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Clinical trials are complicated and involve human beings. Therefore, lots of ethical

and efficient objectives are expected to be achieved. These objectives include maximizing

the power of detecting the treatment effects, assigning more patients to the better treat-

ments, saving the cost and time, and controlling the type I error rate. A variety of adap-

tive designs have been proposed to achieve different aims, among which sequential mon-

itoring and sample size re-estimation are very popular in real clinical trials. In addition,

adaptive randomization designs sequentially update the allocation probability aiming to

target different allocation proportions and achieve different aims. Hu and Rosenberger

(2006) classified adaptive randomization design into four categories, i.e., permuted block

randomization, covariate-adaptive randomization (CAR), response-adaptive randomiza-

tion (RAR), and covariate-adjusted response-adaptive randomization. In this disserta-

tion, I investigate the combination of sequential monitoring, sample size re-estimation,

and two types of adaptive randomization designs, i.e., CAR and RAR. For RAR, I focus

on urn models. For CAR, I study three scenarios depending on whether all, part, or none

of the randomization covariates are included in the data analysis. I propose methods to

control the type I error rate, offer the theoretical results, and perform comprehensive

numerical studies to show that the methods can protect the type I error rate and have

advantages over traditional designs.
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Chapter 1

Introduction

In this dissertation, I investigated the implementation of response-adaptive ran-

domization (RAR) procedures in real clinical trials by investigating the sequential mon-

itoring of response-adaptive randomized clinical trials with sample size re-estimation

(SSR) (Chapter 2). I also theoretically and numerically studied the combination of se-

quential monitoring, SSR, and covariate-adaptive randomization (Chapters 3 and 4).

Such combination is the most popular procedure in Phase III confirmatory clinical trials,

but its theoretical investigation is lacking in the literature. In this chapter, I introduce

my research in the context of clinical trials.

1.1 Significance

Randomized controlled clinical trials (RCTs) are the gold standard for evaluating

the efficacy and safety of new drugs for approval (Friedman et al., 2015). RCTs are

very complicated system involving planning, conducting, analyzing and assessing. Con-

ventionally a two-arm (a new drug arm versus a control arm) trial is well planned. An

assumed effect size, a level of significance and a study power are essential to determine

the sample size of clinical trials. After the sample size estimation, the patients enrollment
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starts, followed by a particular randomization procedure to allocate the two arms. A con-

clusion of whether the trial is positive or not is made based on the carefully collected and

analyzed data at the end of the trial. This traditional procedure has several problems

and corresponding solutions have been proposed. I give a brief review as follows.

1.1.1 Covariate-adaptive randomization

In clinical trials, covariates often play an important role. Some covariates are

known to be important risk factors associated with the response of a patient to the

treatment. In a randomized trial, it is crucial to balance such covariates in each of the

treatment arms so as to avoid the biases introduced into the estimation of treatment effect

due to covariate imbalance. Covariate-adaptive randomization (CAR) designs have been

proposed to achieve this aim (Rosenberger and Lachin, 2015).

CAR sequentially allocates patients based on previous treatment assignments and

covariates, and the covariates of the current patient. The most commonly used CAR

designs include stratified permuted block randomization design (Zelen, 1974), Pocock

and Simon’s procedure (1975). However, there are two problems. Firstly, the treatment

assignments and responses from CAR are not independently and identically distributed

any more due to the randomization mechanism (Hu and Hu, 2012; Ma et al., 2015). Sec-

ondly, usually in practice, not all covariates used in the randomization can be completely

utilized in the inference procedures. For instance, in a clinical trial described in Anderson

et al. (2000), the Pocock and Simon’s procedure was applied to balance allocation over

three covariates including disease extent, performance status, and clinical centers. Nev-

ertheless, a two-sample t-test was conducted to compare a continuous primary endpoint

between two treatment groups, without adjusting any covariate effects. The reasons

why some covariates used in randomization are neglected in final analysis include: (i)

controlling for too many covariates means complicated modeling methodology; (ii) it is

2



hard to interpret some covariates in the analysis model (e.g., clinical centers, etc); (iii)

the justification of the model specification becomes more difficult if more covariates are

included in the model. Concerns are raised about the validity of statistical inference for

CAR designs. Birkett (1985) and Forsythe et al. (1987) found that the two-sample t-

test is conservative in terms of Type I error if Taves’ minimization is utilized to allocate

patients to treatments through simulation studies. In practice, conventional tests are

often conducted without consideration of CAR scheme. ‘Conservative’ means that the

observed type I error rate is smaller than the nominal type I error rate. It remains a

concern if conventional tests are still valid under CAR designs.

1.1.2 Response-adaptive randomization

Balance is not always the optimal allocation proportions in terms of certain ob-

jectives. For example, when comparing the mean of two normal distributions, N(µ1, σ
2
1)

and N(µ2, σ
2
2), the following Neyman allocation (Neyman, 1934) instead of the equal al-

location is the optimal one in terms of power when the variances of the two distribution

are not the same,

ρ1 =
σ1

σ1 + σ2

, ρ2 = 1− ρ1, (1.1)

where ρ1 and ρ2 are the allocation proportion to treatments 1 and 2, respectively. For bi-

nary responses, the famous optimal allocation proportions with corresponding objectives

are listed below

(1) (Neyman allocation) Objective: Maximizing the power.

ρ1 =

√
p1(1− p1)√

p1(1− p1) +
√
p2(1− p2)

, ρ2 = 1− ρ1. (1.2)

(2) (Optimal allocation) Objective: Minimizing the expected number of failures

3



while fixing power. (Rosenberger et al., 2001)

ρ1 =

√
p1√

p1 +
√
p2

, ρ2 = 1− ρ1. (1.3)

(3) (Urn Allocation) Objective: Assigning more patients to the better treatment.

ρ1 =
1− p2

(1− p1) + (1− p2)
, ρ2 = 1− ρ1, (1.4)

where p1 and p2 as the success rates for two treatments, respectively. Response-adaptive

randomization procedures sequentially update the allocation probability of the next pa-

tient based on all the previous treatment assignments and responses in order to achieve

ethical and efficient objectives such as maximizing the power to detect the treatment dif-

ference, minimizing the total numbers of failures, etc. There are three steps to implement

the optimal RAR procedures in practice. First, we determine the main objectives and

mathematically formulate these objectives. Second, we derive the target allocation pro-

portion which achieves these objectives. Third, we implement certain RAR procedures

to target the optimal allocation proportion.

1.1.3 Sequential monitoring

In clinical trials, it is not rare to perform interim analyses based on accrued

data up to a certain time point during the conduct of a clinical trial due to ethical

consideration, administrative reasons, and economic constraints (Jennison and Turnbull,

2000). Sequential methods usually lead to savings in sample size, cost and time when

compared with the other fixed sample designs. A group sequential test is referred to as

a test performed based on accrued data at some pre-specified intervals rather than after

every new observation is obtained (Jennison and Turnbull, 2000). For a sequential trial

4



with multiple interim analyses, multiple tests cause an inflation of the type I error rate,

so it is necessary to adjust α-level at each interim analysis. Other research on group

sequential designs can be seen in Simon (1989), Ensign et al. (1994), Chen (1997), Chen

and Ng (1998), Sargent and Goldberg (2001), Wu and Lan (1992), Lan and DeMets

(1983), Wang and Tsiatis (1987), Proschan et al. (2006), Pocock (1977), and O’Brien

and Fleming (1979).

1.1.4 Sample size re-estimation

In clinical trials, a sufficient number of sample size is necessary to reach a desired

power for detecting a treatment difference of clinical importance, if such a meaningful

difference truly exists. To achieve this aim, the number of the required subjects is

estimated under certain assumptions by a power analysis at the planning stage of the

trial. The sample size estimation of the pre-study power analysis is usually based on the

assumed treatment effect. However, the true treatment effect may be different from the

initial assumption, therefore the study is possibly over-powered or under-powered. Thus,

to re-estimate sample sizes adaptively based on observed data in an interim analysis is

of interest (Chow et al., 2008; Lehmacher and Wassmer, 1999; Cui et al., 1999; Mehta

and Pocock, 2011; Lai, 2013).

1.2 Literature review

This dissertation studies the combination of three types of adaptive designs. I

conduct a brief literature review starting from the general concept, adaptive design.

Adaptive designs utilize accumulating data to adjust the clinical trial procedures

without undermining the validity and integrity of the trials. The validity includes in-

ternal and external validity. Internal validity is the reasonable representation of the

5



treatment effects within the study population. Basically, if the treatment differences are

detected, we will ask whether the differences are due to the treatments, patient charac-

teristics, or chance. If no treatment effects are detected, we would like to ask whether

it is due to the true equivalence, misconduct, or lack of precision (study power). To

support the internal validity, we need to design trials including comparable groups, and

try to avoid or minimize biases in the treatment allocation, assessing treatment effects,

study monitoring and data analysis, and multiple hypothesis testing. These biases can

be minimized by appropriate randomization and stratification, using concurrent control

group and masking the treatment assignment, performing ongoing review by disciplined

investigators and expert statisticians, and predefining hypotheses and endpoints in the

protocol (Shih and Aisner, 2015). External validity is the validity of inferences as they

pertain to the generalizability to future subjects (Rothwell, 2005). In the study protocol,

the patient characteristics, treatment and procedures, outcome measures, and follow-up

together define the generalizability and applicability of the trial results. For supporting

external validity, the later phases of a clinical trial should be conducted by multiple inves-

tigators in different medical settings, including university teaching hospitals, community

medical centers, private clinics, etc., as well as in various geographical regions.

Chang (2014) classified adaptive designs into the following categories: (1) group

sequential designs (2) sample size re-estimation (3) drop-losers designs (4) adaptive ran-

domization design (5) adaptive dose-escalation designs (6) biomarker-adaptive designs

(7) adaptive treatment-switching designs (8) combined adaptive designs.

My dissertation studies three types of adaptive designs listed above: group se-

quential designs, sample size re-estimation, and adaptive randomization designs. The

idea of adaptive randomization can be traced back to Thompson (1933) and Robbins

(1952). Hu and Rosenberger (2006) classified adaptive randomization design into four

categories, i.e., permuted block randomization, covariate-adaptive randomization (CAR),

6



response-adaptive randomization (RAR), and covariate-adjusted response-adaptive ran-

domization. I study RAR in Chapter 2 and CAR in Chapters 3 and 4.

1.2.1 Covariate-adaptive randomization

To equalize the distribution of covariates within each treatment group and mini-

mize the imbalance, many covariate-adaptive designs were proposed in the literature.

One idea is to stratify the patients according to covariates before randomization

and then to employ separate randomization for each stratum. For a small set of known

discrete covariates, one of the most commonly used methods is the stratified permuted

block randomization design which determines the strata first with the covariates’ levels

and then perform the permuted block randomization within each stratum. One serious

drawback of this method is that the number of strata increases quickly as the num-

ber of covariates and the number of the covariate levels increase. If the sample size is

relatively small compared to the number of strata, it is almost equivalent to complete

randomization, losing its advantages (Rosenberger and Lachin, 2015).

