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Chapter 1 

Indexing and the biomedical literature 

index  

noun ( pl. -dexes or esp. in technical use -dices) 

• an alphabetical list of names, subjects, etc., with references to the places where they occur, 

typically found at the end of a book. 

• an alphabetical list by title, subject, author, or other category of a collection of books or 

documents, e.g., in a library. 

• Computing a set of items each of which specifies one of the records of a file and contains 

information about its address. 

verb [ trans. ] 

• record (names, subjects, etc.) in an index: the list indexes theses under regional headings. 

• provide an index to. 

(Excerpted from the New Oxford American Dictionary) 
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Indexing 

Indexing is a human activity whose origins are lost in time. The earliest linguistic 

precursors of the term “index” mean “point to,” or “call attention to.” The figurative 

meaning of the term itself is very old, dating at least to ancient Rome. Small slips of 

parchment called “index” were routinely attached to scrolls, noting the title and author 

so that the scroll itself would not need to be pulled off the shelf and opened for 

inspection. 

The use of these indexes to hold the title of a scroll led to the use of “index” to refer to 

the title of a book or scroll. In approximately the first century A.D. the word “index” 

(and, probably, the physical “index” attached to the scroll as well) started to refer to a 

short list of chapters. Sometimes these tables of contents included brief abstracts of the 

chapters, which in turn led to “index” being adopted as a term for a bibliographic list or 

catalog. Hans Wellisch narrates, “Seneca (Epistulae, 39) tells a certain Lucilius, who had 

asked him to suggest suitable sources for an introductory course in philosophy: ‘Sume 

in manus indicem philosophorum’ (Pick up the list of philosophers), referring to a list of 

authors’ names and the topics on which they had written.” (Wellisch, 1991) 

Tables of contents and back-of-the-book indexes as we know them today appeared 

much later. They had to wait for the appearance of the printing press in the fifteenth 

century, because by their nature they required consistent page numbers. Indexes on 

reference books appeared shortly after the Gutenberg printing press made its debut 

(Wellisch, 1991). 

Despite its age and tradition, indexing still is a difficult task that requires experienced 

and specialized personnel. It is slow, laborious, and expensive. Current computerized 
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tools help, but are not yet able to approach human performance. In this thesis, I propose 

that a new understanding of the structure of scientific documents together with current 

advances in graph theory and text processing can be used to improve automated, 

unsupervised indexing. I applied this understanding to the field of biomedicine, where 

fast, accurate, and consistent automated indexing may help translational research 

efforts, help develop better information retrieval tools, and make high-quality literature 

more accessible to clinicians. 

Creation of the National Library of Medicine, the Index Medicus, and 

MEDLINE 

The National Library of Medicine 

The National Library of Medicine (NLM) started out as the bookshelf of Surgeon 

General of the United States Army Dr. Joseph Lovell, appointed in 1818. In 1836 the 

budget request included, for the first time, a request for “medical books for [the] office.” 

This prompted the NLM to choose, retroactively, 1836 as the year of its own birth. The 

Surgeon General’s bookshelf grew slowly at first, and was catalogued for the first time 

in 1840. It contained 134 titles. 

At the end of 1864 the library had grown to 2,100 volumes. Dr. John Shaw Billings, a 

young army surgeon, was appointed in 1864 to the Surgeon General’s office. It was, 

apparently, a fortuitous appointment. Dr. Billings was an avid bibliophile who, by 1867, 

took over acquisitions for the burgeoning library and longed to make it as complete as 

possible. He acquired, traded, and begged for books at an astonishing pace. Barely a 

year later, the collection had more than tripled to 7,000 volumes. 

Dr. Billings started collecting periodicals, and went to great lengths to find older issues 
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to complete his collection. He also issued catalogs regularly, and by the mid-1870s had 

also started a card file to serve both as a source of catalog information and as a 

repository of the latest bibliographic information. The first catalogs were inspired by 

catalogs in other medical libraries, and listed books by subject and author. He was, 

however, unsatisfied with the bibliographic usefulness of the catalogs. Probably 

inspired by European abstracting and indexing periodicals, in 1874 he started 

incorporating the journal articles in the library by subject to his card file. He recruited 

the help of bored army doctors in the frontier to do so. 

Dr. Billings thought that a unified catalog was necessary to achieve the library’s 

potential. Knowing that it would be expensive, he bound a part of his card file. He 

included all cards from “Aabec” to “Air,” and called the volume Specimen Fasciculus of a 

Catalogue of the National Medical Library. The Specimen Fasiculus was the first precursor of 

what was to become MEDLINE. With this Specimen Fasciculus in hand as a proof of 

concept, Dr. Billings went to Congress and secured funding to catalog the rest of the 

Library’s collection. The complete catalog may have cost as much as a post office 

building. 

Even Dr. Billings underestimated the size of the task he had undertaken. The first 

volume of the Index-Catalogue of the Library of the Surgeon General’s Office, United States 

Army (A-Berlinski) appeared in 1880. The entire Index-Catalogue was expected to fill 

eight volumes, but wasn’t completed until 1895. By the time the task was done, the 

National Library of Medicine had published 16 volumes. The second series of volumes 

were published between 1896 and 1916. 
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The Index Medicus and MEDLARS 

Dr. Billings quickly realized that the catalog was incapable of dealing with current 

output quickly. There was an almost 20-year gap before a volume was reissued and 

new entries could be included in the Index-Catalogue. Dr. Billings instituted, together 

with publisher F. Leypoldt, the Index Medicus in 1879. The Index Medicus was a monthly 

publication that classified journal articles and books by subject. It also included an 

author index. 

The Index Medicus was published between 1879 and 1899. It was prepared after hours at 

the library through the same work that produced the Index-Catalogue. Its publication 

ceased because it was not commercially viable. It did, however, establish itself as the 

most comprehensive guide to the medical literature available anywhere. 

Dr. Billings retired from the army and the Library, but kept a post on the board of the 

Carnegie Institution of Washington. With the Carnegie Institution’s support, the Index 

Medicus resumed publication in 1903. In 1930 it merged with a similar publication from 

the American Medical Association (AMA) and became the Quarterly Cumulative Index 

Medicus. The AMA published it until 1959, when responsibility passed backed to the 

Library. The Library restored the name Index Medicus and started publishing it monthly. 

The NLM ceased publishing the Index Medicus in 2004.  

In 1960 Dr. Frank Rogers, Director of the Library, installed a computerized system with 

a state-of-the-art photocomposition machine to produce the Index Medicus. This system 

permitted the Library to substantially increase the number of journals the library could 

index, produce custom one-time or recurring bibliographies on specific subjects, or even 

produce bibliographies to answer specific researchers’ needs. The search service was 
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called the Medical Literature Analysis and Retrieval System (MEDLARS) and was a 

success. At the time of its introduction, it was the largest information retrieval system in 

existence. 

MEDLARS’ success came with its own share of problems. Demand for its services was 

so great that it threatened to overwhelm the system. To alleviate the demand, the NLM 

decentralized MEDLARS by sending tapes with copies of its databases to other libraries, 

and led indirectly to the Medical Library Assistance Act of 1964, which enabled the 

construction of a regional medical library system (Blake, 1986; U.S. National Library of 

Medicine, 2004d). 

In 1971, MEDLARS was brought online, with data from the Index Medicus starting in 

1966. The online version of MEDLARS was called MEDLINE (U.S. National Library of 

Medicine, 2003). 

MEDLINE and its growth 

MEDLINE is now the premier index of biomedical articles. It currently contains more 

than 16,000,000 references from more than 5,000 biomedical journals, and grows 

continuously, at an ever-increasing rate. Over 670,000 new references were added in 

2007 alone (U.S. National Library of Medicine, 1999). Finding the correct references 

among this mass requires good search tools and high-quality indexing that describes 

the references precisely. 

All MEDLINE entries corresponding to journal articles are indexed by hand using a 

purpose-built and continually maintained vocabulary called the Medical Subject 

Headings (MeSH). The use of a controlled vocabulary like MeSH allows users to 

retrieve documents more efficiently, thanks to several advantages over using free text. 
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In MeSH there are unambiguous single correct ways of describing a concept. The 

hierarchical IS-A structure of MeSH also allows broadening or restricting retrieval in 

intuitive ways. For example, a search for “myocardial ischemia” will also retrieve 

references indexed under “myocardial infarction,” since the former is a parent of the 

latter in the MeSH tree (U.S. National Library of Medicine, 1999). In other words, the 

MeSH hierarchy embodies the knowledge that a “myocardial infarction” is a 

“myocardial ischemia.” 

To achieve high-quality indexing, the National Library of Medicine (NLM) maintains a 

highly trained professional staff. The NLM staff includes indexers who perform the 

actual indexing process, and MeSH staff that maintain and update the vocabulary.  

Indexing of MEDLINE articles by hand can be traced back more than 100 years. It is, by 

any measure, a success. MEDLINE is an established part of the biomedical literature 

ecosystem, and its importance cannot be overstated. MEDLINE searches form the basis 

of meta-analyses that are the backbone of Evidence-Based Medicine (EBM). MEDLINE 

is a regular part of biomedical research, the start of and final repository of almost every 

research project. 

Despite MEDLINE’s importance, and its’ clear success, it is not perfect. While human 

indexing is flexible, adaptable, and the current gold standard, it suffers from several 

important deficiencies. Perhaps the most obvious one is its cost. Maintaining an in-

house staff to perform indexing is expensive. Actual figures are hard to obtain, but 

already in 1990 the U. S. National Library of Medicine (NLM) spent more than 

$2,000,000 on 44 full time equivalent employees to index MEDLINE (Hersh, Hickam, 

Haynes, & McKibbon, 1994). While not directly comparable, the budget request for 2009 
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for all health information services (including MEDLINE, among other NLM databases) 

is $107,382,000 (National Institutes of Health, 2008). 

Indexing is also slow; processing a reference may take weeks, during which the 

reference is only available with arbitrary publisher-supplied terms. Due to the time 

constraints and large amount of material to process, reading the title and abstract of an 

article constitutes the bulk of the indexing process. The entire article is not used 

regularly, although certain sections (like figure captions) are regularly skimmed. 

Unfortunately, abstracts and titles may not represent the contents of articles accurately 

(Dupuy, Khosrotehrani, Lebbe, Rybojad, & Morel, 2003; Pitkin, Branagan, & Burmeister, 

1999). The effect of this discrepancy on the quality of NLM indexing is unknown, but at 

least some NLM indexers do not trust indexing software that does not use the full text 

of the article (Ruiz & Aronson, 2007). There is an inherent tension between the need for 

indexing productivity and accuracy. 

Finally, human indexers are inconsistent. There is one large study on MEDLINE 

indexing consistency, published in 1983 after an involuntary error set up a natural 

experiment when several hundred articles were indexed twice. In this study, Funk and 

Reid found that indexing consistency varied from 74.7% at a very high conceptual level 

(when comparing checktags) to 33.8% when comparing detailed concepts (MeSH 

heading/subheading combinations) (Funk, Reid, & McGoogan, 1983). Unfortunately, 

Funk and Reid’s study does not account for semantic similarities between indexing 

terms. Under their model, “myocardial infarction” is just as different from “myocardial 

ischemia” as it is from “colon cancer,” which is an evaluation weakness this thesis 

addresses. 



9 

 

The structure of scientific writing 

Despite the enormous importance of scientific writing to our civilization, few efforts 

have been made to study or analyze it consistently. Some authors turn to measure 

writing and scientific output, a discipline called bibliometrics (or scientometrics when 

applied strictly to science). One of the foremost experts in scientometrics is Eugene 

Garfield, creator of the Science Citation Index and the Journal Impact Factor. Yet 

Garfield knew that quantifying scientific writing and citation was very different from 

analyzing or understanding it (Garfield, 1972, 2007).  

