterogeneous 
database problem. Semantically similar databases reportedly contain the same “type” of 
information or constructs. For example, multiple Emergency Room databases with 
presenting complaint data (however the contents are represented) constitute 
heterogeneous databases, whereas multiple databases from an emergency room, a 
laboratory, and a pharmacy would represent disparate (but not necessarily heterogeneous) 
data sources. Although heterogeneous databases broadly contain the same types of 
semantic content, this content can be represented in many different ways (broadly termed 
representational heterogeneity), often resulting in semantic differences that are difficult to 
identify and resolve. 
 

Types of Heterogeneity 

The challenge of creating integrated data with a uniform, or homogeneous, representation 
from heterogeneous databases is in identifying and resolving all the heterogeneities, or 
differences, that exist between the source databases. Heterogeneity from multiple 
databases can be attributed to physical or platform-dependent sources, differences in data 
models and representational differences that manifest in a variety of data conflicts, many 
semantic in nature. (Figure 1)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Types of Heterogeneity Encountered in Heterogeneous Databases 
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Representational heterogeneity and subsequent semantic data conflicts account for the 
majority of difficulties and outstanding research issues in the integration of 
heterogeneous databases, and therefore are the primary focus of this discussion. After a 
brief mention of physical and data model sources of heterogeneity, common 
representational and semantic differences are characterized and explored. 

 

Physical and Data Model Heterogeneity 
The most basic of heterogeneities are those that affect the physical communication of 
multiple systems. These disparities are related to the hardware or system features (e.g., 
instruction format, data formats and representation, configuration) or the operating 
system (file systems and operations, naming of files and file types, transaction support, 
inter-process communication). The notion of ‘data independence’ in modern database 
design (meaning that the data records should remain independent from the application) 
has largely eliminated these types of compatibility issues, especially as databases and 
database management systems have evolved over the past 20 years. 
 
Differences in (abstract) data models (e.g., flat-file, relational, hierarchical, object-
oriented) from heterogeneous sources consist of disparities in data structures, constraints 
on their interrelationships, and differences in both capabilities and format of the query 
languages used to access data in each database. The relational database model is the 
dominant abstract data model in many industries, including health care, and therefore it is 
the assumed data model for this discussion. Overcoming disparities between object-
oriented and relational database models is an area of current research.[7] However, the 
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development of network communication protocols and tools, e.g., JDBC, ODBC, 
DCOM, has made the resolution of data model differences manageable. The greater 
challenges for achieving homogeneous data from heterogeneous sources are largely 
semantic in nature. For broader relevance, the duration of this discussion will focus on 
the classification, sources, and current approaches for dealing with representational 
heterogeneity and semantic data conflicts.  
 

Representational Heterogeneity 
Representational heterogeneity results from the variety with which similar data are 
represented in different databases. [8] In this paper, we observe a broad definition of 
representational heterogeneity that includes representational differences resulting from a 
developer’s database design and the operational implementation of an application that 
could impact the use of the data at the aggregate level. Our definition therefore includes 
semantic data conflicts introduced by differences in database schema, measurement and 
concept systems, and context. These representational heterogeneities collectively 
represent the greatest challenge for the integration of multiple databases, and often the 
“self-describing” metadata of each database schema fail to represent enough information 
to detect or resolve them.  
 

Semantic Data Conflicts 
Semantic data conflicts are difficult to precisely define, identify, and classify. [1] 
Broadly, semantic differences occur when there is a disagreement about meaning, 
interpretation, or intended use of same or related data, and arises from different data type 
structures, different definitions or conceptualizations of data attributes, differences in 
coding precision of the data values across multiple databases [1], or context [9].  
Semantic heterogeneity in part refers to the fact that data in different systems may be 
subject to different interpretations, even when data types, labels, and general schemas are 
identical. [10] There is common consensus that semantic data conflicts (often termed 
semantic heterogeneities) are the most problematic aspect of heterogeneous database 
integration efforts. [8] [10] The following section explores key types and sources of 
representational heterogeneity, including resultant semantic data conflicts, with examples 
of each from the health care domain.  
 
 

Framework to Classify Representational Heterogeneity 
Representational heterogeneity is often difficult to detect because of the variety of ways it 
can be introduced into a heterogeneous database system, and because of the many 
potential data conflicts, including semantic data conflicts, that it can cause. 
Representational heterogeneity can be attributed to differences in database schema, 
measurement or concept systems within data attributes, or the context of data collection. 
The resulting heterogeneities can manifest in a variety of data conflicts, as depicted in 
Figure 2. 
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Figure 2. Characterizations of Representational Heterogeneity  
 Source: 
 
 
 
Types of Data Conflicts: 

Database 
Schema  

Measurement or 
Concept 
Systems 
Encoding Data 
Content 

Context 
 

Format X   
Naming X   
Structural: 
  Metadata Conflicts, 
   Compositional, 
   Organizational 

 
 

X 
  

Semantic Data Conflicts X X X 
Precision X X X 
Missing Content X  X 
 
 
As shown in Figure 2, representational heterogeneities can arise from differences in 
database schema, measurement or concept systems encoding the data content, and the 
context.  Each is described below. 
 
 

Heterogeneities Arising from Database Schema 

The database schema denotes the detailed data structures (i.e., relations and attributes in 
an abstract relational model) and the relationships between them. The schema represents 
the developer’s design of the knowledge domain, and as a consequence there can be 
many possible valid variations, as shown in Figure 3. Differences in the representation of 
data structures across multiple databases, collectively termed schematic heterogeneity 
[10], are not trivial and result in a number of data conflicts, including format, naming, 
structural, semantic, precision, and content.  
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Figure 3. Sample Data Instances Using Different Database Schema for Emergency 
Room Data Capture        (note: data from same 2 patients represented in 3 different ways) 

 

Emergency Room A 
Patient # Date of Service Age Chief Complaint Acuity 
123456 10-24-01 12 Cough/Fever/Malaise Mild 
234567 10-24-01 3 Respiratory Distress Severe 
 
 
Emergency Room B 
Medical Record # DOS Time of 

Service 
Age Acuity 

123456 10-24-01 0300 12 Mild 
234567 10-24-01 1400 3 Severe 
 
Medical Record # Presenting Complaints 
123456 Cough  
123456 Fever 
123456 Malaise 
234567 Respiratory Distress 
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Emergency Room C 
Visit # Social 

Security # 
Date/Time of 
Service 

Date of Birth Description Value 

888 123456 10-24-01 3:00am 11-1-1991 Presenting 
Complaints 

Cough 

888 123456 10-24-01 3:00am 11-1-1991 Presenting 
Complaints 

Fever 

888 123456 10-24-01 3:00am 11-1-1991 Presenting 
Complaints 

Malaise 

888 123456 10-24-01 3:00am 11-1-1991 Acuity Mild 
999 234567 10-24-01 2:00pm 3-6-2000 Presenting 

Complaints 
Respiratory 
Distress 

999 234567 10-24-01 2:00pm 3-6-2000 Acuity Severe 
 
The different presentations of data instances shown in Figure 3 all represent valid 
database designs, and their differences are due to the specific information needs of each 
organization, and to the developer’s conceptualization of these needs. In general, hospital 
emergency rooms share the same workflow: patients present with one or more self-
reported complaints or problems, demographic information is collected, patients are 
assessed by a nurse for urgency or acuity, and finally they are seen by a physician for 
diagnosis and treatment. Despite the broad similarity in workflow and data capture needs 
across emergency rooms, a current lack of standards results in an enormous variety of 
database implementations. The data instances from Emergency Room A, for example, 
show all information in one table which includes data attributes for a visit identifier, date 
of service, age of patient, chief complaint, and acuity. The database schema for 
Emergency Room B, however, includes a patient medical record number, date of service, 
time of service and patient age in one table that is related to a separate table with multiple 
instances of presenting complaint values. The sample data instances from Emergency 
Room C, present yet another valid database structure, with one table containing a visit 
number, patient social security number, a combined attribute for both date and time of 
service, date of birth, and a description attribute (presenting complaints or acuity) with 
the value in the ‘value’ attribute. All three of these abridged database schemas contain 
roughly similar information, but the schematic (representational) heterogeneity shown 
here can lead to a variety of data conflicts, including semantic, which potentially impact 
the integrity of the integrated data in a multitude of ways, as described below. 
 
Naming or labeling conflicts can also be seen in Figure 3. Equivalent data structures can 
have different names across emergency room databases (e.g., “Patient #” vs. “Medical 
Record #”, “Date-of-Birth” vs. “DOB”, “Presenting Complaint” vs. “Chief Complaint”). 
Simple naming differences are straightforward to resolve if the meanings of the attributes 
are the same. However, semantic differences resulting from differing definitions (e.g., the 
patient identifier at one hospital is unique to the emergency room versus the hospital, or 
represents a social security number) are the most insidious and problematic to detect, and 
result in confounding of meaning, discussed later.  Format differences due to data types 
need to be represented uniformly to combine data in a valid way. For example, the date 
values might be in a variety of date formats or string data types across heterogeneous 
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database schema, and need to be transformed to a common representation prior to any 
integration. 
 
Structural differences in data elements between different database schema are also 
straightforward to detect. Three main types of data conflicts arise from structural 
differences: metadata, compositional, and organizational. Metadata conflicts arise when 
the same construct is represented at the schema level in one system and at the instance 
level in another. For example, in Figure 3, Presenting Complaint contents (named “Chief 
Complaint” in Schema A) are represented as distinct attributes in Emergency Rooms A 
and B, but in Emergency Room C, they are represented at the instance level (i.e., the 
“Description” attribute contains instances of “Presenting Complaints” and the “Value” 
attribute contains the specific presenting complaint data.) Compositional data conflicts 
arise when data is represented in one attribute versus multiple attributes across different 
database schema. For example in Figure 3, Emergency Room B represents the date and 
time of visit as two distinct attributes, while Emergency Room C represents one attribute 
for both concepts. A common occurrence of compositional conflicts is the breakdown of 
address into many attributes (number, street, city, state, zip) versus one text attribute. 
Organizational differences, for lack of a better term, are caused by different quantities of 
attributes to represent a given concept. For example, one hospital might capture a single 
attribute for presenting complaints while another might capture 3 distinct presenting 
complaint attributes or instances. Such organizational differences might have 
implications for the data. The patient record at one hospital might have skimpy 
information (i.e., a single complaint), not because the patient failed to have more 
presenting complaints, but because the constraints of the system limited the capture of 
other complaints. These organizational disparities can introduce semantic differences 
requiring the explicit representation of local database schemas to resolve. 
 
Syntactic, rather than semantic, solutions are often sufficient to overcoming the naming, 
format, and structural (metadata, compositional, and organizational) conflicts described 
above. The distinction being that resolutions for syntactic problems are achieved via 
programming syntax, whereas resolution of semantic differences requires exploration of 
the context and intended semantic meaning of the original data structures to support any 
programming solution. For example, it is easy to envision systematic approaches to 
moving data from instance level to attribute level to table level, with out necessarily 
invoking a change in meaning. All of the above schema differences manifest in 
representational heterogeneities; those schematic variations that lead to differences in 
meaning at the aggregated level represent semantic data conflicts 
 
Semantic data conflicts result from variable definitions of the contents of a given data 
attribute across different database schema. This confounding in meaning can arise when 
database schema and names are identical, and therefore this often slips by programmers 
and automated integration processes. Too often, these differences are non-explicit, and 
perhaps subtle, and require careful investigation to detect. For example, two different 
emergency room databases might include a data attribute called “Presenting Complaints”. 
One emergency room might collect patient-reported complaints but also routinely include 
observations from the triage nurse, where another hospital might only record complaints 
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stated by the patient. This results in semantic differences in the content of what appears to 
be a similar data attribute across heterogeneous sources. These types of semantic data 
conflicts, the most difficult manifestations of representational heterogeneity to resolve, 
require an examination of intended meaning to detect and resolve. 
 
The final type of data conflicts arising from different schema, content differences, occur 
when data represented in one database are not directly represented in another, due to data 
structures that are implicit or simply missing.[8] Implicit data structures arise when data 
is obvious, and therefore not represented, in the local context (such as the name of the 
emergency room) but becomes important when data is being aggregated and examined 
globally.[9] This type of heterogeneity arises from the context of data collection and is 
discussed in detail later. Implicit data structures or content can often be derived (e.g., age 
can be derived from the date of birth and date of visit via simple calculation.) Yet, it is 
important to note the directionality of these derivations (e.g., age can be derived from 
date of birth, but date of birth cannot be computed from age.) Finally, content differences 
arise when an attribute (e.g., “admitted to hospital?”) is included in one data schema but 
not another.  The uniform representation of the combined data should distinguish people 
whose discharge status was not collected (i.e., missing at the attribute level) from those 
whose hospital admission status is missing at the instance level, as semantically the 
missing data has different meanings. Such disparities in content reinforce the importance 
and need for further research regarding the representation of “missing” data.[8] 
 
Typically, database schema do not describe data attribute contents beyond data types, and 
the specifications of database schema often do not contain enough information to resolve 
many representational heterogeneities and semantic data conflicts. [1] Exploring the 
content of the data attributes opens up more problematic semantic differences, including 
heterogeneities from disparate measurement and concept systems encoding the data 
content, as discussed in the next section. 
 

Heterogeneity Arising from Different Measurement and Concept 
Systems 
A common data integrity challenge for heterogeneous database integration efforts is the 
assurance that the measurement systems are comparable across attributes that need to be 
combined. Comparability is a broader notion than equivalence, and implies the need for a 
common representation to make judgments of relationships between the values (e.g., 
equivalent to, greater than, less than; broader than, narrower than, etc.). Classic examples 
of measurement differences include length in feet vs. inches, or weight in pounds vs. 
kilograms. Since the conversions for these different ratio systems are well known, these 
disparities reduce to a common problem of scaling, resolved by simple re-coding to a 
standard measurement system. However, resolving disparate measurement systems 
involving nominal or ordinal data are more challenging. 
 
Many nominal and ordinal coding schemes, including vocabularies and terminologies, are 
systems of concepts. Assimilating different concept systems can result in potentially 
serious precision and semantic data conflicts. Consider the acuity (a measure of the 
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seriousness of patient’s condition) measurement systems differ across 3 emergency 
rooms as shown in Figure 4. Precision conflicts arise when the units of measurement are 
not comparable for similar structures across heterogeneous databases. It is clear from 
Figure 4 that each of the 3 emergency rooms uses a different coding scheme to represent 
acuity information, and that the granularity of these scales differ. Two of the 
measurement systems (Emergency Rooms A and C) represent acuity on a 3-value ordinal 
scale, while the other (Emergency Room B) represents this same construct on a 4-value 
ordinal scale. Even without an understanding what concepts the specific values represent, 
it is apparent that no combination of these coding systems will result in a singular system 
that represents the granularity of all of the local codes. Mapping to a single component 
coding system implies either the loss of data granularity from some coding systems, or 
the need to impute imprecise concept mappings from others.  
 
Figure 4. Alternative Coding Systems for Acuity Information 

EMERGENCY 
ROOM   

 A 

EMERGENCY 
ROOM   

B 

EMERGENCY 
ROOM   

 C 
   

ASAP Red Team 
Urgent Blue Check 
Stable Yellow Shock 

 Green  
 
Semantic data conflicts arise when the concepts are not comparable for similar structures 
across databases, and this lack of comparability is often difficult to detect. It might seem 
logical to assimilate the 3-value scales for Emergency Rooms A and C, but if the code 
values “ASAP”, “Urgent” and “Stable” do not represent the same underlying concepts as 
“Team”, “Check”, and “Shock”, this would lead to a semantic mis-match, or confounding 
of meaning, in the aggregated data.  
 
This simple example is typical of problems encountered in controlled healthcare 
vocabularies with hundreds of thousands of concepts. The enormity and complexity of 
medical knowledge makes the assimilation of different vocabularies a greater challenge 
than dealing with many conventional concept and measurement systems. Because the 
concepts represented in heterogeneous medical concept systems are often not 1:1, or even 
n:1, they are very difficult to resolve. The translation between disparate units in ratio 
measurement is straightforward, since, for example, one inch always equals 
approximately 2.5 cm. But what is the relationship between “coughing/wheezing” and 
“breathing problems”, or the relationship between “nasal congestion” and “runny nose/ 
green”? The existence of many concept and measurement systems for health care 
knowledge is frequently referred to as the “vocabulary problem” in the medical 
informatics literature, and their resolution is a major research focus for the field. [11] [12] 
Further, multiple conceptualizations and representations for temporal data also challenge 
data integrity efforts, and a clear understanding, uniform representation, and explicit 
distinction between “database time” and “event time” should be captured in the integrated 
data. [13] 
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The Role of Context 
The notion of context has been conceptualized in many different ways, and is relevant to 
the identification and resolution of every type of representational heterogeneity 
(including semantic data conflicts) described this far. First we will describe different 
operational definitions of context. Secondly, we will describe the role of context in 
detecting semantic data conflicts, and identify key elements of context that can resolve 
the data conflicts caused by representational heterogeneity across multiple databases. 
 
At the most basic level, context denotes the symbols or characters surrounding a term or 
underlying concept of interest, usually within a data value. This type of context is focal to 
natural language processing, information retrieval, and many web-based search 
applications. [14-17] Mathematical and computational algorithms measure frequency and 
relationships of words or concepts to calculate real-world distances, semantic distances, 
establish domain context, or establish importance. In unstructured environments such as 
the Web, context generally is defined in this way and is used as a measure for retrieving 
and measuring the quality (i.e., relevance) for matching Web-based resources. [18] 
Identifying context as this level has implications for heterogeneous database integration, 
and is highly relevant to determining equivalencies in unstructured (i.e., free-text) data 
attributes within and across multiple databases. The assimilation of unstructured free text 
codes, for example, might employ natural language processing techniques to identify that 
“cough” and “no cough” are not equivalent, while “cough” and “coughing” are.  
 
In the area of database integration, however, context generally refers to the native 
database schema, specifically the relationships between data attributes. [19] The content 
of one data attribute can influence the implied content of other data attributes, and 
therefore it is often necessary to consider an entire local data schema in data integration 
efforts. [19] For example, an attribute name “Family History of Disease” in one database 
schema is semantically equivalent to a combination of attributes “Condition”, “Pertains 
to”, “Family Member”, “Temporal Marker” (= past) in another database schema.  
Further, different data types and constraints between data structures across heterogeneous 
database schema can impact the semantic understanding of the data at the global or 
aggregate level. The distinction between free-text (string) versus coded data content 
might be important in assimilating data from presenting complaints across multiple 
schema. A free text entry of “cough/secretions” likely means that both of the concepts 
“cough” and “secretions” are present with certainty, whereas in a coded data attribute, the 
value “cough/secretions” could mean that the coder intended either “cough” or 
“secretions” or both. The database schema context is also important to distinguish 
between patient records with one presenting complaint concept due to constraints in the 
local database schema (i.e., the schema only allows one presenting complaint to be 
entered) versus the reality of the clinical situation (i.e., the patient truly had only one 
presenting complaint). The semantic understanding and resolution of these issues is 
driven by the purpose of the data integration, but also by the explicit contextual 
representation of each local database schema.  
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A broader perspective of context, and one most critical to resolving semantic 
heterogeneity, relates to organizational and process issues that influence data collection 
and impact the semantic meaning of the data. Many database heterogeneities are due to 
such organizational or data collection contexts. Dampney et al. (2001) note that implicit 
or even obvious information at the database level is often not represented when using the 
data in another context. For example, clinical information systems in emergency rooms 
are designed to capture data related to organizational functions and clinical care. These 
data models do not explicitly code data that are implied or unnecessary for the database’s 
intended purpose (e.g., all patients in an emergency room database were observed in the 
emergency room, all physicians at a children’s hospital are pediatricians, presenting 
complaints are selected from a locally created symptom list, the use of a beta-agonist for 
an asthma patient implies that the medication was inhaled via a nebulizer). In health care, 
implicit information structures that are not represented include context of role, 
organization, purpose, and data classification schemes. [9]  Context of data collection is 
unique to each data source and each data observation. To leverage the data from these 
databases for other research purposes, relevant information structures that are implicit in 
the context of the original data source (e.g., the setting of patient care or the granularity 
of knowledge representation deriving from the classification schemes used) must be 
identified.  
 
This conceptualization of context can be extended to organizational or other factors that 
impact data collection. For example, the general model of emergency care is that patients 
arrive, state a complaint or ailment, are triaged by a nurse, and then diagnosed and treated 
by a physician. Although usually not represented in the database, it is understood in the 
health care domain that a “presenting complaint” is reported by the patient. Therefore, a 
presenting complaint of asthma (reported by patient) carries a different meaning than a 
diagnosis of asthma (reported by a physician). Even more problematic are cultural or 
sociological climates that influence the data definitions in subtle ways. For example, one 
hospital might pressure its ER physicians to give an asthmatic child a diagnosis of 
asthma, while another hospital might feel that a diagnosis of a chronic condition, such as 
asthma, is not appropriate in an acute care ER setting, or that the diagnosis in children is 
a potential source of stigma and anxiety, and thereby pressure physicians to record a less 
specific diagnosis, such as Reactive Airway Disease. This variety in data coding 
procedures is rarely evident in a database schema and can bring to question the 
comparability of the integrated data. 
 
 

General Strategies for Database Integration 
The representational heterogeneities described above result from differences in database 
schema, underlying measurement and concept systems, and context. Representational 
heterogeneities across multiple databases lead to many types of data conflicts, including 
format, naming, structural, semantic, precision, and content. It is important to 
acknowledge that 1.) it is inherently difficult to tease out all of the different sources of 
heterogeneity, 2.) that a given source of heterogeneity might manifest in multiple data 
conflicts, and 3.) that many solutions address multiple heterogeneity problems. The next 
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section describes basic database integration approaches and requirements, and identifies 
the representational heterogeneities and resultant semantic conflicts that they address. 

 

The Purpose Is the Driver 

Any strategy for database integration to create a homogeneous data representation must 
include a thorough analysis of the process and informational needs. [20] Of practical 
importance are the process needs of access updates and ownership and control. The 
logistics of data acquisition are a primary concern, and questions about the process needs 
(including frequency and scalability) should be addressed. These issues are discussed 
extensively elsewhere. [1, 21] 

General Approaches 

Two broad approaches are used to achieve homogeneous or comparable data from 
heterogeneous databases. One strategy is to extract the desired data using query language 
specific to each data base, and then “translating” the data from each source to a uniform 
representation to achieve comparability. This data-translation strategy is common in data 
warehouse or clinical data repository projects. [8] The aggregated comparable data is 
accessed by the user using the query model of the final data repository, and users are 
oblivious to any representational differences across component databases. This data-
translation process, also called data integration and summarization, requires periodic 
data export and integration from each data source. The second approach involves 
“translating” a desired query into equivalent functional queries for each local data source 
to extract comparable data from each source. Most strategies for query translation, also 
called query modification, involve information mediators or “wrappers” for each local 
information system that describe what the databases can provide in terms of the local 
abstract data model and database schema, and what types of queries they can answer in 
terms of the native query language. [18] This query- translation approach is difficult to 
implement but can provide more timely access or real-time data. [8]  Various models of 
database federation can be considered to determine which strategy best suits the project 
requirements in terms of access, control, and availability of updates. [1] Both data-
translation and query-modification strategies, however, ultimately require the same 
thorough examination of each database schema, underlying measurement and concept 
systems, and context to ensure the validity of the compiled data. This thorough 
examination is through the looking glass of a broader conceptual model of the domain 
and an understanding of the purposes driving the data integration effort. The definitive 
goal of this examination of heterogeneities is to achieve semantic comparability (a 
uniform representation and a consensually understood meaning) of data from 
heterogeneous source representations. 
 