To ensure balance over a large number of covariates, there are various meth-

ods proposed to determine the treatment assignment of a new subject to minimize the

covariate imbalance within each treatment group. The first covariate-adaptive design

was proposed in the mid-1970s by Taves (1974). He proposed the method to minimize

imbalance on key covariates. Pocock and Simon (1975) proposed generalizations of mini-

mization to randomized clinical trials. Because they balance covariates marginally, these

methods are referred as marginal procedures. For notation purposes, if discrete covariate

Zi, i = 1,. . . , I has ni levels, then they balance on covariates within each of
∑I

i=1 ni levels

of given covariates.

In the covariate-adaptive randomization procedure proposed by Pocock and Simon

(1975), let Nijk(n), i=1,. . ., I, j=1,. . ., ni, k=1, 2 (1=A, 2=B), be the number of patients
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in stratum j of covariate i on treatment k after n patients have been randomized. Suppose

the (n+1)th patient to be randomized is a member of strata r1,. . . , rI of covariates 1,. . .,

I. Then Di(n) = Niri1(n)−Niri2(n) is computed for each i=1,. . ., I. A weighted sum is

then taken as D(n) =
∑I

i=1(wiDi(n)), where wi are weights chosen depending on which

covariates are deemed of greater importance. The measure D(n) is used to determine

the allocation probability of the (n+ 1)th patient. If D(n) > 0 (< 0), then one decreases

(increases) the probability of being assigned to treatment 1 accordingly. Pocock and

Simon (1975) formulated a general rule using Efron’s (1971) biased coin design as

φn+1 =


1/2, if D(n) = 0,

p, if D(n) < 0,

1− p, if D(n) > 0.

When p = 1, we have Taves’s (1974) minimization method, which is non-randomized.

Pocock and Simon (1975) investigated p = 3/4.

Both stratified permuted block design and Pocock and Simon’s marginal method

are widely implemented in clinical research. Stratified permuted block design was em-

ployed in many clinical trials, including Iacono et al. (2006) and Jakob et al. (2012).

According to Taves (2010), Pocock and Simon’s marginal procedure was applied in over

400 clinical trials from 1989 to 2008. Some recent examples include Anderson et al.

(2000), Gridelli et al. (2003), Krueger et al. (2007), Molander et al. (2007), Ohtori et al.

(2012), etc. Hu and Hu (2012) raised some limitations of these traditional approaches and

proposed a generalized family of covariate-adaptive designs along with their theoretical

properties. For more discussion of handling covariates in clinical trials, see McEntegart

(2003), Rosenberger and Sverdlov (2008).

Nowadays, it is widely accepted that all covariates utilized in the CAR design

should be incorporated in statistical inference procedures (Ma et al., 2015). Feinstein and
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Landis (1976) and Green and Byar (1978) explored the inference problems for stratified

randomization for binary responses. Forsythe et al. (1987) suggested that all covariates

utilized in minimization method should be included into analysis. Shao et al. (2010) the-

oretically proved that, the two-sample t-test is conservative under the covariate-adaptive

biased coin procedure, by assuming that the response primarily follows a simple homo-

geneous linear model. More discussions can be found in Tu et al. (2000), Aickin (2009),

and so on.

1.2.2 Response-adaptive randomization

Zelen (1969) proposed the play-the-winner rule for comparing two treatments

with binary responses in clinical trials. If the response of the current patient is a success,

then the same treatment will be given to next patient. If the response of the current

patient is a failure, then the other treatment will be given to the next patient. With

play-the-winner rule, more patients will be assigned to the better treatment. But it is a

deterministic design, and a variety of bias could be introduced. The idea of incorporating

randomization in the context of RAR designs stemmed from the randomized-play-the-

winner rule proposed by Wei and Durham (1978). In general, there are two main families

of RAR procedures: doubly-adaptive biased coin designs that is based on certain optimal

criteria and urn models based on intuitive motivation. Next I will introduce the DBCD

and urn-model based randomization procedures respectively.

Doubly-adaptive biased coin design

We start from the Efron’s biased coin design for balancing the experiment and mitigate

various forms of bias at the same time. Let Nj(i), i = 1, 2, . . . , j = 1, 2 be the number of

patients assigned to treatment j after the ith patient have been enrolled and assigned to

treatments. The Efron’s procedure sequentially assigns the next patient to treatment 1
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with probability

φi1 = 1/2 if Di−1 = 0,

= π if Di−1 < 0,

= 1− π if Di−1 > 0,

where Di = N1(i)−N2(i) is the imbalance between treatment 1 and 2 and π ∈ (0.5, 1].

Balance is not always the target. Eisele (1994) and Eisele and Woodroofe (1995)

proposed the doubly-adaptive biased coin design (DBCD) that sequentially assigns the

next patient using both the current allocation proportions and the currently estimated

optimal allocation proportion. But their conditions are very restrictive. Hu and Zhang

(2004) proposed a family of DBCD and derived the asymptotic properties under widely

satisfied conditions. They obtained the strong consistency, a law of the iterated logarithm

and asymptotic normality of the parameter estimators. However, the procedure proposed

by Hu and Zhang (2004) did not reach the asymptotic lower bound on the variability

of response-adaptive designs (Hu et al., 2006). Hu et al. (2009) proposed a new family

of efficient randomized adaptive designs (ERADE) that achieved the asymptotic lower

bound. In this dissertation, I mainly focus on urn models below, since urn models have

been used in real clinical trials (Rout et al., 1993; Bartlett et al., 1985; Tamura et al.,

1994).

Urn-model based randomization

The urn models are originally in the field of probability. The Pólya urn models was

proposed by Eggenberger and Pólya (1923). The initial urn contains Y01 balls of type

1 and Y02 balls of type 2. At every stage, a ball is randomly drawn and replaced and

α balls of same type are added back to the urn. Friedman (1949) modified Pólya urn

models by allowing adding additional β balls of the opposite type selected. Athreya

and Karlin (1967, 1968) and Athreya (1969) proposed the Generalized Friedman’s Urn
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(GFU) as follows. When comparing K treatments, the initial urn contains balls of K

types with composition Y0 = (Y0,1, . . . , Y0,K). At stage i, i = 1, 2, . . . , a ball, say type

k, is drawn and replaced. Then the treatment k is assigned to the ith patient, and

additional di(k, g, ξi,k) balls of type g, g = 1, 2, . . . , K, are added to the urn, where

di(k, g, ξi,k) is a function of ξi,k, the response of the ith patient assigned to treatment

k. After n patients have been assigned, the urn composition is Yn = (Yn,1, . . . , Yn,K).

Define Dn = (dn(k, g, ξn,k), k, g = 1, . . . , K), ξn = (ξn,1, . . . , ξn,K) and the observed result

of the nth draw Xn = (Xn,1, . . . , Xn,K). Let Hi = (E[di(k, g, ξi,k)|Fi−1], k, g = 1, . . . , K),

where the σ−field Fi is generated by {Y0,Y1, . . . ,Yi,X1, . . . ,Xi, ξ1, . . . , ξi}. Di and Hi

are called the addition rules and the generating matrices, respectively.

Other important urn models in the literature include Wei (1979), Durham and Yu

(1990), Smythe (1996), Durham et al. (1998), Ivanova and Rosenberger (2000), Ivanova

and Flournoy (2001), Ivanova (2003), Andersen et al. (1994), Bai et al. (2002). Finally,

Zhang et al. (2006) proposed the sequential estimation-adjusted urn model (SEU) and

their model can target any allocation proportion and include the randomized play-the-

winner rule as a special case. In this dissertation, I focus on SEU model for trials with

two treatment groups.

1.2.3 Sequential monitoring

There are three primary reasons for conducting interim analysis (Jennison and

Turnbull, 2000): (i) ethical consideration, (ii) administrative reasons, and (iii) economic

constraints. In practice, human subjects are involved in clinical trials, so from an ethical

point of view, interim analysis to make sure that the human subjects are not exposed to

unnecessary negative treatments. The ineffective or unsafe trials should be terminated

as early as possible to protect the subjects. From an administrative point of view, it is

necessary for monitoring the trials to make sure that the clinical trials are being imple-
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mented as planned. If the critical assumptions are violated, modifications or adjustment

should be made so as to guarantee the integrity and quality of the trials. If the violation

of the protocol is found to be much enough to fundamentally alternate the results, the

trial should be stopped early. Often, clinical trials are very expensive and time consum-

ing, so the sponsors would like to know whether there is enough ethical and statistical

evidence to make the decision of stopping or continuing the trials from the economic

point of view. Interim analysis usually lead to savings in sample size, cost and time when

compared with the other fixed sample designs.

In the literature, there are many sequential monitoring design methods proposed,

to stop the trials as early as possible when the test regimen is ineffective or unsafe, and at

the same time, to avoid terminating a trial too early when the test regimen is promising.

For a sequential trial with K interim analyses, the main concern is the inflation of the

type I error rate, since we have more chances to reject the null hypothesis when it is true.

The natural approach is to find the joint distribution of the sequential statistics, and to

find corresponding critical values to control the type I error rate.

Proschan et al. (2006) introduced a unified approach for group sequential trial de-

sign. The unified approach is briefly described below. Consider a group sequential study

consisting of up to K analyses. Thus, we have a sequence of test statistics {Z1, . . . , ZK}.

Assuming that these test statistics follow a joint canonical distribution with information

levels {I1, . . . , Ik} for the treatment effect. Thus, we have

Zk ∼ N(θ
√
Ik, 1), k = 1, . . . , K,

and

Cov(Zk1, Zk2) =
√
Ik1/Ik2, 1 ≤ k1 ≤ k2 ≤ K.

Table 1.1 summarizes unified formulation for different types of study endpoints
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under a group sequential design.

In the following, I review the general framework to determine the boundaries for

early stopping of a given trial due to (i) efficacy, (ii) futility, and (iii) efficacy or futility

assuming that there are a total of K analyses in the trial (Chow and Chang, 2011).

For the case of early stopping, we consider testing the one-sided null hypothesis

that H0 : µA ≤ µB, where µA and µB could be means, proportions or hazard rates for

treatment groups A and B, respectively.

The decision rules for early stopping for efficacy are

 If Zk < αk, continue on next stage;

If Zk ≥ αk, stop and reject H0, k=1,. . .K-1,

and  If ZK < αK , stop and accept H0;

If ZK ≥ αK , stop and reject H0.

Wang and Tsiatis’ boundary function is given by

αk = αK(
k

K
)∆−1/2

The decision rules for early stopping for futility are

 If Zk < βk, stop and accept H0;

If Zk ≥ βk, continue on next stage, k=1,. . .K-1,

and  If ZK < βK , stop and accept H0;

If ZK ≥ βK , stop and reject H0.
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The boundary function is

βk = 2βK

√
k

K
− βK(

k

K
)∆−1/2

The decision rules for early stopping for efficacy or futility are

 If Zk < βk, (k = 1,. . .K), stop and accept H0;

If Zk ≥ αk, (k = 1,. . .K), stop and reject H0.

The stopping boundaries are the combination of the previous efficacy and futility

stopping boundaries, which is given by

 αk = αK( k
K

)∆−1/2

βk = 2βK

√
k
K
− βK( k

K
)∆−1/2

Lan and DeMets (1983) proposed the spending function methods to distribute

(or spend) the total type I error rate as a continuous function of the information time

in group sequential trial designs for interim analysis. This continuous function of the

information time is referred to as the alpha spending function, denoted by α(s). Let s1

and s2 be two information times, 0 < s1 < s2 < 1. Then 0 < α(s1) < α(s2) < α. α(s1)

is the probability of type I error one wishes to spend at information time s1. For a given

alpha spending function α(s) and a series of standardized test statistic Zk, k=1,. . .,K. The

corresponding boundaries ck, k=1,. . .,K are chosen such that under the null hypothesis

P (Z1 < c1, . . . , Zk−1 < ck−1, Zk > ck) = α(
k

K
)− α(

k − 1

K
).