Frederick Suppe is a philosopher who analyzes the structure of scientific writing. In a 

seminal 1998 paper he argued that scientific articles are rigidly structured. Scientific 

articles present an argument that tries to advance one or more claims. Since journal 

space is a scarce resource, there are constraints on the amount of text articles can 

consume. Scientific articles must therefore use every paragraph and sentence to 

advance their claims (Suppe, 1998). 

An intuitive consequence of this theory is that scientific papers essentially build a 

network of interrelated concepts. They advance their claims by stating facts about them, 

about concepts related to the facts, or about relationships between these. The most 

important of these networks’ concepts will be the papers’ most important concepts, 

surrounded by the ones most important to the argument. These will, in turn, be 

connected to the concepts that support them, and so on. Thus, by virtue of Suppe’s 

theory, a network of concepts can be derived from any scientific paper, and it will 

represent its contents. 
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Semantic abstraction graphs and graph-based ranking algorithms 

A tremendous amount of research into the structure of all kinds of networks has been 

done in the last two decades. Networks are generally analyzed through a branch of 

mathematics called graph theory. A graph is “a diagram consisting of a set of points 

together with lines joining certain pairs of these points” (Bondy & Murty, 1976). The 

points and lines in graph theory are commonly called “nodes” and “edges” 

respectively. This thesis will adopt the terms “nodes” and “edges” to refer to graph 

components. 

A particular kind of graph that has been the subject of study at the NLM is the Semantic 

Abstraction Graph (SAG). Semantic Graphs represent words in a piece of text as nodes, 

and relationships between these words as edges connecting the nodes. A SAG is a 

specialized kind of Semantic Graph. A SAG represents, instead of words, concepts from 

a piece of text as nodes and relationships between these concepts as edges in the graph, 

and is built around a user-supplied central query concept (Fiszman, Rindflesch, & 

Kilicoglu, 2004).   

Graph theory and graph analysis have been extremely useful in dealing with many 

kinds of human knowledge networks. Perhaps the best-known example of graph 

analysis is Google (http://www.google.com), an Internet search engine company. 

Google indexes the World Wide Web (WWW) and provides search results to user-

entered queries. Google internally models the WWW as a graph: web pages are 

represented as nodes, and the hyperlinks that connect web pages are the edges. The 

graph is analyzed using an algorithm called PageRank. 

PageRank is an iterative algorithm that computes a formula (Figure 1) over the entire 
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graph. The PageRank value for a web page converges on the probability that a person 

clicking hyperlinks at random will end up on that page. This is called the random surfer 

model (Page, Brin, Motwani, & Winograd, 1998). PageRank has been successfully 

applied to graph models of other networks beside the WWW, including the citation 

network of biomedical literature (Bernstam et al., 2006), analysis of social networks 

(Pujol, Sanguesa, & Delgado, 2002), and text summarization through selection of 

important sentences (Mihalcea, 2004). PageRank can be considered a general algorithm 

that will rank nodes in a graph based on their relative importance as established by the 

set of edges. 

There are other graph analysis 

algorithms besides PageRank. For 

example, HITS models a graph as a set of 

interconnected hubs and authorities, 

which it can discover iteratively 

(Kleinberg, 1999). TextRank is a 

PageRank derivative that is tailored specifically to work on undirected graphs 

(Mihalcea, 2004). 

In this thesis, I apply Suppe’s theory of the structure of scientific papers to build 

semantic abstraction graphs based on the concepts in biomedical articles. I then apply 

graph-based ranking algorithms to rank the concepts in the SAG. From this ranked list 

of concepts I obtain a set of indexing terms. 

Research hypothesis 

I propose that ranking the concepts in a semantic abstraction graph using graph-based ranking 

 

Figure 1 - The PageRank formula 

R is the PageRank, R’ is the new PageRank, N is the 
number of outgoing links, v is the recommender and u is 
the recommendee. B is the set of incoming links. c is a 
decay factor, and E is a baseline PageRank for “rank 
sinks” like closed loops. 
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algorithms will yield the most important concepts of a biomedical scientific article. 

In support of this hypothesis, I make three major claims: (1) that it is possible to build, 

in an unsupervised way, semantic abstraction graphs from scientific articles, (2) that 

ranking the concept nodes in these SAGs yields the most important concepts in an 

article, and (3) that this approach, being grounded in a theory of the structure of 

scientific writing, performs better than the current state of the art in biomedical 

indexing (MTI). I will validate these claims by building a prototype system that is able 

to construct these graphs and rank the nodes in them. I will demonstrate experimentally 

that the ranked concepts are meaningful by comparing them to concepts selected by 

human indexers, and will compare the performance of the prototype system to MTI.  

Building graphs from scientific articles 

I claim that it is possible to build unsupervised Semantic Abstraction Graphs from the 

contents of a scientific article. Useful SAGs that properly represent Suppe’s theory of 

scientific writing should have the following properties (see Evaluation below, Chapter 

3, and (Bondy & Murty, 1976; Dhyani, Ng, & Bhowmick, 2002)): 

1. Be highly connected. 

2. Have identifiable important nodes. 

The important nodes in a graph correspond to the most important concepts in 

an article 

I claim that the most important nodes in these SAGs will correspond to the most 

important concepts in scientific articles. Since identifying the most important concepts 

in articles is analogous to the indexing task, the important concepts should correspond 
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to the indexing terms for the article. In particular, they should agree with the indexing 

as much as human indexers agree with one another. 

Such a system should outperform MTI 

Indexing terms based on the full text of the article should be, both intuitively and 

according to the NLM (Ruiz & Aronson, 2007), more accurate than those generated by 

MTI. When MTI has been experimentally applied to full text articles, it performed 

worse than when applying an optimal selection strategy, i.e. hand-selecting the parts of 

articles that yield the best results, and not better than when using just the title and 

abstract (Gay, Kayaalp, & Aronson, 2005). This is unsurprising; MTI was developed 

over years to leverage the title and abstract of an article, and is not designed to work on 

full text. A system built from the ground up to leverage full text intelligently should 

perform better, since MEDLINE indexers also have access to the full text of the article 

when choosing indexing terms. 
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MEDRank 

To study and prove my 

claims, I designed and 

built MEDRank. 

MEDRank leverages 

Suppe’s theory of the 

structure of scientific 

papers by considering 

the concepts in a paper 

as part of a logically 

ordered collection of 

statements designed to 

advance a central claim 

or claims. As Suppe’s 

theory requires, no 

concept is discarded, and 

no assumptions about 

the role or article segment (i.e. introduction, methods, results, etc.) are used. Instead, the 

article author’s choice of concepts and the relations between them is considered 

meaningful, and used to determine the indexing terms. MEDRank also fulfills the three 

desirable traits of an automated indexer: it produces results of comparable quality to 

human indexers, it uses the full text of the articles, and it is potentially generalizable to 

other domains. 

MEDRank generates SAGs based on full text biomedical articles. It then ranks the 

 

Figure 2 - Basic architecture of MEDRank. The character sets and concept 
representations highlight that the MEDRank process is independent of the 
ontology, language, and vocabularies. 
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concepts in these SAGs using graph analysis algorithms, and compares the resulting 

indexing terms to MEDLINE records. 

The basic architecture of MEDRank is shown in Figure 2. MEDRank processes 

documents by splitting them into individual sentences. Each sentence is fed separately 

to an external concept extraction stage that returns an ordered list of concepts for each 

sentence. MEDRank can use a list of concepts and infer relationships between them, or 

can accept a list of relationships between concepts. MEDRank uses the concepts and 

relationships to generate SAGs. It then ranks the concepts in the SAG with a graph-

based ranking algorithm. MEDRank then translates the ranked list of concepts into the 

destination indexing vocabulary.  

For my research I used the NLM’s Unified Medical Language System (UMLS) concepts, 

its Semantic Representation (SEMREP) as a concept extractor and the destination 

vocabulary was always MeSH. These choices are not fundamental to the design of 

MEDRank, and the concept ontology, extractor, and indexing vocabulary could be 

easily replaced with others and the system repurposed for other uses.  

Evaluation 

To evaluate each of my three claims, I constructed graphs and conducted experiments 

comparing MEDRank output both to human indexer output and to MTI’s output.  

Evaluating the possibility of constructing SAGs from scientific articles 

Even though it is always possible to run an algorithm like the one outlined above, the 

results will not necessarily be meaningful. For the results to be meaningful, and in 

concordance with Suppe’s theory of the structure of scientific papers, graphs produced 
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by such an algorithm will have to fulfill the requirements outlined above: 

1. Be highly connected. 

2. Have identifiable important nodes. 

Highly connected graphs are graphs in which most nodes are connected to most other 

nodes, either directly or indirectly. In 

other words, graphs with many 

islands are not highly connected 

(Figure 3).  Graph connectivity can be 

measured directly with a graph 

metric known as compactness. Graph 

compactness varies between 0 (no 

node can reach another through an edge) and 1 (all nodes can reach other nodes 

through edges either directly or indirectly) (Dhyani et al., 2002). 

I will characterize the SAGs generated by MEDRank on their compactness. The true 

test, however, of the quality of the graphs will be their suitability to the task: if graphs 

do not have identifiable central nodes (because, for example, they are extremely 

dispersed) they will be unsuitable to the task. I will therefore study the distribution of 

ranking scores (i.e. the output of the graph-based ranking algorithm) to ascertain 

whether it contains easily identified central nodes or, for example, all nodes achieve the 

same ranking score. 

Evaluating whether the output is comparable to human indexer output 

MEDLINE is the clear gold standard against which to compare the output of any 

 

Figure 3 - Highly connected (left) and disconnected (right) 
versions of a graph with the same nodes 
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biomedical indexer. In particular, comparing to MEDLINE is desirable because: 

1. MEDLINE uses professional human indexers 

2. The records are freely available in an electronic format 

3. It is widely used 

4. There is a comparison of inter-indexer concordance that provides a measurement 

baseline (Funk et al., 1983) 

Unfortunately, and as desirable as MEDLINE appears initially, it may be less than 

compelling as a gold standard. Indexers working on the same article can legitimately 

disagree on what an article is about. Actual agreement rates vary between 

approximately 30 and 70%, with the highest rates corresponding to the most general 

MeSH terms, called checktags. Checktags are used to index very general concepts like 

“humans.” 

The MEDLINE indexing process is also more complex than reading the articles and 

selecting the best terms. Checktags, for example, are used for some extremely common 

search filters that are indispensable to MEDLINE users. The indexers are therefore 

instructed to assign checktags regardless of whether the article is about the topic, or 

merely mentions it. This enables MEDLINE users to fetch, for example, all articles that 

involve humans. 

MEDLINE indexers are also required 

to select the “major topics” in a paper, 

and index them as major headings. 

Major headings are highlighted with an asterisk in MEDLINE records (Figure 4). There 

are some restrictions on what MeSH terms can be designated major headings; among 

 

Figure 4 - Part of a MEDLINE record showing the MeSH 
headings for an article. Asterisks are major headings. 
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them, checktags can never be selected as major headings. Legitimate disagreement of 

what constitutes an article’s major topic is also possible. For example, I am the first 

author of the article whose MEDLINE record is displayed in Figure 4, and I do not 

consider “statistics & numerical data” the only major topic in it. 