The Ultimate Goal Is Comparability 

Whether the approach is data-translation or query-modification, the challenge of 
integrating heterogeneous databases is to make the information comparable on all levels. 
The databases are comparable if the semantic intent of the data can be transformed to a 
homogeneous representation. This uniform representation is considered “global” relative 
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to the local component data sources, and requires choices to be made about the platform, 
abstract data model, database schema, and most importantly the measurement system 
“units” or precision for each data attribute. Once these choices are made, the 
transformation process requires mappings or defined relationships, between both data 
structures and underlying content, to these defined uniform knowledge representations. In 
the case of heterogeneous data models and schema, the defined uniform representation is 
called a global or reference schema. In the case of concept systems encoding data 
attribute content, the defined uniform representation is called a reference terminology. 
Both global reference schema and reference terminologies are conceptually-based 
referent standards that together form the uniform representation for the aggregated data. 
These conceptually-based referent standards can be created anew or by integration of the 
underlying data sources. The comparability that they enable may entail loss of data 
granularity or precision from some local sources; the most successful comparability 
solution is that which preserves the semantic intent and the most data granularity from the 
most sources. 
 

The Key is Conceptually-Based Reference Standards 

Resolving Representational and Semantic Heterogeneity 

The variability in database schema and measurement systems, as well as differences in 
context at multiple levels, create enormous potential for loss of meaning when 
aggregating databases in any domain. To overcome these representational and semantic 
heterogeneities, the semantic intent should be the focal point of data integration efforts, 
and therefore conceptually-based knowledge representations, at several levels, are 
critical. Successful solutions for preserving the intended meaning of data require the use 
of one or more conceptually-driven global reference models, which form the blueprint for 
identifying, understanding, comparing, and ultimately resolving semantic differences 
from multiple sources. These conceptually-based referents provide the structure for the 
uniform representation to which heterogeneous representations are transformed. In the 
attribute of heterogeneous database integration, these conceptual models generally fall 
into two categories: global database schema that address schematic and context 
disparities, and reference terminologies that address disparities in concept or 
measurement systems. 
 

Resolving Heterogeneities from Database Schema 
Most processes for heterogeneous database integration involve some type of 
transformation of local database schema, often to a master or global schema. This global 
schema defines all of the important data structures and relationships required at the 
aggregate level, and as such, it forms the limits of what the new data attributes and 
relationships can express. The global schema guides the query of the integrated data (in 
the data-translation approach) or defines the translations, or mapping, of local 
heterogeneous query models to the referent in the query-modification approach. The 
global schema can be thought of as the schema of a final integrated database, or the 
“ideal” schema in terms of the final purpose. Global schema can also be thought of as 
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information models that represent how the data attribute “units” can be assembled into 
meaningful (patient) records. [22]  
  
In the case of integrating heterogeneous Emergency Room databases, a global schema 
could consist of constructs and relationships that are common to a general view of 
Emergency Room visit processes: patient information, visit information, presenting 
complaints, symptom data, diagnosis, and discharge information. Relevant local 
structures would be mapped to the global schema to achieve a uniform representation. 
This mapping can be used to overcome data conflicts caused by schematic heterogeneity, 
specifically naming, format, structural, confounding, and content conflicts. For example, 
local data structures such as “chief complaint”, “presenting complaint” would be mapped 
to the master “Presenting Complaints” attribute in the global schema, yielding 
semantically-like data in a homogeneous structural representation, thereby eliminating 
naming differences. The global schema, as any other database schema, includes attribute 
definitions, formats, and relationships between data structures, which guide the valid 
mapping of local data structures to global data structures, addressing many of the 
representational disparities identified in the framework presented earlier. The global 
schema also has the potential to address semantic data conflicts, if the operational data 
definitions are carefully and systematically investigated across local sources. Since these 
operational data definitions are often not explicit, experts and local users are needed to 
determine the intended and actual semantics of each structure. A global schema does not 
do the work, but does provide a blueprint of what data definitions and relationships to 
investigate.  
 
Ontologies can serve as a blueprint for the construction of task appropriate global 
schema. The conceptualization of a global schema as a representation of general domain 
constructs and relationships, matches the accepted definition for ontology. An ontology 
can be thought of as a conceptualization of domain knowledge. As a conceptualization, or 
knowledge representation, ontologies inherently provide a limited view or surrogate of 
important concepts for a given purpose, and facilitate computational applications. [23] 
The important role of ontologies as global conceptualizations of domain knowledge in the 
integration of heterogeneous data sources has been identified. [18, 24-27] In schema 
integration, the ontology serves as the global (referent) data schema, and labels (including 
synonyms) from each of the data attributes from the local database schema can be 
matched to the ontology to determine which terms are common to both. [28]   
 
A global schema can be created from two different approaches: a bottom-up schema 
integration (literally combining schema from existing heterogeneous databases), or a top-
down schema creation (driven by a broader conceptual organization or purpose-driven 
view).  While both approaches have their merits, the construction of a global schema is 
often highly iterative and therefore involves some element of both approaches. Strategies 
for the design, adaptation, and integration of domain ontologies provide good resource 
for design of global schema. [24, 25, 28-31] Even in a top-down approach, the design is 
impacted by the component data elements it needs to capture. A bottom-up approach of 
integrating ontologies will yield a very different result than top-down methods[28, 31], 
and the same holds true for schema integration versus schema creation. The former data-
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driven approach can have greater potential for automation, whereas the top-down global 
schema creation strategy begins conceptually by identifying important constructs and 
concepts to model, usually identified by domain experts. Ultimately, the data integration 
purpose and needs dictate the optimal approach. However, for resolving semantic 
disparities related to context, described later, the top-down approach has more value and 
more extensibility. 
 
Some have argued against the scalability of a global schema approach, claiming that a 
global schema is too broad in scope to maintain, and that the updating of mappings from 
the local to the global schemas required for every local data schema change is labor 
intensive [32] and assumes too much domain knowledge on the part of the end user. [33] 
To address the difficult maintenance of global ontologies, some advocate only the 
maintenance of selected linkages based upon relationships between certain (most 
important) terms in multiple ontologies. [32] To reduce the burden, abbreviations have 
been proposed where comparisons be implemented on a one-to-one basis, and only with 
those parts of the schema needed in the final application. There is some merit to all of 
these arguments, and the scope of the global schema practically should be limited to 
important content for the intended application. Yet, we contend that a uniform 
conceptually-based representation in the form of a global database schema or ontology is 
required for any kind of sensible integration. The feasibility and scalability arguments 
reinforce the case for tools and methods to construct global schemas of varying scopes.  
 
While the use of a global schema is integral to resolving differences in database content, 
and context (to be elaborated later), this approach fails to address representational 
differences resulting from different measurement and concept systems encoding the 
underlying data. Here, similar arguments apply for the use of other conceptually-based 
reference standards, called reference terminologies, to uniformly represent disparate 
measurement systems. 
 

Resolving Heterogeneity from Measurement and Concept Systems: 
Reference Terminologies 
Issues surrounding differences in measurement and concept systems, and the semantic 
confounding and precision conflicts that result, can be viewed as a microcosm of the 
issues for global schema integration described above. To define how heterogeneous data 
structures can be validly aggregated or compared, content from heterogeneous sources 
needs to be represented within the context of unifying referent standard or conceptual 
knowledge representation framework. In the case of concept measurement systems, this 
knowledge representation is called a reference terminology. A reference terminology is a 
terminology (i.e., set of specified concepts and inter-relationships) that functions as the 
standard for comparison of data from heterogeneous representations and/or collected for 
different purposes."  A reference terminology names and organizes concepts relevant to 
the purpose or “use case” and provides the meaning of information units in the structure. 
[34] A reference terminology for presenting complaints, for example, would identify the 
relationships between concepts such as “cough”, “wet cough”, “nasal congestion” and 
“wheezing”. In medical knowledge representation, these relationships are often 
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represented in hierarchical organizations of concepts. Regardless of the format or 
complexity, a reference terminology identifies and names the concepts of relevance to the 
application in a clear, non-ambiguous, and non-redundant way. [34] Mapping is defined 
as the relation between the representation of a concept in one terminological system to 
the most similar representation in another system. [35]  Reference terminologies and 
associated mappings can resolve the semantic and precision data conflicts, when the local 
data values are mapped to the reference terminology in a way that preserves their 
intended semantic meaning. 
 
Medical informatics has many controlled (standardized) vocabularies that are potential 
reference terminologies for data integration efforts, but each is better suited for some 
purposes than others. [36] It has been stated that for any given purpose, no existing 
terminology will suffice. [37] Operationally, a reference terminology should be 
understandable, reproducible, and useful. [38] There is little written about methodologies 
for creating reference terminologies, but accepted standards for good terminologies do 
exist. [39] [36] Like global schema or ontologies, reference terminologies can be 
conceptually-driven or data-driven (top-down vs. bottom-up), and the two approaches can 
create very different representations. Often a top-down approach is dictated by the project 
purpose. This approach starts with the identification and organization of important 
concepts for the “use case”. A theoretical or purpose-driven conceptualization drives the 
content and organizational structure of a reference standard in the top-down approach. A 
bottom-up approach is data-driven. The content from all local measurement systems or 
representations is examined in context of each other, and resolution is achieved by trying 
to merge the data into a common, or homogeneous, representation. However, many of the 
concepts represented in disparate coding systems are not one-to-one, and many coded 
terms represent multiple or “lumped” concepts that can influence the reference 
terminology structure in a bottom-up or data-driven approach. To illustrate, two alternate 
reference terminologies are presented in Figure 5. Each has implications both for how the 
data can ultimately be used, and for the precision of the mapping of terms from local data 
representations.  
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Figure 5. Potential Reference Terminology Representations and Sample Data 
Instances 
 
Representation #1:   Representation #2: 
Symptoms          Symptoms  
   Fever/Infection            Possible Infection 
      Fever                   Fever 
      Infection                 Non-Febrile Evidence of Infection 
 Cough/Secretions           Cough 
      Cough                   Dry Cough 
      Secretions                 Wet Cough 
                             Chest Secretions 
                  Nasal Secretions 
 
Precision of mapping of data instances is affected by Reference Terminology structure: 
 Data Instance: “Cough” 
 Data Instance: “Cough/Secretions” 
  
The structure the reference terminology is ultimately left to the designer, but not without 
implication. The question of whether lumped concepts such as “Cough/Secretions” or 
“Fever/Infection” necessitate a similar grouping in the reference terminology, or whether 
the driving needs necessitate representing these concepts separately, is very important, 
and illustrates the implications between a bottom-up data-driven vs. a top-down design 
approach. Given the two possible reference terminology representations in Figure 5, it is 
clear to see that the precision of mapping of local data instances such as “cough” and 
“cough/secretions” can have different levels of confidence.  
 
A uniform knowledge representation is necessary to achieve the comparability required 
for the meaningful compilation of data content from heterogeneous database 
representations. The alternative to a single reference terminology is to map each 
component terminology or concept system to every other terminology for all databases. 
Such mappings would allow data content from any or all component databases to be 
“viewed” within the conceptual framework of any one database’s concept system. While 
this would lend more information, the approach is much more laborious, less likely to 
scale, and more difficult to adapt to changes across the component terminologies.  Also, 
such an approach is limited to the content and structure of the component concept 
systems and not likely to address new semantic representations that might be required for 
the secondary analyses, or re-use, of existing data. 
 
While classic approaches to heterogeneous database integration view “what’s in the 
attributes” as a coding problem, the medical informatics research community identifies 
this as a knowledge representation problem, requiring an examination of the underlying 
semantics of each coded value. As such, the resolution of these terms depends upon 
conceptualizing each code value not as a “term” but as a (terminological) representation 
for a unique concept. The use of a reference terminology to resolve differences at the data 
content level can be likened to the use of a global schema or ontology to resolve 
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differences at the structural level. Indeed, a detailed ontology could be used for this 
purpose.  The difference between a reference terminology and an ontology can be subtle 
and is usually a matter of degree. Both can be used as a reference standard for 
assimilating disparate concept systems, but reference terminologies tend to be more 
purpose-driven, and less elaborate in terms of formal descriptive characteristics.  
 

Using Context to Identify and Preserve Semantic Intent 
The strongest tool for the resolution of heterogeneous data representations is an explicit 
representation of context. The lack of consensus on a definition or representation of 
context makes this an ongoing research challenge. The context of individual terms at the 
data value level is critical to the selection or design of a reference terminology to resolve 
heterogeneities in units of measurement or concept representation systems. Additionally, 
the source of data content can also be considered a type of context. In healthcare, the role 
(patient, nurse, physician) of the person reporting and entering each piece of data affects 
the value of the information at the aggregate level. The sources of the data are also 
important. For example, the National Library of Medicine’s MEDLINE document 
management system recognizes that the source of information is a measure of quality that 
impacts the user’s decision-making, and labels publications by type (e.g., peer-reviewed 
journal article, conference proceedings, on-line source).  
 
Most context-related issues can be identified and resolved with a guiding conceptual 
model or global schema. The global schema identifies what is relevant to specify in the 
domain, and thereby guides integrators to “fill in the holes.” This is particularly helpful in 
identifying the implied concepts from data collection or organizational issues. Domain-
specific data collection process models facilitate the imputing of context items (e.g., 
reported-by, logical and temporal sequence of data, etc.) that need to be imputed. 
Similarly, the global schema approach can resolve differences at the record level. Since 
the global schema is essentially a new representation of the local database schema, it is 
the limiting factor for processing of that data, and therefore all important concepts must 
be contained. For many implied concepts, a top-down schema creation might apply. 
Unless the notion of who reported the disease is explicitly in one of the databases, the 
schema integration approach might miss it. If the “reported by” or “hospital name” 
constructs are important at the global level (or present in some data bases as in schema 
integration approach) then this blank “attribute” would prompt integrators to determine 
the information and decide how to impute it. Often, a broader and more detailed 
ontological domain view, if available, can identify differences in context across sources 
that might be missed in a data-driven global schema integration approach. The selection 
or development of the guiding ontology should be driven by the important information 
needs of the aggregate data.  
 
Identifying differences in data from context due to implied concepts or data collection 
procedures requires domain experts and persons familiar with the context of data 
collection. Since the context might differ for each data source, information to resolve 
disparities must be obtained from representatives familiar with both the conceptual 
database design and the routine coding procedures for each data source. This often 
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involves imputing or deriving implied data structures and content for some or all data 
sources. The gathering of this information might require many research techniques 
(structured interview, focus groups, observation, etc.) routinely used in other attributes, 
such as psychology, sociology, and education, and is guided by using a conceptual model 
for the integrated data that identifies important concepts and semantic relations. In 
addition, domain experts familiar with the broader domain knowledge and process 
models will be necessary to identify explicit representations for the disparities in 
organizational and data collection context within the broader framework and needs of the 
data integration effort. 
 
Context is particularly sensitive to setting and its resolution will ultimately require 
developers to observe or query people in the data collection setting. The roles and 
training of persons collecting and entering the data at each local source should be 
compared, and possible sources of disparity in data definitions and data collection 
procedures should be explored. The conceptual model of the domain that is required to 
represent important similarities and differences between the semantics of component data 
structures and content should extend to include relevant aspects of context semantics. The 
focus for both is on the meaning of each concept. Domain experts are critical to 
assimilate such information into the uniform representation. Domain experts are also 
necessary to form meaningful representations for the inherent variability in the mapping 
relationships between local terms and concepts in the global schema or reference 
terminologies. 
 
 

The Hitch: Quality 

The mapping of heterogeneous data representations (whether at the data structure level or 
the data instance level) to a uniform representation implies that the nature of these 
mappings will differ by source. The variability in precision of these mappings can be 
considered a measure of quality. Making this variability explicit can improve the utility 
of the integrated data and can have implications for the maintenance of the reference 
standards. 
 
Several domains have developed explicit representations for the quality of mapping to 
referent standards, but there is no common representation in field of database integration. 
The ISO defines different types of relations between terms and concepts when 
transforming between knowledge representation systems, including synonomy, quasi-
synonomy, antonymy, monosemy, polysemy, homonymy. [35] In the field of Information 
Retrieval, a variety of quantitative techniques allow the user to determine the relevance of 
the returned documents or records. [18] The National Library of Medicine’s Medical 
Subject Headings (MeSH) cataloging system uses a ‘broader than’ / ‘narrower than’ 
classification to characterize matches in the searching of published and indexed medical 
literature. Applications in statistical linguistics use data-driven quality matches, noting 
the number and location of important words and word distances in the source document 
as a measure of quality. [15]  
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The explosion of information on the internet has created new challenges to aggregate 
heterogeneous data sources, and many of these applications incorporate the notion of 
match quality. Many applications, including the COINS project, perform matching 
algorithms on the text and its immediate context. [18] Another  more sophisticated 
application, designed to facilitate the searching and integration of ontological databases 
on the Web, allows users to identify concepts from one or many ontologies and specify 
constraints between them, including: pre-requisite, mutually inclusive, mutually 
exclusive, and temporal. [28] The LARKS [18] system, another ontological-based 
matchmaking application, identifies 3 types of matches between data instances: 1.) 
“Exact” - when both descriptions are equivalent (either literally or by synonymy, or equal 
logically by logical inference, 2.) “Plug-In match” - when one description can be 
"plugged in" to another (e.g., broader, narrower, part-of), or 3.) “Relaxed match” – uses a 
numerical distance value to determine the closeness of two descriptions. These types of 
approaches could be applied to either the mapping of data values to a reference 
terminology or data structures (e.g., attributes) in the assimilation of heterogeneous 
database schema. An enumeration of these types of quality matches between data 
structures or instances to a uniform representation has potential to facilitate automated 
mapping strategies and could increase the final data quality in heterogeneous database 
integration efforts. Optimal definitions and representation of quality will vary by 
application. Currently,, standard representations for context and quality of maps to 
conceptual referents are lacking, leaving the integrator and domain experts to make 
judgments in the translation of heterogeneous databases to a uniform representation. 
Future research in the development of these explicit representations is critical to advance 
automated processes to achieve valid homogeneous data.  
 

Conclusions 
The most challenging and outstanding heterogeneous database integration issues are in 
the identification and resolution of representational heterogeneity and the semantic data 
conflicts that often arise. This framework presents a classification and description of 
types of representational heterogeneity by the source (database schema, measurement or 
concept systems, and context) and by the types of data conflicts that emerge (format, 
naming, structural, semantic, precision, missing content, and semantic). This framework 
will support the development and classification of current and future tools and processes 
for which to integrate heterogeneous databases in a variety of domains. 
 
All approaches for heterogeneous database integration share the same broad goal of 
presenting useful and comparable integrated data, allowing the user to focus on their 
tasks, rather than the different representations or interpretations of local systems or the 
conversions thereof. Various representational heterogeneities have been identified in the 
framework presented here, many of which require resolution of domain and context-
dependent semantics. While the process of validly integrating data from heterogeneous 
databases into a common representation is highly dependent upon the domain, purpose, 
and local contexts, the overall goals and measures of success are similar. Data from 
heterogeneous databases cannot be validly aggregated or compared without a uniform or 
homogeneous representation. The ultimate goal of heterogeneous database integration is 
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to create “comparable” data in a representation suitable for a given purpose. Given the 
final information needs, the most successful heterogeneous data integration strategy 
should retain as much granularity from as many sources as possible.  
 
Successful solutions for preserving the intended meaning of data require the use of one or 
more conceptually-driven global reference models, which form the blueprint for 
identifying, understanding, comparing, and ultimately resolving semantic differences 
from multiple sources. The classic teams of technical programming or database experts 
must be expanded to include interdisciplinary teams of local database users and domain 
experts that can identify and preserve semantic intent while transforming data to standard 
representations. The integrity of the transformed data can be enhanced by including 
explicit representations of context and quality, and further research into these 
representations is critical to the success of future endeavors. 
 
Future research is needed in describing methods to develop global schema, including the 
design of standard ontologies for global schema. Critical to this is the development of 
explicit representations of context, including representations that would help determine 
implied and missing concepts. Similarly, methods and tools are needed to develop data-
driven and purpose-driven reference terminologies and to evaluate quality of existing 
ones. Quality characterizations of the mappings between local data structures and 
uniform representations are warranted. Strategies to delineate operational definitions for 
data attributes are also needed. Explicit representation of these operational definitions 
will facilitate future computational methods for aggregating data from heterogeneous 
representations to a uniform homogeneous representation. Methods for mapping to 
referent standards should be researched across domains. For all of the above, the 
emphasis should be on repeatable or reusable methods across domains and to represent 
and transform rapidly changing local data sources.  
 
The issue of aggregating data across heterogeneous databases is an important problem 
across all industries and domains, and likely one that will not go away. This framework 
provides the basis for identifying heterogeneities across multiple databases, and lays the 
foundation for the classification, development, and evaluation of generalizable processes 
for heterogeneous database integration. 
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Abstract:  

 The goal of heterogeneous database integration is to achieve a homogeneous 

representation for the comparability of the underlying data. A generalized process for 

creating a homogeneous representation while preserving local data granularity and 

intended meaning was developed within the context of a heterogeneous database 

integration problem in the health care domain. This process includes the creation of a 

global schema, supporting reference terminologies, and the representation of important 

characteristics related to the quality and precision of local term–reference terminology 

concept mappings. This process addresses common problems arising from heterogeneous 

databases and can be generalized to other domains. 
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1.) Introduction  

 

 Any sensible use of data from heterogeneous databases requires a uniform or 

homogeneous representation for comparability. Integrating heterogeneous databases into 

a homogeneous representation, while preserving the intended semantic meaning and data 

granularity from native representations, presents both a conceptual and practical 

challenge. The focus of this research is on the development of a generalizable process for 

heterogeneous database integration that achieves comparable data with a homogeneous 

representation. The process was developed by systematically addressing common classes 

of representational heterogeneity and resultant data conflicts [4] exhibited by 

heterogeneous databases using a data integration project in the health care domain.  

 

2.)   Related research  

 

 This section describes the current research and outstanding issues involved in the 

integration of heterogeneous databases.  