Some commonly used alpha-spending functions are summarized in the Table 1.2.
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1.2.4 Sample size re-estimation

In clinical trials, the fact that many parameters, such as assumed treatment effect

size, are uncertain will cause the study to be under-powered or over-powered. Assuming

a conservative effect size and designing a trial with a larger sample size is one solution.

Without a large enough number of sample size, a clinical trial, especially a phase III

study design cannot be convincing from a scientific or a financial viewpoint. To ensure

a desirable power, sample size re-estimation (SSR) design has been proposed. In SSR

design, a sample size based on an guessed effect size is calculated before the study. In

an interim analysis, the sample size is re-estimated adaptively based on the accrued data

and the target power.

Let us assume a randomized trial with two parallel groups (a test treatment vs.

a placebo). Assume that the distribution of the response of the primary endpoint is

distributed as a normal distribution. The total sample size required for obtaining a

desired power of 1− β for a two-sided alternative hypothesis can be obtained using the

following formula (see, e.g., Chow et al., 2003)

N =
4σ2(zα/2 + zβ)

∆2

where ∆ is the clinically meaningful difference. Usually, σ2 is unknown and need to be

estimated based on previous studies. Let σ∗2 be the initial guess of the within-group

variance for sample size determination before the study. Nevertheless, if the true within-

group variance is actually σ
′2, then the sample size to be adjusted to achieve the desired

power 1-β at the α level of significance for a two-sided alternative is given by

N
′
= N

σ
′2

σ∗2

Various statistical procedures for sample size re-estimation in group sequential
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trial designs are proposed, such as, Cui-Hung-Wang’s method (1999), Proschan-Hunsberger’s

method (1995), and Bauer and Köhne’s idea (1994).

In the Cui-Hung-Wang’s approach (1999), suppose that it is planned to perform

up to K-1 interim analyses and one possible final analysis and that nk subjects are

obtained for each population between the (k-1)th and kth analyses. let Nk be the planned

cumulative sample size from stage 1 to stage k, and let tk = Nk/N be the information

fraction or information time at the kth interim analysis. At the end of the Lth interim

analysis for specified L(1 ≤ L ≤ K − 1), the adjusted total sample size based on the

observed treatment effect ∆L is

M = N(∆/∆L)2. (1.5)

Accordingly, the sample size at (L+ j)th look is

ML+j = b(NL+j −NL) +NL, (1.6)

where b = (M−NL)/(N−NL), j = 1, . . . , K−L. They developed a new group sequential

test based on the repeated significance test that can be asymptotically expressed as a

Brownian motion process. Let B(t) be such a repeated significance test evaluated at

the information time t, 0 ≤ t ≤ 1. Let Z(t) = B(t)/t1/2. Suppose that the decision to

increase the maximum information from one to ω is made at time t = tL on the basis of

the observed value of Z(tL). Let c = (ω − tL)/(1 − tL). Thus the new test statistic can

be constructed as

U(t) = Z(t), t ≤ tL, (1.7)
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and

U(t) = Z(tL){ω(tL, t)}1/2+[{B(c(t−tL)+tL)−B(tL)}/{c(t−tL)}1/2]×[1−ω(tL, t)]
1/2, tL ≤ t ≤ 1,

(1.8)

where ω(tL, t) = tL/t. Cui et al. (1999) showed that using U(t) and original boundary

from the group sequential trial will not inflate the type I error rate, but gain power

substantially.

Cui-Hung-Wang’s method has the following advantages. First, the adjustment of

sample size is easy. Second, using the same stopping boundaries from the traditional

group sequential trial is straightforward. The disadvantages include that (i) this method

is somewhat ad hoc, which does not aim a target power, and (ii) Weighting outcomes

differently for patients from different stages is difficult to explain clinically.

For a given two-stage design, Proschan and Hunsberger(1995) and Proschan (2005)

proposed re-estimating sample size based on the conditional power and offered a new crit-

ical value to control the type I error rate.

Chow and Chang (2011) discussed the SSR methods for Bauer-Köhne’s (1994)

sequential method approach. In the Bauer-Köhne method, let P1 and P2 be the p-values

for the sub-samples obtained from the first stage and second stage, respectively. Fisher’s

criterion leads to rejection of H0 at the end of trial if

P1P2 ≤ cα = e
−

1

2
χ2

4,1−α
.

Decision rules at the first stage:


P1 ≤ α1, Stop trial and reject H0,

P1 > α0, Stop trial and accept H0,

α1 < P1 ≤ α0, Continue to the second stage.
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For determination of α1 and α0, the overall type I error rate is given by

α1 +

∫ α0

α1

∫ cα
P1

0

dP2dP1 = α1 + cαln
α0

α1

= α.

Decision rule at the final stage is given by

 P1P2 ≤ e
−

1

2
χ2

4,1−α
, Reject H0,

Otherwise, Accept H0.

Lai (2013) studied the effect of classic Brownian and fractional Brownian motion on

the sample size estimation with interim analysis. The fundamental assumptions in the

Brownian motion is that the increment of the monitoring statistic would be independent.

Nevertheless, this assumption may be violated due to aggregation. The fractional Brow-

nian motion is an extension of the classic Brownian motion, which have a long memory

to apply to interim analysis.

1.3 Public health significance

Clinical trials are the gold standard for evaluating new therapies. ‘A properly

planned and executed clinical trial is the best experimental technique for assessing the

effectiveness of an intervention. It also contributes to the identification of possible harms

(Friedman et al., 2015).’ The clinical trial directly involves human beings and cost a lot.

According to the 2015 - 2016 Global Participation in Clinical Trials Report by FDA, ‘the

country contributing the most clinical trial participants was the United States. Com-

pared to the population of the entire world (7.4 Billion), the US (0.35 Billion) makes up

a little more than 4% of the world population.’ ‘A Phase 2 clinical trial costs from US

$7.0 million (cardiovascular) to US $19.6 million(hematology), whereas a Phase 3 clinical
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trial costs ranged from US $11.5 million (dermatology) to US $52.9 (pain and anesthesia)

on average’ (Sertkaya, A. et al., 2016).

But traditional clinical trials may suffer from several flaws, exposing patients to infe-

rior treatments and danger and wasting resources and money. Therefore, there is an

urgent need to develop efficient and ethical clinical trial designs and analysis methods.

Response-adaptive randomization can achieve different ethical and efficient objectives.

Covariate-adaptive randomization is proposed to eliminate selection biases and imbal-

ance of covariates across treatments, leading to better analysis of trial results. Sequen-

tial monitoring possesses ethical, administrative and economic advantages. Sample size

re-estimation is an useful approach to guarantee the power and success of a trial.

In this dissertation, I study statistical properties of combining sequential monitoring,

SSR and adaptive randomization in one clinical trial. The success of the research can

lead to a more efficient and ethical trial with effective sample size, saving more patients in

the trial and benefiting the general population related to the corresponding treatments.

1.4 Organization of the dissertation

In Chapter 2, I study sequential monitoring of urn models with SSR. In Chapter

3, I study sequential monitoring of CAR with SSR when all the randomization covariates

are included in the data analysis. In Chapter 4, I study sequential monitoring of CAR

with SSR when a subset of the randomization covariates are included in the data analysis.

The conclusions are in Chapter 5, followed by the reference, and the proofs are in the

Appendix at the end of the dissertation.
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Chapter 2

Sequential monitoring of randomized

clinical trials with urn models and

sample size re-estimation

Abstract: Clinical trials are usually complex involving multiple competitive objectives

such as maximizing the power to detect treatment effects while controlling type I error

rate, assigning more patients to better treatment and decreasing the total sample size

and cost. Response-adaptive randomization (RAR) procedures have been proposed to

achieve these objectives. Sequential monitoring and sample size re-estimation (SSR) are

also commonplace in modern clinical trials. In this chapter, I investigate the sequential

monitoring of randomized clinical trials with urn models and SSR. To perform sequential

monitoring of urn models with SSR, one has to simultaneously address the three sequen-

tial procedures (the allocation of patients, the urn compositions and the estimators), and

deal with sequential statistics with revised information time due to SSR. Therefore, it is

challenging to derive the joint distribution of the sequential statistics, and to control the

type I error rate. I overcome these hurdles by employing appropriate framework and SSR
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methods, and deriving the asymptotic results for the proposed procedure. Under some

regularity conditions, I proved the asymptotic distribution of the proposed sequential

statistics follows Brownian motion under null hypothesis. Therefore, traditional critical

values for sequential monitoring based on Brownian motion can be used for the proposed

procedure to control the type I error rate. I performed simulation studies for three types

of urn models, and the results demonstrated that my proposed approaches can control

the type I error rate well and also demonstrate the advantages of the proposed methods

over traditional designs.

2.1 Introduction

Clinical trials are usually complex involving multiple competitive objectives such

as maximizing the power to detect treatment effects , assigning more patients to better

treatment and decreasing the total sample size and cost. Practical clinical trials suffer

from some inevitable difficulties such as wrong or inaccurate estimate of the required

sample size. A variety of adaptive approaches including group sequential monitoring,

adaptive randomization, and sample size re-estimation (SSR) have been proposed to

solve these problems and achieve ethical and efficient objectives. In this chapter, I study

the advantages of the sequential monitoring of clinical trials with randomized urn models

and SSR.

It is natural to conduct a sequential analysis in clinical trials where data accumu-

lates sequentially. Jennison and Turnbull (2000) summarized three reasons to perform

sequential monitoring in clinical trials. First, it is ethical to monitor progress of the trial

to prevent participants from being exposed to unnecessary unsafe, inferior or ineffective

treatment regimens. Second, the administrative reason for interim analysis is to ensure

that the protocol has been complied. Third, there are obvious economic benefits such as

saving cost and time due to possible early stopping.
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Sequential monitoring originated from the sequential probability ratio test pro-

posed by Wald (1947). Armitage (1975) introduced sequential monitoring to clinical

studies, and his approach was based on a patient-by-patient monitoring. Further, the

following three papers are particularly influential and become the foundation of method-

ological research and basis of practice in clinical trials. Pocock (1977) proposed group

sequential monitoring; O’Brien and Fleming (1979) proposed the most popular and com-

monly used idea of rejection boundaries for sequential monitoring; Lan and DeMets

(1983) investigated the alpha spending function that is very flexible and does not re-

quire pre-set number of interim analysis and schedule. More details about sequential

monitoring can be seen in Jennison and Turnbull (2000), and Whitehead (1997).

Traditional clinical trial designs such as complete randomization and stratified

permuted block randomization emphasize equal allocation. For example, Connor et al.