In summary, the MEDLINE indexing process deviates from an ideal in which only the 

most important concepts in an article are selected as indexing terms. Despite these 

limitations, MEDLINE is still the gold standard for evaluating automated indexers in 

the biomedical domain (Aronson, 2001; Aronson, Mork, Névéol, Shooshan, & Demner-

Fushman, 2008; Hersh et al., 1994; Kim, Aronson, & Wilbur, 2001). 

Semantically aware comparisons 

Traditional information retrieval evaluation techniques model the semantically rich 

indexing task poorly. In particular, they do not distinguish between terms that match 

partially and terms that do not match at all. For example, “myocardial ischemia” is a 

parent of “myocardial infarction” in the MeSH hierarchy, and both terms are closer in 

their everyday meaning than “myocardial infarction” and “conjunctivitis,” yet 

substituting “myocardial ischemia” for “myocardial infarction” is as much a mismatch 

as substituting “conjunctivitis.” Quantifying matches between terms allows me to 

evaluate indexing quality better (Olivier Bodenreider, 2008). I describe and use a 

semantically aware version of the vector cosine comparison based on (Medelyan & 

Witten, 2006) to measure indexing performance. 

This semantically aware vector cosine comparison (SAVCC) is based on the idea that 

terms in a vocabulary can be semantically related to one another. In particular, for a 

vocabulary V with terms numbered sequentially from 0 to n, there is an n x n matrix M 
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that describes the relationships between all terms i and j by having Mij=1 if the terms are 

related, and 0 otherwise. M is then applied to one of the vectors, which produces a 

vector that takes the relationship between terms into account. A VCC calculation on the 

modified vector is therefore a SAVCC (Medelyan & Witten, 2006). The original SAVCC 

takes into account both uni- and bi-directional relations between concepts, but in MeSH 

all relations are bidirectional. The SAVCC presented here is a derivative of Medelyan’s 

that uses only a single matrix, and takes into account not only the existence of 

relationships between terms but also the strength of each relationship.  

Evaluating performance against MTI 

MTI is the tool of choice at the National Library of Medicine for automated indexing. It 

currently indexes conference proceedings unattended, and assists MEDLINE indexers 

with the regular indexing process. Under some experimental circumstances, MTI can 

achieve the same level of consistency with MEDLINE indexers as the inter-indexer 

consistency described in (Funk et al., 1983) (Névéol, Shooshan, Mork, & Aronson, 2007). 

MTI is currently used as an interactive aid to the MEDLINE indexing process. Not all 

indexers use it, but most of them do. The number of articles in MEDLINE indexed with 

the help of MTI is unknown. It is therefore impossible to quantify the influence MTI 

suggestions actually have on the chosen indexing terms. However, even if 

unquantifiable, the indexing process strongly suggests that the MEDLINE indexers’ 

terms have a built-in bias for MTI suggestions (Ruiz & Aronson, 2007). In other words, 

if two equally plausible but mutually exclusive indexing terms exist for an article, but 

only one of them is suggested by MTI, I believe that it is more likely for the one 

suggested by MTI to be in the MEDLINE record. From now on, I will therefore refer to 
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the contents of the MEDLINE record as “MEDLINE (with MTI).” 

The practical upper bound of algorithm performance is the level of human-human 

agreement. Since MTI is already close to the level of the same level of agreement with 

human indexers as inter-indexer agreement, any further gains will be between MTI’s 

performance and inter-indexer agreement, are therefore marginal. In fact, MTI 

performance has not improved substantially in the last years, and falls when 

considering full text articles. Surpassing MTI’s performance when compared to 

MEDLINE (with MTI) records will potentially be even harder due to the inherent bias 

in the indexing process.  

Despite this, I will demonstrate that an indexing solution that applies Suppe’s theory 

and is implemented through graph-based ranking algorithms outperforms MTI, even 

when compared to MEDLINE (with MTI) records. 
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Chapter 2 

Historical and current approaches to automated indexing 

Automated indexing  

Given the expense and difficulty of indexing manually, its poor consistency (Funk et al., 

1983; Hersh et al., 1994), and the potential volume of indexing work (over 670,000 

articles yearly at the NLM, for example (U.S. National Library of Medicine, 1999)), 

automated indexing solutions are extremely attractive. Automated indexing is an 

integral part of many computerized information retrieval systems. Like its manual 

counterpart, automated indexing assigns metadata to documents (Hersh, 2003), and 

attempts to assign metadata that will facilitate retrieving documents. Automated 

indexing can be divided into two large categories: statistical or semantic automated 

indexing. 

Statistical automated indexing 

The simplest automated 

indexes are based on statistics 

like word frequency counts. 

Words, in this context, are 

strings of alphanumeric characters separated by “whitespace” (spaces, tabulation 

marks, and punctuation). Frequency counts collect all instances of a single word in a 

document, and consider the most frequent words as indexing terms. Since most English 

text contains many repetitions of words that convey little or no content, like “the,” “of,” 

 

 

 

 

Figure 5 - TF*IDF weight computation for a term i in a document j. 
! 

TF( i, j) = log(frequency of i in j)+1

IDF( i) = log( number of documents in corpus
number of documents that contain i

)+1

WEIGHT(i, j) = TF(i, j)* IDF(i)
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“to,” among others, these stop words are removed before computing frequency counts 

(Hersh, 2003). 

Another simple yet surprisingly effective statistical technique is using weighted term 

frequencies relative to frequencies in a corpus. This technique is called Term 

Frequency*Inverse Document Frequency and abbreviated TF*IDF. TF*IDF weights the 

frequency of a term in a document by the inverse of the number of documents that 

contain the term (Figure 5) (Hersh et al., 1994). In other words, terms with low presence 

in the corpus but high frequency in one particular document will have high TF*IDF 

weights, and will be chosen as indexing terms for that document. 

SAPHIRE 

SAPHIRE is a good example of a statistical system. It was created by William Hersh, a 

pioneer in biomedical information retrieval. SAPHIRE detected Unified Medical 

Language System (UMLS) concepts in each document and then ranked the concepts 

using TF*IDF (Figure 5). These ranked concepts were used as indexing terms.  

Concepts detected in users’ queries were compared to indexing concepts in order to 

retrieve articles. SAPHIRE was evaluated in user studies, and it performed “slightly 

better than novice physicians using MEDLINE, but somewhat worse than expert 

physicians, although none of the differences were statistically significant.” Hersh 

judged SAPHIRE’s performance lackluster, and attributed this to the construction of the 

sample, lack of full-text indexing but, over all, to the poor coverage of the UMLS. At the 

time, the UMLS could not code for approximately 25% of the medically significant noun 

phrases in the study. He also blamed the inability of the system to act like human 

indexers and “choose indexing terms focused on the main topics” (Hersh et al., 1994). 
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Latent semantic indexing 

Semantic algorithms do not truly understand the text they process, but they attempt to 

use knowledge about meaning to improve indexing quality. A statistical technique that 

discovers “concepts” through word co-occurrence in a corpus is called Latent Semantic 

Indexing (LSI). While LSI is a statistical indexing technique, it can approximate meaning 

and provide extremely good results. LSI performs very well in situations where high 

recall is desirable (Manning & Schütze, 1999). 

LSI uses Single Value Decomposition (SVD) to reduce the dimensionality of a corpus to 

common features, and can detect common, implicit patterns in text (Manning & 

Schütze, 1999). For example, if “myocardial infarction” and “aspirin” co-occur 

frequently in a set of documents, LSI will index them under a single feature. Retrieval 

systems looking for “aspirin” or for “myocardial infarction” will then return the same 

documents, exposing the original relationship in the corpus. This ability of the 

algorithm to expose previously unknown relationships in text earned it the name Latent 

Semantic Indexing. 

The ability of LSI to uncover hidden connections makes it very useful for indexing free 

text collections, and some of its proponents believe that it is superior to the use of 

controlled vocabularies. However, since the main contribution of LSI to indexing is the 

discovery of these related concepts, it is incompatible with the use of controlled 

vocabularies. The historical nature of MEDLINE, the hundreds of thousands of people 

who know how to use it, and its continued use of MeSH make LSI unsuitable for 

indexing the biomedical literature in a way that is compatible with MEDLINE. 
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Semantic indexing techniques 

Semantic indexers use knowledge to improve the indexing process. The addition of 

semantic content to the indexing process can be classified into two different subtypes: 

conceptual indexing and semantic indexing. Conceptual indexing captures concepts 

from a source vocabulary instead of terms from the documents, and has been used 

successfully in the legal field. Semantic indexing uses ontologies like WordNet 

(Fellbaum, 1998) as knowledge sources to perform word sense disambiguation 

(Mihalcea & Moldovan, 2000). 

MeSH and the UMLS 

MeSH is a controlled, hierarchical vocabulary developed and maintained by the NLM. 

Its first edition was in 1954, when it was called “Subject Heading Authority List” (U.S. 

National Library of Medicine, 2006a). Its 2008 edition, the latest for which this data is 

available, contains 24,767 unique descriptors and more than 172,000 supplemental 

records. It also has thousands of cross-references that point indexers and users to the 

actual MeSH term (U.S. National Library of Medicine, 1999). For example, 

“Acetylsalicylic Acid” is a cross-reference for Aspirin.  

MeSH is continually revised, expanded, and corrected. Qualifiers and terms may 

merge, disappear, or be added. Whenever terms are removed or merged, the NLM 

updates existing MEDLINE records to reflect the changes in MeSH (U.S. National 

Library of Medicine, 2006a). Therefore every MEDLINE record is indexed using the 

latest edition of MeSH at all times. 

The UMLS is a complex data and knowledgebase distributed by the NLM. It consists of 

three knowledge sources and software to manipulate them. The first knowledge source 



25 

 

is the Metathesaurus, which contains dozens of biomedical vocabularies like SNOMED, 

LOINC, and MeSH, among others, and information on the relationships between them. 

It accomplishes this by linking every vocabulary entry to a single “concept.” Each 

unique UMLS concept has an identifier called a Concept Unique Identifier (CUI). The 

second knowledge source is the Semantic Network, which contains categories to 

classify every CUI and every possible relationship between CUIs into a consistent set of 

types. The third knowledge source is the SPECIALIST Lexicon, which is a dictionary of 

the English language supplemented with spelling variations and biomedical terms. Its 

main purpose is to make developing Natural Language Processing (NLP) software that 

uses the UMLS easier (U.S. National Library of Medicine, 2006b). 

The Medical Text Indexer (MTI) 

The scope, expense, and continuous growth of the indexing task led the NLM to look 

for automated alternatives or, at least, systems that could facilitate the indexers’ job. 

One result of this ongoing effort is the Medical Text Indexer (MTI), an in-house system 

that embodies many of the heuristics that NLM indexers use. It has been developed 

over the past 10 years. It relies, among other inputs, on the past behavior of NLM 

indexers to assign MeSH terms to MEDLINE references. MTI is used to index 

conference proceedings without human intervention. It also suggests terms to human 

indexers that process journal articles.  

MTI has its own set of limitations. It currently processes only the titles and abstracts of 

articles. This is a problem for the NLM because of two reasons. One is that full text has 

been electronically available to the NLM only recently, and is still not available for all 

articles. The second reason is that indexers do not trust MTI’s output. In fact, studies of 
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indexer preferences showed that they would be more likely to use MTI if it 

incorporated full text indexing (Ruiz & Aronson, 2007). Unfortunately, MTI’s 

experimental performance on full text is worse than its performance on titles and 

abstracts only (Gay et al., 2005) 

MTI may be the best example of a semantic indexer. MTI combines both senses of 

semantic indexing described above: it is a conceptual indexer that produces MeSH 

terms as its output, and it performs word sense disambiguation using external 

knowledge. Part of MTI uses the SPECIALIST lexicon from the UMLS to generate 

candidate indexing terms based on the detected concepts. These candidate indexing 

terms are evaluated individually against the original phrase to decide whether they 

should be included in the final mappings. In other words, the knowledge embedded in 

the SPECIALIST lexicon enables MTI to improve concept recall by considering 

alternative concepts as potential mappings for phrases (Aronson, 2001). 