 

2.1 Heterogeneous databases 

 

 Heterogeneous databases can be defined as separate autonomous databases, 

independently created for unique purposes, with substantial differences in both abstract 

data models and database schema.[1] The importance of integrating heterogeneous 

databases is illustrated by the great number of research review articles on the subject, 
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across many disciplines.[1, 8, 40-42] The challenge for creating integrated data with a 

uniform, or homogeneous, representation is in identifying and resolving all of the 

heterogeneities, or differences, that exist between the source databases. Heterogeneity 

from multiple autonomous databases arises from representational differences that 

manifest in a variety of data conflicts, many semantic in nature. These representational 

differences include naming and formatting differences in attribute names, structural 

differences in table and attribute decompositions, and semantic differences in the 

definitions of data attributes and underlying data content.[4] The goal for integrating 

heterogeneous databases is to resolve these representational differences to a uniform 

representation; ideal solutions preserve intended meaning and granularity from local 

sources.[4]  

 

2.2 Semantic data conflicts  

 

 Representational heterogeneities can result in differences in data semantics that 

can impact the quality of the data for secondary use.  Broadly, semantic differences or 

data conflicts (also called semantic heterogeneities) occur when there is a disagreement 

about the meaning, interpretation, or intended use of the same or related data, and arise 

from different definitions of data attributes, differences in coding precision of the data 

content across multiple databases [1], or context [9]. Broadly, semantic data conflicts 

arise when the data in different systems is subject to different interpretations, even when 

data types, labels, and general schemas are identical.[10] For example, three separate 

restaurant-review databases might each contain an attribute called “meal cost”, yet the 
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meaning of the construct may differ in each source. One database might use meal cost to 

mean the menu cost, one might use meal cost to mean the cost of the meal including tip, 

and another might use it to mean the cost of the meal including tip and tax.  Therefore, 

the underlying data in these attributes would not be comparable, despite having similar 

attribute names and data definitions, because the intended semantics differ for each.  Data 

from different source representations cannot be validly compared or aggregated without 

assurance that the semantic intent of each data value is understood.  While such semantic 

data conflicts are often difficult to precisely define, identify, and classify [1], there is 

common consensus that their resolution is the most problematic aspect of heterogeneous 

database integration efforts.[8] [10] 

 

 

 

2.3 Heterogeneities caused by different concept and measurement systems  

 

 A common data integrity challenge for heterogeneous database integration efforts 

is the assurance that the concept and measurement systems encoding the data are 

comparable across attributes that need to be aggregated. Comparability is a broader 

notion than equivalence, and implies the need for a common representation, or standard, 

to make judgments of relationships between different values (e.g., equivalent to, greater 

than, less than; broader than, narrower than, etc.). Classic examples of measurement 

system differences include length in feet vs. inches, or weight in pounds vs. kilograms. 

Since the conversions for such different ratio systems are well-known, these disparities 
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reduce to a common problem of scaling, resolved by simple re-coding to a standard 

measurement system.  

 Commonly, however, data content is encoded in knowledge representation 

systems (e.g., terminologies, coding schemes) that represent concepts as the “units” of 

measure or membership, and heterogeneities between different representations of data 

attribute content can be problematic to resolve. While the need for a standard 

measurement system or a reference model is required to resolve differences in classic 

measurement systems, conversions between different concept systems requires an 

understanding of the conceptual “units” of each system.  For example, what is the 

relationship between “coughing/wheezing” in one concept system and “breathing 

problems” in another? Or, what is the relationship between “nasal congestion” in one 

concept system and “runny nose” in another? The transformation of different concept 

systems to a standard ultimately requires an understanding of the intended meaning of 

each local data value, and its relationship to selected standard concepts.  Such concept 

systems do not evaluate constructs on a continuous or numerical scale, as do classic 

measurement systems, but evaluate the membership of a given instance in a concept or 

class of concepts. Failure to resolve such data values at the conceptual level can result in 

potentially serious precision data conflicts and confounding of meaning.[8] The existence 

of many concept systems for health care knowledge is frequently referred to as the 

“vocabulary problem” in the medical informatics literature, is viewed inherently as a 

knowledge representation problem, and is a major research focus for the field.[11]  
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 One solution for achieving a homogenous representation of heterogeneous data 

content is to map concepts from different concept systems to a standard or referent 

concept system, called a reference terminology. A reference terminology is a specified set 

of concepts and relationships that provides a common reference point for the comparison 

and subsequent integration of heterogeneous data. [34] The mapping, or transformation, 

of the concepts underlying heterogeneous local terms to a standard conceptual framework 

creates comparability of data content, and facilitates the integration, storage, and retrieval 

of data from multiple sources. Unlike the use of implicit reference models or pair-wise 

comparisons, the use of a singular reference terminology can be explicit, open to 

evaluation, and can integrate more than 2 concept systems. 

 

 Reference terminologies can be created from one or all of the component 

terminologies, borrowed, modified, or created a new.  The fitness of a reference 

terminology is entirely dependent upon the purpose [36], and it has been said that for any 

purpose, no perfect terminology exists.[37] The ideal reference terminology should have 

the concept coverage and  (i.e., specificity or detail) to meet the intended needs and to 

capture local data.[39] Since reference terminologies are indeed knowledge 

representation systems, the literature on conceptual modeling and ontology development 

provides good resources for design strategies. All of these sources emphasize the highly 

iterative development process, the reliance on domain experts, literature, and data 

instances for development and refinement, and the importance of the purpose for which 

these conceptualizations are created to support.  While there are few standards for the 

design of reference terminologies per se, there are established guidelines for the 
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evaluation of terminologies in healthcare that can be generalizable in part to other 

domains.[36, 39]  

 

2.4 Integration of heterogeneous databases 

 

 The transformation of heterogeneous databases into a homogeneous 

representation facilitates the querying or extraction of data from the component 

databases. Two broad approaches are used to query data from heterogeneous databases: 

data-translation (i.e., data integration and summarization) and query-modification. The 

first strategy extracts the desired data from each source using the query language specific 

to each database, and then translates the data from each source to the standard or uniform 

representation. This ‘data-translation’ strategy is typically used in data warehouse or 

clinical data repository projects. [8] The second approach involves translating a desired 

query into equivalent functional queries for each local data source to extract data from 

each source. Such ‘query-translation’ strategies involve information mediators or 

“wrappers” for each local system that describe what the databases can provide in terms of 

the local abstract data model and database schema, and what types of queries they can 

answer in terms of the native query language.[18] In both strategies, users are oblivious 

to any representational differences across component databases. Similarly, users are 

usually unaware of the precision of the transformed homogeneous data relative to its 

original representation. To ensure the integrity and to understand the limitations of the 

transformed data, both the data-translation and query-translation approaches ultimately 
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require the same thorough examination of the intended meaning of each heterogeneous 

database structure and the underlying concept and measurement systems.  

 

 Data from heterogeneous databases is comparable if the semantic intent of the 

underlying data can be transformed to a homogeneous or standard representation. This 

standard representation is considered “global” relative to the local component data 

sources, and consists of a standard database schema representation as well as standard 

representations for the supporting concept and measurement systems encoding the data 

content. Once standard representations are selected, the data integration process entails 

‘mappings’, or defined relationships, between both local data structures and underlying 

content, to the global knowledge representations. These standard representations can 

support both data-translation and query-translation database integration approaches. 

 

 

3.) Creating homogeneous data from heterogeneous databases 

 

 Successful data integration solutions preserve data granularity and intended 

meaning of local data values while transforming them into a homogeneous representation 

for comparability and compilation. A database integration effort in the health care 

domain systematically identified and addressed representational heterogeneities across 

databases [4] to develop a generalizable process for creating a homogeneous data 

representation in a central data repository. The goals of this section are to describe 

specific requisites for valid data integration from both the literature and this data 
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integration experience. These requisites include the use of conceptually-based reference 

standards (i.e., global schema and reference terminologies), characteristics of the 

mapping relationships between native and standard data representations, and the role of 

context in preserving data integrity. Section 4 assimilates these issues into a generalizable 

process for achieving homogeneous data from heterogeneous database representations.  

 

3.1 General strategy for creating uniform representation 

 

 This project transformed presenting complaint (i.e., patient-reported reason for 

visit) data from 4 different hospital emergency departments (EDs), disparate in both 

database schema and underlying content, to a standard representation. (Figure 1) This 

standard representation includes a global database schema and a supporting reference 

terminology to homogeneously represent heterogeneous database schema and data 

content. Heterogeneous presenting complaint data content was made homogeneous by 

mapping disparate presenting complaint data values to a reference terminology for 

presenting complaints, called the Houston Asthma Reference Terminology (HART), that 

was created especially for this project.[2, 6] The HART provides a uniform 

representation for presenting complaint data from the 4 heterogeneous sources, and 

represents a concept system that encodes one attribute (presenting complaints) of a global 

database schema for ED visits.  This global database schema gives a uniform context to 

the homogeneous presenting complaint data, and provides the structure for a data 

repository, which can be queried to support a variety of public health and research 

applications.   
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Figure 1. HART Project Overview 

 

 

 Prior to the start of this data integration, domain experts were queried to 

determine the purpose and scope for the database integration, and to share insight into the 

global conceptualizations of the domain.  The database schema and data content from the 

local or component databases were systematically examined, first individually to 

understand content and structure, and then relative to the other component databases to 

understand content and representational similarities and heterogeneities between them.  

An understanding of the data content and structure from the component data sources, as 

well as the intended purpose of the final data, drove the development of reference 
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standards (global schema and reference terminology) that provided the structure and 

representation for the final repository data.   

 

 Key activities for obtaining homogeneous data while preserving semantic intent 

and data granularity identified through the literature and this data integration include: the 

development of conceptually-based reference standards (i.e., global schema and reference 

terminologies), creating mapping relations or assertions between local data structures and 

referent standards, identifying relevant mapping characteristics, and identifying 

contextual elements that influence local data semantics. These key activities are each 

discussed in this section, and are then assimilated into the generalizable process for 

achieving homogeneous data from heterogeneous database representations that is 

outlined in Section 4.   

   

3.2 Conceptually-based reference standards 

 

 Only when data share a common representation can they be compared. Integration 

of heterogeneous databases requires one or more standard representations to resolve 

disparities in both database schema and the underlying concept systems encoding the 

data. In order to preserve the intended meaning of each local data structure, the standard 

representations should conceptually-based, meaning that the units of information are 

concepts or groups of concepts.[4] In the resolution of heterogeneous database schema, 

the standard representation is called a global database schema.[1, 10] In the resolution of 

knowledge representation systems for data attribute content (e.g., concept systems), the 
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standard representation is called a reference terminology. Together, global database 

schema and reference terminologies constitute the homogeneous representation structure 

that facilitates the secondary use of existing data. Mappings between local concepts or 

data structures and the reference terminology and global schema constructs transform the 

heterogeneously represented source data to this homogeneous representation.  

 

 3.2.1 Global Schemas 

  

 Most current general processes for heterogeneous database integration involve 

some type of transformation of local database schema, often to a master or global 

schema. This global schema defines all of the important data structures and relationships 

required at the aggregate level, and as such, it forms the limits of what the new data 

attributes and relations can express. The global schema guides the query of the repository 

(in the data-translation approach) or defines the translations, or mapping, of component 

heterogeneous query models to the referent in the query-modification approach. The 

global schema can be thought of as the schema of a final integrated database, or the 

“ideal” schema in terms of the final purpose.  

 

 A global schema can be created from two different approaches: a bottom-up 

schema integration (literally combining schema from existing heterogeneous databases), 

or a top-down schema creation (driven by a broader conceptual organization or purpose-

driven view). While both approaches have their merits, the construction of a global 

schema is often highly iterative and therefore involves some element of both approaches. 

Methodologies for the development of ontologies provide good resource for the design of 
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global schema.[24, 25, 28-31]  The use of ontologies, defined as global 

conceptualizations of domain knowledge, can facilitate the development of global 

database schema. [18, 24-27]  

  

 In this project, a global schema for ED visits was developed from domain experts’ 

conceptualizations of the ED visit process. The basic model of ED care was confirmed by 

asking several experts about the process from both the patient’s point of view and from a 

data collection perspective.  The local data schema were examined, attribute by attribute, 

from each source to see if the local data attributes matched the conceptualization of ED 

visits given by experts.  There was consensus on the nature of ED visits, which was 

supported by the structures of the local database schemas, and so the definition of the ED 

global schema developed very quickly. The conceptualization for ED visits that 

supported the development of this global schema is that patients (who have more or less 

permanent characteristics) present with complaints, have an acuity/severity, receive a 

diagnosis, and leave the ED with a final disposition status. The resulting global schema 

(relational model) divides the information from each ED visit into patient information 

(e.g., demographics, identifier) and visit-specific information (e.g., date/time of visit, 

hospital of visit, visit identifier).  Each visit is related to one or more presenting 

complaint concepts, and one diagnosis, acuity, and disposition value.  This global 

database schema for ED visits “normalizes” presenting complaint data from the local data 

attributes, creating a common data attribute for all presenting complaint data instances.   
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 The mapping, or transformation, of local structures to the data attributes of the 

global schema was used to overcome naming, format, structural, and content differences 

across the native databases in this data integration. For example, local data structures (at 

the table, attribute or instance level) such as “chief complaint”, “presenting complaint”, 

and “PresCompl” were mapped to the master “Presenting Complaints” attribute in the 

global schema, yielding semantically-like data in a homogeneous representation. The 

global schema, as any other database schema, included attribute definitions and formats, 

and relationships between attributes, which guided the mapping of local data structures to 

global data structures, addressing many representational disparities. The global schema 

also helped to identify semantic data conflicts, by guiding the systematic investigation of 

operational data definitions across local sources. Domain experts and local database users 

were critical in this process to identify the intended and desired meaning of data 

structures and definitions in the local and global schema. The global schema provided a 

blueprint of what data definitions and relationships to investigate. Similarly, each data 

attribute of the global schema was examined and considered for the use of a reference 

terminology to represent content from any underlying heterogeneous concept systems. 

 

 The global schema guides the storage and retrieval of the transformed and 

integrated data. For this project the global schema was represented as attributes (tables) 

and relations in a relational (MS Access) database. The global schema can also be 

represented as the database structure in other applications using different database 

paradigms. The mapping between local database schema and global schema require 

programming activity, as data structures are being renamed and/or transformed, and data 
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relationships are being changed or created in the global schema. The programming 

language used in this demonstration was Visual Basic implemented within the Access 

database environment. However, any programming language with the capability to 

transform data structures (e.g., Python, C++, Java) would function. Specialized append 

queries could also be used to query structures from data tables and populate the attributes 

of other “master” tables. 

 

 3.2.2 Reference terminologies 

 

 The development of a global schema for ED visits guided the resolution of many 

representational and semantic data conflicts, but an additional knowledge representation 

standard, or reference terminology, was required to resolve differences in concept 

systems encoding the underlying presenting complaint data.   

 The development of the standard HART reference terminology to represent 

presenting complaint data from heterogeneous ED databases was highly iterative and 

required 6 person months of development time, including numerous observations and 

interviews with data administrators and domain experts. The development is discussed in 

detail elsewhere [2] but could be summarized as an iterative, conceptually-based data-

driven process consisting of multiple iterations of the following key steps: specify 

purpose, list relevant concepts, describe relevant concepts, identify important inter-

concept relationships, organize relevant concepts, test inter-concept relationships, and 

choose appropriate representation. 
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 The lack of one-to-one correspondence between concepts represented by the local 

concept systems complicated the development of the HART, and forced choices to be 

made about the content and structure of the reference terminology.[2]  Relationships 

between local terms such as “difficulty breathing” and “respiratory problems” had to be 

understood and expressed in the final reference terminology.  The presence of coded 

terms representing multiple or “lumped” concepts influenced the reference terminology 

structure. For example, coded terms such as “cough/secretions” had to be dissected into 

distinct concepts of “cough” and “secretions”, and choices had to be made if such lumped 

terms should drive a similar category in the final HART reference terminology, which 

would result in some loss of granularity for concept systems that singularly represented 

the more granular concepts (e.g., cough). Local terms representing implied concepts also 

influenced the final HART structure and the associated local term-HART concept 

mappings.  For example, the semantic intent of terms such as “Flu-like symptoms” and 

“cold” had to be explored, and distinct, yet implied, concepts such as fever, vomiting, and 

nasal congestion teased out. 

 

 The physical format of the local term-Reference Terminology concept mappings 

can vary by actual implementation environment (e.g., relational table of equivalencies, 

different types of programming syntax), but the mappings all represent assertions for 

valid data transformations. In this demonstration, relationships were specified between 

local concepts and HART concepts as part of the schema design of the final Access data 

repository. Regardless of the tools and languages used to transform local terms into a 

common concept terminology, the mappings are ultimately created by domain experts. 
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Because of the important influence of data collection context on semantic meaning, it is 

likely that the mapping experts will be different for each source database. 

 

3.3 Characteristics of mapping 

 

 The heterogeneous nature of the local data instances demonstrated variability in 

the local term-HART concept mapping relationships, and characterizations of this 

variability emerged in this data integration effort. Often the local term-HART concept 

mapping variability entailed a loss of granularity or intended meaning from some source 

representations. For example, if local terms “dry cough” and “cough” are both mapped to 

the concept “cough” in a reference terminology, the transformed data would appear 

similar (i.e., 2 instances of “cough”) but any distinctions between the local terms would 

be lost. The capture of the different relationships between term-concept mappings for 

both local terms, however, can allow some data granularity and potential meaning to be 

retained. Noting that the local term “dry cough” is more granular or specific than the 

reference concept “cough” and that the local term “cough” represents the same concept as 

reference concept “cough” can facilitate understanding of the relationship that exists 

between the two local terms. Most database integration efforts transform data to a 

common representation making the user unaware of any disparities in the native 

representations. Processes that address these precision differences in local term-referent 

concept mappings can enhance the end users’ understanding, querying, and use of final 

data. Making these mapping characteristics explicit has implications both for the 
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evaluation and maintenance of the reference terminology and for utility of the 

transformed data in computational or statistical analyses.  

 

 A representation of precision for this project was adapted from that used by the 

Unified Medical Language System, a metathesaurus of biomedical concept systems 

developed by the National Library of Medicine.[12] The final representation for the 

precision of each local term-concept mapping in this project includes: exact term and 

concept, lexical variation (same concept), synonym (i.e., same concept), broader than, 

narrower than, related concept. In the implementation of global schema for ED visits and 

supporting HART created here, each local term-concept mapping is associated with one 

attribute describing the precision of the match.  

  

 Quality can be defined as the truthfulness of the local term-HART concept 

mappings in preserving semantic intent. In this sense, precision is a measure of quality. 

There are other measures of quality, and the conceptual and operational definitions of 

these constructs will vary by application and domain. One additional measure of the 

quality of the mapping in this project is a representation of who created or validated a 

given mapping assertion. Ultimately, a 3rd party creates the term-concept mappings that 

transform each local term to a standard reference terminology concept in heterogeneous 

data integration efforts. The fact that a physician, or more specifically, a pulmonologist, 

reviewed the term-concept mappings was an important quality attribute for this project. 

Depending upon the application or use case, it might be of greater importance to know 

that the data entry clerk who actually coded a term validated its semantic intent. The best-
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suited mapping experts will differ for the problem or information-type being examined. 

Explicitly representing this basic measure of quality of each term-concept mapping 

assertion can add power to the compiled data, facilitating the potential quantification of 

certainty about the match.  

 

 The final representation for quality developed for this project captures who 

asserted the local term-HART concept mapping (medical expert from ED where instance 

originated, medical expert from other ED, nurse coder from ED where instance 

originated, nurse coder from other ED, or health informatics developer). In the final 

repository (relational) database schema created for this project, each local term-concept 

mapping is associated with one attribute describing the quality of the mapping assertion.  

  
 
3.4 Context  
 
 
 Consideration of context surrounding local data instances can help determine their 

intended meaning. In computing terminology, context is defined as that which surrounds, 

and gives meaning to, something else.[43] Explicit representations of context on multiple 

levels (e.g., data instance, database schema, data collection process, data collection 

quality, and domain) facilitate the development of uniform conceptual knowledge 

representations and their associated mappings.[44] The context of the data instance 

guided the mapping of local free-text terms in this data integration project.  For example, 

the term “no cough” did not map to the HART referent concept “cough” because of the 

“no” characters surrounding the term of interest. In addition, the context of local database 

schema was used to distinguish semantic intent of the same term in different source 
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databases. For example, the coded term “Cough/Secretions” likely means either cough or 

secretions or both, whereas the free-text unstructured instance “cough, secretions” likely 

means both. In addition to data types, the context of local database schema was used to 

distinguish between transformed patient records with one presenting complaint concept 

due to constraints in the local database schema (i.e., the schema only allows one 

presenting complaint to be entered) versus the reality of the clinical situation (i.e., the 

patient truly had only one presenting complaint). To accomplish this, local data schemas 

were related to each data instance in the global schema for ED visits, which allowed 

traceability to native data formats and system constraints. 

 

 The context of local data collection settings and procedures is particularly 

important in identifying the semantic intent of local data values. Data collection context 

refers to organizational, setting, and process features that influence data collection and 

impact the semantic meaning of the data. Dampney et al. (2001) note that implicit or even 

obvious information at the database level is often not represented when taking data to an 

aggregated level.[9] Database schema typically do not explicitly code data that are 

implied or unnecessary for the database’s intended purpose (e.g., most physicians at a 

children’s hospital are pediatricians). For example, the general model of emergency care 

is that patients arrive, state one or more complaints, are triaged by a nurse, and then are 

diagnosed and treated by a physician. Although usually not represented in the database, it 

is known in the domain that a “presenting complaint” is reported by the patient. 

Therefore, a presenting complaint of asthma (reported by patient) carries a different 

meaning than a diagnosis of asthma (reported by a physician). Implicit information 
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structures typically not represented in health care databases include context of role, 

organization, purpose for which data are collected, and underlying concept systems.[9]  

 

 Identifying differences in data from context due to implied concepts or data 

collection procedures required domain experts and persons familiar with the context of 

data collection. Since the context differs for each data source, information to resolve 

disparities must be obtained from representatives familiar with both the conceptual 

database design and the routine coding procedures for each data source.[44, 45] The 

gathering of such information for this project required research techniques (structured 

interview and observation) routinely used in other attributes, such as psychology, 

sociology, and education. In addition, domain experts familiar with the broader domain 

knowledge and process models identified disparities in organizational and data collection 

context within the broader framework and needs of this data integration effort. It is likely 

that in other projects, domain experts will play a central role in identifying implied data 

attributes and/or data content. 

  

4.) A generalized process 

  

 Based upon the ED presenting complaint data integration effort described above, 

along with the identification of key features of successful database integration solutions, 

a generalized process was developed for the integration of heterogeneous databases to a 

uniform representation. This generalized process accommodates the needs for the 

representation of quality and precision attributes that can preserve data granularity and 



 

  56

semantic meaning. As discussed in the previous section, this process is highly iterative 

and not as simplistically sequential as presented below. This generalized process and 

evaluation criteria target key sources of representational and semantic heterogeneity that 

challenge efforts to create a homogeneous representation in any domain. Despite the 

range of project requirements and variety in local database source representations in other 

potential database integration projects, successful efforts for integrating data from 

heterogeneous database and concept system representations into a homogeneous 

representation should include the following broad steps: 

 

1.) Define purpose, information needs, and process needs. This step is critical and 

should guide all choices to be made in the design of homogeneous representation 

standards and use. The purpose and information needs for the combined data dictate 

the level of detail and organizational structure required for the conceptual referents. 

Information needs are best represented by creating typical “use cases” that illustrate 

type, detail, and applications that the aggregated homogeneous data needs to support. 