(1994) compared the effect of Zidovudine and placebo on reducing maternal-infant HIV

transmission with equal allocation. Although the advantages of the new treatment was

successfully detected, the randomization was in question. First, we keep assigning pa-

tients to the two treatment arms with equal chance even if we have opportunity to detect

that the new treatment is probably better during the trial. It is desirable to assign pa-

tients to possibly favorable treatment with higher chance, and such strategy potentially

increases the enrollment rate. Second, equal allocation has been deemed as the best in

terms of power assuming the variances of the two groups are equal, but the assumption

may not be true in practice. In order to achieve better ethical and efficient objectives,

response-adaptive randomization (RAR) that skews the allocation probability according

to the previous treatment assignments and responses has been proposed (Hu and Zhang,

2004). RAR procedure usually consists of three steps: (1) objectives are determined and

mathematically formulated ; (2) the optimal allocation proportions which are usually

the solutions to the optimization problems formulated in the first step are derived; (3)
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appropriate RAR procedures are implemented to target the theoretically derived optimal

allocation proportions derived in the second step.

The idea of RAR stemmed from Thompson (1933) and Robbins (1952). Hu and

Rosenberger (2003) theoretically proved that RAR can increase the efficiency of clini-

cal trials. Tymofyeyev et al. (2007) established a mathematical framework to derive

the optimal allocations. Rosenberger et al. (2001) studied an optimal allocation that

minimizes the total number of failures while fixing the power. Ivanova and Rosenberger

(2000) showed that an unequal allocation can result in a gain in the power. There are

two families of RAR, i.e., doubly adaptive biased coin design (Hu and Zhang, 2004) and

urn models. In this chapter, I focused on urn models.

The idea of urn models can be traced back to Pólya’s urn model (Eggenberger

and Pólya, 1923) and the generalized Friedman’s urn model (GFU) by Athreya and

Karlin (1968). Zelen (1969) proposed the play-the-winner (PW) rule for clinical trials

with binary responses. Wei and Durham (1978) investigated the randomized play-the-

winner rule that is the most well-known urn models in clinical trials. Real clinical trials

using urn models include Rout et al. (1993), Bartlett et al. (1985) and Tamura et al.

(1994). Zhang et al. (2006) proposed a family of sequential estimation-adjusted urn

model (SEU) that can target any pre-specified treatment allocation proportion such as

Neyman allocation (Neyman, 1934), optimal allocation (Rosenberger et al., 2001) and

urn allocation and satisfy various needs. The SEU model contains a variety of urn models

such as play-the-winner (PW) rule, randomized play-the-winner (RPW) rule and GFUs

as its special cases. I study sequential monitoring of clinical trials with urn models and

SSR through SEU model.

Usually, in a clinical trial, the sample size is calculated based on overall assump-

tions and prior studies with knowledge of similar design conditions. Unfortunately, the

prior studies often involve different participating populations, medical practices, etc. As
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a result, we may have to modify the sample size to ensure the study power. Wittes

and Brittain (1990), Gould (1992), Gould and Shih (1992, 1998), Shih (1992) studied

SSR approaches using an internal pilot study; Herson and Wittes (1993) studied SSR

approaches for a fixed sample test; Cui et al. (1999) and Denne (1996) studied SSR

approaches for group sequential tests.

Despite the numerous advantages of the three adaptive approaches (group sequen-

tial monitoring, urn models, and SSR), the research on combining them in one clinical

trial is lacking in the literature due to the conceptual and theoretical difficulties. One

of the critical statistical problems for all confirmatory clinical trials is the control of the

type I error rate. However, sequential monitoring tends to inflate the type I error rate

due to multiple hypothesis testing; group sequential monitoring involves correlated se-

quential statistics at different time points; the treatment assignment probabilities of urn

models depend on urn composition, allocation of patients and the sequentially estimated

unknown parameters; the responses from urn models depend on all the previous treat-

ment assignments and responses; SSR changes the maximum information and introduces

extra dependence between the observed data. To perform sequential monitoring of urn

models with SSR, one has to simultaneously address the three sequential procedures (the

allocation of patients, the urn compositions and the estimators), and deal with sequential

statistics with revised information time due to SSR. Therefore, it is challenging to derive

the joint distribution of the sequential statistics, and to control the type I error rate.

I overcome these hurdles by employing appropriate framework and SSR methods, and

deriving the asymptotic results for the proposed procedure. In my study, I proposed a

general framework for sequential monitoring clinical trials using urn models and SSR. I

also proposed sequential statistics and proved that its asymptotic distribution is a Brow-

nian motion under null hypothesis. Therefore, traditional critical values for sequential

monitoring Brownian motion can be used for the proposed procedure to control the type
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I error rate. I performed extensive simulations for three types of urn models, and the

results demonstrated that my proposed approaches can control the type I error rate very

well.

In Section 2.2, I introduce the notation, framework, the proposed methods, ex-

amples under the framework, and theoretical findings. In Section 2.3, I present results

from simulations. Conclusions are in Section 2.4.

2.2 Sequential monitoring of SEU model with SSR

2.2.1 Notation and framework

I first offer a general framework for sequential monitoring of SEU model, and

incorporate SSR later. Assume the patients sequentially enter the clinical trial comparing

two treatments, and the originally planned sample size is n. At the beginning, the urn

contains Yk(0) balls of type k, k = 1, 2, and write Y (0) = (Y1(0), Y2(0)). When the ith

patient is ready for randomization, i = 1, 2, . . . , n, a ball, say type k, is randomly drew

from the urn, and replaced. Then the ith patient will be allocated to treatment k, and

the response ξi,k will be observed. Additional di(k, g, ξi,k) balls of type g, g = 1, 2, are

added to the urn, where di(k, g, ξi,k) is a function of ξi,k. Denote Y (m) = (Y1(m), Y2(m))

as the urn composition after m patients have been randomly assigned; denote matrix

Dm = (dm(k, g, ξm,k), k, g = 1, 2) as addition rules; denote Xm = (Xm,1, Xm,2) as the

observed result of the mth draw (Xm,k = 1 if the mth draw is the ball of type k, k = 1, 2,

Xm,k = 0 otherwise). Then N (m) = (N1(m), N2(m)) =
∑m

i=1Xi are the number of

patients in the treatments and I have Y (m) = Y (m − 1) +XmDm. Further, I assume

that ξm = (ξm,1, ξm,2) are independent and identical distributed with unknown parameter

Θ = (θ1, θ2). To simplify the notation, I use one-dimensional parameter. It is easy to

generalize it to multi-dimensional case. Here, only ξm,k can be observed if the mth patient
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is assigned to treatment k, k = 1, 2. Without loss of generality, I assume Θ = E[ξm] since

I can transform ξm and treat the transformation as responses to make this assumption

hold if such transformation exists. Further discussion can be found in Gwise et al. (2008)

and Hu and Zhang (2004). Then I can obtain the estimator Θ̂(m) = (θ̂1(m), θ̂2(m)) after

m patients with

θ̂k(m) =

∑m
i=1Xi,kξi,k + 1

Nk(m) + 1
, k = 1, 2,

where 1 is added to both the numerator and the denominator to avoid discontinuity and

problems caused by the case when no patients are in any certain treatment. Note that

both the addition rules Dm = D(Θ̂(m − 1), ξm) and the generating matrices Hm =

H(Θ̂(m−1)) = E[Dm|Fm−1] depend on previous responses, where the sigma field Fm−1

is generated by {Y (0),Y (1), . . . ,Y (m− 1),X1, . . . ,Xm−1, ξ1, . . . , ξm−1}, which implies

that it is a type of RAR design.

Let b·c denote the floor function and t = N/n be the information time when N

is the number of enrolled patients. Accordingly, I have N (bntc) = (N1(bntc), N2(bntc)),

where Nj(bntc) =
∑bntc

i=1 Xi,j, j = 1, 2, is the number of patients assigned to treatment j at

information time t; Y (bntc) = (Y1(bntc), Y2(bntc)) is the urn composition at information

time t; the estimators are Θ̂(bntc) = (θ̂1(bntc), θ̂2(bntc)), i.e.,

θ̂1(bntc) =

∑bntc
i=1 Xi,1ξi,1 + 1

N1(bntc) + 1
and θ̂2(bntc) =

∑bntc
i=1 Xi,2ξi,2 + 1

N2(bntc) + 1
(2.1)

In this paper, I perform the following hypothesis testing to compare two treat-

ments in clinical trials:

H0 : h(θ1) = h(θ2) versus H1 : h(θ1) 6= h(θ2) (or h(θ1) > h(θ2)),

where h is a < → < function of parameters and assumed to be continuous and twice
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differentiable on a small neighborhood of θi, i = 1, 2. The following sequential test

statistics at time point t ∈ (0, 1] will be used, i.e.,

Zt

(
N (bntc)
bntc

, Θ̂(bntc)
)

=
h
(
θ̂1(bntc)

)
− h

(
θ̂2(bntc)

)
√

ˆV ar
(
h
(
θ̂1(bntc)

))
+ ˆV ar

(
h
(
θ̂2(bntc)

)) (2.2)

Assume ˆV ar
(
h
(
θ̂1 (bntc)

))
and ˆV ar

(
h
(
θ̂2 (bntc)

))
are consistent estimators of the

variances of h
(
θ̂1 (bntc)

)
and h

(
θ̂2 (bntc)

)
, respectively. We also assume there exist

two functions u1 and u2 satisfying

bntc ˆV ar
(
h
(
θ̂i (bntc)

))
= ui

(
N (bntc)
bntc

, Θ̂ (bntc)
)

(1 + o(1)) a.s. i = 1, 2.

2.2.2 Examples

As a type of RAR design, the SEU model is able to target some pre-specified

allocation proportions that are usually derived based on certain optimization criterion.

In this chapter, I denote the targeted allocation proportion as v = (v1, v2), and details

regarding the relationship between v and the generating matrix H can be seen in Zhang

et al. (2006). Next, I offer 3 examples to show how to sequentially monitor the SEU

model, and the simulations in Section 2.3 are based on the three examples.

Example 1 Assume the responses are binary with success rates p1 and p2 for the two

treatments under study, and the hypotheses to test are

H0 : p1 = p2 versus H1 : p1 > p2.

The SEU model targeting the following optimal allocation proportion proposed by Rosen-
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berger et al. (2001) is used to sequentially assign patients,

v1 =

√
p1√

p1 +
√
p2

v2 =

√
p2√

p1 +
√
p2

. (2.3)

This optimal allocation is used to minimize the expected total failure number for fixed

power. Then the updating rule of balls in the urn and the generating matrice can be

derived based on v = (v1, v2), where v is the left eigenvector of the limiting generating

matrix H with respect to its largest eigenvalue and satisfying v1 + v2 = 1. For this case,

I have

H =

 √p1
√
p2

√
p1
√
p2

 ,

and the corresponding addition rule is that
√
p̂1(m− 1) balls of type 1 and

√
p̂2(m− 1)

balls of type 2 are added to the urn after the mth patient has been randomly assigned.

In this case, Θ = (p1, p2), h(θj) = θj = pj, j = 1, 2, and the sequential statistics

Zt(y, z) is a function from <4 to <:

Zt(y, z) = Zt(y1, y2, z1, z2) =
z1 − z2√

z1(1−z1)
bntcy1

+ z2(1−z2)
bntcy2

=
p̂1(bntc)− p̂2(bntc)√

p̂1(bntc)(1−p̂1(bntc))
N1(bntc) + p̂2(bntc)(1−p̂2(bntc))

N2(bntc)

,

where y = (N1(bntc)/bntc, N2(bntc)/bntc) and z = (θ̂1(bntc), θ̂2(bntc)), h(θ̂j(bntc)) =

θ̂j(bntc) = p̂j(bntc), j = 1, 2. I also have

ˆV ar
(
h(θ̂j(bntc))

)
=
p̂j(bntc)(1− p̂j(bntc))

Nj(bntc)

and

uj(v,Θ) =
pj(1− pj)

vj
, j = 1, 2.