MTI has three separate modules to generate indexing terms. These modules are 

MetaMap Indexing (MMI), PubMed Related Citations (REL), and Trigram Phrase 

Matching (Gay et al., 2005; Kim et al., 2001). Each module produces independent 

output, and the output of the three is combined to obtain a final set of ranked terms.  

MetaMap Indexing (MMI) 

MMI is part of the NLM MetaMap software. It generates indexing terms by parsing text 

into simple noun phrases. The SPECIALIST lexicon is then used to generate variants 

based on each noun phrase. All Metathesaurus strings that contain at least one of the 

variants are retrieved, and compared to the original text using a combination of 

evaluation metrics. The candidate strings are combined to form mappings, which are 
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“MetaMap’s best interpretation of the original phrase” (Aronson, 2001). The mappings 

are ranked using a function called MMI. The top ranked mappings are used as indexing 

terms. The user must specify the number of indexing terms MTI outputs. The default is 

25 indexing terms (U.S. National Library of Medicine, 2004b). 

PubMed Related Citations (REL) 

The PubMed Related Citations (REL) algorithm pulls indexer-assigned MeSH terms 

from documents related to the one being indexed. Document similarity is determined 

with the algorithm used for PubMed’s Related Citations feature. In PubMed’s Related 

Citations, similar documents are clustered according to common words in titles and 

abstracts, weighed using an IDF scheme. For details, see (Kim et al., 2001). 

Trigram Phrase Matching 

Trigram Phase Matching is “a method of identifying phrases that have a high 

probability of being synonyms” (Kim et al., 2001). It breaks down phrases of one to six 

words into sets of three character tokens. These tokens are then compared against all 

possible phrases in the UMLS. The highest scoring matches are paired to the original 

phrases. These pairs are then ranked by the frequency with which they appear in the 

original article (U.S. National Library of Medicine, 2004e). Trigram Phrase Matching is 

not currently used in production at the NLM. 

Combining the output of the three modules 

Two of the three modules, MMI and Trigram Phrase Matching, produce UMLS 

concepts as output, and REL produces MeSH terms. In order to combine the output of 

the three, the output from MMI and Trigram Phrase Matching is converted to MeSH 
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using an algorithm called Restrict to MeSH. Restrict to MeSH uses synonymy and 

hierarchical relations between concepts to obtain MeSH descriptions of UMLS concepts 

(U.S. National Library of Medicine, 2004c). These MeSH terms are considered mapping 

candidates and are further processed during ranking. 

The output of the each module is weighted differently. By default, MMI, REL, and 

Trigram Phrase Matching weight 7, 2, and 0 respectively in production use. The 

combined terms are ranked using a ranking function that takes into account the 

confidence in the UMLS to MeSH translation, presence of the concept in the title of the 

article, and known co-occurrence with other MeSH terms. For further details, see (U.S. 

National Library of Medicine, 2004a). 

MTI has two different modes: “DCMS” and “Gateway” processing. DCMS processing is 

used on articles that will go into MEDLINE. The MEDLINE indexers see the output of 

MTI in DCMS mode as term suggestions. Its authors do not consider MTI’s ranking 

functions to have any intrinsic value and, as such, do not use them to limit the length of 

MTI’s output. Despite the fact that indexers typically assign 10 to 12 MeSH headings to 

an article (Gay et al., 2005), MTI in DCMS mode always returns 25 terms.  

MTI in Gateway mode is use for the unattended indexing of a collection of documents 

called the “Gateway abstracts collection.” The Gateway abstracts collection is not part of 

MEDLINE. 
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Indexing evaluation 

Precision and recall 

Precision and recall are the most traditional 

information retrieval measurements. It is also 

possible to evaluate indexing quality using 

recall and precision by considering the 

indexing task a retrieval task. These measures 

require a gold standard. Recall measures how 

much of the gold standard the system 

retrieves, while precision measures how many 

results in the result set are part of the gold 

standard. There are other measures that 

combine these two into a single number. For 

example, the F measure is the harmonic mean of both. Precision and recall can also be 

given different weights depending on the task; F0.5, for example, weighs precision 

twice as much as recall (Baeza-Yates & Ribeiro-Neto, 1999) (Figure 6). To evaluate 

indexing quality using these measures, the terms chosen by one indexer are considered 

the gold standard and the other, the result set. I used the indexing terms from 

MEDLINE records as the gold standard. 

Hooper’s Indexing Consistency 

Hooper’s Indexing Consistency (HIC) is 

a measure of agreement between two 

indexers that was used in the landmark 

 

Figure 6 - Traditional information retrieval 
measures 

 

Figure 7 - Hooper's Indexing Consistency Measure 
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study of inter-indexer agreement at the 

NLM (Funk et al., 1983).  It is computed 

by dividing the terms in common 

between two indexers by the total 

number of unique terms assigned by 

both indexers (Figure 7). 

Semantically Aware Vector Cosine Comparison (SAVCC) 

Another widely used measure is the Vector Cosine Comparison (VCC). The VCC 

computation for indexing measures is performed by creating vectors of the length of the 

vocabulary (i.e. if the vocabulary is 20,000 terms then each vector has 20,000 elements) 

for each indexer (Salton, 1963). Each vector is filled in with ones for the terms the 

indexer used, and zeros for 

the ones he or she did not 

(Figure 8). The normalized 

dot product of both vectors 

is the VCC. The VCC 

actually measures the 

proximity of both sets of 

terms in the semantic space 

defined by the vocabulary. 

A major problem with the previous evaluation techniques is that they treat indexing 

terms as opaque strings of characters. Using traditional measures, if for the same article 

 

Figure 8 - Example of a vector cosine comparison 
calculation 

 

Figure 9 – Computing the matrix M for a MeSH SAVCC. The C function is 
the inverse of the smallest distance between each pair of MeSH terms. 
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one indexer selects “Myocardial infarction” 

but another selects “Coronary artery 

disease,” they do not agree. This situation, 

however, is very different than if one chose 

“Myocardial infarction” and the other 

“Osteosarcoma.” In the first case both 

indexers partially agree on the contents, 

while in the second they do not. 

Semantically aware indexing quality 

measures overcome this problem. These 

metrics use the relationships between 

indexing terms to calculate the degree of agreement between two terms (Medelyan & 

Witten, 2006) and then compute a modified VCC measure based on these. 

In particular, for a vocabulary V with terms vi numbered sequentially from 0 to N, there 

is an N x N matrix M that describes the relationships between all terms i and j by 

having  if the terms are related, and 0 otherwise (Figure 9). M is then applied to 

one of the vectors, which produces a vector that takes the relationship between terms 

into account. A VCC calculation on the modified vector is therefore a Semantically-

Aware Vector Cosine Comparison (SAVCC) (Figure 10). The original SAVCC takes into 

account both uni- and bi-directional relations between concepts (Medelyan & Witten, 

2006), but in MeSH all relations are bidirectional. The SAVCC presented here is thus a 

simplified version that uses only a single matrix. The coefficient α represents the weight 

of the traditional VCC computation. α=1 transforms SAVCC into traditional VCC, while 

! 

Mij =1

 

Figure 10 - Semantically-Aware Vector Cosine Comparison 
on the same vectors as Figure 8 
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α=0 gives no weight to VCC. Following (Medelyan & Witten, 2006), I use α=0.65. 

MeSH is hierarchical by nature. I use this organization to evaluate the quality of 

indexing taking into account semantic similarities. Further, a measure of semantic 

distance (J. R. Herskovic, Tanaka, Hersh, & Bernstam, 2007; Richardson & Smeaton, 

1995) can provide information about the degree to which two terms are related. I 

therefore modified SAVCC further: to compute SAVCC, I create vectors with one 

element for each element in MeSH. Each element in these vectors is 0 or 1, 0 

representing absence and 1, presence of the term in the indexer’s output. I consider 

MeSH as a collection of independent trees, so terms that are classified under different 

categories do not match. Instead of a simplistic binary related/not related 

determination, I use the closeness between terms to create the relatedness matrix for the 

SAVCC computation (Figure 9). 
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Chapter 3 

Graph-based ranking algorithms 

Overall, our experiments with PageRank suggest that the structure of the Web graph is very 

useful for a variety of information retrieval tasks. 

From The PageRank Citation Ranking: Bringing Order to the Web (Page et al., 1998) 

 

Graph theory 

Graphs are a convenient general model for any situation that consists of a set of entities, 

some of which are paired. Graph theory does not address what the entities or the 

pairings represent. A graph may model a computer network, a set of social 

relationships, the citation pattern of scientific publications, or any other situation that 

can be described as a set of entities, some of which are paired.  

Formally, a graph G can be defined as a nonempty set of vertices V(G), a set of edges 

E(G) and an incidence function ψG that associates each edge in E(G) with an unordered 

pair of vertices in V(G). If e is an edge, x and y are vertices, and ψG(e)=xy, e connects x 

and y (Bondy & Murty, 1976). While (Bondy & Murty, 1976) use the term “vertex,” the 

graph-based ranking algorithm literature prefers the term “node,” which I will use from 

now on.  

A convenient feature of graphs is that they can be easily represented through diagrams. 

In a typical graph diagram, a node is represented by a circle. An edge is represented by 
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a line joining the circles that correspond to the nodes identified by the incidence 

function for that edge.  

For example,  

 

fully describes a graph that corresponds to the diagram shown in Figure 11. The same 

graph may have several different correct diagrammatic representations. 

The terminology and many concepts in graph theory come from the diagrammatic 

 

Figure 11 - Diagram illustrating graph G 
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representation. For an in-depth look at the basics of graph theory, please consult (Bondy 

& Murty, 1976). 

Adjacency matrix 

The adjacency matrix A of a graph G is 

€ 

A(G) = [aij ], where 

€ 

aij  is the number of edges 

joining nodes 

€ 

vi and 

€ 

v j . For example, the adjacency matrix for the graph G in Figure 11 

is: 

 

The adjacency matrix is the preferred format for storing graphs in many computer 

applications (Bondy & Murty, 1976). 

Walks 

A walk is an ordered sequence of alternating nodes and 

edges that starts with a node, ends with a node, and is not 

empty.  If the walk contains no repeating edges, it is called 

a trail. If a trail contains no repeating nodes, it is called a 

path. 

 

Figure 12 - Simple graph with 
two nodes and one edge joining 
them 

v2v1

e1
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If a walk begins and ends with the same node it is a closed walk. For example, a two-

node graph with a single edge joining both nodes (Figure 12) contains infinite closed 

walks (

€ 

v1e1v2e1v1,

€ 

v1e1v2e1v1e1v2e1v1, etc.). A closed trail that contains at least one node 

different from the origin node is a cycle. Since all walks in the previous example contain 

edge e1, the graph in Figure 12 contains no trails, and therefore cannot contain cycles. A 

graph is called acyclic if it does not contain cycles.  (Bondy & Murty, 1976) 

Directed and undirected graphs 

A useful way of dividing graphs classifies them as directed or undirected. Undirected 

graphs are graphs in which the incidence function returns unordered pairs, i.e., the 

edges have no inherent direction. In other words, in such a graph 

€ 

ψG (ei) = v jvk = vkv j . 

The adjacency matrix for an undirected graph is symmetrical. 