Process needs (e.g., access, timing, data availability) drive the logistical procedures of 

the heterogeneous database integration. The purpose should be mutually defined and 

endorsed by a representative sample of potential application users, database 

integrators, and domain experts. 

 

The model of database federation (i.e., the general approach for accessing and 

integrating data) is based upon the needs defined above, and determines the practical 

implementation of the database integration effort. The access permissions and 



 

  57

anticipated needs for updated or current data determine whether a query-modification 

or data-translation approach should be taken. In general, needs for current and 

frequently updated data are best satisfied with a query-modification approach, 

whereas data-translation is suitable for periodic data needs. Also, data sources with 

highly disparate concept systems requiring one or more reference terminologies will 

need a data-translation step. Specific guidance for selecting from different models of 

database federation can be found elsewhere.[1] 

 

2.) Examine data structures, concept and measurement systems, and data collection 

context from local data sources. Each local data source must be explored to 

determine the semantic content. This examination can be bottom-up, meaning each 

local database is examined attribute by attribute, or top-down, meaning relevant 

constructs are identified from a conceptual model and the corresponding data 

structures or attributes are sought in each of the local database schema. Regardless of 

the approach, all relevant data attributes should be reviewed and synonymy in 

attribute names and definitions noted. In addition, the operationalized data definitions 

for each data attribute should be identified. The concept and measurement systems for 

each data attribute should be explored. This preliminary, almost qualitative, analysis 

of source database schema and underlying concept and measurement systems should 

identify each data attribute of interest in the final project and attempt to define initial 

equivalency relationships across databases. The level of disparities observed in 

structure, naming, format, data definitions, and concept or measurement systems 

encoding each data structure will dictate the best approach for defining the global 
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schema. Accordingly, the activities associated with this step are a prerequisite for step 

3, defining the global schema. 

 

3.) Define global schema. Depending upon the levels of disparities between the local 

databases and the overall project purposes, a schema integration approach (data-

driven) or a top-down schema creation approach could be used. Regardless of the 

method, the global schema should define the constructs and relationships needed for 

the application, at both the level of granularity needed and with the terminology 

(attribute labels) familiar to the domain. The potential disparities in data attribute 

definitions across source databases and context of data collection that impact these 

final operational definitions, as well as important quality attributes identified by 

domain experts, should be represented in the global schema. Available domain 

ontologies (including conceptualizations of process and work-flow) should be 

searched for relevance and used as a resource to guide the development and/or 

refinement of the global schema. Ideal global schema should maintain relationships to 

the local data schema that allow the traceability of the native data context. 

 

4.) Define reference terminologies and measurement systems. All concept and 

measurement systems supporting the final data attributes must have a standard 

representation. Each data structure in the global schema should be considered for a 

reference terminology that reflects expression and context of local data and 

encompasses representation needs for real use-cases. The level of disparity in concept 

systems across local databases and the information needs for the aggregated data 
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(both organization and granularity of content) determine whether these reference 

terminologies should be borrowed from other sources, or created via top-down or 

bottom-up approach. One reference terminology might capture the concepts 

represented in multiple data attributes of the global schema. The use of reference 

terminologies to achieve comparability from heterogeneous data can be termed 

content integration, and a generic process for this is described in [2]. 

 

5.) Map data structures expressed in local data sources to the closest construct in 

the global schema. This step generally can be thought of as reconciling local database 

attributes to corresponding attributes in the global schema, but can also involve 

moving data from instance level to attribute level to table level.  Regardless, the 

meaning or concept class represented by each structure should be the focus of this 

activity. To preserve semantic intent from each local source, the focus goes beyond 

the data definitions of each database to include interviewing designers and users of 

each local database.  Questions to be asked should include: What is the meaning of 

this attribute? How is the content or value selected? Do all users agree? Does the 

context of the data collection influence the meaning of the data values? If so, how? 

This examination of constructs at the local level might drive changes in the global 

schema. The ultimate information needs and purpose should guide the mapping of 

relevant local data structures to the appropriate structure in the global schema.  

 

6.) Map relevant concepts that are implied but not explicit in local data models to 

the global schema. The global schema should identify constructs or structures to 
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compare to the local schema. Where constructs are missing, but are implied or can be 

derived from local sources, they must be imputed into the global schema. For 

example, if the construct of who recorded a particular local data attribute is important 

to the quality of the final data semantics, this concept should be included in the global 

schema and the values imputed appropriately by local users and domain experts. The 

project logistics determine how the imputation process should best occur. This can be 

achieved by a “blanket” imputation (e.g., all values for ‘reported by’ are the same for 

a given source) or by selective value-based imputation (e.g., presenting complaint in 

hospital A is a ‘diagnosis’ structure if it contains the term ‘asthma’.) A representation 

for missing concepts that cannot be implied or derived should be included in the 

global schema. The analysis of disparities in data collection context, and review by 

domain experts and end-users, facilitates the identification, representation, and 

mapping of implied concepts from local databases to the global schema. 

 

7.) Map terms (and the concepts they represent) expressed in local data sources to 

the closest concept in the appropriate reference terminology. Again, the focus of this 

mapping needs to be on the underlying concept or intended concept expressed as a 

term in local databases. Semantic intent is determined by observing representative 

coders for each local data source, as well as questioning coders, local database 

developers, and domain experts. The exploration of the context of data collection, as 

well as the roles and training and objectives of local data entry persons at each level 

can assist in understanding semantic intent. 
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8.) Characterize the quality of mapping of local data instances to concepts in 

reference terminology. The identification of potential context items that impact the 

quality of match is facilitated by domain experts and designers of local data sources, 

and also by a domain ontology, if available. An appropriate representation for the 

certainty of mapping of data structures to the global schema, as well as who asserted 

each mapping, should be developed. Any variability in the data definitions of 

constructs (e.g., one data attribute definition is operationalized differently than a 

corresponding construct in another local database schema) should be explicitly 

represented relative to each mapping relationship. Domain experts and end users 

should specify representations for quality that are useful and meaningful to the final 

applications. 

9.) Characterize precision of mapping of local data instances to concepts in 

reference terminology. Similarly, the intended meaning of each term in each concept 

system should be mapped to the most appropriate and closest concept in the reference 

terminology, and characterizations of the local term-referent concept mappings 

should be represented. Variability in concept systems from the heterogeneous sources 

implies a loss of data granularity from some sources, and this loss of precision should 

be represented in the final global schema as appropriate to the needs of the final 

compiled data. Any variability in the data definitions of constructs (e.g., one data 

attribute definition is broader in scope or more inclusive than that of the 

corresponding construct in the reference terminology) should be explicitly 

represented relative to each mapping assertion. 
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 The steps outlined above are highly iterative, and certain steps will entail 

repeating previous activities. The first step of identifying the needs and purposes for the 

data integration is one that will need to be re-visited at every step, and will be the lens 

through which the evaluation of the process and the resultant homogeneous data is 

ultimately determined. 

 

 While the process of validly integrating data from heterogeneous databases into a 

common representation is highly dependent upon the domain, purpose, and local 

contexts, the overall themes and goals and measures of success are similar. Data from 

heterogeneous databases cannot be validly aggregated or compared without a uniform or 

homogeneous representation. The ultimate goal for heterogeneous database integration is 

to create “comparable” data in an organized representation suitable for a given purpose. 

Given the final information needs, the most successful heterogeneous data integration 

strategy should retain as much granularity from as many sources as possible. The 

evaluation of success is addressed by examining the nature of the final homogeneous 

representation, and the relationships between local data structures and those of the final 

representation. 

 

 Some broad questions can be asked to evaluate the utility and success of the 

process: 

 

1.) Have the purposes for the integration been clearly identified and specific use 

cases created? 
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2.) Does the global data schema include all of the constructs and concepts and 

relationships required to meet the use cases? 

3.) Have the measurement systems for each data structure or construct in the global 

schema been transformed to a standard measurement system? Have the concept 

systems for each data structure or construct in the global schema been 

transformed to a reference terminology or standard concept system? Has each 

data structure or construct in the global schema been considered for the use of a 

reference terminology? Do the measurement systems and reference terminologies 

selected for each final data attribute have the granularity and detail needed to 

support the final use cases? Do the measurement systems and reference 

terminologies selected for each construct limit the loss of data granularity from 

each local data source? Is the loss of data granularity acceptable to the final 

purpose and use cases for the aggregated homogeneous data? Is there an explicit 

representation for the quality of the mapping of local data values to each reference 

terminology? Is this representation useful in explaining the variability of 

mappings and loss of granularity?  

4.) Has each local data attribute mapping to the global schema been examined? Have 

the operational data definitions for each been examined? Have interviews been 

conducted with a representative sample of database developers and users for each 

local database? Was the context of data collection observed for disparities in the 

operationalization of data definitions? Is there an explicit representation for the 

quality of the mapping of local data structures to each structure in the global 
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schema? Is this representation useful in explaining the variability of mappings and 

loss of granularity?  

5.) Have domain experts identified important elements of context that might impact 

quality of the final data? Is this context explicitly represented in the final global 

data schema? Can a concept or measurement system be identified to represent the 

content of relevant context attributes? 

6.) Does the final global data schema provide relationships to native or local database 

schemas for each of the local databases? Is missing data represented differently 

for missing data instances versus missing data constructs? 

 

 In general, the evaluation of the process of assimilating heterogeneously 

represented data to a uniform or homogeneous representation is relative to satisfying the 

needs of the intended purposes of the integration project. The generalized process and 

evaluation criteria described above ensure a systematic approach for the examination of 

all local data structures, the use of conceptual referent standards, and the evolving 

relationships between the two. The intended purposes and final information needs drive 

each iteration of this process as well as define its completion and success. 

  

5.) Conclusions and future work  

 

 Creating homogeneous data from heterogeneous database representations is not a 

trivial task, but is necessary for any meaningful secondary use of the data. Just as there is 

a wide variety in data integration projects by domain, scope, content, and purpose, the 
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resources required for these endeavors vary. Successful data integration projects will 

require systematic investigation of the intended meaning of local data structures and 

content, and will apply research techniques such as structured interview and observation 

from other disciplines.  

 

 The contribution of this work is a generalized process for creating homogeneous 

or comparable data from heterogeneous data representations.  Once a homogeneous data 

representation is achieved, the data from heterogeneous databases can be compiled, 

shared, manipulated, and leveraged to address a multitude of business requirements.  This 

process recognizes that the differences inherent in native data representation and data 

collection contexts imply some loss of meaning or precision when being transformed to 

standard homogeneous representations.  Key steps of this process attempt to minimize the 

loss of data semantics and granularity, potentially allowing better “quality” data in the 

final representation.  This generalized process should be valuable to a number of database 

integration efforts in a number of domains.  
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Abstract:   
 To create comparable data from heterogeneous databases, a common 
representation for both database structure (i.e., database schema) and underlying content 
must be used.  This common representation functions as a reference model or standard to 
which the component data structures and content are mapped or transformed.  Global 
database schema are the reference models or standards that enable the integration of 
heterogeneous database schema, and reference terminologies are the reference models 
that enable the integration of heterogeneous data content from disparate knowledge 
representation or concept systems.  A reference terminology provides a common 
representation, and dictates how data from heterogeneous representations can be 
compared, aggregated, or manipulated.  The development of a reference terminology is 
neither trivial nor exact, and is heavily influenced by both the local data representations 
and the intended uses of the integrated data.  Heterogeneous data often maps to the 
reference terminology with varying levels of precision and quality.  The explicit 
representation of these variable mapping relationships enhances the use of a reference 
terminology and has implications for both the quality of the integrated data and the 
maintenance of the reference terminology.  A process was developed to create a uniform 
representation for heterogeneous data content while preserving local data granularity and 
intended meaning.  This process includes the development of a reference terminology and 
the representation of important characteristics related to the quality and precision of local 
term–reference terminology concept mappings. This process was developed within the 
context of a database integration problem in the domain of pediatric emergency medicine, 
and is generalized for other uses at the conclusion of this paper. 
 
Keywords: 
 Heterogeneous database integration; content integration; knowledge 
representation; reference models; reference terminologies; measurement systems; concept 
systems; data quality 
 
 

1.) Introduction   
 
 One prerequisite for data integration is that data from different sources be 
interpreted and integrated with respect to a common representation. Resolution of 
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heterogeneous data to a common representation involves resolving representational 
disparities in both database schema and the underlying measurement or concept systems 
(e.g., terminologies or coding schemes) encoding the data. Both require conceptually-
based referents or standards to which the component data structures (i.e., tables, 
attributes, relations) or underlying data content from component data instances are 
mapped. Global schema are reference models that guide the integration of heterogeneous 
database schema into a uniform representation, and reference terminologies are reference 
models that guide the integration of heterogeneous data content  into a uniform data 
representation. Reference terminologies are sets of concepts and relationships (also called 
knowledge representation frameworks or concept systems), that, when used as a standard 
representation, create “comparability”, and therefore enable any subsequent aggregation, 
integration, communication, manipulation, and meaningful analyses. 
  
 The focus of this research is content integration, or the resolution of disparate 
concept systems that encode the data contained within heterogeneous database systems. 
Meaningful content integration solutions demand the examination of concepts underlying 
the terms or codes from each different concept system. The method is to transform 
concepts attached to local data instances to a single reference terminology, while 
preserving the granularity (i.e., detail) and intended semantics from local data instances.  
The contribution of this research is a process for the development of a reference 
terminology to uniformly represent data from heterogeneous sources, and explicit 
characterizations of the mapping relationships between native and final data 
representations.   This process fits into a broader process for heterogeneous database 
integration presented elsewhere. [5] The development of this process in the field of 
pediatric emergency medicine is described, and a generalized process for integrating data 
from disparate representations is presented in the last section. 
 
 
2.)   Background   
 
 This section describes the outstanding issues involved in the integration of 
heterogeneous concept and measurement systems encoding the data from heterogeneous 
database representations.  The use of standard knowledge representations (e.g., reference 
terminologies), to which heterogeneous data structures are mapped, is also described.   
 
2.1 Integration of heterogeneous databases 
 
 The integration of heterogeneous databases requires the identification and 
resolution of many types of representational heterogeneities, or differences, between the 
source databases.[4] Many of these representational heterogeneities are due to differences 
in local database schema and are addressed by the use of a global, or referent, database 
schema. Many heterogeneous database integration projects have proposed methods for 
developing global database schema [7, 10, 33], and strategies for mapping heterogeneous 
database schema or data attributes to a referent global schema [1, 7].  However, little of 
the database integration research focuses on the resolution of disparate concept systems 



 

  70

or knowledge representations within data attributes, or on the measurement of how the 
component or native structures might relate (or “map”) to the referent.   
 
 
2.2 Representations for data content  
 
 The data contained in each database attribute is represented, either implicitly or 
explicitly, in a knowledge representation framework that can take several different forms. 
We broadly categorize these knowledge representation systems as one of two types: 
measurement systems and concept systems. Measurement systems are used to code data 
by evaluating values on a continuous or numerical scale, whereas concept systems 
encode data values or content by evaluating the membership of given data instance in a 
class, usually via the presence or absence of certain descriptive properties or 
characteristics. All concept systems include concepts and defined relationships between 
them. The simplest type of concept system is a coding system. A coding system is a 
combination of a set of concepts or rubrics (text string that describes a classing in a 
coding system or terminology), a set of code values, and a coding scheme that maps 
between the two. [35]  Other types of concept systems increase in the complexity and 
formalized representation of semantic relationships, and include taxonomies, 
vocabularies, terminologies, and ontologies.  
 
 While the data encoded in a concept system is fundamentally different than the 
data represented in a measurement system, there is some overlap between the paradigms 
of measurement and concept systems. This is illustrated in nominal or ordinal 
measurement systems whose coding schemes either explicitly or implicitly represent 
concepts. The distinction between the four types of measurement scales (nominal, 
ordinal, interval and ratio) is based on the amount of information or the qualitative 
characteristics of the information carried by the data. Nominal and ordinal data can be 
represented by coding systems or terminologies, whereas ratio and interval data represent 
distinct points and ranges, respectively, on an absolute scale. Both coding systems and 
terminologies can be thought of as ordinal measurement systems, where the underlying 
units of measure are concepts, and are referred to here as types of concept systems. 
 
2.3 Challenges for content integration 
 
 A common data integrity challenge for heterogeneous database integration efforts 
is the assurance that the concept and measurement systems are comparable across fields 
that need to be aggregated.  Comparability is a broader notion than equivalence, and 
implies the need for a common representation to make judgments of relationships 
between the values (e.g., equivalent to, greater than, less than; broader than, narrower 
than, etc.).  Classic examples of measurement system differences include length in feet 
vs. inches, or weight in pounds vs. kilograms.  Since the conversions for such different 
ratio systems are well-known, these disparities reduce to a common problem of scaling, 
resolved by simple re-coding to a standard measurement system.  Resolving disparate 
concept systems, including measurement systems involving nominal or ordinal data, 
however, are more challenging. 
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 Whether heterogeneous database content is represented in a measurement or 
concept system, the process of content integration within heterogeneous databases 
requires one standard system as a reference model for each data attribute. In resolving 
heterogeneous measurement systems, the reference model is a standard measurement 
system; in resolving heterogeneous concept systems, the reference model can be either a 
standard concept system or a standard measurement system. The integration of different 
concept systems, can result in potentially serious precision data conflicts and 
confounding of meaning. [8]  Resolving disparate concept systems requires examining 
the concepts underlying each local value, term, or coded representation, and transforming 
(or mapping) those to the appropriate concepts in a standard concept system. The 
transformation of concept systems to a standard system, either a concept or measurement 
system, therefore, is much more complex than the transformation of data from one 
measurement system to another. These (concept-concept) transformations are one focus 
of this paper. 
 
 Three different representations for measuring patient acuity (a measure of the 
seriousness of patient’s condition) are shown in Figure 1.  The granularity (i.e., level of 
precision and detail) of these scales differ: two of the coding systems (Emergency 
Departments A and C) represent acuity on a 3-value ordinal scale, while another 
(Emergency Department B) represents this same construct on a 4-value ordinal scale. 
Each scale represents some mix of patient and organizational characteristics that 
collectively classify the severity of the patient and their triage priority. Even without an 
understanding what concepts the specific code values represent, it is apparent that the use 
of any one of these concept systems as a standard coding will result in either the loss of 
data granularity from some coding systems, or the need to impute concepts from others.   
 
 
Figure 1.  Alternative Concept Systems for Patient Acuity Information 
 

EMEDGENCY 
ROOM     

 A 

EMEDGENCY 
ROOM     

 B 

EMEDGENCY 
ROOM     

 C 
ASAP Red Team 
Urgent Blue Check 
Stable Yellow Shock 

 Green  
 
 Semantic data conflicts arise in heterogeneous databases when the units of 
measurement are not comparable for similar structures across databases, and this lack of 
comparability is often difficult to detect.  It might seem logical to assimilate the different 
3-value scales for Emergency Departments A and C, but if the code values “ASAP”, 
“Urgent” and “Stable” do not have the same underlying concepts as “Team”, “Check”, 
and “Shock”, this would lead to a semantic mis-match, or confounding of meaning, in the 
compiled data.  Strategies to quantify these codes to a common representation, discussed 
further in the next paragraph, attempt to capture, at least implicitly, the semantic intent 
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underlying each code. The success of this capture of the true semantics of each term 
ultimately determines the validity of each numerical transformation. 
 
 Possible strategies to assimilate heterogeneous concept systems, such as those 
shown in Figure 1, include quantification and translation.  In the quantification approach, 
the concept systems are transformed to a standard measurement system. For example, 
each local code would be assigned a numerical value or range based upon concepts or 
properties denoted or connoted by each data instance. The numerical codes would then 
serve as the reference standard or uniform representation for the content integration. 
Several types of measurement systems could be used as the standard in the quantification 
approach, including absolute and interval scales, and ranked or ordered scales. 
Ultimately, the selection and transformation of concept systems to a standard 
measurement system all require domain experts’ guidance based upon their 
understanding of the concepts and clinical situations represented by each local code. In 
the quantification approach, however, the transformations of data from local codes to 
standard numerical values or ranges, do not explicitly represent the underlying concepts 
that are synthesized and interpreted, although such concepts clearly drive the 
transformation. For example, the transformation of “ASAP” to “20” or “Blue” to “10-12” 
or “Red” to “1 (=worst)” has no meaning to final data users, and the logic of domain 
experts that drives this transformation is not explicit for validation, change, or replication. 
These non-explicit quantification approaches can be used for nominal or ordinal 
(ordered) codes, but do not truly make the final data semantically comparable. For 
ordinal data, the ordering of data instances might be useful for some purposes, but the 
true patient acuity for the “worst” code at one hospital might only be equivalent to the 
lower ranking in another. Since quantification approaches do not explicitly target the 
underlying concepts, it is impossible to know if the transformed data is semantically 
comparable.  (In other words, although “1” equals “1” in the new representation, does 
“ASAP” hold an equivalent meaning to “Shock” and “Red”?) Semantic comparability 
might indeed be achieved by this strategy, but it is not guaranteed. 
 
 The second approach to resolving different coding schemes, called translation 
here, deals more explicitly with the underlying concepts of each local data term or 
instance. The general idea is to examine local data, tease out relevant concepts, and 
transform the native data to a standard concept system representation. This approach is 
more labor intensive and conceptually challenging, but is the only approach that promises 
to capture the intended semantics, or true meanings, of each local term or code.  
 
 This simple example presented in Figure 1 is typical of problems encountered in 
controlled healthcare vocabularies with literally millions of concepts.  Health care data 
sources utilize a host of concept systems for a variety of different purposes.  In these 
vocabularies and coding systems, each ‘value’ or data instance is a terminological 
representation of a unique concept or group of concepts. Because the concepts 
represented in different concept systems are often not 1:1, or even n:1, they can be very 
difficult to resolve. The enormity and complexity of medical knowledge makes the 
assimilation of different concept systems a greater challenge than dealing with many 
conventional ratio measurement systems.  The translation between disparate units in ratio 
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measurement is straightforward, since, for example, one inch always equals 
approximately 2.5 cm.  But what is the relationship between “coughing/wheezing” and 
“breathing problems”, or the relationship between “nasal congestion” and “runny nose/ 
green”?  The existence of many concept systems for health care knowledge is frequently 
referred to as the “vocabulary problem” in the medical informatics literature, and is a 
major research focus for the field. [11]  Standard or reference terminologies are the 
vehicle of choice to achieve data comparability and preserve intended semantic meaning. 
 
2.4 Reference terminologies  
 
 A reference terminology is a terminology (i.e., set of specified concepts and inter-
relationships) that functions as the standard for comparison of data from heterogeneous 
representations and/or collected for different purposes. Reference terminologies (to which 
disparate local concepts are “mapped”) are critical to resolving differences in concept 
representation arising from heterogeneous systems, by providing a standardized list of 
concepts and (term) labels that have shared and consensually understood meanings across 
a domain or user community.[34]   
 
 The ideal reference terminology has the concept coverage and granularity to meet 
the intended needs and to capture local data.  The fitness of a reference terminology is 
entirely dependent upon the purpose, and it has been said that for any purpose, no perfect 
terminology exists.[37]  As knowledge grows and data availability increases, no one can 
predict all potential and future needs for a given terminology.  Domain and industry 
vocabulary standards are never sufficient for all potential use cases, and often knowledge 
changes more quickly than the standards for its representation.  There will always be a 
need to integrate data from heterogeneous database representations, and referent 
knowledge representations will always be called for, often customized for specific data 
integration projects.   
 