Example 2 (Randomized play-the-winner (RPW) rule) In this example, assume
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the responses are binary with success rates p1 and p2 for the two treatments under study,

and I use SEU model to implement the RPW rule with the targeted urn allocation

proportion,

v1 =
q2

q1 + q2

v2 =
q1

q1 + q2

, (2.4)

where qj = 1− pj, j = 1, 2. The hypotheses to test are

H0 : p1 = p2 versus H1 : p1 > p2.

The addition rule is that one ball of the same type is added to the urn if the response is

success and one ball of the opposite type is added to the urn if the response is failure.

So I have

Dn =

 ξn,1 1− ξn,1

1− ξn,2 ξn,2

 ,

and

H =

 p1 q1

q2 p2

 .

The sequential statistics are the same as in Example 1.

Example 3. Assume the responses of the two treatments follow normal responses

N(µ1, σ
2
1) and N(µ2, σ

2
2), respectively. The hypothesis are

H0 : µ1 = µ2 versus H1 : µ1 > µ2.

The SEU model targeting the following Neyman allocation (Neyman, 1934) is used to

sequentially assign patients:

v1 =
σ1

σ1 + σ2

v2 =
σ2

σ1 + σ2

, (2.5)
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Neyman allocation is used to maximize the power. Based on Neyman allocation, I can

derive the generating matrix as follows,

H =

 σ1

σ1+σ2

σ2

σ1+σ2

σ1

σ1+σ2

σ2

σ1+σ2

 ,

and the addition rule is that σ̂1(m−1)
σ̂1(m−1)+σ̂2(m−1)

balls of type 1 and σ̂2(m−1)
σ̂1(m−1)+σ̂2(m−1)

balls of

type 2 are added to the urn after the mth patient has been randomly assigned.

The test statistics at time t is then

Zt =
µ̂1(bntc)− µ̂2(bntc)√

σ̂1(bntc)2

N1(bntc) + σ̂2(bntc)2

N2(bntc)

.

2.2.3 Incorporation of sample size re-estimation

Next, I implement sample size re-estimation in the above procedure of sequential

monitoring of SEU models. In this chapter, I assume non-decrease of sample size as

recommended by (FDA, 2010). Suppose I have K interim analyses at information time

points t1, . . . , tL, . . . , tK , and I implement SSR at the end of the Lth interim analysis

(L < K) based on the observed data using the method in Cui et al. (1999). Define the

treatment effect (∆) as

∆ =
µ1 − µ2√
σ2

1

v1

+
σ2

2

v2

for normal distribution and

∆ =
p1 − p2√
p1q1

v1

+
p2q2

v2

for binary responses. Because Bt −
√
n∆t is asymptotically standard Brownian Motion

according to Zhu and Hu (2012), the conditional power, CPL, given the observed treat-

ment effect (∆) and the test statistics (Zt) at time t = tL with sample size N can be
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calculated in this way

CPL = P (Z1 > C|Zt,∆)

= P (Z1 −
√
n∆ > C −

√
n∆|Zt,∆)

= P
(
Z1 −

√
n∆− (

√
tZt −

√
n∆t) > C −

√
n∆− (

√
tZt −

√
n∆t)|Zt,∆

)
= P

(
Z1 −

√
n∆− (

√
tZt −

√
n∆t)√

1− t
>
C −
√
n∆− (

√
tZt −

√
n∆t)√

1− t
|Zt,∆

)
= 1− Φ

(
C −
√
tZt −

√
n∆(1− t)√

1− t

)
where Φ(·) is the CDF of the standard normal distribution, and C is the final critical

value at the end of the trial. Specifically, I re-estimate the sample size as follows:

(1) Estimate the treatment effect (∆) and calculate the test statistics (Zt) at time t = tL

based on observed sample size N.

(2) If the conditional power, CPL, calculated by plugging in the estimated treatment

effect and observed test statistics from step (1) for originally planned sample size n is

not less than the desirable level cp1, then no SSR will be implemented. Otherwise, if the

CPL is more than 0.01, search n∗ that satisfies CPL = cp1.

(3) Then I increase the original sample size at stages k ≥ L + 1 by a multiplier of

b = min(b∗, bmax), where bmax is a prespecified maximum sample size factor, and b∗ =

(n∗ −N)/(n−N).

Then I can use the following new sequential statistics to perform sequential monitoring

Ut =


Zt, if t ≤ tL;

[w(tL, t)]
1/2 × ZtL + [1− w(tL, t)]

1/2×

{[B(b(t− tL) + tL)−B(tL)]/[b(t− tL)]1/2}, if t > tL,

(2.6)

where w(tL, t) = tL/t, B(t) =
√
tZt.
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2.2.4 Asymptotic results

We need the following assumptions for responses ξn, addition rulesDn = D(Θ̂(n−

1), ξn) and the function H(x).

(A1) There exists a constant γ > 0 such that H1′ = γ1′ and 1 = (1, . . . , 1). In addition,

H has the following Jordan decomposition:

T−1HT = γdiag [1,J2, . . . ,Js]

where Js is a νt × νt matrix, given by

Jt =



λt 1 0 . . . 0

0 λt 1 . . . 0

0 0 λt . . . 0

...
...

...
. . .

...

0 0 0 . . . λt


,

and T and Jt are functions of Θ.

(A2) E‖ξ1‖r <∞ for some r > 2.

(A3) The addition rules Dn ≥ 0 are bounded.

(A4) H(x) is twice differentiable.

Theorem 2.1. Let BU
t =
√
tUt. If Assumptions (A1)-(A4) are satisfied, then under H0,

BU
t converges to a standard Brownian motion in distribution. The sequential statistics

{(Ut1 , . . . , UtK ), 0 ≤ t1 ≤ t2 ≤ ... ≤ tK ≤ 1} follows the asymptotic canonical joint

distribution defined in Jennison and Turnbull (2000): under H0,

(i) {Ut1 , ..., UtK} is multivariate normal;
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(ii) EUti = 0;

and (iii) Cov(Uti , Utj) =
√
bntic/bntjc, 0 ≤ ti ≤ tj ≤ 1.

The proof is given in the Appendix.

This theorem reveals the most fundamental properties for the proposed method,

i.e., the asymptotic joint distribution of the sequential statistics. Therefore, a variety of

future research and methods can be performed based on this result, among which the

control of the type I error rate is the focus of this chapter. Since the asymptotic joint

distribution of the sequential statistics is the asymptotic canonical joint distribution

defined in Jennison and Turnbull (2000), all the methods based on this distribution in

that book and in other papers such as Pocock’s test, O’Brien and Fleming’s test, the

tests of Wang and Tsiatis (1987), the tests of Haybittle (1971) and Peto et al. (1976),

the equivalence test, spending functions, stochastic curtailment, and repeated confidence

intervals can be used to control the type I error rate for this procedure and to provide

important information for DSMB to make decision about whether to continue the trial. In

this chapter, I use the alpha spending function mimicking the O’Brien Fleming boundaries

as follows,

αOBF (t) = 2
(

1− Φ
(
zα/2/

√
t
))

.

If I perform the sequential monitoring at information time t1 = 0.2, t2 = 0.5, and t3 = 1,

the corresponding boundaries are C1 = 4.877, C2 = 2.963, C3 = 1.969 (Proschan et al.,

2006).

2.3 Numerical and simulation studies

In this section, I study the finite-sample properties of my proposed methods using

the three SEU models in Example 1-3, and compare the SEU models with complete

randomization. Assume that the originally planned sample size is n = 500 with three
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interim looks at information time t1 = 0.2 (n1 = 100), t2 = 0.5 (n2 = 250), and t3 =

1 (n = 500). The corresponding O’Brien-Fleming-like spending function boundaries are

C1 = 4.877, C2 = 2.963, C3 = 1.969. I implement SSR if the trial is determined to

continue after the second interim analysis. The cap of the sample size at stage 3 is

500. In this case, w(t2, t3) = 0.5 and bmax = 2. The datasets are generated based on

different parameter combinations shown in the tables. All the results are based on 10, 000

replications.

Table 2.1 summarizes the results of the SEU model in Example 1. The initial urn

composition is Y (0) = (5, 5), and the randomization procedure will follow the rule of urn

models explained before. If I decide to continue the trial after the second interim look as

described in Section 2.2.3, I calculate the conditional power based on the observed data. If

the conditional power is less than 0.9, I increase the sample size to make the conditional

power to be 0.9. I report the type I error rate (α) (the proportion of the number of

rejections of H0 out of 10,000 replications, and the intended value is 0.025) and the

average and standard deviation of the following values out of 10, 000 replications: actual

allocation proportion in treatment 1 (ρ̂1 = N1/(N1 +N2)), urn compositions represented

by the proportion of balls of type 1 ( ˆUrn1 = Y1/(Y1 + Y2)), total sample size (SS), total

failure number (failure) and failure rate (failrate) considering the total sample sizes are

different. I found that my proposed method can control the type I error rate very well.

From the results that both ρ̂1 and ˆUrn1 are close to 0.5, I can see that my method

converges very well. My method does not increase the total sample size.

Table 2.2 reports the empirical power and the average and standard deviation of

the following values out of 10, 000 replications: actual allocation proportion in treatment

1 (ρ̂1), urn compositions represented by the proportion of balls of type 1 ( ˆUrn1), total

sample size (SS), total failure number (failure) and failure rate (failrate). I find that my

proposed method can assign more patients to the better treatment and lead to fewer
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failures while controlling the power at the same level as complete randomization (CR),

which is consistent with the objective of the optimal allocations (2.3).

In Table 2.3, I study the SEU model in example 2. Other settings are the same as

in Table 1. I obtain similar conclusions as in Table 2.1. In Tables 2.1 and 2.3, since there

is no treatment effects, the targeted allocation proportions for both SEU models are equal

allocation. Therefore, the SEU models perform equivalently to complete randomization

in terms of allocation proportion and number of failures. In Tables 2.1 and 2.3, I focus on

the results of type I error rate. In Table 2.4, I study the performance of RPW rule under

H1. I find that my proposed method can assign more patients to the better treatment

and lead to fewer failures, which is consistent with the objective of the urn allocations

(2.4).

In Table 2.5, I study the performance of the SEU model in Example 3 under H0.

In order to get the initial estimate of unknown parameter to update the urn, I randomly

assign 20 patients to the two treatments equally. I found that my proposed method can

control the type I error rate very well. From the results of ρ̂1 and ˆUrn1, I can see that

my method converges very well. In Table 2.6, I study the performance of the SEU model

in Example 3 under H1. I can see that the SEU model targeting the Neyman allocation

can increase the power.

2.4 Conclusion

RAR designs have been well-accepted to better achieve various ethical and efficient

objectives. In order to promote its application in real clinical trials, it is necessary to

study statistical properties of combining RAR and the commonly used procedures in

clinical trials, such as sequential monitoring and sample size re-estimation. This chapter

addressed this problem using urn models. I established asymptotic results of the proposed

method and performed comprehensive simulations to demonstrate that I can control the
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type I error rate with advantages of assigning more patients to the better treatments,

increasing the power and stopping the trial earlier if necessary.

In this chapter, I used alpha spending function to control the type I error rate.