A directed graph, in contrast, is one in which the incidence function returns an ordered 

pair. In directed graphs 

€ 

ψG (ei) = v jvk ≠ vkv j . Edges therefore have an inherent direction, 

usually represented with an arrow in a diagram (Bondy & Murty, 1976). The adjacency 

matrix for a directed graph is not guaranteed to be symmetrical and, in fact, most will 

not be symmetrical. 

Directed graphs can be used to model some problems more accurately than undirected 

graphs. For example, citations in scientific papers are not commutative: if paper A cites 

paper B, it does not imply that paper B cites paper A. Directed graphs are useful to 

model asymmetric relationships. 

Graph metrics 

Several important graph metrics are commonly used to describe graphs, edges, and 
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nodes. The simplest node measure is the degree. The degree dG of a node is the number 

of edges connected to it (Bondy & Murty, 1976), and is equivalent to the sum of the 

corresponding row in the adjacency matrix. In other words, if  is an element of the 

adjacency matrix A(G) for a graph G, 

€ 

dG (vi) = aij

j

∑ .  

Distance and centrality 

The distance matrix C of a graph G is a matrix describing the number of edges that 

must be traversed to reach one node from another, such that (if  is an element of C), 

 is the smallest number of edges that must be traversed from  to . If there is no 

path between both nodes,  contains a predefined constant K (usually the number of 

vertices in the graph). For example, for the graph in Figure 11,

 

€ 

C =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 OD ROC

v1 0 1 4 2 3 4 4 5 5 6 7 41 7.66
v2 1 0 3 1 2 3 3 4 4 5 6 32 9.81
v3 4 3 0 2 1 2 2 3 3 4 5 29 10.83
v4 2 1 2 0 1 2 2 3 3 4 5 25 12.56
v5 3 2 1 1 0 1 1 2 2 3 4 20 15.70
v6 4 3 2 2 1 0 2 1 2 3 4 24 13.08
v7 4 3 2 2 1 2 0 2 1 2 3 22 14.27
v8 5 4 3 3 2 1 2 0 1 2 3 26 12.08
v9 5 4 3 3 2 2 1 1 0 1 2 24 13.08

v10 6 5 4 4 3 3 2 2 1 0 1 31 10.13
v11 7 6 5 5 4 4 3 3 2 1 0 40 7.85
ID 41 32 29 25 20 24 22 26 24 31 40 314

RIC 7.66 9.81 10.83 12.56 15.70 13.08 14.27 12.08 13.08 10.13 7.85

 

 

Note that, for a directed graph, the distance matrix will not be symmetrical. There are 

four measures that are computed directly from the centrality matrix for each node: Out 
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Distance (OD), In Distance (ID), Relative Out Centrality (ROC) and Relative In 

Centrality (RIC). For undirected graphs, ID=OD and ROC=RIC. These measures are 

shown above, and are computed as follows: 

 

The higher the RIC and ROC, the closer the node is to other nodes on the graph (Dhyani 

et al., 2002). 

Compactness 

The compactness of a graph measures its global connectedness, or cross-referencing. 

Compactness varies between 0 and 1. The higher the compactness, the easier is for 

nodes to reach each other by walking along the edges of the graph. A graph with a 

compactness of 0 is completely disconnected, while a completely connected graph (like 

the one in Figure 11) has a compactness of 1.   

The following definitions are necessary to compute compactness: 

Max is the highest possible value for  for a given distance matrix C. If N is the 

size of C, and K is the constant used to represent no path between vertices in the graph, 

Max=(N2-N)K. Conversely, Min is the lowest possible value for a distance matrix of size 
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N and a certain K, and is Min=N2-N. 

The compactness Cp is then defined as 

€ 

Cp =

Max− cij

j

∑
i

∑

Max −Min
 and, as mentioned, is 0 for a 

disconnected graph and 1 for a fully connected graph (Dhyani et al., 2002). 

Graph-based ranking algorithms 

Graph-based ranking algorithms rank nodes according to their relative importance. In a 

basic graph-based ranking model, edges in a directed graph connecting two nodes 

represent links and are considered “votes,” and these votes are weighted by the 

reputation of the voter. The number of votes each node receives and emits determines 

its reputation. These algorithms are therefore computed iteratively until the 

computation converges (Hersh, 2003; Jorge R.  Herskovic & Bernstam, 2005; Kleinberg, 

1999; Page et al., 1998). 

HITS 

HITS, developed by Jon Kleinberg, was one of the first published algorithms to exploit 

the link structure of graphs on the World Wide Web (WWW). It models hyperlinked 

environments such as the WWW as collections of authorities and hubs. Authorities are 

documents that provide authoritative information on a particular subject or to answer a 

particular query. Authorities can be identified by a large number of incoming links. For 

example, http://www.shis.uth.tmc.edu is an authority on the WWW on The University 

of Texas School of Health Information Sciences at Houston, and will have a large 

number of links pointing to it. Kleinberg argues that the problem with this approach is 

that many documents in hyperlinked environments have both large numbers of 
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incoming links and mention relevant terms repeatedly, but omit other relevant terms 

(like, in this example, “biomedical informatics”). Therefore, ranking pages solely by in-

degree and retrieving them purely by relevance is suboptimal (Kleinberg, 1999). 

Kleinberg’s answer to this problem was to exploit human judgment information 

encoded in links. He proceeds to define “hubs” as pages that have large numbers of 

outgoing links to authorities. For example, a web page on “biomedical informatics 

graduate degrees” might list Harvard Medical Informatics, Stanford Biomedical 

Informatics, and The University of Texas School of Health Information Sciences at 

Houston. Thus, according to Kleinberg, hubs are documents that link to large numbers 

of authorities, and authorities are documents that have large numbers of incoming links 

from hubs. 

Applying the HITS computation to a graph results in two scores for each node. One is 

the authority score, and the second is the hub score. The nodes of a graph with the 

highest authority score will be its authorities and, analogously, the highest hub scores 

will belong to the graph’s hubs. For details on the computation of HITS, please see 

(Kleinberg, 1999). 

PageRank 

Perhaps the best-known example of graph-based ranking is Google 

(http://www.google.com), an Internet search engine company. Google indexes the 

WWW and provides search results to user-entered queries. Google internally models 

the WWW as a directed graph like HITS, but does not assume that web pages have any 

particular role. PageRank instead ranks nodes in a graph by their relative importance, 

as determined by the information encoded in the graph’s edges. 
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PageRank computes the formula in Figure 13 over the entire graph iteratively. The 

PageRank value for a web page converges on the probability that a person clicking 

hyperlinks at random will end up on that 

page. This is called the random surfer 

model (Page et al., 1998). PageRank has 

been successfully applied to graph models 

of other networks beside the WWW, 

including the citation network of 

biomedical literature (Bernstam et al., 2006), analysis of social networks (Pujol et al., 

2002), and text summarization through selection of important sentences (Mihalcea, 

2004). PageRank can be considered a general algorithm that will rank nodes in a graph 

based on their relative importance as established by the set of edges. 

TextRank 

TextRank is a PageRank derivative 

created by Rada Mihalcea to work on 

undirected graphs. TextRank exploits 

the network of related sentences in a 

piece of text for summarization. Mihalcea’s work relied on determining relations 

between sentences based on word co-occurrence. Word co-occurrence has no inherent 

directionality but may have a weight, unlike hyperlinks on the WWW. Although 

algorithms designed for directed graphs can be used on undirected graphs by 

considering every link bidirectional, PageRank does not account for different link 

weights. Mihalcea therefore created a new ranking algorithm based on PageRank that 

took into account the lack of directionality and could use the information in weighted 

 

Figure 14 - The TextRank formula. d is a decay factor, V is 
the set of vertices, w is an element in the weight matrix, and T 
is the TextRank score for a node 

!T (Vi) = (1− d) + d
∑

vj∈In(Vi)

wji∑
Vk∈Out(Vj)

wjk
T (Vj)

 

Figure 13 - The PageRank formula 

R is the PageRank, R’ is the new PageRank, N is the 
number of outgoing links, v is the recommender and 
u is the recommendee. B is the set of incoming links. 
c is a decay factor, and E is a baseline PageRank for 
“rank sinks” like closed loops. 
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links (Mihalcea, 2004; Mihalcea & Tarau, 2004). TextRank can perform text 

summarization (Mihalcea, 2004; Mihalcea & Tarau, 2004) and keyword extraction 

(Mihalcea & Tarau, 2004) successfully. 

TextRank is defined by the formula in Figure 14.  

Relevant previous work 

Semantic graphs 

Semantic or lexical graphs represent relationships between words in a piece of text or a 

corpus. Semantic graphs can discover relationships between terms by clustering. These 

graphs are built by computing various metrics for word association, such as co-

occurrence. Associated terms are represented as linked nodes in the graph. Frequency 

cutoffs, among other techniques, keep the number of nodes from increasing 

exponentially. Applications include word sense disambiguation (detecting which of 

several possible meanings of a word 

a text is using in a particular 

instance) and automated lexical 

acquisition (unsupervised discovery 

of vocabularies) (Widdows & 

Dorow, 2002). 

Semantic abstraction graphs 

Semantic abstraction graphs are 

semantic graphs that represent relationships between concepts instead of words. 

Computerized dictionaries or ontologies can deduce generic concepts from the actual 

 

Figure 15 - Example of a semantic abstraction graph 
from Fiszman et al., 2004 
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terms on a piece of text, and this enables the user to study the relationships between 

those concepts. 

A team at the NLM uses SemRep to create graphical representations that summarize an 

article by drawing semantic abstraction graphs. These semantic abstraction graphs 

show concepts related to a user-selected topic (Osteoarthritis, in Figure 15) (Fiszman et 

al., 2004). However, since they require the user to select the core concept explicitly, they 

are unsuitable for fully unsupervised summarization. 

MEDRank is inspired, in part, by this work by Fiszman and collaborators at the U. S. 

National Library of Medicine (NLM). Fiszman’s work could be applied to generate 

topical summaries of large MEDLINE result sets, but it is not directly applicable to 

automatic processing of articles. I extended Fiszman’s original work to leverage all 

concepts in an article, and use unsupervised graph-based ranking algorithms to 

determine the most important concepts in the article. 

Graph-based ranking in semantic graphs 

MEDRank is also based in part on Mihalcea’s work using graph-based ranking 

algorithms to generate automated summaries. Mihalcea’s TextRank algorithm 

computed networks of sentences in an article by using the repetition of terms. If the 

same term appears in two sentences, the two sentences must be somewhat related; if 

they have more terms in common, they are more related. She then represented these 

networks as undirected graphs, with the sentences being nodes and the relationships 

between sentences as edges. Each edge’s weight was set to the strength of the 

relationship between the pair of sentences it joined. Mihalcea applied different graph-

based ranking algorithms to rank these nodes and chose the highest-ranking ones, using 
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the sentences they represented to build document summaries (Mihalcea, 2004). 

Mihalcea also applied TextRank to keyword extraction in abstracts, and found that it 

performed better than other unsupervised keyword extraction methods, but not as well 

as supervised methods (Mihalcea & Tarau, 2004). Mihalcea’s work was done on 

semantic graphs (using words from the text directly), and she did not study the 

application of TextRank to semantic abstraction graphs. MEDRank extends Mihalcea’s 

work by indexing full text and by using semantic abstraction graphs to sidestep the 

problem of word sense disambiguation, which is prevalent in the biomedical literature 

(Savova et al., 2008; Schuemie, Kors, & Mons, 2005). 