 In theory, a reference terminology can be created from one or all of the 
component terminologies, borrowed, modified, or created anew.  In reality, however, the 
final purpose for the data integration often requires a unique reference terminology to be 
developed. The development and use of a reference terminology is more than a merging 
of all local terms, because a reference terminology needs to contain both the concept 
coverage and structure to satisfy final information needs, and at the same time capture 
similarity and overlap between the heterogeneous component concept systems. Since 
reference terminologies are indeed concept systems, the literature on conceptual 
modeling and ontology development provides good resources for design strategies.[24, 
28, 31, 46] All of these sources emphasize the highly iterative development process, the 
reliance on domain experts, relevant literature, and data instances for development and 
refinement, and the importance of the purpose for which these conceptualizations are 
created to support.  Because conceptual models and ontologies are domain dependent, 
there is no step-by-step methodology for their creation.  While there are few standards for 
the design of reference terminologies per se, there are established guidelines for the 
evaluation of terminologies in healthcare that are generalizable in part to other 
domains.[36, 39, 47-50]   
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2.5 Mapping relationships to reference terminology concepts 
 
 In heterogeneous database integration problems, a major class of representational 
heterogeneities arises from differences in the underlying concept or measurement systems 
encoding the data in each local database, and requires transformations to a referent 
concept or measurement system to integrate the content in a meaningful way. “Mapping” 
is the asserted relation between the representation of a concept in one concept system to 
the most similar representation in another system [51], and is achieved by transforming 
(or re-coding) concepts from local data instances to a standard concept system   Different 
native or local data representations imply variability in the nature of these data instance – 
reference concept mappings. In the next section, we argue that the capture of this 
variability, referred to here as mapping characteristics, can help preserve data granularity 
and intended meaning when the data is transformed to a reference standard. 
    
 

5.) Case study: reference terminology development and mapping 
 
 Successful data integration solutions preserve data granularity and intended 
meaning of local data content while transforming them into a uniform representation for 
comparability.  A content integration effort in the health care domain illustrates key 
issues in the development of a reference terminology, associated mappings, and explicit 
representation of characteristics of local term – referent concept mappings.  The project 
integrated presenting complaint data from 4 different hospital emergency departments.  
The heterogeneous data was made homogeneous by mapping disparate data models to a 
referent global schema for emergency department (ED) visits and by mapping the 
underlying disparate terminologies (i.e., data content) to a reference terminology for 
presenting complaints.[4, 5]  
 

3.1 Problem: heterogeneous data content not comparable 
 
 Data content was not comparable between the 4 study hospitals because of 
representational heterogeneities in the source databases. This lack of comparability was 
due to disparities in both data models and underlying data content.  The databases from 
some emergency departments collected multiple presenting complaint attributes, others 
one.  The attribute names differed: e.g., “presenting complaint”, “presenting complaints”, 
“chief complaint”, or “chf_compl”.  More problematic was the fact that within presenting 
complaint-type data fields, there was enormous disparity in content, due to the variability 
in coding schemes (ranging in detail from 22 possible codes to 77 possible codes) as well 
as the presence of free-text entries.  Some of the disparities in presenting complaint data 
content are shown in Figure 2. For example, one ED may code a visit as “difficulty 
breathing”, while another may use “shortness of breath/wheezing”.  Any sensible data 
integration requires an understanding of whether “difficulty breathing” and “shortness of 
breath/wheezing”, or for that matter, “respiratory problems”, are the same or related, and 
if related, how related.  For public health purposes, it was important to describe and 
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integrate and describe this disparate presenting complaint data across multiple hospital 
EDs.   
 
  
 
 
 
 
Figure 2.  Types of Presenting Complaint Data Content from Heterogeneous ED 
Databases 
 
Emergency Department A Emergency Department B Emergency Department C 
Respiratory   
Fever/Infection   ¦  
Arrest/Resuscitation   ¦  
   ¦ Respiratory problems  
   ¦ Fever  
 Brachycardia  
 History of: Asthma  
 Malaise: Flu-like Symptoms  
 Malaise: Irritable/Anxious   ¦ 
 Cough/secretions   ¦ 
   ¦ Difficulty Breathing  
   ¦ Coughing/crying 
  Fever  vomiting   cold sx 
  Asthma, exacerbation 
  Fussy, cough 
 
 
 Figure 2 illustrates some typical presenting complaint data instances from 3 
hospital EDs.  The “units” for each coding system are concepts, which make the 
resolution of these coding schemes to a common representation difficult.  These types of 
examples from Figure 2 illustrate the data instances that needed to be represented in a 
uniform reference terminology. 
 
3.2 Solution: A reference terminology to capture presenting complaints 
 
 Using a global schema for ED visits, presenting complaints from several 
heterogeneous database representations were normalized into a single “presenting 
complaint” attribute in a data repository.  Despite this homogeneous data structure, 
significant disparities in underlying concept systems remained (as shown in Figure 2), 
and a reference terminology was needed to provide a common representation and 
facilitate content integration.  Existing terminologies were examined, but none had the 
concept specificity or semantics required to support the local data instances.  The 
Houston Asthma Reference Terminology (HART) was developed iteratively using 
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domain experts, scientific literature, and actual data from pediatric ED visits from the 
participating Houston-area hospitals. (Figure 3)     
   
 
 
 
 
 
 
Figure 3.  HART Reference Terminology  (abridged) 
  …         
  Reported Symptoms and Complaints       
   …      
   Symptoms of Possible Infection      
    Fever       
    Cold Symptoms       
     Nasal Congestion      
     Runny Nose       
      …      
   Respiratory and Chest Symptoms and Complaints    
    Breathing and Respiration Symptoms and Complaints  
     Irregular Breathing      
      Rapid Breathing     
     Respiratory Sounds      
      Abnormal Respiratory Sounds    
       Noisy Respiration     
        Crackles   
        Rhonchi  
        Wheezing   
      Normal Respiratory Sounds    
     Respiratory Distress      
    Cough       
     Wet Cough      
      Clear Sputum     
      Colored Sputum     
     Dry Cough      
    Chest Sensations       
     Chest Tightness      
     Shortness of Breath      
    ....  
  
 The structure of the HART is a (multiple) hierarchical classification. It was 
designed to capture the ‘low-hanging fruit’ of how to count, roll-up and drill-down 
respiratory-related presenting complaint concepts that can be used to characterize patient 
visits from multiple hospital emergency departments. The HART is a set of concepts (and 
standardized term labels) whose semantics are determined by each concept’s placement 
in the hierarchy. The HART reference terminology provides a knowledge structure for 
aggregating presenting complaint data from heterogeneous ED databases, and defines the 
limits to which these data can be manipulated or shared.  Data instances from presenting 
complaints were mapped (i.e., transformed) to HART concepts, yielding compiled data 
with a common representation.   
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3.3 Development of the Houston Asthma Reference Terminology (HART) 
 
 The HART was developed iteratively using domain experts and scientific 
literature as well as actual instance data from the 4 hospital databases.  The development 
strategy for the HART was an initial top-down conceptualization followed by many data-
driven re-organizations.  After identifying relevant concepts from domain experts and 
important scientific and professional literature, data instances from the component ED 
databases were examined.  These data instances were mapped to concepts in the evolving 
reference terminology, and subsequently drove changes in the content and organization of 
the HART.  The development of this reference terminology was neither trivial nor exact, 
and is described in detail in the following section. The final chapter of this paper 
generalizes this process for future endeavors in other domains. 
 
 Before the development of the reference terminology, representative instance data 
(i.e., actual data content from patient records) was filtered for respiratory diagnoses so 
that the data largely represented only pediatric respiratory visits for each of the EDs. This 
representative data (161 instances) included presenting complaints and standard visit 
information (e.g., date and time of service).  Four domain experts (1 pediatric 
pulmonologist MD, 1 pediatric emergency medicine MD, 2 pediatric Emergency 
Department RNs) and one terminologist were consulted during the development of this 
reference terminology. 
 
 The HART was modeled as a hierarchy of concepts, and presented in a paper (MS 
Word) format for expert review and revision.  The primary author developed each 
iterative reference terminology structure and solicited individual feedback from 4 domain 
experts (for content changes) and 1 terminology expert (for technical/knowledge 
representation changes). An iteration was defined as any addition, removal, or 
reorganization of relevant concepts in the HART terminology.  These changes in the 
reference terminology were characterized by source (data-driven, expert opinion) and 
typology (expansion, reduction, change in inter-concept relationships). Finally, the 
development activities were characterized into an overview of reference terminology 
construction shown in Figure 4. 
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Figure 4.  Iterative Development of the HART 
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 The scope and intended purposes of the HART guided each development phase, 
and the foundation for all of the HART development activities were domain experts, 
relevant professional literature, and local data instances.  The role of domain experts was 
critical. The available data and organizational restraints made it impossible to approach 
the actual coders for each local data instance, but domain experts in the field and familiar 
with each organization were consulted to understand the most likely intended semantics 
of each local term. The development of the HART was highly iterative, and while the key 
activities are discussed sequentially below, the process required many activities to be 
revisited and was not so simplistically sequential. The development of the HART 
consisted of the following activities: 
 
1.) Define Scope and Purpose:  The purpose of the reference terminology was clearly 
defined:  “to represent pediatric ED presenting complaints that might be relevant to or 
predictive of pediatric asthma.”  In reality, the purpose was broader in that we wanted to 
retain as much detail and semantic intent as in the local databases as possible. The 
purpose determined what was relevant in terms of content and structure for each iteration 
of the HART, and was influential in every activity of the reference terminology 
development. 
 
2.) Identify Relevant Concepts: Concepts included in the HART were obtained from 
domain experts, scientific literature, and data instances.  Building upon the broad concept 
groupings identified by domain experts, examination of the important literature 
(including current asthma treatment guidelines) generated a list of potentially relevant 
concepts.  Given that a primary purpose of the HART was to represent as much 
granularity as possible in the local instance data, this project placed heavy weight to the 
data-driven aspects of the reference terminology.  Local data instances included terms 
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such as “cough/secretions”, “wheezing”, “tachypnea”, and “SOB”.  Authors attempted to 
“tease apart” the underlying distinct concepts and represent them with a uniform term 
both recognizable and meaningful to end users, e.g., “cough”, “secretions”, “wheezing”, 
“fast breathing”, and “shortness of breath”.  Lists of free text term entries were examined 
in a similar manner for underlying concepts.  New local terms were mapped to the HART 
until saturated, meaning that no new (relevant) concepts arose.  The initial listing of 
relevant concepts had no particular order.  Subsequent exploration of the concept 
characteristics ultimately began to drive the structural organization of the HART.   
 
3.) Description of HART Concepts: The listing of potentially relevant concepts facilitated 
“eyeballing” for like properties or characteristics.  This was a highly iterative process, 
involving lots of pen and paper lists and scribbles, and many different hierarchical 
organizations were attempted.   Examination of the listing of relevant concepts allowed 
concept “attributes” to emerge within the context of the defined purposes.  These 
attributes were used to explore different HART organizations of groupings.  New, 
related, and often implied, concepts that were important to represent with each data 
instance also were teased out, including time start/onset, when/where/who reported, and 
data field of origination.   
 
4.) Organization of Important Concepts in Reference Terminology:  This step was the 
first to try to build the HART structure, which will ultimately have implications for the 
quality of the transformed data, the ability of the reference terminology to represent 
greatest intended semantics from each source, and the capture of any similarity between 
component terminologies. The list of important HART concepts derived from experts, 
literature, and data instances, and the important concept properties and characteristics 
were then explored for possible modes of organization.  The initial hope was that one 
terminology might “fit” inside another less granular terminology.  The most precise local 
terminology (i.e., that with the greatest number of codes) was first used as the potential 
foundation, and mappings of concepts found in other data instances were attempted.  
When it was clear that several concepts from local coding systems could not be 
synchronized without losing data granularity from others, the idea of trying to assemble a 
reference terminology by overlaying local coding systems onto one another was 
abandoned. To visualize disparities in content and structure among the local 
terminologies, each local coding system was transformed into a hierarchy and viewed 
side-by-side.  The eyeballing of the coding systems generated ideas for possible 
organizational structures. Each possible organization was then “tested” for the validity of 
its inter-concept relationships, and the inclusion of required inter-concept relationships, 
as described in the next step. 
 
5.) Identify Inter-concept Relationships:  The different organizational structures of the 
HART (i.e., each iteration) were tested by identifying relationships between multiple 
HART concepts. Authors tried to identify properties or characteristics that were related to 
(or helped describe or refine) large groups of concepts.  Common underlying concepts or 
attributes emerged with different experimental concept groupings.  For example, terms 
such as “wheezing”, “difficulty breathing”, “rapid breathing”, and “labored breathing” 
share a property “abnormal breathing” under which these concepts could all be grouped. 
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The identification of inter-concept relationships in each iteration of the HART 
organizational structure, as well as important relationships that should be represented in 
the HART structure, provided the basis for testing inter-concept relationships that drove 
subsequent iterations of the HART. 
 
6.) Test Inter-Concept Relationships:  The robustness of a terminology is determined by 
its usefulness or concept inclusion for local data values, and therefore the testing of inter-
concept relationships was a core activity of the HART development.  For example, the 
testing of inter-concept relationships drove questions such as: Do all sub-groupings of 
abnormal breathing really share this property? Are there any important concepts related 
to abnormal breathing missing from this grouping?  The testing of inter-concept 
relationships was facilitated by concept “instances” – defined either by experts or by 
actual data instances.  The first strategy for testing inter-concept relationships was simply 
to “walk the tree” and test the validity of the is-a relationships for the entire terminology.  
Next, the mappings (from local term to HART concept) were checked by domain experts 
and by nurses who coded the local data instances to clarify the semantic “intent” of the 
term.  When a given instance didn’t “map” to the HART, the organization of the HART 
was challenged, resulting in changes in content and relationships that were in turn 
checked by additional data instances.  Characterizations for why a given instance didn’t 
map were useful in identifying the problems with each emerging HART structure. The 
characterization of problems with the reference terminology structure included: a.) 
content problems in the HART (i.e., a concept was missing or an irrelevant concept was 
captured), b.) structural problems in the HART (i.e., important inter-concept relationships 
were missing, or incorrect inter-concept relationships were included in HART structure), 
and c.) problems extracting concepts encoded by local terms (e.g., multiple concepts were 
“lumped” into one local term, concepts were implied but not explicit in local terms, or the 
concepts embedded in local terms were vague or uncertain.) 
 
7.) Representation:  The selected format for the HART was determined by the intended 
purposes.  The HART needed to explicitly represent ED presenting complaint data 
instances and how they could be “rolled-up” for aggregate analyses, so a hierarchy was 
sufficient.  Basic heuristics for face validity were used to ensure the consistency of the 
physical representation. Terminological labels were selected to reflect the HART 
concepts in terms that were meaningful and familiar to potential users.  Each HART 
concept was labeled to be identifiable independent of its placement in the hierarchy (e.g., 
“respiratory_and_breathing_symptoms_and_complaints” is more understandable out of 
the hierarchy than the label “respiratory”).  Each branching level of the HART was 
checked for consistent levels of abstraction.  Where local data instances implied a 
grouping or new concept, the HART was expanded to create groupings for other related 
or parallel concepts.  For example, if a data instance drove the grouping “wet cough”, 
then another grouping was made for “dry cough”.  Similarly, if terms “wheezing” and 
“crackles” were grouped as “abnormal respiratory sounds”, then other types of abnormal 
respiratory sounds were identified to exhaust the abnormal respiratory sounds grouping to 
accommodate additional future term mappings. 
 
 



 

  81

3.4 Challenges for HART development 
 
 The lack of one-to-one correspondence between concepts represented by local 
concept systems complicated the development of the HART, and forced choices to be 
made about the final content and structure of the reference terminology.  The presence of 
coded terms representing multiple or “lumped” concepts influenced the reference 
terminology structure. Such concepts presented opportunities for multiple different data-
driven HART representations, each of which would either result in some loss of 
granularity for some sources, or affect the quality of the aggregated data for queries. To 
illustrate, two different reference terminology structures are presented as an example in 
Figure 5. Each potential HART structure has implications both for how the data can 
ultimately be used, and for the precision of the mapping of terms from local data 
representations.  
 
 
 
 
 
 
Figure 5. Potential Reference Terminology Representations and Sample Data 
Instances 
 
Representation #1:   Representation #2: 

    ¦         ¦ 
Symptoms           Symptoms  
   Fever/Infection            Possible Infection 
      Fever                   Fever 
      Infection                 Non-Febrile Evidence of Infection 
 Cough/Secretions           Cough 
      Cough                   Dry Cough 
      Secretions                 Wet Cough 
        ¦                  Chest Secretions 
                  Nasal Secretions 
             ¦ 
 
Precision of mapping of data instances is affected by Reference Terminology structure: 
 Data Instance: “Cough” 
 Data Instance: “Cough/Secretions” 
  
 
 Some local data instances represented multiple or “lumped” concepts that each 
needed to be mapped to the HART.  The presence of such lumped concepts raised 
questions for the organization of the HART.  Namely, do terms such as 
“Cough/Secretions” or “Fever/Infection” necessarily drive similar concept grouping in 
the final reference terminology?  While a data instance of “Cough/Secretions” maps 
easily to the structure in Representation #1, that representation is less robust and its uses 
are more limited than the second representation. For example, from Representation #1, 
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one cannot query for how many “coughs” (without secretions) there are across regional 
ED visit data.  This representation is easier to construct but more difficult to query. In 
essence, Representation #1 illustrates a strategy of combining every possible code from 
the local terminologies, which fails to express any similarities between the terminologies. 
The chosen solution for the HART project was found by re-examining the purpose.  The 
broader purpose of the reference terminology was to maintain as much granularity as 
possible, so we chose to keep concepts distinct and part of other hierarchical 
relationships.  It was decided that dual hard-coded concepts, such as “Cough/Secretions” 
and “Fever/Infection” and “Cold/Infection”, would not necessitate specific dual 
categories in the HART, because this would force a loss of data granularity for those sites 
that split those terms.  Such disparities in different coding schemes were handled by 
explicitly representing the nature of the term-concept mappings, as described later. The 
final HART structure, therefore, includes important concepts identified by domain 
experts, but also captures some similarity between the local concept systems that a simple 
‘merging’ of all component terms could not achieve. 
 
 Local terms representing multiple implied concepts were also problematic and 
forced choices in the structure of the final HART.  The basic unit of a reference 
terminology should be a single concept, yet many coded instances embodied multiple 
concepts that were hard to tease apart.  For example, the term “Flu-like Symptoms” could 
mean many different things, and this concept could be decomposed into all possible 
symptoms (e.g., chills, fever, malaise, etc.)  This is challenging because the term is 
admittedly vague, and includes several concepts with some certainty and several others 
with less certainty.  For the purposes of the HART, however, the relevant underlying 
concept was an indication of acute infection, so this concept, although vague, was not 
decomposed. 
 
3.5 Characterization of HART iterations 
 
 Characterizations for iterations, mapping problems, and reference terminology 
changes are critical for developing a generalizable process for reference terminology 
development in other domains. In this project, changes in the reference terminology were 
characterized by source (data-driven, domain expert) and typology (HART content 
expansion or reduction, change in inter-concept relationships/organization). Figure 6 
depicts some of the problems identified by domain experts and data instances that drove 
iterations of the HART, as well as their resolution.
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Figure 6.  Examples of Concepts Driving Changes in Content and Organization of HART 
Problem Source Resolution Concept Detail 
Missing 
Concept 

Domain 
Expert  

Concept ignored No breath sounds Although not present, expert pointed out that this concept could be 
important.  Since this concept is unlikely to appear in data, the HART 
was not expanded. 

Multiple 
Concepts in 
one Term 

Data Instance: 
coded value 

Mapping rules 
clarified  

Wheezing/ 
Respiratory 
Distress 

Respiratory Distress is not an extreme of wheezing, but is a distinct 
concept that can apply to any lung disease.  It just refers to degree of 
involvement.  This instance maps to 2 distinct HART concepts 

Implied 
Concepts 

Data Instance: 
free text entry 

HART not 
changed, data 
attributes added to 
represent implied 
concepts 

Asthma 
exacerbation 

There are no consistent symptoms for an asthma exacerbation, so this 
concept (while vague and encompassing multiple concepts) only 
implies a worsening of asthma and cannot be decomposed with any 
certainty. This term in presenting complaint field implies a history of 
asthma or previous asthma diagnosis. Therefore, this term maps to 
HART as asthma diagnosis (patient-reported and history-of). 

Vague 
Concept 

Data Instance: 
free-text entry 

HART content 
expanded  

Sick This “lay” term clearly could encompass many concepts, but none with 
certainty.  Drove a new category of concepts under Discomfort.   

Multiple 
inter-concept 
relationships 

Data 
Instances: free 
text entries and 
coded values 

HART content 
expanded 

Pain  Pain concepts have distinct grouping organized by topography – for 
face validity/ completeness of RT, possible categories were exhausted.  
Since it was important to represent ear pain (could be a co-morbidity), 
earache is represented both as a Pain concept and as a Head and Neck 
complaint concept. (i.e., the concept is unique with several HART 
locations.) 

Terms with 
Multiple 
Hierarchies 

Data Instance: 
coded value 

Mapping rules 
clarified 

Congestion Concept falls under 2 groups: possible infection and head complaint.   
Although not a medical term, likely that congestion could mean chest 
congestion. This concept maps in multiple places with lower levels of 
“certainty” or confidence for each mapping. 

Wrong 
relationship 

Expert HART 
organization 
changed 

Aspiration/ 
Choking  

Mis-grouping in early HART iteration.  Aspiration/Choking is actually 
a lower respiratory (not a digestive) symptom. 

Missing 
Concept 

Expert HART content 
expanded 

Peak Flow 
Laboratory Tests 

Added concept: add peak flow to lab tests.  Not data driven but 
important to represent. 

Multiple 
Concepts 

Data Instance: 
coded value 

HART 
organization does 
not reflect lumped 
concept 

Fever/ Infection Does fever/infection dictate unique heading since it is a compound 
concept in some sources? These are 2 distinct concepts. To retain data 
granularity from other sites, concepts fever and infection were kept 
separate. 
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3.6  Logistics of HART development 
 
 Data instances and domain experts forced choices about both the content (i.e., 
included concepts) and the organization (i.e., how to group concepts) of the HART.  
Problems identified by attempts to map data instances or important concepts defined by 
domain experts included: missing concepts in the HART, local terms that contained 
multiple HART concepts, local terms that contained implied HART concepts, and local 
terms representing vague concepts.  Domain expert review also identified problems or 
inconsistencies with inter-concept relationships denoted by the HART organizational 
structure.  Comments about inter-concept relationships included both the location of a 
concept in the HART structure (e.g., “Aspiration/Choking” is not a 
‘digestive_symtom_or_complaint’ but is a ‘lower_respiratory_symptom_and_complaint’) 
and important concepts with relationships to multiple groupings, (e.g., the term 
“congestion” is a ‘symptom_of_possible_infection’ and is a ‘head_complaint’.)  Each 
new HART representation is called an iteration. Each iteration was tested using data 
instances and domain expert reviews.   
 