Other methods such as the optimal spending functions in Anderson (2007) and the beta

spending functions in DeMets (2006) can be investigated. I assumed that the responses

are immediately available, which is not always true in real clinical trials. However,

there is no difficulty in incorporating delayed responses into the RAR procedure (Hu

and Rosenberger, 2006). We can always update the parameter estimators with collected

data. It is worth noting that Bai et al. (2008) and Hu and Zhang (2004) showed that

the asymptotic results for GFU were not be affected if the response time is reasonably

large compared to the entry time intervals. Hu et al. (2008) studied the effect of delayed

responses on DBCD. I leave these for future research.
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Chapter 3

Sequential monitoring of randomized

clinical trials with CAR and SSR-All

randomization covariates are

included in the data analysis

Abstract: Clinical trials are usually complex and involve multiple covariates of inter-

est. Therefore, incorporating covariates into randomization design is of special impor-

tance. In particular, it is well accepted that the balance of treatment allocation among

subgroups defined by covariates is critical in evaluating treatment effects without bias.

Covariate-adaptive randomization (CAR) procedures have been proposed to achieve this

aim. Sequential monitoring and sample size re-estimation are also commonly used in

managing clinical trials. In this chapter, I conduct theoretical and simulation study

on the sequential monitoring of CAR with sample size re-estimation (SSR). It is worth

noting that all the three procedures cause complex interdependence among responses,

treatment assignments, covariates, and sequential statistics. I overcame these difficul-

45



ties, and derived the asymptotic distribution of the proposed sequential statistics and

evaluated the type I error rate via simulations.

3.1 Introduction

It is well accepted that the balance of treatment allocation among subgroups de-

fined by covariates is critical to properly assess the treatment effects in clinical trials.

Covariate-adaptive randomization (CAR) procedures sequentially assign the patients

based on previous assignments and covariates, and the current covariate profile in or-

der to achieve this aim and increases the credibility of a trial (Rosenberger and Lachin,

2015). Stratified permuted block (SPB) randomization is the most efficient way when

there are a small number of covariates and small numbers of levels within each covariate

(Zelen, 1974). SPB employs permuted block randomization separately within each stra-

tum formed by crossing of covariates levels. However, when there are a larger number

of covariates or many levels within certain covariates, the number of patients belonging

to each stratum is typically very small, and SPB will work more like complete random-

ization. As a result, minimization (Taves, 1974) has been proposed to achieve allocation

balance on covariate margins, instead of within strata. Pocock and Simon’s design has

been described in Chapter 1 of the dissertation. Other research on CAR is in Nordle and

Brantmark (1977), Wei (1978), Signorini et al. (1993), Heritier et al. (2005), and Hu

and Hu (2012). CAR has been widely acknowledged to be able to achieve the balance

of covariates across treatments (Rosenberger and Lachin, 2015). However, it raised con-

cerns about its impact on statistical inference due to the complicated dependence among

covariates, treatment assignments and responses and the discreteness of the allocation

function.

The history of general sequential monitoring and sample size re-estimation has

been offered in Chapter 2. For this current chapter, it is worth noting that Jennison
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and Turnbull (1997) discussed group sequential analysis methods incorporating covariate

information through linear models, general parametric regression models and survival

models. However, they did not take into account the problems caused by CAR and the

scenario where not all the randomization covariates were included in the data analysis.

In this chapter, I formulated a general framework for sequential monitoring clinical

trials using CAR design, linear regression models with all the randomization covariates

for analysis and SSR procedure. In the next chapter, I study the sequential monitor-

ing of clinical trials with the CAR design, linear regression models with a subset of the

randomization covariates for analysis and SSR procedure. I defined sequential statistics

and derived its asymptotic distribution to be a Brownian motion under null hypothesis.

Therefore, classic Brownian motion critical values for sequential monitoring can be used

for the proposed procedure to control the type I error rate. I performed extensive simu-

lations and the results demonstrated that my proposed approaches can control the type

I error rate well.

In Section 2.2, I introduce the notation, framework, my proposed methods, and

theoretical findings. In Section 2.3, I offer results from simulation results. Conclusions

are in Section 2.4.

3.2 Sequential monitoring of CAR with SSR when

all the randomization covariates are in the data

analysis
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3.2.1 Framework

Consider a two-arm randomized controlled clinical trial with originally planned

n subjects to be sequentially allocated by CAR procedures. Let Ti (i = 1, . . . , n) be

the treatment assignment(Ti = 1 if treatment 1; Ti = 0 if treatment 2). Assume

that the covariates (X1, . . . , Xp) are used to implement CAR and included in the data

analysis. For simplicity, we only consider one-dimensional covariates, but it is easy

to generalize the results to multi-dimensional covariates. Assume that all the covari-

ates are independent and their expectations are all 0 without loss of generality, i.e.,

E(Xik) = 0, i = 1, . . . , n, k = 1, . . . , p. In addition, the errors are assumed to be indepen-

dent. Assume that the ith subject’s response Yi follows the linear model:

Yi = µ1Ti + µ2(1− Ti) +Xi1β1 + . . .+Xipβp + εi, (3.1)

where µ = (µ1, µ2)T is the treatment effect vector for treatments 1 and 2 respectively,

(β1, . . . , βp) are unknown parameters for covariate effects, and the εi are independent

errors with mean 0 and variance σ2. Here, we do not have to assume the errors follow

normal distribution. We write η = (µ1, µ2, β1, . . . , βp)
T , T (n) = (T1, . . . , Tn)T , Y (n) =

(Y1, . . . , Yn)T , ε(n) = (ε1, . . . , εn)T and

X(n) =



T1 1− T1 X11 . . . X1p

T2 1− T2 X21 . . . X2p

...
...

...
. . .

...

Tn 1− Tn Xn1 . . . Xnp


.

So we have

Y = Xη + ε.
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CAR designs are usually applied with discrete covariates. When implementing CAR

using continuous covariates, I first discretize these continuous covariates, and apply CAR

designs with respect to the discretized covariates. Specifically, let

X̃j =
{ Xj if j /∈ C

dj(Xj) if j ∈ C

where C = {l : index of continuous covariates among Xl, l = 1, . . . , p} and dj(·) is the

discrete function.

In this chapter, I perform the following hypothesis testing to compare two treat-

ments in clinical trials:

H0 : µ1 = µ2 versus µ1 6= µ2. (3.2)

Let b·c denote the floor function and t = N/n be the information time when N is the

number of enrolled patients. A widely used test statistic including all the randomization

covariates in the data analysis to test the hypothesis (3.2) at time point t ∈ (0, 1] is

Zt =
Lη̂(t)√

σ̂(t)2L(X(bntc)TX(bntc))−1LT
, (3.3)

where L = (1,−1, 0, . . . , 0), η̂(t) = (X(bntc)TX(bntc))−1X(bntc)TY (bntc),

σ̂(t)2 = [Y (bntc)−X(bntc)η̂(t)]T [Y (bntc)−X(bntc)η̂(t)]/(bntc−p−2). These sequen-

tial statistics (3.3) are the commonly used ones including t-test statistic as a special case

when no covariates are included in the model.

3.2.2 Incorporation of sample size re-estimation

We implement SSR in the same way as Section 2.2.3. Note that in this chapter, I

are discussing two-sided hypothesis testing while one-sided hypothesis testing was studied

in Chapter 2. The conditional power for the two-sided hypothesis testing can be obtained
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as follows. According to Zhu and Hu (2018), Bt −
√
n∆t is asymptotically standard

Brownian motion, where

∆ =
µ1 − µ2√
σ2

1

v1

+
σ2

2

v2

for normal distribution and

∆ =
p1 − p2√
p1q1

v1

+
p2q2

v2

for binary responses. Therefore, I have

CPL = P (|Z1| > C|Zt,∆)

= P (Z1 > C or Z1 < −C|Zt,∆)

= P (Z1 −
√
n∆ > C −

√
n∆ or Z1 −

√
n∆ < −C −

√
n∆|Zt,∆)

= P (Z1 −
√
n∆− (

√
tZt −

√
n∆t) > C −

√
n∆− (

√
tZt −

√
n∆t)|Zt,∆)

+P (Z1 −
√
n∆− (

√
tZt −

√
n∆t) < −C −

√
n∆− (

√
tZt −

√
n∆t)|Zt,∆)

= P

(
Z1 −

√
n∆− (

√
tZt −

√
n∆t)√

1− t
>
C −
√
n∆− (

√
tZt −

√
n∆t)√

1− t
|Zt,∆

)
+P

(
Z1 −

√
n∆− (

√
tZt −

√
n∆t)√

1− t
<
−C −

√
n∆− (

√
tZt −

√
n∆t)√

1− t
|Zt,∆

)
= 1− Φ

(
C −
√
tZt −

√
n∆(1− t)√

1− t

)
+ Φ

(
−C −

√
tZt −

√
n∆(1− t)√

1− t

)

3.2.3 Asymptotic results

We need the following notations to formulate the main theorem in this chapter.

Suppose X̃k has sk levels, and letWi = (xc1i1 , . . . , x
cp
ip) represents the ith subject’s covariate

profile if X̃ik is at level xckik , k = 1, ..., p. Let DIFn be the overall difference in patient

numbers between two treatments after n patients have been enrolled in the trial; similarly,

let DIFX
n (k; ck) be the marginal difference with respect to the level xckk of covariate X̃k;

let DIFn(c1, . . . , cp) be the difference in patient numbers in the stratum containing the

subjects with covariates (xc11 , . . . , x
cp
p ).
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Theorem 3.1. Let BU
t =

√
tUt. Assume the CAR design satisfies DIFn = Op(1) and

DIFX
n (k; ck) = Op(1), k = 1, . . . , p. Then under H0, BU

t is asymptotically a standard

Brownian motion in distribution. The sequential statistics {(Ut1 , . . . , UtK ), 0 ≤ t1 ≤ t2 ≤

... ≤ tK ≤ 1} has the asymptotic canonical joint distribution defined in Jennison and

Turnbull (2000), i.e., under H0,

(i) {Ut1 , ..., UtK} follows multivariate normal distribution;

(ii) EUti = 0;

(iii) Cov(Uti , Utj) =
√

[nti]/[ntj], 0 ≤ ti ≤ tj ≤ 1.

The proof is given in the Appendix.

This theorem reveals the most fundamental properties for the proposed method,

i.e., the asymptotic joint distribution of the sequential statistics. Therefore, a variety of

future research and methods as introduced in Chapter 2 can be performed based on this

result, among which the control of the type I error rate is the focus of this chapter. I also

note that the conditions, DIFn = Op(1) and DIFX
n (k; ck) = Op(1), k = 1, . . . , p, hold for

a variety of CAR procedures including as stratified permuted block randomization and

Pocock ans Simons’s design.

3.3 Numerical and simulation studies

In this section, I study the finite-sample properties of the proposed procedure.