Theoretical basis for using semantic abstraction graphs 

Suppe argued that concepts found in scientific papers and the relationships between 

them are structured in such a way as to support a set of claims (Suppe, 1998). These 

claims, being the most important part of the paper’s argument, will be about the most 

important concepts in the paper. Each concept in the paper can be represented as a node 

in a semantic abstraction graph, and each relationship between concepts as an edge in 

the same graph. Therefore, finding the most important nodes in this graph will produce 

the most important concepts in the paper. 

Graph-based ranking using incomplete graphs 

The use of graph-based ranking algorithms to determine summaries, keywords, and 

search results assumes that the graphs are adequate for the task. However, graph 

construction may depend on Natural Language Processing (NLP) software, database 

mappings, or uncertain data. In previous work, I explored how much gradually 

removing links from a graph of article citations impacted PageRank’s ability to detect 
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the most important nodes in a graph. I discovered that removing 99% of the original 

links was necessary before the ranking produced by PageRank changed substantially. 

Graphs with suboptimal link structures are still useful for determining relative 

importance (Jorge R.  Herskovic & Bernstam, 2005). 
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Chapter 4 

The MEDRank system 

Determining the most important concepts in an article 

Mihalcea’s work suggests that an appropriate way to obtain the most important 

concepts in a piece of text is to apply graph-based ranking algorithms to a graph 

representation of its contents. To obtain the most important concepts in a full-text 

biomedical article MEDRank: 

1. Obtains all of the detectable concepts in an article 

2. Determines the relationships between concepts 

3. Builds a Semantic Abstraction Graph with these concepts and relationships 

4. Applies a graph-based ranking algorithm to the graph 

MEDRank’s processing is similar to MTI’s pipeline, with the addition of the graph 

creation and ranking steps (Figure 16). 
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Obtaining all detectable concepts in an article 

The NLM 

produces Natural 

Language 

Processing (NLP) 

software that takes 

text as input and 

returns the UMLS 

concepts that it 

finds, along with 

their positions in 

the text. The 

NLM’s software is 

developed as part 

of the Indexing 

Initiative that also 

created MTI and, 

in fact, is part of 

MTI itself.  

MEDRank can currently use two different NLM NLP products (available at 

http://skr.nlm.nih.gov): MetaMap (described in Chapter 2) and SEMREP. SEMREP 

leverages semantic knowledge from the UMLS to improve the accuracy of concept and 

relationship detection (Rindflesch, Bean, & Sneiderman, 2000). I used SEMREP because 

 

Figure 16 - MEDRank and MTI processing 
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it produced better results on the training sample than MetaMap. 

MEDRank uses a simple model in which adjacent concepts in the same sentence are 

considered related. Before submitting text to the NLM NLP servers, MEDRank divides 

the text into single sentences for individual processing. Unfortunately, biomedical text 

is difficult to split. The traditional sentence separators is the period (“.”). I therefore 

chose a naïve algorithm that split sentences at every period, but performance was 

unacceptable. The period is legitimately embedded in abbreviations (“Fig.”, “vs.”) and 

species names (“E. coli”). I therefore developed a sentence splitting process that can 

split most sentences in the training sample well. It splits the text using a regular 

expression. The sentence separator ignores periods that are not followed by a space and 

an uppercase letter, ignores periods that are not followed by a newline, and ignores 

periods that come after the strings “eg”, “e.g”, “eq”, “fig”, “vs”, “exp”, “al”, or “r.m.s”, 

or before the strings “coli” and “typhimurium” (the two most common bacteria names 

in the training sample). 

Removing the influence of the NLP software 

The quality of the NLP software is a critical factor in the performance of systems like 

MEDRank. Other indexing systems like MTI make heavy use of historical data and 

heuristics, and can thus outperform their underlying NLP by correcting for known 

deficiencies. MEDRank, in contrast, does not incorporate heuristics that can compensate 

for poor NLP output. Since this problem is beyond this thesis’ claims and scope, I 

operationalize the quality of the NLP for each article by mapping all detected concepts 

to MeSH and I obtain the recall (see Precision and recall above) of this set of terms, 

which I call the total recall. Although only articles with a total recall of 1.0 give 
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MEDRank all of the data it needs to potentially capture all MEDLINE (with MTI) terms, 

these articles are scarce. Only four articles (0.77%) in the training sample have a total 

recall of 1.0. I therefore chose a lower total recall threshold, 0.85, to obtain a higher 

number of articles (11, 2.1%). Only these articles with a total recall of 0.85 or more (high-

quality NLP) are used to compute information retrieval measures. 

Noise 

The output of the NLP software can be noisy. Like many other NLP systems, the NLM 

software finds many high frequency concepts that contain little information. For 

example, the three most frequent UMLS concepts that SEMREP finds in the training 

sample are (in order) Negation, One, and Two. Some indexing systems use stop words 

to eliminate low-content concepts such as these. MEDRank takes a more general 

approach. It performs a first pass through the entire sample counting all concepts. It 

then uses these frequency counts 

to weight concepts when 

processing each article using the 

TF*IDF (Salton, 1963) formula as 

described in (Hersh et al., 1994) 

and shown in Figure 17. 

Obtaining all relationships between concepts 

The UMLS contains a set of relationships that the NLM NLP software can detect. 

Unfortunately, this set is incomplete, even for highly technical domains like genetics. 

The UMLS can describe between 60% and 83% of the genetics relationships found in 

other ontologies (O. Bodenreider, Mitchell, & McCray, 2002).  

 

Figure 17 - TF*IDF weight computation for a term i in a document 
j. 

! 

TF( i, j) = log(frequency of i in j)+1

IDF( i) = log( number of documents in corpus
number of documents that contain i

)+1

WEIGHT(i, j) = TF(i, j)* IDF(i)
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SEMREP returns UMLS relationships between concepts as part of its output. I explored 

using these to generate SAGs. Unfortunately, SEMREP is very conservative and 

produces few relationships. The graphs produced using SEMREP’s relationships were 

sparse, and were not able to achieve meaningful results. In practical terms, SEMREP fell 

short of the possible relationships between concepts in a scientific article.  

I therefore turned to co-occurrence within sentences to obtain more relationships 

between concepts. Concepts that co-occur in a sentence are likely to be related (Matsuo 

& Ishizuka, 2004) and, more specifically, concepts that co-occur within a certain sliding 

window are likely to be related 

(Mihalcea & Tarau, 2004; 

Pedersen, 2000). In the English 

language, concepts that occur 

close to one another in the 

same sentence are more likely 

to be related, and the closer they are to each other, the stronger their relationship 

(Eisner & Smith, 2005; Gamon, 2006). Word co-occurrence has been successfully used 

with TextRank to extract keywords from abstracts (Mihalcea & Tarau, 2004) so, by 

analogy, concept co-occurrence is likely to generate useful relationships. 

I determined the optimal size of the sliding window by running several experiments 

with increasing window sizes (from one to six), and comparing the results.  

Building a Semantic Abstraction Graph 

Fiszman describes a simple algorithm for building SAGs based on the output from 

SEMREP. Fiszman’s algorithm requires a seed concept, and is focused on SAGs for 

 

Figure 18 - Adding a new relationship to a graph where one of the nodes 
already exists (using UMLS relationships) 
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disorders (Fiszman et al., 2004). I simplified Fiszman’s algorithm to build SAGs in an 

unsupervised way.  

Since MEDRank does not use directional relationships, it creates weighted undirected 

SAGs. To build SAGs, I take the list of relationships produced by the previous step and 

iterate through them in order, adding each one to the SAG. Concepts are treated as 

nodes, and the relationship itself is treated as the edge connecting the nodes.  

SEMREP returns an estimate of the quality of its mapping (called “confidence” and 

ranging 0-1000) for each concept. If a node representing a specific concept is already 

present in the SAG, the confidence of each instance of each specific concept is recorded 

but no new nodes are added to the graph. Instead, a new edge from the same node is 

added. In other words, there will only be a single node for each unique concept in the 

graph (Figure 18). Starting node weights are the average confidence divided by 1,000. 

Each edge’s weight is the average confidence of the nodes it connects. 

Graph-based ranking algorithms 

MEDRank can apply one of 

three different graph-based 

ranking algorithms to SAGs 

generated by the previous steps: 

HITS (Kleinberg, 1999), PageRank (Page et al., 1998), or TextRank (Mihalcea, 2004). The 

implementation of each algorithm is based on its original published description. Since 

HITS produces two different scores (the “hubs” and “authorities” scores), MEDRank’s 

HITS implementation accepts a function that can combine them to produce a single 

score. MEDRank applies the selected ranking algorithm iteratively, until the total 

 

Figure 19 - The TextRank formula. d is a decay factor, V is 
the set of vertices, w is an element in the weight matrix, and T 
is the TextRank score for a node 

!T (Vi) = (1− d) + d
∑

vj∈In(Vi)

wji∑
Vk∈Out(Vj)

wjk
T (Vj)
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difference in scores between two consecutive iterations is less than 0.0001. The 

computations converge in 20 to 30 iterations. 

TextRank performed better than PageRank and HITS on preliminary evaluations on the 

training data. HITS also had a large disadvantage: creating an adequate function to 

combine hubs and authorities was impossible, and MEDRank performed very poorly 

using HITS. I thus performed all experiments using TextRank. I used 0.85 for the value 

of the decay factor d (Figure 19), as suggested in the literature (Mihalcea & Tarau, 2004; 

Page et al., 1998).  

Further processing 

After ranking, MEDRank holds a list of nodes ranked by score. To obtain a final list of 

MeSH terms for an article, the list must be cut off at a threshold, and the UMLS 

concepts must be mapped to MeSH terms. MEDRank normalizes the scores to values 

between 0 and 1 for every article. In other words, the top-ranked concept of every 

article has a score of 1.  

MEDRank uses the same Restrict to MeSH algorithm (U.S. National Library of 

Medicine, 2004c) that MTI uses. Restrict to MeSH takes UMLS concepts as input, and 

returns candidate MeSH terms. MTI post processes the candidate MeSH terms during 

its ranking step. It disambiguates between mappings according to several factors 

including, among others, its position in the MeSH hierarchy, and known co-occurrences 

with other MeSH terms (U.S. National Library of Medicine, 2004a). MEDRank simplifies 

MTI’s post processing into a single heuristic: if there is more than one potential 

mapping available for a UMLS concept, MEDRank chooses the one that is deeper in the 

MeSH hierarchy (the most specific one). After mapping all UMLS concepts above the 
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threshold to MeSH, duplicate MeSH terms are removed. 

The length of MEDRank’s output list is limited to a maximum of 25 terms, regardless of 

the score of the terms. In other words, if 30 terms have a ranking score greater than the 

threshold, only the first 25 will be used. 

Implementation 

I built MEDRank in Python (http://www.python.org), an interpreted scripting 

language. I used Python 2.6, the latest version available at the time of this writing. 

Computationally intensive components (notably, matrix distance calculations) were 

implemented in C++ for speed. The adjacency and distance matrices that MEDRank 

uses are large and relatively dense, and have known access patterns. MEDRank 

therefore has its own matrix and vector classes that implement just the functionality 

that the software requires. MEDRank uses the BioPython library 

(http://www.biopython.org) 1.49 to access PubMed records and obtain MEDLINE 

(with MTI) data.  

I ran all software on an Apple Macintosh computer running Mac OS X 10.5.5 (Apple 

Inc., Cupertino, CA). I preprocessed data using Microsoft Excel 2008 for Mac 12.1.4 

(Microsoft Inc., Redmond, WA) and processed it, computed statistics, and built plots 

using R 2.8.0 (http://www.r-project.org). 