 The general process for reference terminology development is illustrated in Figure 
6. Each iteration resulted in the addition, removal, or movement of concepts in the 
emerging HART structure, or new groupings and organizational structures, and was 
driven by either mapping actual data instances or potential data instances identified by 
domain experts.  Each iteration required either a change in the HART structure (in either 
content or organization), a decision to consider the data instance as either irrelevant to the 
scope of the reference terminology purpose or an anomaly, or a representation of 
mapping characteristics to qualify the mapping.  Therefore, each iteration resulted in a 
resolution that could be characterized as adding/removing concepts, moving concepts, 
ignoring the instance, or clarifying the mapping rules and descriptions.  
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Figure 6. Iterations in the Development of a Reference Terminology  

Reference 
Terminology

Problems:
Concept missing in RT
Multiple concepts 
Implied concepts
Vague concepts
Multiple relationships
Relationship missing
Relationship wrong

Source of Test 
Concepts:

Domain Experts
Data Instances

Changes:
Content expansion 
Content reduction
Change in organization 

map to
define 
mapping 
attributes

Disregard 
instance

 
 
 
 The development of the HART was more resource-intensive than it would appear.  
161 data instances and 13 important expert-defined relationships were used to develop 
the HART. A total of 32 iterations were made to arrive at the final HART structure 
depicted in Figure 3.  The development time was approximately 6 person-months, 
including several hours of expert review. 
   
3.7 Characterizing the mappings to the HART   
 
 As described earlier, alternative representations of the HART have implications 
for both the coverage of data instances and the ultimate usefulness of the aggregated data.  
Some of the granularity lost in the transformation or mapping of local data values to 
reference terminology concepts was regained by representing the nature of these mapping 
relationships. Quality mapping characteristics, whose explicit representation could have 
potential importance in resultant applications, were identified through the development of 
this data integration process.  These were noted by examining the types of data 
granularity loss incurred by different reference terminology representations, and by the 
use of domain experts to verify if these differences were important.  With domain 
experts, potential characterizations of quality were identified. 
 
 The explicit representation of the precision of mapping to a reference terminology 
can help in retaining maximum data granularity from each local data source.  For 
example, if one component terminology uses the term “dyspnea” to mean the referent 
concept “Shortness of Breath”, the fact that the two terms represent the exact same 
concept, i.e., they are common synonyms, implies a smaller likelihood of loss of meaning 
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and straying from the intent of the local term.  Similarly, the mapping of “barky cough” 
to the referent concept of “wet cough” is far less precise, since “barky cough” can be 
considered a vague term.  The mapping precision of lexical variants (e.g., “coughing” at 
the local level vs. “cough” at the referent level) falls somewhere in between. The notion 
of representing the precision of match is common in many web-based search applications 
[18, 26] and ontology integration projects.[30, 32] A distinct attribute that describes the 
precision of term-concept mappings can have implications for both the maintenance of 
the reference terminology and the quality of the aggregated data for analyses. The final 
representation for the precision of each local term-concept mapping in this project 
includes: exact term and concept, lexical variation, synonym, broader than, narrower 
than, related concept.   
 
 One measure of the quality of the mapping is a representation of who created or 
validated a given mapping assertion.  Ultimately, a third party creates the term-concept 
mappings that transform each native term to a standard reference terminology concept in 
the final data repository, and representing the source of these mapping assertions can 
improve the quality of the transformed data.  For example, the fact that a physician, or 
more specifically, a pulmonologist, reviewed a term-concept mapping was an important 
quality attribute for this project.  Depending upon the application or use case, it might be 
of greater importance to know that the triage nurse who actually coded a term validated 
its semantic intent.  The best-suited mapping experts differ for the problem or 
information-type being examined.  Explicitly representing this basic measure of quality 
of each term-concept mapping assertion adds power to the aggregated data, facilitating 
the potential quantification of certainty about the match. The final representation for 
quality developed for this project captures who asserted the local term-HART concept 
mapping (medical expert from ED where instance originated, medical expert from other 
ED, nurse coder from ED where instance originated, nurse coder from other ED, or 
health informatics developer).  Another measure of quality that was considered here was 
a certainty factor, similar to peer reviewers’ comments on their certainly that a work 
should be accepted. This should be correlated with precision, above. Although 
quantification of this quality attribute is a future work, its explicit representation is a start. 
 
 Most database integration efforts transform data to a common representation 
making the user unaware of any disparities in the native representations.  Processes that 
address these differences in local term-referent concept mappings can enhance the end 
users’ understanding, querying, and use of aggregated data. This is particularly critical 
when heterogeneous data integration efforts entail the transformation of data to a new 
conceptual reference model. Making these mapping characteristics explicit has 
implications both for the evaluation and maintenance of the reference terminology and 
for utility of the transformed data in computational or statistical analyses.   
   
  

6.) A Process for concept integration 
 

 Based upon the experiences in the data content integration effort described thus 
far, this section describes a generalized process for the integration of heterogeneous 
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concept systems to a uniform representation (i.e., reference terminology), with explicit 
relationships for the representation of quality that can preserve the data granularity and 
semantic meaning.  This process is part of a larger process for heterogeneous database 
integration[5], and includes both the development and use of a reference terminology as a 
standard concept system for heterogeneous data content. Despite the potential variability 
in both project requirements and local data sources across other applications, successful 
efforts for integrating heterogeneous concept systems include the broad steps, identified 
below: 
 

1.) Define purpose, information needs, and process needs. This step is critical. The 
purpose and information needs for the aggregated data dictate the level of detail 
and organizational structure required for the reference terminology. Information 
needs are best represented by creating typical “use cases” that illustrate type, 
detail, and applications that the aggregated homogeneous data needs to support. 
The purpose should be defined by a representative sample of potential application 
users, terminologists, and domain experts. 

 
2.) Examine concept systems, data instances, and data collection context from local 

data sources. The knowledge representation systems for each data attribute 
should be explored. What data types do they represent? If ordinal, what are the 
concepts that each code represents?  What are the similarities in rankings across 
ordinal coding schemes? If concept systems (i.e., coding systems or 
terminologies) represent data content, what are the definitions, characteristics and 
properties of each concept? What are the similarities in content and semantic 
relationships across all concept systems? Can local database administrators and 
data collection persons identify any implied concepts for given codes? What other 
aspects of context can help identify the intended meaning of the data values? Do 
the contexts/settings/quality of data collection vary by site? What are the 
relationships between concept systems?  Are there equivalencies? Can one 
concept system fit inside another? 

 
3.) Define reference terminologies. Each data element in the global schema should 

be considered for a reference terminology that reflects expression and context of 
local data and encompasses the representation needs for all potential use-cases. 
Existing terminologies should be considered for re-use because the development 
of a reference terminology is a resource-intensive task. The level of disparity in 
concept systems across local databases and the information needs for the 
integrated data (both organizational and granularity) determine whether the 
reference terminologies can be borrowed from other sources, or must be created 
via top-down or bottom-up approach. Key activities for reference terminology 
development include: 

  -clearly define representation and expression requirements 
  -list relevant concepts 
  -describe relevant concepts 
  -identify important inter-concept relationships 
  -organize relevant concepts 
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  -test inter-concept relationships 
  -choose appropriate representation 
 
4.) Map terms (and the concepts they represent) expressed in local data sources to 

the closest concept in the appropriate reference terminology. The focus of this 
mapping needs to be on the underlying concept(s) or intended concept(s) 
expressed as a term in local databases. Semantic intent is determined from either 
observing or questioning both developers and representative coders for each local 
data source, as well as domain experts. The exploration of the context of data 
collection, as well as the roles and training of local data entry persons from each 
data source, can assist in understanding semantic intent. 

 
5.) Represent precision and quality of mapping of local data instances to concepts 
in reference terminology. Each data value in each concept system should be mapped 
to the most appropriate and closest concept in the reference terminology. Variability 
in concept systems from the heterogeneous sources implies a loss of data granularity 
from some sources, and this loss of granularity should be represented in the final 
application as appropriate to the needs of the integrated data. The identification of 
potential context items that impact the quality of match is facilitated by domain 
experts and designers of local data sources. An appropriate representation for the 
variable mapping (precision and quality) of local terms to referent concepts should be 
developed. 

 
 The steps outlined above are highly iterative, and certain steps will entail 
returning to previous activities.  The first step of identifying the needs and purposes for 
the data integration should be re-visited at every step, and is the lens through which 
evaluation of the process and resultant homogeneous data is ultimately determined. 
 
 While the process of validly aggregating data from heterogeneous databases into a 
common representation is highly dependent upon the domain, purpose, and the nature of 
the concept systems encoding local source data, the overall goals and measures of success 
are similar. The ultimate goal for content integration is to create “comparable” data in an 
organization and representation suitable for a given purpose. Given the final information 
needs, the most successful strategy should retain as much granularity from as many 
sources as possible. The evaluation of success is addressed by examining the structure of 
the reference terminology, and the relationships between the local data values to the 
reference terminology. 
 
 Some broad questions can be asked to evaluate the success of the process: 

2.) Have the purposes for the integration been clearly identified and specific use 
cases created? Do all stakeholders agree? 

3.) Does the reference terminology include all of the concepts and semantics required 
to meet the use cases? 

4.) Does the reference terminology have the granularity and detail needed to support 
the final use cases? Does the reference terminology selected for each construct 
limit the loss of data granularity from each local data source? Is the loss of data 
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granularity acceptable to the final purpose and use cases for the aggregated 
homogeneous data? Does the reference terminology capture all important 
similarities in concepts and relationships across the component concept systems? 

5.) Is there an explicit representation for the quality of the mapping of local data 
values to each reference terminology? Is this representation useful or meaningful 
to domain experts in rating the quality of the data transformations? 

6.) Is there an explicit representation for the precision of the mapping of local data 
values to each reference terminology? Is this representation useful in explaining 
the variability of mappings and loss of granularity?  

7.) Was the context of data collection observed for disparities in the 
operationalization of data definitions? Were all aspects of context explored for 
their potential role in determining semantic intent of local data values? Have 
domain experts identified important elements of context that might impact the 
quality of the final data?  

 
 In general, the evaluation of the process for content integration is guided by the 
intended purposes of the integration project.  The generalized process and evaluation 
criteria described above ensure a systematic approach for the examination of underlying 
semantics of local concept systems and reference terminologies, and the evolving 
relationships between the two.  The intended purposes and final information needs drive 
each iteration of this process as well as define its completion and success.  
 
 
5.) Conclusions and future work   
 
 The fundamental principle of the resolution of disparate concept systems is to 
capture underlying semantics.  First, a true understanding of the nature of important 
concepts is needed, which is facilitated by exploration of domain experts’ 
conceptualization of the domain and context of data collection.  Different 
conceptualizations and representations are possible, and each can have implications for 
the integrated data.   
 
 As a knowledge representation, a reference terminology is a conceptualization of 
a domain for a given purpose.  There are multiple possible representations and an ideal 
representation must include all needed concepts and be robust enough to represent real 
data instances.  Often, the nature of the heterogeneous concept systems forces developers 
to loose some data granularity from some sources. The ideal integration solution includes 
a reference terminology, supported by transformation procedures that explicitly represent 
relevant mapping characteristics, and therefore minimizes the loss of data granularity and 
preserves the intended semantics from each local source. 
 
 This process for valid content integration from heterogeneous concept systems is 
one part of a larger database integration solution, and addresses a problem that is often 
not fully realized.  Similar endeavors will need to determine if and where reference 
terminologies are needed, adopt, modify, or develop the reference terminologies, 
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integrate them into a global schema to eliminate structural database heterogeneities, and 
finally consider mechanisms to keep the reference terminologies updated.  
 
 The contribution of this work is a process for constructing and implementing a 
reference terminology to integrate data encoded by heterogeneous concept systems. The 
characterizations of problems, iterations, and changes in the evolving reference 
terminology present a framework for further content integration efforts. The 
representation of local term – reference terminology mapping characteristics enhances the 
utilization of a reference terminology to preserve local data granularity and semantics as 
well as to capture similarities that exist between local concept systems.  While the exact 
quality and precision representations used here may not meet the needs of other 
applications, the theory of identifying and quantifying these mapping characteristics 
should enhance the validity of a number of database integration efforts in a number of 
domains.  The generic notion of representing variable local term – referent concept 
mapping relationships is a novel approach to retaining local data semantics and capturing 
similarity across heterogeneous data representations. While the characterization of these 
mapping characteristics might not meet all uses, it is our feeling that this is a critical 
piece of developing intelligent data content integration applications solutions. Current 
database integration efforts transform data to a common representation, but the user is 
often unaware of any disparities in the native representations.  Processes that address 
these differences in local term-referent concept mappings ultimately enhance the end 
users’ understanding, querying, and use of aggregated data. 
 
Merging heterogeneous data representations includes resolving representational 
differences on many levels, some of which are not fully explored. The separation of 
content integration from broader data integration activities emphasizes the critical role of 
these activities in facilitating integration of heterogeneous data into a useful and uniform 
representation that allows comparability while preserving the intent and detail of the 
original sources. It is hoped that the process presented here will motivate further research 
on the refinement, elaboration, and evaluation of the development and use of reference 
terminologies for heterogeneous database content integration. 
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ABSTRACT  

Integrating data from heterogeneous databases into a homogeneous representation 

presents both a conceptual and practical challenge, and is necessary to achieve the 

comparability required for any kind of aggregation or manipulation of the underlying 

data. One strategy to achieve this is to use a reference model which provides the standard 

for how data from different knowledge representations can be integrated in a meaningful 

way. An example of this strategy is illustrated in a demonstration project to make 

heterogeneous emergency department (ED) presenting complaint data “comparable” and 

therefore enable subsequent integration and aggregation. A general process for achieving 

a homogeneous data representation is applied to a set of heterogeneous ED databases, 

resulting in the Houston Asthma Reference Terminology (HART), and associated 

"maps", with which locally-coded pediatric ED presenting complaints can be analyzed. 

The HART reference model is empowered by a global data schema for ED visits, which 

includes quality and precision information that enhance the meaning of the aggregated 

data, empowering end users with better-informed queries for subsequent analyses. This 

solution of a global ED visit schema and supporting reference terminology for presenting 

complaints resulted from a general process that can be repeated in other heterogeneous 

database integration problems.   

 
 
 
 
 
 
Keywords: Heterogeneous database integration; content integration; reference 
terminology development; data quality; public health informatics 
 



 

 

I.) BACKGROUND   

A.) Problem: Regional Presenting Complaints not Comparable 

Asthma is currently the most common chronic disease in children.[52] For many reasons 

related to chronic disease labeling, pediatric asthma may not be diagnosed. In the acute 

emergency department (ED) setting, any number of pediatric respiratory illnesses may 

mimic asthma, further complicating its diagnosis.  Often, EDs, rather than primary care, 

are used as a source of care for episodic and acute asthma exacerbations.[53] For this 

reason, comprehensive community surveillance should include many settings, including 

EDs. Because of lack of specificity of ICD-9 discharge diagnosis data and documented 

under-diagnosis of asthma by physicians [54], an alternate source of electronically-

captured ED visit information is desirable for identifying potential pediatric asthma in the 

ED setting. The Texas Emergency Department Asthma Surveillance (TEDAS) project, 

funded by the Robert Wood Johnson Foundation, is a consortium of researchers and 

physicians from 4 Houston-area EDs interested in developing effective ED-based asthma 

surveillance methods and health interventions.  

 

Currently, counting and examining pediatric respiratory or asthma ED visits across a 

region is difficult because the presenting complaint data characterizing these visits are not 

"comparable" across heterogeneous hospital databases.  This lack of comparability is due 

to representational disparities in data models and data content across multiple hospitals, 

and results in a need for solutions to integrate data into a common representation.  One 

activity of the TEDAS project was to develop the Houston Asthma Reference 

Terminology (HART), which provides a uniform representation with which to compare 



 

 

(and subsequently count and aggregate) presenting complaint data from pediatric 

respiratory visits at multiple EDs throughout the region. This paper describes the 

development and use of the HART as part of a general and repeatable process for 

creating a comparable and homogeneous representation from heterogeneous database 

representations.   

 

B.) Representational Differences Across ED Databases 

Many representational differences across ED databases are due to differences in local 

database schema and the underlying concept representation (e.g., coding or terminology) 

or measurement systems.  To illustrate, Figure 1 shows sample data instances from the 

database schema of 3 different EDs used in the TEDAS data integration process.   

 



 

 

Figure 1. Sample Data Instances Using Different Database Schema for Emergency 
Department Data Capture (abridged)   
(note: data from same 2 patients represented in 3 different ways) 

 

Emergency Department  A 

Patient # Date of Service Age Chief Complaint Acuity 
123456 10-24-01 12 Cough/Fever/Malaise Mild 
234567 10-24-01 3 Respiratory Distress Severe 
 

Emergency Department  B 

Medical Record # DOS Time of Service Age Acuity 
123456 10-24-01 0300 12 Mild 
234567 10-24-01 1400 3 Severe 
 
Medical Record # Presenting Complaints 
123456 Cough  
123456 Fever 
123456 Malaise 
234567 Respiratory Distress 
 
Emergency Department  C 

Visit # Social 
Security # 

Date/Time of Service Date of Birth Description Value 

888 123456 10-24-01 3:00am 11-1-1991 Presenting 
Complaint 

Cough 

888 123456 10-24-01 3:00am 11-1-1991 Presenting 
Complaint 

Fever 

888 123456 10-24-01 3:00am 11-1-1991 Presenting 
Complaint 

Malaise 

888 123456 10-24-01 3:00am 11-1-1991 Acuity Mild 
999 234567 10-24-01 2:00pm 3-6-2000 Presenting 

Complaint 
Respiratory 
Distress 

999 234567 10-24-01 2:00pm 3-6-2000 Acuity Severe 
 
 

Despite the broad similarity in workflow and data capture needs across EDs, a current 

lack of standards results in an enormous variety of database implementations. The data 

instances from Emergency Department A’s database schema design, for example, 

represent all information in one table that includes data attributes for a visit identifier, 

date of service, age of patient, presenting complaint (labeled “chief complaint”), and 

acuity. Data instances from Emergency Department B contain a unique patient medical 



 

 

record number, date of service, time of service and patient age in one table that is related 

to a separate table with multiple instances of presenting complaint values. Those data 

from Emergency Department C’s database present yet another valid information 

structure, with one table containing a visit number, patient social security number, a 

combined attribute for date and time of service, date of birth, and a description attribute 

(presenting complaints or acuity) with a value in the value attribute. The differences in 

data representation shown in Figure 1 are due to the specific information needs of each 

organization, and to the developers’ conceptualization of these needs. Such schematic 

differences result in naming, formatting, and structural differences that must be resolved 

to unify the data into a common, or homogeneous, representation.  

 

In addition to heterogeneities introduced by different database schema, significant 

differences between ED databases are introduced by different representations or concept 

systems used to encode presenting complaint values (i.e., data content) at each site.  The 

ED databases integrated by this project used different, locally-created coding schemes, 

ranging in detail from 22 possible codes to 77 possible codes.  One ED may code a visit 

as “difficulty breathing”, while another may use “shortness of breath/wheezing”.  Any 

scalable public health application needs to know whether “difficulty breathing” and 

“shortness of breath/wheezing”, or for that matter, “respiratory problems”, are the same 

or related, and if related, how related.  Figure 2 illustrates some of the types of presenting 

complaint data represented in 3 different ED concept systems. 

 

 



 

 

Figure 2.  Selected Presenting Complaint-Type Data Values from Heterogeneous 
Emergency Department Databases 
 
Emergency Department A Emergency Department B Emergency Department C 
Respiratory   
Fever/Infection   
Arrest/Resuscitation   
   ¦ Respiratory problems  
 History of: Asthma  
 Malaise: Flu-like Symptoms  
 Malaise: Irritable/Anxious  
 Cough/secretions  
   ¦ Difficulty Breathing  
   ¦ Coughing/crying 
  Fever  vomiting   cold sx 
  Asthma, exacerbation 
  Croupy cough 
  Crying for 4 hrs
 
 
Emergency Departments A and B use coded attributes, and C uses unstructured data to 

represent reported presenting complaints.  Each represents a concept system, with the 

underlying unit of ‘measures’ being concepts. In order to answer such questions as “How 

many kids presented to regional EDs with coughs? Breathing problems?  How many 

potential asthmatics presented to regional EDs for care?”, a common representation or 

terminology is needed.  This means that concepts must be transformed, or mapped, from 

one representation to another.  Mapping is the relation between the representation of a 

concept in one terminological or concept system to the most similar representation in 

another concept system. [35] The lack of 1:1 correspondence between the concepts 

underlying the terms in these disparate knowledge representation systems makes their 

resolution to a common representation, or reference terminology, a challenge.  Possible 

approaches include merging all of the local codes and terms into a comprehensive coding 

system, choosing one concept system as a standard and mapping all other systems to it, 



 

 

using an outside concept system as a reference model, or creating a new reference model 

that captures the semantics of each local concept system. For this application, we chose 

the last approach since it shows the most potential to retain important semantics from 

each local concept system yet capture similarities that might exist between them. 

 

C.) Heterogeneous Databases in Health Care 

The problems described above are typical of heterogeneous databases in healthcare.  The 

resolution of multiple representational disparities to achieve homogeneous aggregate data 

is important for a variety of applications, including improved healthcare, decision-

making, outcomes research, evaluation, public health surveillance, and bio-terrorism 

preparedness.  Heterogeneous databases are defined as separate autonomous databases, 

independently created for unique purposes, with substantial differences in database 

schema. [1]  The integration of heterogeneous database schema and associated concept 

and measurement systems requires the use of one or more referents, or standards, to 

which the component data structures or data values are mapped.  Global database schema 

are referent models that guide the integration of heterogeneous database schema into a 

uniform representation, and reference terminologies are referent models that guide the 

integration of heterogeneous concept systems (e.g., terminologies, coding schemes) into a 

uniform data representation.  In heterogeneous data integration projects, global database 

schemas and reference terminologies address the issues of schema integration and 

content integration, respectively, and together provide a uniform representation of data 

from heterogeneous database sources.  The goal for integrating heterogeneous databases 

is to achieve comparable data with a homogeneous representation from different source 



 

 

representations; success is determined by retaining as much granularity (i.e., depth and 

detail) and intended meaning as possible from each source. [45]   

  

D.) Overcoming Semantic Heterogeneity 

While the structural and content disparities across heterogeneous databases mentioned 

thus far are difficult to resolve, a more burdensome class of semantic heterogeneities can 

be introduced by both heterogeneities in database schema and underlying data 

representations.  Broadly, semantic heterogeneity occurs when there is a disagreement 

about meaning, interpretation, or intended use of same or related data[8], and arises from 

different definitions of data attributes, differences in coding precision of the data values 

across multiple databases [1], or context [9].  Semantic heterogeneity in part refers to the 

fact that data in different systems may be subject to different interpretations, even when 

data types, labels, and general schemas are identical. [10] For example, if presenting 

complaint-type information collected from one ED included those reported by the patient, 

but those collected from another ED routinely collected nurse observations in addition to 

patient-reported complaints, there would be a semantic mis-match between the 

operational definitions of apparently similar attributes.  Semantic heterogeneity is 

difficult to precisely define, identify, and classify,[1] yet there is common consensus that 

semantic heterogeneity is the class of heterogeneity that threatens multiple data conflicts, 

and the most problematic aspect of heterogeneous database integration efforts. [8] [10]  

 

Examining the intended semantic meaning of each data structure or value and mapping it 

to the closest concept in the referent models (i.e., global schema and reference 

terminologies), as is the approach in this demonstration, preserves semantic intent and 



 

 

can therefore reduce semantic heterogeneity.  However, the mapping of heterogeneously 

represented data to uniform reference models implies that the local – standard 

relationships differ by source.  For the duration of this paper, we will refer to local term– 

reference terminology relationships as ‘term-concept mappings’.  To retain data 

granularity and intended semantic meaning, detail about these term-concept mapping 

relationships must be identified and explicitly represented.  This detail is a measure of 

mapping quality.   