For all the tables, suppose originally planned 500 patients sequentially enter a clinical

trial, and the responses follow

Yi = µ1Ti + µ2(1− Ti) +Xi1β1 +Xi2β2 + εi, i = 1, . . . , 500, (3.4)

where (µ1, µ2, β1, β2) are unknown parameters, and εi are independent errors from the
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normal distribution N(0, 1). In different tables, I compare the stratified permuted block

randomization (SPB), Pocock and Simon’s procedure (PS) and complete randomization

(CR). The CAR designs will be applied with respect to both X1 and X2, and different

distributions of these two covariates will be considered. In this chapter, the sequential

data analysis are all based on the model (3.4). Equivalently, it can be written as

Yi = β0 + βTTi +Xi1β1 +Xi2β2 + εi, i = 1, . . . , 500, (3.5)

that is, all the randomization covariates are used in the data analysis. I implement SSR

if the trial is determined to continue after the second interim analysis. The cap of the

sample size at stage 3 is 500. In this case, w(t2, t3) = 0.5 and bmax = 2. All the results

are based on 10,000 replications.

In Table 3.1, I report results for SPB and complete randomization when both

X1 and X2 are binary covariates with success rates of p1 and p2, respectively. I offer

results for type I error rate (α) (the proportion of the number of rejections of H0 out of

10,000 replications, and the intended value is 0.05), average and standard deviation of

the following values out of 10,000 replications: estimates of β1, β2 and βT . I can see that

my method can control the type I error rate very well, and estimate the parameters very

accurately.

In Table 3.2, I report results for SPB and complete randomization when both X1

and X2 follow standard normal distribution. When the CAR procedures are implemented

with Xj, j = 1, 2, I discretize them in the following way:

x̃ =
{ 1 if x < zpj

0 if x ≥ zpj

,

where zpj is the pj-quantile of the standard normal distribution. However, the original
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continuous covariates will be included in the data analysis. I can see that my method

can control the type I error rate very well, and estimate the parameters very accurately.

In Table 3.3, I report results for Pocock and Simon’s design (PS) and complete

randomization when both X1 and X2 are binary covariates with success rates of p1 and

p2, respectively. I found that my proposed method can control the type I error rate

very well and estimate the parameters very accurately. In Table 3.4, I report results for

Pocock and Simon’s design and complete randomization when both X1 and X2 follow

standard normal distribution. I use the same way as in Table 3.2 to implement CAR. I

get similar conclusion as in Table 3.3.

In Table 3.5, I offer results about the covariate imbalance for the scenario of Table

3.1. I report the average and standard deviation of the following values out of 10,000

replications: overall difference in patient numbers between the two treatments (DIFn),

the differences of patient numbers between the two treatments in the four stratum (DIFgh

for X1 = g and X2 = h, g, h = 0, 1). In Table 3.6, I report results about the covariate

imbalance for the scenario of Table 3.2. In this Table, DIFgh refers to the stratum-level

treatment assignment difference corresponding to the discretized covariates. I can see

that compared to complete randomization, the overall and stratum imbalance can be

controlled much better by my proposed method.

In Table 3.7, I report results about the covariate imbalance for the scenario of

Table 3.3. In addition to the overall and stratum level imbalance, I also reported the

marginal imbalance: DIF1· is the marginal imbalance for X1 = 1, DIF0· is the marginal

imbalance for X1 = 0, DIF·1 is the marginal imbalance for X2 = 1, DIF·0 is the marginal

imbalance for X2 = 0. I found that Pocock and Simon’s design will return better balance

in all levels: overall, marginal and stratum. Compared to the stratum imbalance, Pocock

and Simon’s design can control the marginal and overall imbalance better. In Table 3.8,

I report results about the covariate imbalance for the scenario of Table 3.4. As in Table
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3.6, the stratum and marginal level imbalance corresponds to the discretized covariates.

I got similar conclusion as in Table 3.7.

3.4 Conclusion

Covariate-adaptive randomization designs including stratified permuted block ran-

domization (Zelen, 1974) and Pocock and Simon’s design (1975) are the most popular

randomization design in the Phase III confirmatory clinical trials. Due to ethical, ad-

ministrative and economic reasons, sequential monitoring is desirable in such large clin-

ical trials. Sample size re-estimation is often necessary to guarantee the power of the

trial. However, there is no comprehensive theoretical study on sequential monitoring of

covariate-adaptive clinical trials with sample size re-estimation because all the three pro-

cedures have adaptive properties and simple statistical theory based on independently

and identically distributed responses is not applicable here. In this chapter, I studied the

theoretical and numerical properties for this complex procedure. The proposed methods

can successfully control the type I error rate demonstrated by the numerical study and

supported by the theoretical results.

This chapter opens a door to future research topics. First, I consider the scenario

that all the covariates used in the randomization procedures are used in the data analysis.

However, in practice, clinical trial practitioners often use part of these randomization

covariates or even just t-test in the data analysis. The reasons include: (i) researchers

cannot explain the practical meaning of certain covariates effects; (ii) a large number of

covariates in the model will lead to theoretical difficulties; (iii) the justification of the

model specification becomes more difficult if more covariates are included in the model.

I will study these scenarios in next chapter. Second, in this dissertation, I use the idea of

Cui et al. (1999) to solve the problem of type I error rate, and offer lots of insight for other

approaches such as the Fisher’s product combination test proposed by Bauer and Köhne
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(1994) and the weighted inverse normal method proposed by Lehmacher and Wassmer

(1999). Third, Zhang et al. (2007) proposed the covariate-adjusted response-adaptive

randomization (CARA) that takes into account all the previous treatment assignments,

responses, covariates and the current covariate to achieve different ethical and efficient

aims. The study on sequential monitoring of clinical trials with CARA and SSR is lacking

in the literature. I leave all these for future research.
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Chapter 4

Sequential monitoring of randomized

clinical trials with CAR and SSR-A

subset of the randomization

covariates are included in the data

analysis

Abstract: In Chapter 3, I studied the sequential monitoring of covariate-adaptive ran-

domized clinical trials with sample size re-estimation under the scenario where all the

randomization covariates are included in the data analysis. That is recommended practice

in clinical trials, but the comprehensive theoretical support is lacking in the literature.

Therefore it is worth studying it and offering practical guidance for clinical trials. Another

related but different topic is how to control the type I error rate when sequentially mon-

itoring the covariate-adaptive randomized clinical trials with sample size re-estimation

under the scenario where only a subset of the randomization covariates are included in
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the data analysis. Numerical studies showed that the type I error rate is conservative,

but in practice, clinical trial practitioners often do not include all the randomization co-

variates into the data analysis, which raised lots of concerns. Therefore, it is necessary to

theoretically and numerically study this scenario. In this chapter, I proposed approaches

to control the type I error rate, and performed theoretical and numerical studies on this

procedure.

4.1 Introduction

The significance of covariate-adaptive randomization, sequential monitoring and

sample size re-estimation have been introduced in Chapter 3. In this chapter, I discussed

a situation raising lots of concerns. Theoretical and applied researchers all realized a

common situation in real clinical trials: only some of the randomization covariates are

included in the data analysis such as t-test. For example, Lai et al. (2006) studied the

impact of music on maternal anxiety in kangaroos in a clinical trial where permuted block

randomization stratified on gender was used to allocate the kangaroos and a t-test was

used to perform the data analysis. There are many practical reasons for this scenario, (i)

researchers cannot explain the practical meaning of certain covariates effects; (ii) a large

number of covariates in the model will lead to theoretical difficulties; (iii) the justification

of the model specification becomes more difficult if more covariates are included in the

model.

Shao et al. (2010) is one of the most influential papers in this research topic, and

they provided the following propositions: (1) a test that is valid under any fixed treat-

ment allocation is valid under simple randomization and Efron’s biased coin design; (2)

analysis of covariance is valid if the covariates used in randomization are a function of the

covariates used in the analysis. For linear regression with univariate covariate, they also

proved that (3) the two-sample t-test under stratified randomization with Efron’s biased
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coin design employed within each stratum has a conservative type I error rate. Their

explanation is that the stratified randomization procedure leads to dependence between

the two samples and the variance estimator in the t-statistic ignores this correlation and

overestimates the true variance of the estimator of the treatment effects. In addition,

they proposed the bootstrap method to find an unbiased estimator for the true variance

and the bootstrap t-test to control the correct type I error rate. Shao and Yu (2013)

studied this topic for generalized linear models. Further, Ma et al. (2015) further gen-

eralized the above results to a family of CAR design and allow more covariates in the

model.

Another influential paper in this field is Ma et al. (2015). Shao et al. (2010) has

several limitations. First, they focused one special randomization design that does not

include many other popular CAR designs such as minimization designs as special cases.

Second, they focused on the linear model with only one covariate, which is obviously not

enough in practice. Ma et al. (2015). addressed these two problems, and offered theoret-

ical results for a general family of linear models with multiple covariates and a general

family of CAR designs including the popular stratified permuted block randomization

and the Pocock and Simon’s design (1975). Their results are based on an easily satisfied

condition that the difference in the patient numbers in the two treatment arms on any

covariate margin is bounded in probability. This chapter will follow the framework of

Ma et al. (2015).

In this chapter, I proposed a general framework for sequential monitoring clinical

trials using CAR design for randomization, linear regression models with part of the

randomization covariates or none of the randomization covariates (t-test) for analysis

and SSR procedure. By simulation, I found that originally worked method in Chapter 3

will not work in this scenario and the type I error rate is conservative. Then I proposed

numerical methods to fix this problem and control the type I error rate. I performed
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extensive numerical studies and the results demonstrated that my proposed approaches

can control the type I error rate very well.

In Section 4.2, I introduce the notations, framework, my proposed methods, and

theoretical findings. In Section 4.3, I offer results from numerical results. Conclusions

are in Section 4.4.

4.2 Sequential monitoring of CAR with SSR when

part or none of the randomization covariates are

in the data analysis

4.2.1 Framework

As in Chapter 3, assume that n originally planned subjects are sequentially al-

located to a two-arm randomized controlled clinical trial by CAR procedures. Let Ti

(i = 1, . . . , n) be the treatment assignment (Ti = 1 if treatment 1; Ti = 0 if treatment

2). In this chapter, in addition to the covariates, (X1, . . . , Xp), I introduce another sets

of covariates, (V1, . . . , Vq) to fit the scenario where part of the randomization covari-

ates are omitted from the data analysis. That is, (X1, . . . , Xp) represent the covariates

used for both CAR design and data analysis, and (V1, . . . , Vq) represent those covari-

ates that are used for CAR, but are excluded for data analysis. Assume that all the

covariates are independent and their expectations are all 0 without loss of generality, i.e.,

E(Xik) = 0, E(Vij) = 0, i = 1, . . . , n, k = 1, . . . , p, j = 1, . . . , q. In addition, the errors are

assumed to be independent with the covariates. Assume that the ith subject’s response

Yi follows the linear model:

Yi = µ1Ti + µ2(1− Ti) +Xi1β1 + . . .+Xipβp + Vi1γ1 + . . .+ Viqγq + εi, (4.1)
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where µ1 and µ2 are the treatment effects for the treatments 1 and 2, respectively,

(β1, . . . , βp) and (γ1, . . . , γq) are unknown parameters for covariate effects, and the εi

are independent errors with mean 0 and variance σ2. Here, I do not have to assume

the errors follow normal distribution. I write µ = (µ1, µ2)T , η = (µ1, µ2, β1, . . . , βp)
T ,

T (n) = (T1, . . . , Tn)T , Y (n) = (Y1, . . . , Yn)T , ε(n) = (ε1, . . . , εn)T and

X(n) =



T1 1− T1 X11 . . . X1p

T2 1− T2 X21 . . . X2p

...
...

...
. . .

...

Tn 1− Tn Xn1 . . . Xnp


.