To test MEDRank during development I used a small sample of full-text articles from 

PubMed Central that I called a “training sample.” PubMed Central is a free repository 

of scientific articles maintained by the NLM and available at 

http://www.pubmedcentral.nih.gov/. I chose 544 articles at random (using a computer 

program) from PubMed Central’s entire catalog.  To create the sample, I first 
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downloaded the PubMed Central catalog from 

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/file_list.txt. In the catalog, each line represents an 

article. I then selected articles randomly from the catalog. I downloaded the chosen 

articles, and excluded articles if they had no XML representation, or did not have a 

labeled title and abstract. I also excluded articles with no PubMed ID, and articles that 

were in PubMed but did not have indexing terms yet. I also downloaded the 

corresponding MEDLINE records. I submitted the abstracts and titles to MTI for 

processing, and eliminated articles that MTI could not process. This left a training 

sample of 521 articles that I used to evaluate the MEDRank system while building it. 

I performed all work for this thesis using the 2008 editions of MeSH and the UMLS. 

Threshold determination 

I evaluated all articles in the Training sample with a total recall of 0.85 or more against 

the MEDLINE (with MTI) gold standard to determine an optimal TextRank threshold to 

cut off the generated lists. I evaluated several TextRank thresholds by computing a 

mean SAVCC score (see Semantically Aware Vector Cosine Comparison (SAVCC) 

below) and a mean length of the output list and comparing them to the MEDLINE (with 

MTI) gold standard. I looked for the threshold that returned the highest mean SAVCC 

score, did not have low outliers (single articles that performed very poorly), and also 

had an output length comparable to the MEDLINE indexers (i.e. 12 to 15 terms, to 

account for checktags). I selected 0.20 as the best combination of these features. 

Test sample 

I built a test sample in exactly the same way as the Training sample. I requested 4,999 

full text articles at random from PubMed Central and excluded articles without tagged 
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titles or abstracts.  I also excluded articles with no PubMed ID, and articles that were in 

PubMed but did not yet have indexing terms. I excluded articles from the training 

sample in the test sample. The final test sample consisted of 4,690 articles. I downloaded 

it and did not inspect or use it until I was satisfied with the results of running 

MEDRank on the training sample. 

Evaluation 

I evaluated MEDRank using five different metrics: Precision, Recall, F2 (a weighted 

harmonic mean of recall and precision that favors recall and is used in most NLM 

papers evaluating MTI), Hooper’s Indexing Consistency, and a Semantically Aware 

Vector Cosine Comparison. I conducted all evaluations on articles from the test sample 

for which the total recall of all possible MeSH terms was 0.85 or more. 

Analysis 

I evaluated MEDRank’s performance by comparing it to the entire output of SEMREP 

(no ranking) and three types of ranking, from ineffective (ranking concepts in 

alphabetical order) to frequency ranking and TF*IDF.  

Alphabetical ranking does not have a score that can be used as a threshold to limit the 

list length. For alphabetical ranking, I assumed that the optimal term list length is the 

one chosen by the MEDLINE indexers and present in the MEDLINE (with MTI) gold 

standard. I thus limited the list length for MeSH terms ranked alphabetically to the 

same length as the gold standard.  

To avoid performing a slow and laborious manual search, I obtained thresholds for the 

frequency-ranked and TF*IDF-ranked data computationally. I computed mean SAVCC 
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and output length for 100 different thresholds between 0 and 1 using TF*IDF ranking on 

the training sample. I repeated the procedure for frequency ranking (using cutoffs from 

0 to 100 occurrences). I plotted the results and inspected the graphs to choose the 

threshold with the highest mean SAVCC and output length closest to 12. I expected 

MEDRank to perform significantly better than these other ranking strategies (None, 

Alphabetical, and frequency ranking, and TF*IDF). I obtained the top two ranking 

strategies by mean SAVCC score. I compared these two top strategies using a paired, 

two-tailed Student’s T test looking for a positive difference (α=0.05). 

Comparison to MTI 

I submitted the titles and abstracts of articles in the test sample to MTI through its 

WWW interface at http://skr.nlm.nih.gov. I set MTI to its default settings, which are 

the ones used to preprocess citations for MEDLINE, with one exception. I set the weight 

of the PubMed Related Citations (REL) path (see Chapter 2) to 0, since REL leverages 

human indexer input directly by pulling terms from related articles. I kept MTI’s 

default setting of returning 25 terms per article to emulate MTI’s original task of 

providing terms for the indexers.  

I compared MEDRank’s performance against MTI using articles from the test sample 

with a total recall of 0.85 or more. I compared all terms generated by MTI by computing 

precision, recall, Hooper’s IC and SAVCC measures using MEDLINE (with MTI) as a 

gold standard. I expected MEDRank to perform significantly better than MTI. 

I performed all comparisons only on the SAVCC variable using paired, two-tailed T 

tests with α=0.05.  



57 

 

Chapter 5 

MEDRank evaluation 

This chapter describes the results of my evaluation of MEDRank, as described in 

Chapter 4. 

Training sample 

The training sample was 544 articles chosen and retrieved at random from PubMed 

central. The 544 articles were split into 76,941 individual sentences and processed by 

SEMREP. Titles and abstracts were extracted from their corresponding MEDLINE 

records and processed by MTI. Of these 544 articles, 23 had no titles or abstracts, or 

caused MTI processing errors and were eliminated. The final training sample therefore 

contained 521 articles.  
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Quality of the NLP software 

I compared all MeSH terms obtained by converting SEMREP output into MeSH to the 

terms in the MEDLINE (with MTI) gold standard. The mean recall was 0.523 (range 0-1, 

SD=0.157) (Figure 20). 

Of the articles in the training sample, 11 had a total recall of 0.85 or more. Those 11 

articles were used to compute the thresholds below. 

 

Figure 20 - Recall for all generated MeSH terms for articles in the training sample 
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Generated graphs 

The Semantic Abstraction Graphs (SAG) built from the 521 articles in the training 

sample had a mean of 350.7 nodes (range: 105- 906, SD=104.4) (Figure 21). 

The SAG had a median of 723.8 edges (range: 157- 2,156, Figure 22). The graphs were 

also highly connected: mean compactness was 0.966 (range: 0.623-0.997, SD=0.036). 

 

 

Figure 21 - Histogram of node counts for graphs in the training sample 
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Figure 22 - Distribution of edge counts for graphs in the training sample
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Concept co-occurrence window size 

Varying sliding window size 

between one and six did not 

affect MEDRank performance 

on the training data (Figure 23). 

Since Mihalcea found that a 

window of two words was 

optimal when using TextRank 

(Mihalcea & Tarau, 2004), and a 

single UMLS concept can 

describe more than two words, 

I performed the rest of the 

experiments using a sliding window size of one concept. In other words, I only built 

relationships using concepts that were adjacent.  

 

Figure 23 - Box plots of the SAVCC scores for six different 
window sizes over the entire training sample 
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TextRank scores 

All TextRank scores MEDRank 

produces for each article are 

normalized to a maximum of 1.0. 

TextRank scores for all terms 

generated from the 521 articles in 

the training sample had a median 

of 0.040 (range: 0.004 to 1.0000). 

The lower scores are more 

prevalent. A histogram of the 

probability densities of the 

logarithm of these TextRank 

scores is shown in Figure 24. 

Threshold determination 

I determined the optimal threshold to stop processing MEDRank output using 

frequency ranking and TF*IDF by processing the training sample 100 times with 

different thresholds. I measured the mean output length (Figure 25) and SAVCC score 

(Figure 26) for each of these thresholds. 

The optimal threshold for TF*IDF ranking was 0.60, and the optimal threshold for 

frequency ranking was 9 (see Figure 27). 

 

 

Figure 24 - Probability density for the logarithm of a TextRank 
score for each node in the training sample 

Probability density of TextRank scores for the Training sample
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Figure 25 - Average output length and 95% confidence intervals for different TextRank ranking thresholds on 
the training data. 

 

Figure 26 - Average SAVCC scores and 95% confidence intervals for different TF*IDF ranking thresholds 
on the training data 
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Test sample 

To create the test sample, I downloaded 4,999 full text articles from PubMed Central at 

random. Of the 4,999 downloaded articles, 308 (6.2%) had no PubMed ID, abstract, or 

title, or their titles and abstracts caused errors when processed by MTI and were 

excluded. The Test sample therefore had 4,691 articles. Of these 4,691 articles, 88 (1.9%) 

had a total recall of 0.85 or more. I used those 88 articles for the rest of the evaluation. 

 

Figure 27 - Average SAVCC scores and 95% confidence intervals for different frequency ranking 
thresholds on the training sample 
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MEDRank evaluation 

I compared MEDRank’s output on the Test sample to the MEDLINE (with MTI) gold 

standard.  

Information retrieval measures 

MEDRank achieved a 0.391 mean precision (SD= 0.204) and 0.351 mean recall 

(SD=0.155) on the 88 high-quality NLP articles in the test sample. Its mean F2 measure 

was 0.339 (SD= 0.136). Hooper’s mean indexing consistency was 0.212 (SD= 0.103). 

Mean SAVCC was 0.359 (SD= 0.136). 

Comparison to other ranking strategies 

I evaluated no ranking, alphabetical ranking, frequency ranking, TF*IDF, and MTI to 

compare against MEDRank. The results for the 88 articles with high quality in the test 

set are presented in Table 1. Bold type denotes the highest score for each measure. 

Ranking Precision 
 (mean ± SD) 

Recall  
(mean ± SD) 

F2  
(mean ± SD) 

Hooper’s  
(mean ± SD) 

SAVCC  
(mean ± SD) 

None 0.056±0.023 0.905±0.053 0.219±0.071 0.056±0.023 0.223±0.046 

Alphabetical 0.066±0.080 0.066±0.080 0.066±0.080 0.036±0.045 0.066±0.080 

Frequency 0.244±0.156 0.324±0.157 0.285±0.125 0.153±0.082 0.274±0.123 

TF*IDF 0.177±0.086 0.448±0.159 0.331±0.118 0.144±0.067 0.278±0.103 

MTI 0.207±0.088 0.525±0.164 0.388±0.119 0.173±0.071 0.324±0.101 

MEDRank 0.391±0.204 0.351±0.155 0.339±0.136 0.212±0.103 0.359±0.136 
 

Table 1 - Information retrieval measures for different ranking strategies.  

The top two ranking strategies were, as expected, MTI and MEDRank. I compared both 

samples with a two-tailed Student’s T test. The test showed that the mean SAVCC for 

MEDRank was significantly higher than the mean for MTI (p<0.05). MEDRank’s mean 

SAVCC was also significantly higher than TF*IDF’s (p<0.001). 
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 Chapter 6 

Discussion  

Discussion of the experimental results 

MEDRank outperforms no ranking, ineffective (alphabetical) alphabetical ranking, and 

simple algorithms like frequency ranking and TF*IDF. Its mean recall (0.351) is lower 

than MTI’s (0.525), which is also expected. MTI’s output length is approximately twice 

as long as MEDRank’s. If both were equally accurate, MTI’s recall could potentially be 

twice as high as MEDRank’s.  

MTI was built to provide indexing suggestions to indexers, and its goal is high recall 

rather than precision. The NLM uses F2, a measure biased for recall, precisely because it 

is MTI’s goal. MTI’s high recall and F2 scores and comparatively low precision are thus 

artifacts of its development history. MEDRank has lower recall than MTI but higher 

precision, a reasonable tradeoff for a general indexing system. When performance is 

measured using general measures (Hooper’s IC and SAVCC) MEDRank significantly 

outperforms MTI. 