1.) Quality of mapping 

The key to reducing semantic heterogeneity and preserving data granularity is to capture 

the intended semantics of each item.  Ultimately, a third party retrospectively creates the 

term-concept mappings that transform each native term to a standard reference 

terminology concept.  In heterogeneous database content integration, quality can be 

defined as the truthfulness in asserted term-concept mapping transformations. The 

importance of explicitly representing who created or validated a given mapping assertion 

can be an important characteristic to represent when looking at the aggregated data.  

Further, characteristics about the reliability, competence, and training of the reviewer can 

be captured, as well as a confidence rating that different reviewers assign to term-concept 

mappings. Explicitly representing these basic measures of quality of the term-concept 

mapping assertion can add power to the transformed data, facilitating the potential 

quantification of certainty about the match. 

 

The explicit representation of the precision of mapping can also help in retaining 

maximum data granularity from each local data source, and improve the quality of the 



 

 

transformed data for secondary analyses.  The frequent lack of 1:1 correspondence of 

concepts represented in disparate concept systems denotes variability in precision of the 

term-concept mappings across sources.  For example, if one local terminology uses the 

term “dyspnea” to mean the referent concept “Shortness of Breath”, the fact that the two 

terms represent the same concept, i.e., they are common synonyms, could mean a smaller 

likelihood of loss of meaning or straying from intent of the local term.  Similarly, the 

mapping of “barky cough” to the referent concept of “wet cough” is less precise, since 

“barky cough” can be considered a vague term.  The mapping precision of lexical 

variants (e.g., “coughing” at the local level vs. “cough” at the referent level) falls 

somewhere in between.  The precision variability is therefore a data attribute that can 

preserve some data granularity. A distinct attribute that describes the precision of term-

concept mappings can have implications for both the maintenance of the reference 

terminology and the quality of the transformed data for analyses.  A representation of 

precision of match is common in many web-based search applications [18, 26], ontology 

integration projects[30, 32], as well as the National Library of Medicine’s MeSH and 

UMLS concept systems.   

The many representational and semantic heterogeneities encountered in this project to 

integrate ED presenting complaint data from heterogeneous databases are typical of 

problems encountered in any health care data integration project.  The resolution of these 

disparities to a uniform representation for comparability requires the use of referent 

standards and associated mappings from each local data structure or instance.[1, 10, 55]  

Heterogeneous database integration requires uniform representation in both database 

schema and underlying concept and measurement systems.  Successful solutions preserve 



 

 

as much granularity and detail as possible from the local systems.[45]  The reduction of 

semantic heterogeneity and the preservation of data granularity from each source can be 

facilitated by examining the quality and precision of the term-concept mappings. A 

process for the integration of heterogeneous healthcare databases was applied to 

aggregate heterogeneous ED presenting complaint data into a uniform representation 

while minimizing the loss of data granularity and preserving local data semantics. The 

result of this process is a data repository and associated database schema that uniformly 

represent ED presenting complaint data from heterogeneous sources, mapped to a 

reference terminology, with explicit characterizations of the mapping relationships 

between native and final data representations.    

 

 

II.) METHODS 

The purpose of this project was to develop a homogeneous data representation from 

heterogeneous ED presenting complaint data.  A homogeneous data representation was 

achieved by creating a global database schema for ED visits, to which presenting 

complaint data structures (data attributes or instances) from component databases were 

mapped. A reference terminology was created to represent instances of presenting 

complaint-type data uniformly, within the context of the global schema or information 

model. The need to maintain data granularity and preserve semantic intent motivated the 

representation of mapping characteristics (i.e., quality, precision) in the final data 

repository schema.  The global database schema is a relational data model, implemented 

in an Access™ database.   



 

 

Figure 3. HART Project Overview 

 
 
The project overview in Figure 3 illustrates the use of a uniform representation for 

heterogeneous ED presenting complaint data. Local data structures (data attributes and 

instances), along with proposed data needs (i.e., purpose and use cases), drove the 

development of the HART reference terminology, which provides a uniform 

representation for presenting complaint data within the context of a global schema (or 

information model) for ED visits. The general process used to create the homogeneous 

data representation is presented below and discussed more thoroughly in [5]. This process 

addresses schematic heterogeneity, heterogeneity from underlying concept or 

measurement systems, and semantic heterogeneities that can result from both.  

 



 

 

1.) Define purpose, information needs, and process needs. This step is critical and 

should guide all choices to be made in the design of homogeneous representation 

standards and use. The purpose and information needs for the aggregated data dictate the 

level of detail and organizational structure required for the conceptual referents. 

Information needs are best represented by creating typical “use cases” that illustrate type, 

detail, and applications that the aggregated homogeneous data needs to support. Process 

needs (e.g., access, timing, data availability) drive the logistical procedures of the 

heterogeneous database integration. The purpose should be mutually defined and 

endorsed by a representative sample of potential application users, database integrators, 

and domain experts. 

 

The model of database federation (i.e., the general approach for accessing and integrating 

data) is based upon the needs defined above, and determines the practical implementation 

of the database integration effort. The access permissions and anticipated needs for 

updated or current data determine whether a query-modification or data-translation 

approach should be taken. In general, needs for current and frequently updated data are 

best satisfied with a query-modification approach, whereas data-translation is suitable for 

periodic data needs.[8] Also, data sources with highly disparate concept systems requiring 

one or more reference terminologies will need a data-translation step. Specific guidance 

for selecting from different models of database federation can be found elsewhere.[1] 

 

2.) Examine data structures, concept and measurement systems, and data collection 

context from local data sources. Each local data source must be explored to determine 



 

 

the semantic content. This examination can be bottom-up, meaning each local database is 

examined attribute by attribute, or top-down, meaning relevant constructs are identified 

from a conceptual model and the corresponding data structures or attributes are sought in 

each of the local database schema. Regardless of the approach, all relevant data attributes 

should be reviewed and synonymy in attribute names noted. In addition, the 

operationalized data definitions for each data attribute should be identified. The concept 

and measurement systems for each data attribute should be explored. This preliminary, 

almost qualitative, analysis of source database schema and underlying concept and 

measurement systems should identify each data attribute of interest in the final project 

and attempt to define initial equivalency relationships across databases. The level of 

disparities observed in structure, naming, format, data definitions, and concept or 

measurement systems encoding each data structure will dictate the best approach for 

defining the global schema. Accordingly, the activities associated with this step are a 

prerequisite for step 3, defining the global schema. 

 

3.) Define global schema. Depending upon the levels of disparities between the local 

databases and the overall project purposes, a schema integration approach (data-driven) 

or a top-down schema creation approach could be used. Regardless of the method, the 

global schema should define the constructs and relationships needed for the application, 

at both the level of granularity needed and with the terminology (attribute labels) familiar 

to the domain. The potential disparities in data attribute definitions across source 

databases and context of data collection that impacts these final operational definitions, 

as well as important quality attributes identified by domain experts, should be represented 



 

 

in the global schema. Available domain ontologies (including conceptualizations of 

process and work-flow) should be searched for relevance and used as a resource to guide 

the development and/or refinement of the global schema. Ideal global schema should 

maintain relationships to the local data schema that allow the traceability of the native 

data context. 

 

4.) Define reference terminologies and measurement systems. All concept and 

measurement systems must have a standard representation. Each data structure in the 

global schema should be considered for a reference terminology that reflects expression 

and context of local data and encompasses representation needs for real use-cases. The 

level of disparity in concept systems across local databases and the information needs for 

the aggregated data (both organization and granularity of content) determine whether 

these reference terminologies should be borrowed from other sources, or created via top-

down or bottom-up approach. One reference terminology might capture the concepts 

represented in multiple data attributes of the global schema. The use of reference 

terminologies to achieve comparability from heterogeneous data can be termed content 

integration, and a generic process for this is described in [2]. 

 

5.) Map data structures expressed in local data sources to the closest construct in the 

global schema. This step generally can be thought of as reconciling local database 

attributes to corresponding attributes in the global schema, but can also involve moving 

data from instance level to attribute level to table level.  Regardless, the meaning or 

concept class represented by each structure should be the focus of this activity. To 



 

 

preserve semantic intent from each local source, the focus goes beyond the data 

definitions of each database to include interviewing designers and users of each local 

database.  Questions to be asked should include: What is the meaning of this attribute? 

How is the content or value selected? Do all users agree? Does the context of the data 

collection influence the meaning of the data values? If so, how? This examination of 

constructs at the local level might drive changes in the global schema. The ultimate 

information needs and purpose should guide the mapping of relevant local data structures 

to the appropriate structure in the global schema.  

 

6.) Map relevant concepts that are implied but not explicit in local data models to the 

global schema. The global schema should identify constructs or structures to compare to 

the local schema. Where constructs are missing, but are implied or can be derived from 

local sources, they must be imputed into the global schema. For example, if the construct 

of who recorded a particular local data attribute is important to the quality of the final 

data semantics, this concept should be included in the global schema and the values 

imputed appropriately by local users and domain experts. The project logistics determine 

how the imputation process should best occur. This can be achieved by a “blanket” 

imputation (i.e., all values for ‘reported by’ are the same for a given source) or by 

selective value-based imputation (i.e., presenting complaint in hospital A is a ‘diagnosis’ 

structure if it contains the term ‘asthma’.) A representation for missing concepts that 

cannot be implied or derived should be included in the global schema. The analysis of 

disparities in data collection context, and review by domain experts and end-users, 



 

 

facilitates the identification, representation, and mapping of implied concepts from local 

databases to the global schema. 

 

7.) Map terms (and the concepts they represent) expressed in local data sources to the 

closest concept in the appropriate reference terminology. Again, the focus of this 

mapping needs to be on the underlying concept or intended concept expressed as a term 

in local databases. Semantic intent is determined by observing representative coders for 

each local data source, as well as questioning coders, local database developers, and 

domain experts. The exploration of the context of data collection, as well as the roles and 

training and objectives of local data entry persons at each level can assist in 

understanding semantic intent. 

 

8.) Characterize the quality of mapping of local data instances to concepts in reference 

terminology. The identification of potential context items that impact the quality of 

match is facilitated by domain experts and designers of local data sources, and also by a 

domain ontology, if available. An appropriate representation for the certainty of mapping 

of data structures to the global schema, as well as who asserted each mapping, should be 

developed. Any variability in the data definitions of constructs (e.g., one data attribute 

definition is operationalized differently than a corresponding construct in another local 

database schema) should be explicitly represented relative to each mapping relationship. 

Domain experts and end users should specify representations for quality that are useful 

and meaningful to the final applications. 

 



 

 

9.) Characterize precision of mapping of local data instances to concepts in reference 

terminology. Similarly, the intended meaning of each term in each concept system should 

be mapped to the most appropriate and closest concept in the reference terminology, and 

characterizations of the local term-referent concept mappings should be represented. 

Variability in concept systems from the heterogeneous sources implies a loss of data 

granularity from some sources, and this loss of precision should be represented in the 

final global schema as appropriate to the needs of the final compiled data. Any variability 

in the data definitions of constructs (e.g., one data attribute definition is broader in scope 

or more inclusive than that of the corresponding construct in the reference terminology) 

should be explicitly represented relative to each mapping assertion. 

 

Three key activities of the above data integration process are highlighted in the Methods 

and Results sections: the development of the global schema, the development of the 

reference terminology, and the representation of mapping characteristics.   

A.) Global Schema for Emergency Department Visits 

The local data schema from the 4 different EDs, plus domain experts (nurses and 

physicians) practicing in ED settings, were used to develop a global conceptualization of 

the ED visit process.  Each local schema was systematically examined to determine all 

collected attributes (names and definitions) as well as the data collection or process 

activities corresponding to each attribute. The basic model of ED care was confirmed by 

asking several experts about the process from both the patient’s point of view and from a 

data collection perspective.  The local data schema were examined from each source to 

see if the data attributes collected matched the conceptualization of ED visits given by 

experts.  The expert conceptualizations and local data models were consolidated to define 



 

 

a broad data model for ED visits, which served as the global schema for the data 

repository.  The main purpose of this global schema was to transform different 

representations (table, attribute, and instance level) of presenting complaint information 

from each local data schema to a common attribute.  The global schema can be thought of 

as an information model that governs the assimilation of data elements to form a logical 

patient record.[22] This process, while important, is addressed in current research and 

automated solutions exist. The greater challenge for this integration demonstration is the 

content integration using a reference terminology, as described in the next section. 

 

B.) Developing a Reference Terminology to Compare Presenting Complaints from 
Heterogeneous Representations 

Once heterogeneous ED respiratory-related presenting complaints were normalized into a 

common attribute, a common representation (i.e., reference terminology) was needed for 

the data instance values.  Existing terminologies were examined, but none had the 

specificity or organization required to describe presenting complaint data related to 

asthma.  The Houston Asthma Reference Terminology (HART) was developed 

iteratively using domain experts, scientific literature, and actual data from pediatric ED 

visits from the participating Houston-area hospitals.  Before the development of the 

reference terminology, representative instance data was filtered for respiratory diagnoses 

so that the data largely represented only pediatric respiratory visits for each of the 4 EDs. 

This representative data (161 instances) included presenting complaints and standard visit 

information (e.g., date and time of service).  Four domain experts (1 pediatric 

pulmonologist MD, 1 pediatric emergency medicine MD, 2 pediatric Emergency 



 

 

Department RNs) and one terminologist were consulted during the development of this 

reference terminology. 

 

The HART was modeled as a hierarchy of concepts, and presented in a paper format for 

expert review and revision.  After its development, it was represented in an Access™ 

database, with one table listing all HART concepts, and a separate related table of 

specified parent-child relationships.  The primary author developed each iterative 

reference terminology structure and solicited feedback from 4 domain experts (for 

content changes) and 1 terminology expert (for technical/knowledge representation 

changes).  An iteration was defined as any addition, removal, or reorganization of 

relevant concepts in the HART terminology.  These changes in the reference terminology 

were characterized by source (data-driven, expert opinion) and typology (expansion, 

reduction, inter-concept relationships). [2]  

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4.  Iterative Development of the HART 
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The development strategy for the HART was an initial top-down conceptualization 

followed by many data-driven reorganizations.  After identifying relevant concepts from 

domain experts and important scientific and professional literature, data values from the 

component ED databases were examined.  These data instances were mapped to concepts 

in the evolving reference terminology, and subsequently drove changes in the content and 

organization of the HART.  The development was highly iterative but included the main 

activities shown in Figure 4.  The scope and intended purposes of the HART guided each 

development phase, and the foundation for all of the HART development activities were 

domain exerts, relevant professional literature, and local data instances.   

 



 

 

C.) Mapping Characteristics 

The important role of mapping characteristics (quality and precision) in the preservation 

of data granularity and intended meaning of the local data terms was illuminated by the 

process of building the HART.  The variability in local term-HART concept mappings 

sometimes demonstrated a loss of granularity or intended meaning from some source 

representations, and some of this lost data granularity and semantics could be captured in 

new data attributes representing the quality and precision of the match. For example, if 

local terms “dry cough” and “cough” are both mapped to the concept “cough” in a 

reference terminology, the transformed data would appear similar (i.e., 2 instances of 

cough) but the distinctions between the local terms would be lost. If this loss of 

granularity was acceptable to the final application (e.g., all we want to do is count 

coughs) then the final reference terminology representation perform adequately. The 

capture of the different relationships between term-concept mappings for both local 

terms, however, can allow some data granularity and potential meaning to be retained. 

Noting that the local term “dry cough” is more granular or specific than the reference 

concept “cough” and that the local term “cough” represents the same concept as reference 

concept “cough” can facilitate understanding of the relationship that exists between the 

two local terms. Most database integration efforts transform data to a common 

representation making the user unaware of any disparities in the native representations. 

Processes that address these precision differences in local term-referent concept 

mappings can enhance the end users’ understanding, querying, and use of aggregated 

data. Making these mapping characteristics explicit has implications both for the 

evaluation and maintenance of the reference terminology and for utility of the 

transformed data in computational or statistical analyses.  



 

 

III.) RESULTS  

The application of the process above resulted in a global schema for ED visits and the 

HART reference terminology, to which disparate data representations from component 

databases were mapped, as well as explicit representation of the characterization of those 

mappings.  Essentially, the global schema, or information model is the result of the 

structural or schema integration, and the HART is the result of the content integration. 

 

A.) Global Data Schema for Emergency Department Presenting Complaints  

It was important to resolve as many physical differences as possible before dealing with 

terminology issues across presenting complaint-type data, which were the greater 

challenge in this project.  The process of assimilating heterogeneous database schema to a 

global model developed quickly.  A partial global data schema for ED visits, highlighting 

presenting complaints, is illustrated in Figure 5.  The model was created by looking at the 

types of data attributes available in each of the 4 local databases, and from the domain 

experts’ characterization of the ED visit process.  The process model used to support 

development of this global schema is that patients (who have more or less permanent 

characteristics) present with complaints, have an acuity/severity, receive one or more 

diagnoses, and leave the ED with a final disposition status (e.g., home, admitted to 

hospital, etc.). The resulting global schema builds from this conceptualization, and 

divides the information from each ED visit into 2 main tables: 1.) patient information 

(demographics, identifier) linked to 2.) visit-specific information (date/time of visit, 

hospital of visit, visit identifier).  Each visit is related to separate tables for presenting 

complaints, and diagnosis, acuity, and disposition (not shown).  For any given ED visit, 



 

 

one or more presenting complaint instances can occur in the global schema.  This data 

model “normalizes” presenting complaint data from the local data attributes (“Chief 

Complaint”, “Presenting Complaint #1”, “PresCompl”, etc.), creating a common data 

attribute (“PresCompl Value”) for all presenting complaint data instances.   

 

Figure 5.  Partial Global Schema for ED Visits, Highlighting Presenting Complaint 

Data 

 

The global schema puts all complaint instances into a single complaint attribute 

(“PresCompl Value”), all diagnoses into a single diagnosis attribute (not shown), all 

acuity ratings into a single acuity attribute (not shown), etc.  The PresCompl Value 

represents the original data values from each component database, and are not 



 

 

“comparable” despite now being represented uniformly in a single data attribute.   

Therefore, a uniform representation, or reference terminology was needed. 

 

B.) Development of the Houston Area Reference Terminology (HART) 

The development of the HART was influenced both by domain experts and by actual data 

instances.  Concepts and inter-concept relationships introduced by both influences the 

final HART structure, by driving changes in both concept and structure. [2] The lack of 

one-to-one correspondence between concepts represented by local coding or 

measurement systems complicated the development of the HART.  The presence of 

coded terms representing multiple or “lumped” concepts influenced the reference 

terminology structure. Such concepts presented opportunities for multiple data-driven 

HART representations, each of which could result in some loss of granularity for some 

sources, or affect the quality of the aggregated data for queries. Two different reference 

terminology structures are presented as an example in Figure 6. Each potential HART 

structure has implications both for how the data can ultimately be used, and for the 

precision of the mapping of terms from local data representations.  

 



 

 

Figure 6. Potential Reference Terminology Representations (simplified) and Sample 
Data Instances 
 
Representation #1:   Representation #2: 

    ¦         ¦ 
Symptoms           Symptoms  
   Fever/Infection            Possible Infection 
      Fever                   Fever 
      Infection                 Non-Febrile Evidence of Infection 
 Cough/Secretions           Cough 
      Cough                   Dry Cough 
      Secretions                 Wet Cough 
        ¦                  Chest Secretions 
                  Nasal Secretions 
             ¦ 
 
Precision of mapping of data instances can vary by choice of Reference Terminology structure: 
 Data Instance: “Cough” 
 Data Instance: “Cough/Secretions” 
  
 
 
Local data instances representing multiple or “lumped” concepts drove questions about 

the final HART structure.  Namely, do terms such as “Cough/Secretions” or 

“Fever/Infection” necessarily drive similar concept grouping in the final reference 

terminology?  While a data instance of “Cough/Secretions” maps easily to the structure in 

Representation #1, that representation is less robust and its uses are more limited than the 

second representation. For example, from Representation #1, one cannot query for how 

many “coughs” (without secretions) there are across regional ED visit data.  The chosen 

solution for the HART project was found by re-examining the purpose.  The broader 

purpose of the reference terminology was to maintain as much granularity as possible, so 

we chose to keep concepts distinct and part of other hierarchical relationships.  It was 

decided that dual hard-coded concepts, such as “Cough/Secretions” and “Fever/Infection” 

and “Cold/Infection” would not necessitate specific dual categories in the HART, 

because this would force a loss of granularity for those sites that split those terms.  Such 



 

 

disparities in different coding schemes were handled by explicitly representing the nature 

of the mappings in the final global schema, as described later. 

 

Other terms representing multiple implied concepts were also problematic and forced 

choices in the structure of the final HART.  The basic unit of a terminology should be a 

single concept[39], yet many local codes embodied multiple concepts that were hard to 

tease apart.  For example, the term “Flu-like Symptoms” could mean many different 

things, and this concept could be decomposed into all possible symptoms (e.g., chills, 

fever, malaise, etc.)  This is challenging because the term is admittedly vague, and 

includes several concepts with some certainty and several others with less certainty.  For 

the purposes of the HART, however, the relevant underlying concept was an indication of 

acute infection, so this concept was not decomposed. A partial illustration of the final 

HART organizational hierarchy is shown in Figure 7.   

 



 

 

Figure 7.  HART Reference Terminology  (abridged) 
  …         
  Reported Symptoms and Complaints       
   …      
   Symptoms of Possible Infection      
    Fever       
    Cold Symptoms       
     Nasal Congestion      
     Runny Nose       
      …     
    Flu Symptoms        
   Reported Inputs and Outputs       
    …   
   Reported Discomfort        
    Sick       
    Malaise       
     Nausea      
     Decreased Appetite      
      No food intake     
    Mood       
     …     
    Reported Pain       
     …    
          
   Respiratory and Chest Symptoms and Complaints    
    Breathing and Respiration Symptoms and Complaints  
     Irregular Breathing      
      Rapid Breathing     
     Respiratory Sounds      
      Abnormal Respiratory Sounds    
       Noisy Respiration     
        Crackles   
        …   

        Wheezing   
      Normal Respiratory Sounds    
     Respiratory Distress      
    Cough       
     Wet Cough      
      Clear Sputum     
      Colored Sputum     
     Dry Cough      
    Chest Sensations       
     Chest Tightness      
     Shortness of Breath      
    .... 
 
 
The development of the HART was more resource-intensive than it would appear.  Data 

instances and domain experts made forced choices about both the content (i.e., included 

concepts) and the organization (i.e., how to group concepts).  The problems identified by 



 

 

trying to map data instances or important concepts defined by domain experts included: 

missing concepts in the HART (e.g., a nurse identified “no breath sounds” as a potential 

presenting complaint), local terms that contained multiple HART concepts (e.g., 

“Wheezing/Respiratory Distress”), local terms that contained implied HART concepts 

(e.g., the presenting complaint “Asthma Exacerbation” implies a worsening of symptoms 

and a likely previous diagnosis), and local terms representing vague concepts (e.g., 

“sick”).  Domain expert review also identified problems or inconsistencies with inter-

concept relationships denoted by the HART organizational structure.  Comments about 

inter-concept relationships included both the location of a concept in the HART structure 

(e.g., “Aspiration/Choking” is not a ‘digestive_symtom_or_complaint’ but is a 

‘lower_respiratory_symptom_and_complaint’) and important concepts with relationships 

to multiple groupings, (e.g., the term “congestion” is a ‘symptom_of_possible_infection’ 

and is a ‘head_complaint’.) New HART representations were attempted to accommodate 

data instances and expert reviews.  

 

Each new HART representation was called an iteration. Each iteration then had to be 

checked against data instances and domain experts reviews. Each iteration resulted the 

addition, removal, or movement of concepts in the emerging HART structure, or new 

groupings and organizational structures, and was driven by either mapping actual data 

instances or potential data instances identified by domain experts.  Each iteration required 

either a change in the HART structure (in either content or organization), a decision to 

consider the data instance as either irrelevant to the scope of the reference terminology 

purpose or an anomaly, or a representation of mapping characteristics to qualify the 



 

 

mapping.  Therefore, each iteration resulted in a resolution that could be characterized as 

adding/removing concepts, moving concepts, ignoring the instance, or clarifying the 

mapping rules and descriptions. 161 data instances and 13 important expert-defined 

relationships were used to develop the HART. A total of 32 iterations were made to 

arrive at the final HART structure depicted in Figure 7.  The development time was 

approximately 6 person-months, plus several hours of expert review. 

 

Like any reference terminology, the HART provides the knowledge structure for 

aggregating presenting complaint data from heterogeneous ED databases, and defines the 

limits to which data can be manipulated or shared.  Data instances from presenting 

complaints were mapped to the final HART terminology (i.e., transformed), yielding 

aggregated data with a common representation.   

 

Once the HART content and structure were finalized (Figure 7), a formal representation 

was needed to facilitate the mapping of local presenting complaint values to the reference 

terminology within the data repository.  The HART was added to the data repository as 2 

tables.  The structure of the HART is hierarchical, and is represented in the repository as 

a table of concepts, twice joined to a table of parent-child concept relationships.  (Figure 

8)  While the difficulties representing hierarchical data structures in a relational model 

have been observed[56, 57], the relational model was better suited for the intended uses 

of aggregated ED presenting complaint data.     

 

 



 

 

Figure 8.  Uniform Representation of Presenting Complaints to HART Concepts 

 

 

Each presenting complaint value (PresCompl Value) in the repository schema maps to 

one or more concepts in the HART.  Therefore, all presenting complaint concepts are 

represented homogeneously according to the HART reference terminology, as shown in 

Figure 8.  The choices made in the development of the final HART structure affected the 

nature of local term-HART concept mappings.  The preservation of data granularity and 

semantic intent was attained by adding attributes to describe the nature of each term-

concept mapping.  The specific attributes and values for these term-concept mapping 

characteristics emerged from examining how local data instances actually mapped to 

each evolving HART structure, as well as domain experts’ opinions on what was 

important. 

 



 

 

C.) Mapping Characteristics 

The quality and precision for each term-concept mapping affect the data granularity and 

intended meaning in the global repository, and the examination of context facilitated the 

process for achieving homogeneous data representation while preserving data granularity 

and semantics.  The construction of the reference terminology and the ultimate purpose of 

the project facilitated representations of these constructs.  

  

1.) Representation of Quality 

Quality of mapping attributes that were relevant to the TEDAS project included who 

asserted the local term-HART concept mapping (medical expert from ED where instance 

originated, medical expert from other ED, nurse coder from ED where instance 

originated, nurse coder from other ED, or health informatics developer) and on what date.  

For this application, all mappings were ultimately checked by a domain expert, but it was 

envisioned that the scalability of this process would benefit from a representation of who 

makes each mapping assertion.  Mapping assertions are dependent upon local data values 

and the organization from which they originate.  Therefore, these concepts cannot be 

inserted globally, but must be part of some sort of programming logic within the data 

repository.  The usage and meaning of certain terms can vary by location and so 

mappings made by experts familiar with the local data coding processes carry more 

weight in this representation system. The explicit representation of the quality of 

mapping did not add much weight to this aggregated presenting complaint data achieved 

from this project, but this step of the process might be more important to obtaining valid 

assimilation of data from heterogeneous sources in other projects.   



 

 

 

Precision describes accuracy or degree of refinement in local term-concept mappings, and 

can be considered a surrogate measure of quality.  Characterization of this precision 

emerged from the development of the HART. The final representation for the precision of 

each local term-concept mapping includes: Exact term, lexical variation, synonym, 

broader than, narrower than, related concept.  The representation of the mapping 

precision in the final data repository allows the end-user to understand the compiled data 

that they are querying.  In addition to allowing an end user to make better-informed 

queries of aggregated data, this type of representation has implications for the 

maintenance of the reference terminology.  Searching the relationships in the final data 

repository, one can find how many term-concept mappings have a ‘narrower than’ 

relation, for example, and can identify where additional, more granular concepts might be 

included in the reference terminology.   

 

Another measure of precision that maintains semantic intent of a term in this integration, 

is the description of term-concept mappings that include multiple HART concepts. These 

types of mappings, called multiple maps, were characterized as conjoint, exclusive 

disjoint, and non-exclusive disjoint.  This mapping attribute was developed to overcome 

choices made in the HART construction by data instances encompassing multiple or 

lumped concepts.  For example, the intended meaning of the local coded term 

“Cough/Secretions” could be cough, secretions (wet cough) or both.  The final 

representation of the HART dissected this lumped concept into two separate concepts, so 

the local term maps twice.  But the relationship is a non-exclusive disjoint, meaning the 



 

 

certainty is less than 100% for each term-concept mapping.  A free-text entry of 

“cough/secretions”, on the other hand, likely means that both concepts were intended by 

the coder, and the multiple mapping assertions are represented as conjoint mean that the 

term maps to both HART concepts with certainty.  The enumeration of the certainty of 

mapping for these types of multiple maps adds a level of quality to the aggregated data.  

Inclusion of these attributes allows the final data repository to be queried to prove such 

relationships (e.g., all conjoint mappings can be queried and determined that they arise 

from free-text data structures). 

 

The final data repository schema relates each local presenting complaint term into 

discrete concepts that are mapped to the HART reference terminology.  Each mapping 

assertion is related to a table of mapping quality characteristics, by the combination of 

hospital, attribute name, and local term-HART concept assertion.  The quality and 

precision mapping characteristics described above were added to the data model as 1:1 

relationships with each assertion (each term-concept mapping has exactly one quality and 

one precision attribute).   

 

In the final global schema, one-to-many relationships were created from presenting 

complaint attribute name and values to qualifying attributes (quality and precision) for 

the data element or the mapping. 

 

 

 



 

 

Figure 9.  Data Model for Final Data Repository 

 

As shown in Figure 9, the final data model builds from the asserted term-concept 

mapping architecture shown in Figure 8, and includes explicit representation of the native 

data models, native data representation, and mapping (quality) characteristics.  This 

process results in a data repository data schema that is more expressive than other 

heterogeneous database integration models.  Typically, database integration efforts strive 

to create seemingly comparable data.  All of the data would appear the same to the user, 

but often the comparability is really not there.  Because of the variability in source 

representations, and purposes for aggregated data, and many possible representations of a 

reference terminology, an exact recipe for the final reference models cannot be 

prescribed.  However, the basic process used here provides a final data schema that 

contains valuable qualifying data about the aggregated data.  The steps in this process 

force the developer to examine the intended meaning and context of each local value and 

the final schema includes an explicit representation for these data attributes. In addition, 

this process recognizes that different reference terminology representations are possible, 



 

 

each impacting the transformed homogeneous data in varying ways. The explicit 

representation of variability in local term-concept mappings can recapture meaning and 

precision that is often lost in traditional database integration approaches. 

 

IV.) DISCUSSION 

This work uses a generalized process for the resolution of heterogeneous databases with 

heterogeneous measurement systems to a common representation.  The global data 

schema and a supporting reference terminology provide a uniform representation for 

heterogeneous data, and the incorporation of mapping characteristics in this schema 

retains semantic intent and preserves some data granularity.  The use of this process, and 

the resulting data schema, allows public health researchers to compare and aggregate 

Presenting Complaint data from multiple EDs across a region to assess trends, identify 

community health problems and monitor ED utilization.   

 

The development of any reference terminology is an imperfect science, heavily dictated 

by the application domain and user requirements, and therefore it is impossible to 

prescribe a step-by-step methodology.   There are many possible ways to organize and 

represent a reference terminology, and ultimately, the best representation depends upon 

the purpose and use requirements. Major activities in the creation of a reference 

terminology are: defining purpose and scope, identifying relevant concepts, describing 

relevant concepts, organizing relevant concepts, identifying inter-concept relationships, 

testing inter-concept relationships, and representation.    Literature on the development of 

conceptual models and ontologies supports these design stage conceptualizations.[25, 30, 



 

 

58]   The direction of modeling approach (top-down vs. bottom-up) can have enormous 

implications for the final reference terminology structure.  Often, it is superior to identify 

broad organizational groupings before examining the underlying data.  In cases or 

domains where the data contents are largely unknown to experts, or where preservation of 

local data granularity is a major objective, as was the case with this application, a more 

data-driven start can be warranted.  Ultimately, the approach and final reference 

terminology content, organization, and format are left to the designer and are driven by 

the functional requirements, but will have implications for the transformed data. The 

approaches for use of a reference terminology described in this paper increase the 

likelihood of informed use of the data and should be valuable in a variety of informatics 

applications. 

 

The immediate purpose for this endeavor was to grab the low-hanging fruit of a simple 

terminology to uniformly and extensionally define ED presenting complaints relevant to 

potential pediatric asthma in the ED.  The HART provides the framework to make 

heterogeneously represented data comparable.  This comparability is often taken for 

granted but uses are infinite. A repository of comparable presenting complaint data could 

be mined to identify groups of symptoms or complaints for a patient.  The reference 

terminology serves this purpose, and is the instrument with which to count pediatric 

respiratory presenting complaints across multiple EDs in a region.  The result of any 

database integration project is queryable data that appears the same to the end user.  This 

process and resultant data repository schema allow the end user to identify the 

qualifications of the apparently comparable data from heterogeneous sources and 



 

 

therefore make better-informed queries. Statisticians and database designers, and 

intelligent applications all will benefit from the explicit representation of how things are 

mapped, e.g., allowing “certainty” factors to be calculated for given mappings. The 

overlaying of local data schemes onto HART can illustrate the data capture limitations 

for any specific ED, and might stimulate sites to expand or revise data collection.   

 

To address the absence of an existing terminology with the content and semantics 

required for this integration, the HART reference terminology was created and is in 

essence the result of the content integration, which expresses similarity in intended 

meaning of the instances from heterogeneous concept systems. Rather than adding to the 

“vocabulary problem”, this process creates some order where there once was chaos, and 

allows data content integration that was previously impossible to achieve. Further, this 

process has potential to “assimilate” existing data sources into a common representation 

that captures a consensus of concept representation practice and needs across a range of 

real-world data collections, and offer this aggregate knowledge as an extension to 

existing knowledge representations, such as SNOMED. 

 

The final organization of the HART and the mapping characteristics forced the developer 

to examine the intended semantic meaning of terms at the local level.  The examination 

of intended semantics was facilitated by examining context on many levels.  This process 

has demonstrated that development choices in the reference terminology affect the 

quality and precision of the transformed data in a variable manner.  While the exact 

codings used here may not meet the needs of other applications, the theory of identifying 



 

 

and quantifying these mapping characteristics could be of value to a number of database 

integration efforts.    This process and resultant data schema minimize the loss of data 

granularity and semantic meaning when transforming data to a homogeneous 

representation.  
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CONCLUSION TO THE DISSERTATION  
 
 

Heterogeneous databases represent a pervasive and persistent problem in a variety of 

domains, and, prior to this research, generalized, re-usable processes for their resolution 

were lacking. The difficulties in identifying such processes arise from a lack of 

characterizations for heterogeneities that can exist between multiple systems, and the lack 

of clarification of the goals and evaluation criteria for heterogeneous database integration. 

The first of the attached dissertation papers [4] provides both: a framework to identify 

representational heterogeneities, and a definitive goal for their resolution. The ultimate 

goal for heterogeneous database integration is to create a homogeneous data 

representation from heterogeneous source representations, while maintaining the data 

granularity and intended semantic meaning from each data source that are sufficient for 

the needs of the integrated data. Together, the framework for representational 

heterogeneities and the articulated goal of successful integration provide a means for 

identifying and evaluating current approaches, and organizing the field to solicit future 

research needs.  This framework and articulated goal also supported the development of 

the generalized process for heterogeneous database integration that is the result of this 

research (Figure 1). 

 



 

 

Figure 1. Process for Achieving Comparable Data from Heterogeneous Databases 

 
 

This generalized process, presented in Figure 1 and discussed in the preceding papers [2, 

5, 6], address the two very broad levels of heterogeneities – those resulting from different 

database schema, and those resulting from differences in the underlying data content – 

typically found across heterogeneous databases. [4] These two broad groupings of 

heterogeneities each became a target for integration processes, namely database schema 

integration and data content integration. Both require the use of a reference model. The 

information model (#2) is a referent model that assimilates different data structures (e.g., 

data instances, attributes, or tables) into a singular data element. Once the reference 

information model is selected or constructed (#2), local data structures are mapped, or 

transformed, to the new structural representation (#3). Heterogeneous data content (i.e., 

“what is in the fields”) is made homogeneous by mapping the local data instances to 

concepts in a final reference terminology. The development of a reference terminology 

(#4), and associated mappings (#5 and #6) are addressed in [2]. The semantic focus of 

our process adds value to current syntactically-based efforts by suggesting a change in 



 

 

focus from purely syntactical solutions toward a semantic-based approach, designed to 

capture the intended meaning and operational definitions of each data structure. Further, 

the generalized process addresses the importance of representing these differences in the 

final model to facilitate informed queries (#6) and analysis of the final data.  

 

Together, the four preceding papers represent the spectrum of this dissertation research, 

from the problem definition, literature synthesis, and exploration of possible 

methodologies, to the actual development, implementation, and evaluation of the final 

generalizable process that was the proposed intent of the research. Different parts of this 

process are novel to different audiences.  For example, the notion of a reference model, 

specifically a reference terminology, for content integration extends the current research 

boundaries of the database integration community, whose activities often stop at the stage 

of database schema integration. The guidelines for the development and thoughtful use of 

a reference terminology are also novel to the informatics literature, and the demonstration 

of the use of a reference terminology to increase the quality and expressiveness of 

aggregate health data is of tremendous value to the public health community who have 

strong interests in processes that facilitate the “re-use” of existing data sources for 

secondary analyses.  The constructs and process introduced by this research as a whole 

are worthwhile to understand the complexity of issues and valid solution requirements for 

integrating heterogeneous data both in health care and in other domains. 

 

The term comparability is used throughout the four preceding papers. Comparability is a 

broader notion than equivalence, and implies the need for a standard representation to 

make judgments of relationships between specific instance values (e.g., equivalent to; 

greater than, less than; broader than, narrower than, etc.) There are three general 

strategies to achieve comparability across multiple data sources: implicit, pair-wise, or 

reference model. Implicit strategies - the use of implied concept relationships that guide 

transformations of data to new representations - are the norm. But the conceptual 

frameworks underlying this strategy are buried within the psyche of the programmer or 

translator, and cannot be easily examined, validated, or changed. The second common 

approach is pair-wise – making comparisons or translations from one data representation 



 

 

to another, exhausting all possible combinations in the database set. This strategy might 

ultimately provide more information, but is labor-intensive and less scalable, and cannot 

capture any similarities between the data sources nor facilitate comparisons between the 

source representations as a whole. The approach proposed here, that of an explicit outside 

reference model, allows a true assimilation of data from multiple representations to an 

explicit conceptual referent model that facilitates final information needs. 

 

A major contribution of this research is the introduction and discussion of comparability 

as a goal and a requisite for heterogeneous database integration. The definition of 

comparability encompasses the examination of qualities and attributes that can facilitate 

determination of similarities and differences across multiple objects. A prerequisite for 

comparability is a homogeneous data representation. The thoughtful development of such 

representations, discussed in detail in [2] can satisfy final data needs and also capture the 

most (or most important) differences and similarities across local representations. As 

such, the use of the process created by this research can provide a true assimilation of 

local data, warts and all, to one representation. Theoretically, this representation can be 

used to create a representation for what is in use in multiple data collection systems, i.e., 

to describe “what is real”.  The application of this research can be used to survey and 

assimilate what data representations (both data structures and terms) are in use in a 

domain, and use the assimilation to develop or enhance data representation standards.  

 

The reference model solution advocated throughout this work can be considered novel 

and perhaps radical to some, particularly in the informatics literature. The reference 

model for this demonstration consists of two parts: the Houston Asthma Reference 

Terminology (HART) that assimilates presenting complaint instances, and a global 

schema for emergency department (ED) visits that normalizes presenting complaint data 

structures into a single attribute and empowers the HART reference terminology with 

“context”. Both parts of any standard reference model, if thoughtfully constructed, should 

capture similarities between the sources. In fact, one measure of an optimal reference 

model, and a next step for future research, is that which captures the most, or perhaps the 

most relevant, similarities across source representations. A strict data integration 



 

 

approach, that simply combines every concept or combination of concepts from all local 

terms, as mentioned in [2], is often easy to construct but requires an implicit or informed 

understanding of the source representations to query and use in any meaningful way. In 

contrast, the focus of the process we have developed is on the capture of the intended 

semantics, or meanings, of the native data representations and the transformation of those 

semantics to a final homogeneous representation that is internally valid (e.g., non-

redundant) and meets the needs of the final data.  

 

Our strategy of using a reference model as a final homogeneous representation was 

particularly motivated by our primary objective to compare and combine data from 

multiple sources.  Had our purpose been different, a pair-wise translation approach might 

have been sufficient.  However, it is likely that in public health informatics, almost all 

projects will benefit from our reference model approach, since most public health 

activities require the aggregation of multiple data sources. To this end, our process can 

serve as a blueprint for achieving comparable and integrated data from many source 

representations and facilitate the reuse of existing data sources for secondary analyses.  

This approach has the advantage of dealing with reality – a variety of independently 

constructed and heterogeneous data representations - and capturing their similarities in a 

summary of sorts – an assimilation of concepts and semantic relationships that are 

captured in each of the component (native) representations. It is this assimilated reference 

model, or a bottom-up developed reference terminology, that could be used to extend 

existing terminology standards such as SNOMED to meet the real-world needs of public 

health and health services researchers. 

 

The need to integrate and aggregate data from multiple sources is important to many 

health care (and non-health care) applications, and the use of a reference model can 

enable data integration in ways that retain local semantics and granularity, and capture 

similarities that exist between local representations. Once a homogeneous data 

representation is achieved, the data from heterogeneous databases can be compiled, 

shared, manipulated, and leveraged to address a multitude of information requirements.   

 



 

 

This process recognizes that the differences inherent in native data representation and 

data collection contexts imply some loss of meaning or precision when being transformed 

to standard homogeneous representations.  Key steps of this process attempt to minimize 

the loss of data semantics and granularity, potentially allowing better “quality” data in the 

final representation. This generalized process [5] should be valuable to a number of 

database integration efforts in a number of domains. 

 

The specific informatics contributions of this research are: a framework for 

representational heterogeneities common in heterogeneous database integration projects, 

and a process that can be a blueprint for assimilating multiple, existing, heterogeneous 

data content for secondary analyses.  Most notably, this process includes development 

guidelines for a reference terminology, a global schema or information model which 

gives context to a reference terminology, and a conceptual model and supporting scales 

for representing the quality of matching of heterogeneous local codes to a reference 

terminology. Future application of these generalized processes for the development and 

use of a reference terminology that were generated from this research increases the 

likelihood of informed use of the data and should be valuable in a variety of informatics 

applications. 

 

From the start, the goal was to create re-usable knowledge, some artifact that showed 

promise to address other data integration problems, not just this one.  The stated 

evaluation measures in the initial research proposal were simply to determine whether a 

process for homogeneous representation had been achieved and if the demonstration 

implementation succeeded.  Additional evaluation criteria actually applied to this project 

include a critique of the final generalized process to determine if it addresses all of the 

representational heterogeneities presented in the first paper. Future potential evaluation 

targets for our generalized process include the validation of actual products (i.e., global 

schema and reference terminology reference models) and the integrated or comparable 

data that they enable. [6] This validation should describe the validity and the value of the 

transformed comparable data to address real information needs. 

 



 

 

Future research is needed to determine if the process we have created can be repeated, 

and is both sound and useful. The combination of our heterogeneous data integration 

process, if validated in other projects, with explicit representations of context, should 

have potential for re-use and partial automation. Further research on the evaluation of the 

transformed and homogeneous data representations that result from the application of this 

process, both in other health care applications, and in other domains, is warranted and 

welcome.  

 
The need to integrate data from multiple, heterogeneous source representations in health 

care is pressing and growing. The size and complexity of health care delivery and 

research activities, coupled with the lack of a-priori data representation and storage 

standards, has created a world of isolated data “silos” that to date cannot be analyzed in 

aggregate. Currently, the health care domain is overwhelmed with data that is largely 

incomparable, yet the needs for examining these data are becoming more urgent. Some of 

the rising costs of health care delivery and experimental drug development could be 

curtailed by using existing data sources and observational research designs on large 

populations. Similarly, evidence-based care, which requires monitoring data from 

multiple sources for long periods of time, could move from vision to reality if 

comparable data could be obtained across multiple populations and multiple points in the 

health care system. Issues of patient safety and health care quality are receiving well-

deserved attention and driving needs to look at aggregate data from multiple sources to 

monitor health care activities and outcomes. Finally, new attention on bioterrorism 

surveillance and detection has drawn the spotlight on lack of integration of health care 

data for public health monitoring. The use of this generalized process to achieve 

comparable data has enormous potential to positively impact a plethora of health care 

quality and public health activities across the nation, and this research presents a starting 

point for aggregating data to support research and practice in health care and other 

domains.  
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