Further, MEDRank’s performance as measured by mean F2 (0.339) is superior to MTI’s 

performance using titles and abstracts in a comparable study in 2005 (mean F2=0.324) 

(Gay et al., 2005). MTI improved since 2005, achieving a mean F2 of 0.388 in my 

comparable experiments. Considering the time and effort expended on MTI, a product 

of years of work by a team of dedicated computer scientists at the NLM, I believe that 

MEDRank is capable of surpassing it given comparable effort and resources. 
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Original hypothesis and claims 

In Chapter 1 I stated the following hypothesis: “I propose that ranking the concepts in a 

semantic abstraction graph using graph-based ranking algorithms will yield the most 

important concepts of a biomedical scientific article.” I believe that the work I present 

here shows that building SAGs and ranking the nodes in them using TextRank yields 

the most important concepts in a sample of the biomedical articles in PubMed Central. 

I show that it is possible to construct these graphs in an unsupervised way, improving 

on Fiszman’s original construction technique, which requires a seed node and pruning 

certain concepts (Fiszman et al., 2004). The graphs produced by my construction 

algorithm are compact (see Chapters 1, 3, and 5) and therefore highly connected, and 

have few important nodes (see Chapter 5). These features satisfy the criteria for my first 

claim: “that it is possible to build, in an unsupervised way, semantic abstraction graphs 

from scientific articles.” 

The most important nodes in the generated SAGs match the indexers’ intent as much as 

possible. Although the measures in (Funk et al., 1983) are not directly comparable to the 

ones in this thesis, other authors claim that MTI is already close to inter-human 

indexing agreement (Névéol et al., 2007). Since MEDRank outperforms MTI, it is even 

closer to inter-human agreement, and thus satisfies my second and third claims: “that 

ranking the concept nodes in these SAGs yields the most important concepts in an 

article,” and “that this approach, being grounded in a theory of the structure of 

scientific writing, performs better than the current state of the art in biomedical 

indexing (MTI)” respectively. 
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Why MEDRank works 

Mihalcea’s previous attempts to rank the nodes in semantic graphs using TextRank 

were successful. By analogy, an approach based on Semantic Abstraction Graphs (SAG) 

was therefore interesting to explore. Mihalcea attributed the success of TextRank, when 

using words, to the phenomenon that “co-occurring words recommend each other as 

important, and it is the common context that enables the identification of connections 

between words in text” (Mihalcea & Tarau, 2004). Suppe’s theory of scientific writing 

gives Mihalcea’s insight a stronger foundation. It is not, at least for scientific texts, 

merely that words recommend each other as important, but rather that the concepts 

those words describe are purposefully related to each other to weave an argument 

throughout a piece of writing. 

MEDRank’s advantages 

MEDRank has several advantages over other indexing systems like the Medical Text 

Indexer (MTI). MEDRank separates Natural Language Processing (NLP) from indexing 

processing, it was created and evaluated using task-oriented measures, and it is 

consistent. 

Consistency 

Perhaps the most important advantage of automated indexers, including MEDRank, is 

that they are deterministic and, therefore, consistent with themselves. Unlike human 

indexers (Funk et al., 1983), whose performance is not reproducible, given the same 

input text MEDRank will always produce the same set of indexing terms. Consistent 

indexing may improve the usability of biomedical information retrieval systems like 
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MEDLINE by providing a more consistent experience than the current one. 

Semantically aware vector cosine comparisons (SAVCC) 

The strictness of Hooper’s Indexing Consistency and traditional information retrieval 

measures like recall and precision, in which terms match completely or not at all, is not 

an adequate evaluation for the MEDLINE indexing task. Olivier Bodenreider, a research 

scientist at the NLM who is one of the authors of Restrict to MeSH and an authority on 

biomedical ontologies wrote, “I have argued for a long time that evaluating the quality 

of indexing in direct reference to the manual indexing in MEDLINE is too harsh. The 

idea is that, if your system comes close to, but not right on the MeSH descriptor 

assigned by the indexer, you don't get any credit for it, which is probably not fair, as 

"your" descriptor would likely do reasonably well in a retrieval task.” (Olivier 

Bodenreider, 2008) Further, the correctness of any MEDLINE indexing is uncertain, 

since disagreement among experts producing the gold standard is large (Funk et al., 

1983).  

My use of SAVCC to evaluate the indexing process addresses this inherent ambiguity in 

the indexing task. The SAVCC computation accounts for the use of similar but not 

identical indexing terms. It therefore fulfills the need to evaluate the indexing task using 

a model that is closer to the retrieval task, which is the ultimate goal of every 

information retrieval system (Hersh, 2003). 

Surpassing MTI’s performance 

MTI-indexer agreement is close to inter-human indexing agreement. It is also used to 

assist MEDLINE indexers. Since MTI is used to produce the gold standard itself, the 

gold standard is inherently biased. Although this bias is not quantifiable, it must make 
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it difficult to outperform MTI. MEDRank’s design as a general-purpose biomedical 

indexer allows it to achieve higher precision at the expected expense of some recall. 

Higher general summary measures like Hooper’s indexing consistency and SAVCC 

illustrate MEDRank’s overall improvement in performance over MTI. 

Limitations and future work 

Practicality 

MEDRank, and this thesis, have many limitations that need to be addressed in the 

future. The largest limitation to the practical application of MEDRank is its dependency 

on external NLP software. The number of articles that can be indexed successfully when 

compared to the MEDLINE (with MTI) gold standard is small. The lack of heuristics to 

compensate for poor NLP and edge cases make MEDRank strictly a research project at 

the moment. One way this limitation may be addressed in future work is by leveraging 

human knowledge by integrating the Related Citations (REL) indexer from MTI (see 

Chapter 2). Another potential way of addressing this limitation is implementing a 

voting scheme. Since MEDRank and MTI have different designs and implementations, 

accepting MeSH terms only if they are part of the output of both systems may improve 

precision significantly over using only one. 

MEDRank could also be added as an alternate path to MTI. Since MTI implements a 

voting scheme to select final terms, MEDRank’s output after ranking could be 

integrated to MTI’s. This would allow MTI to support full text while adding a new, 

different source of data that would enrich its output.  
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Separation of NLP performance from indexing performance 

Indexing performance depends greatly on NLP performance yet this is, to my 

knowledge, the first study to decouple NLP from indexing. Although decoupling the 

NLP performance from the ranking algorithm used to index is not a good 

representation of real-world performance, it allows me to isolate the performance of 

MEDRank from that of the NLP. It also illustrates an important fact: as NLP technology 

improves, MEDRank’s performance is likely to improve. 

Sentence splitting 

The sentence splitter used in MEDRank is simplistic. It only recognizes two common 

bacteria, which means that many other bacteria are not recognized correctly. This, in 

turn, probably lowers MEDRank’s precision and recall. An obvious future 

improvement is to use the Approved List of Bacterial Names (Skerman, McGowan, 

Sneath, Moore, & Moore, 1989) to recognize bacteria and avoid them during sentence 

splitting. This modification is already implemented and undergoing preliminary 

testing. 

UMLS to MeSH mapping 

MEDRank uses the same Restrict to MeSH algorithm that MTI uses. MTI post-processes 

data differently, and its ranking algorithm is linked to its post-processing. MEDRank’s 

post-processing is simpler. It is unlikely that the changes in the mapping algorithm are 

the source of MEDRank’s performance advantage over MTI. The other ranking 

algorithms explored in this thesis (TF*IDF, frequency ranking) share MEDRank’s 

version of Restrict to MeSH and cannot outperform MTI.  
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I believe that using a different mapping algorithm constitutes a limitation of this study, 

and may introduce a confounding variable.  

Evaluation limitations 

The most significant limitation of this study is the quality of the gold standard. Current 

conditions at the NLM are different than when Funk and Reid studied inter-indexer 

consistency (Funk et al., 1983). Currently, trained experts index MEDLINE using MTI 

(among other tools). The impact of these tools, i.e., how the indexers use them, and how 

much the indexers rely on them affects results, but how much is unknown. It is 

possible, for example, that due to the use of automated tools, inter-indexer consistency 

has improved. 

The ultimate goal of every information retrieval system is to allow its users to satisfy 

their information needs. My study, by adopting MEDLINE (with MTI) as its gold 

standard, currently assumes that the users’ information needs are met optimally by 

MEDLINE (with MTI) indexing. This may be a false assumption. It is possible that a 

consistent automated indexing algorithm would better serve users’ information needs 

than manual indexing. A user study is necessary, and will be performed in the future, to 

determine whether MEDRank’s indexing is adequate, useful and, perhaps, better for 

users than MEDLINE (with MTI). 

Another evaluation limitation is my use of a “bag of terms” model to compare the 

output of both systems. MeSH headings can be classified into different categories 

(checktags, major headings, qualifiers, etc.) according to their position in the MeSH 

hierarchy and annotations on the MEDLINE record itself. Inter-indexer consistency is 

different for MeSH headings in each category. Analyzing these separately would allow 
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me to compare my results directly to Funk and Reid’s 1983 study on inter-indexer 

agreement (Funk et al., 1983).  

Evaluating entire systems 

Although I designed MEDRank to emulate MTI’s processing pipeline as much as 

possible (Figure 16), the two systems are different in several ways. My current 

evaluation only studies the output of the entire system. For example, MTI relies on 

MetaMap instead of SEMREP. I tested SEMREP’s output using other ranking 

algorithms, all of which performed worse than MEDRank. I thus can claim that 

SEMREP by itself is not solely responsible for MEDRank’s performance. However, I did 

not isolate SEMREP’s contribution to MEDRank’s performance. Similarly, every 

parameter and design decision in which MEDRank diverges from MTI may have 

contributed (or impaired) MEDRank’s performance relative to MTI. I believe that this is 

an intrinsic limitation of the study of competing indexing systems. 

Other potential applications 

Large-scale full text biomedical information retrieval systems that use MEDRank could 

potentially cluster similar documents together by using the generated terms and 

applying clustering algorithms. It could enable, for example, the identification of 

subjects for clinical studies based on analysis of the entire medical record. Alternatively, 

being able to index arbitrary full-text documents into MeSH could be used to create an 

integrated biomedical search engine that, unlike current offerings like Google Scholar, 

(http://scholar.google.com) accepts the PubMed queries that physicians and 

biomedical researchers already know how to compose. Conversely, it could also be 

used to expand PubMed by adding documents from the World Wide Web to its 
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collections seamlessly. 

Suppe’s theory assumes that writing is structured in such a way as to advance claims to 

construct an argument. It is therefore possible that the quality and clarity of the writing 

are related to the ability of MEDRank to detect the most important concepts in the text. 

This could be used to measure how well a piece of writing conforms to Suppe’s ideal; in 

other words, it would be an objective measure of text quality. If the author supplies, for 

example, the most important topics in the text and those are compared to MEDRank’s 

output, the degree of concordance could be used to judge how well the author has 

presented his or her views. This could be tested by comparing author-supplied 

keywords to MEDRank’s output and correlating the difference between both to the 

number of citations a paper receives. Assuming that higher-quality papers receive more 

citations than lower-quality papers, there should be a correlation between these 

measures. 

If the previous hypothesis is correct, graph-based ranking algorithms like MEDRank 

could be used as automated submission filters. These filters would allow authors to get 

a neutral second opinion on the quality of their writing. This in turn would allow 

journal editors and reviewers to spend their time working on articles that have already 

been vetted for clarity. 

Conclusion 

MEDRank is a new, innovative biomedical indexer that is based on an understanding of 

the structure of scientific papers and advances in text processing, graph theory, and 

graph-based ranking algorithms. It can outperform MTI even when compared to 

MEDLINE records indexed with MTI assistance. 
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