CAR designs are usually applied with discrete covariates. When implementing

CAR using continuous covariates, I first discretize these continuous covariates, and apply

CAR designs with respect to the discretized covariates. Specifically, let

X̃j =
{ Xj if j /∈ C

dj(Xj) if j ∈ C

and

Ṽj =
{ Vj if j /∈ C∗

d∗j(Vj) if j ∈ C∗
,

where C = {l : index of continuous covariates among Xl, l = 1, . . . , p}, C∗ = {l :

index of continuous covariates among Vl, l = 1, . . . , q}, and dj(·) and d∗j(·) are discrete

functions.

In this chapter, I perform the following hypothesis testing to compare two treat-

ments in clinical trials:

H0 : µ1 = µ2 versus µ1 6= µ2. (4.2)
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Let b·c denote the floor function and t = N/n be the information time when N is the

number of enrolled patients. There are two special cases when not all the randomization

covariates are used in the data analysis. First, only part of the covariates, (X1, . . . , Xp),

are included in the data analysis. Then the sequential statistic to test the hypothesis

(4.2) at time point t ∈ (0, 1] is

Zt =
Lη̂(t)√

σ̂(t)2L(X(bntc)TX(bntc))−1LT
, (4.3)

where L = (1,−1, 0, . . . , 0), η̂(t) = (X(bntc)TX(bntc))−1X(bntc)TY (bntc),

σ̂(t)2 = [Y (bntc)−X(bntc)η̂(t)]T [Y (bntc)−X(bntc)η̂(t)]/(bntc− p− 2). Second, none

of the covariates are used in the data analysis, which is the t-test or equivalently fitting

the following model:

Yi = µ1Ti + µ2(1− Ti) + εi, i = 1, . . . , n. (4.4)

In this case, I do not have the covariates (X1, . . . , Xp), and the responses follow:

Yi = µ1Ti + µ2(1− Ti) + Vi1γ1 + . . .+ Viqγq + εi, i = 1, . . . , n. (4.5)

Let Q = (1,−1) and

Tr(n) =



T1 1− T1

T2 1− T2

...
...

Tn 1− Tn


.
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Then the sequential statistic to test the hypothesis (4.2) at time point t ∈ (0, 1] is

Z ′t =
Qµ̂(t)√

σ̂(t)2Q(Tr(bntc)TTr(bntc))−1QT
, (4.6)

where µ̂(t) = (Tr(bntc)TTr(bntc))−1Tr(bntc)TY (bntc),

σ̂(t)2 = [Y (bntc)− Tr(bntc)µ̂(t)]T [Y (bntc)− Tr(bntc)µ̂(t)]/(bntc − 2).

4.2.2 Incorporation of sample size re-estimation

In this chapter, I use the same SSR approach as in Chapter 3. The following

sequential statistics were used in Chapter 3 and the type I error rate was successfully

controlled when all the randomization covariates are included in the data analysis.

Ut =


Zt, if t ≤ tL;

[w(tL, t)]
1/2 × ZtL + [1− w(tL, t)]

1/2×

{[B(b(t− tL) + tL)−B(tL)]/[b(t− tL)]1/2}, if t > tL,

(4.7)

where w(tL, t) = tL/t, B(t) =
√
tZt.

We first perform numerical study to investigate whether the same method can work

when not all the randomization covariates are included in the data analysis. For all the

tables, suppose originally planned 500 patients sequentially enter a clinical trial, and the

responses follow

Yi = µ1Ti + µ2(1− Ti) +Xi1β1 +Xi2β2 + εi, i = 1, . . . , 500, (4.8)

where (µ1, µ2, β1, β2) are unknown parameters, and εi are independent errors from the

normal distribution N(0, 1). Here I do not distinguish the notation X and V to save

space. The CAR designs will be applied with respect to both X1 and X2, and different

distributions of these two covariates will be considered. I implement SSR if the trial is
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determined to continue after the second interim analysis. The cap of the sample size at

stage 3 is 500. In this case, w(t2, t3) = 0.5 and bmax = 2. All the results are based on

10,000 replications.

In Table 4.1, I report results for SPB when both X1 and X2 are binary covariates

with success rates of p1 and p2, respectively, and only X1 is included in the working model

as follows

Yi = β0 + βTTi +Xi1β1 + εi, i = 1, . . . , 500. (4.9)

I offer results for type I error rate (α), average and standard deviation of estimates of

β1 and βT out of 10,000 replications. In Table 4.2, I report results for SPB when both

X1 and X2 follow standard normal distribution and only X1 is included in the working

model as in Table 1. When the CAR procedures are implemented with Xj, j = 1, 2, I

discretize them in the following way:

x̃ =
{ 1 if x < zpj

0 if x ≥ zpj

,

where zpj is the pj-quantile of the standard normal distribution. However, the original

continuous covariates will be included in the data analysis. I get similar conclusions as in

Table 4.1. In Table 4.3, I report results for Pocock and Simon’s design (PS) when both

X1 and X2 are binary covariates with success rates of p1 and p2, respectively and only

X1 is included in the working model as in Table 4.1. In Table 4.4, I report results for

Pocock and Simon’s design when both X1 and X2 follow standard normal distribution

and only X1 is included in the working model as in Table 4.1. I use the same way as

in Table 4.2 to implement CAR. In all the tables, I can see that the type I error rates

are all conservative. But I can still estimate the parameters very accurately. In Tables

4.5-4.8, I perform numerical study for the similar scenarios to Tables 4.1-4.4, but use
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t-test statistics in the data analysis. I found the type I error rates are more conservative

but the unknown parameters can be estimated very well.

4.2.3 Asymptotic results

In this chapter, I propose to revise Zt and Z ′t and the corresponding Ut to control

the type I error rate.

Let

Zadj
t =

Lη̂(t)

ε̂(t)
√
σ̂(t)2L(X(bntc)TX(bntc))−1LT

, (4.10)

where ε̂(t)2 is any consistent estimator of

∑
j∈C∗

γ2
jσ

2
δj + σ2

σ2 +
q∑
j=1

V ar(VjγTj )

, (4.11)

σ2
δj = E

[
V ar

(
δj|d∗j(Vj)

)]
, and δj = Vj−E(Vj|d∗j(Vj)). Then I have the following theorem

for the scenario when part of the randomization covariates are included in the data

analysis.

Theorem 4.1. Let BU
t =

√
tUt. Assume the CAR design satisfies DIFn = Op(1),

DIFX
n (k; ck) = Op(1), k = 1, . . . , p, and DIF V

n (j; c∗j) = Op(1), j = 1, . . . , q. Then under

H0, BU
t is asymptotically a standard Brownian motion in distribution. The sequence of

test statistics {(Ut1 , . . . , UtK ), 0 ≤ t1 ≤ t2 ≤ ... ≤ tK ≤ 1} has the asymptotic canonical

joint distribution defined in Jennison and Turnbull (2000), i.e., under H0,

(i) {Ut1 , ..., UtK} follows multivariate normal distribution;

(ii) EUti = 0;

(iii) Cov(Uti , Utj) =
√
bntic/bntjc, 0 ≤ ti ≤ tj ≤ 1.

When t-test is used in the data analysis, I revise Z ′t in the following way and the
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corresponding Ut can be calculated. Let

Zadj′

t =
Qµ̂(t)

ε̂(t)
√
σ̂(t)2Q(Tr(bntc)TTr(bntc))−1QT

, (4.12)

where µ̂(t) = (Tr(bntc)TTr(bntc))−1Tr(bntc)TY (bntc),

σ̂(t)2 = [Y (bntc) − Tr(bntc)µ̂(t)]T [Y (bntc) − Tr(bntc)µ̂(t)]/(bntc − 2), and ε̂(t)2 is a

consistent estimator of ∑
j∈C∗

γ2
jσ

2
δj + σ2

σ2 +
q∑
j=1

V ar(VjγTj )

.

Then I have the following theorem.

Theorem 4.2. Let BU
t =

√
tUt. Assume the CAR design satisfies DIFn = Op(1) and

DIF V
n (j; c∗j) = Op(1), j = 1, . . . , q. Then under H0, BU

t is asymptotically a standard

Brownian motion in distribution. The sequence of test statistics {(Ut1 , . . . , UtK ), 0 ≤ t1 ≤

t2 ≤ ... ≤ tK ≤ 1} has the asymptotic canonical joint distribution defined in Jennison

and Turnbull (2000), i.e., under H0,

(i) {Ut1 , ..., UtK} follows multivariate normal distribution;

(ii) EUti = 0;

(iii) Cov(Uti , Utj) =
√
bntic/bntjc, 0 ≤ ti ≤ tj ≤ 1.

This theorem reveals the most fundamental properties for the proposed method,

i.e., the asymptotic joint distribution of the sequential statistics. From this theorem and

the numerical studies above, I can easily see and understand the conservativeness of the

type I error rates when not all the randomization covariates are included in the data

analysis, since ∑
j∈C∗

γ2
jσ

2
δj + σ2

σ2 +
q∑
j=1

V ar(VjγTj )

,

is always less than 1.

73



4.3 Numerical and simulation studies

In this section, I study the finite-sample properties of the proposed procedure.

For all the tables, suppose originally planned 500 patients sequentially enter a clinical

trial, and the responses follow

Yi = µ1Ti + µ2(1− Ti) +Xi1β1 +Xi2β2 + εi, i = 1, . . . , 500, (4.13)

where (µ1, µ2, β1, β2) are unknown parameters, and εi are independent errors from the

normal distribution N(0, 1). In different tables, I compare the stratified permuted block

randomization (SPB), Pocock and Simon’s procedure (PS) and complete randomization.

The CAR designs will be applied with respect to both X1 and X2, and different dis-

tributions of these two covariates will be considered. I implement SSR if the trial is

determined to continue after the second interim analysis. The cap of the sample size

at stage 3 is 500. In this case, w(t2, t3) = 0.5 and bmax = 2. It is worth noting that a

variety of approaches such as bootstraps can be used to obtain ε̂. In this dissertation, I

obtain ε̂ in the following way. At each interim look, I fit model (4.13) with full data to

obtain consistent estimators of the unknown parameters. I can also easily obtain consis-

tent estimators of σδj and V ar(Vj) based on the observed covariates due to the law of

large numbers. Thus the consistency of ε̂ follows the fundamental large-sample theory

(Lehmann, 2004). All the results are based on 10,000 replications.

In Tables 4.9-4.12, the sequential data analysis are all based on the model (4.9),

and the adjusted sequential statistics Ut are used. In Table 4.9, I report results for SPB

and complete randomization when both X1 and X2 are binary covariates with success

rates of p1 and p2, respectively. I offer results for type I error rate (α) (the proportion

of the number of rejections of H0 out of 10,000 replications, and the intended value is

0.05), average and standard deviation of the following values out of 10,000 replications:
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estimates of β1 and βT . I can see that my method can control the type I error rate very

well, and estimate the parameters very accurately.

In Table 4.10, I report results for SPB and complete randomization when both X1

and X2 follow standard normal distribution. When the CAR procedures are implemented

with Xj, j = 1, 2, I discretize them in the following way:

x̃ =
{ 1 if x < zpj

0 if x ≥ zpj

,

where zpj is the pj-quantile of the standard normal distribution. However, the original

continuous covariates will be included in the data analysis. I get similar conclusions as

in Table 4.9.

In Table 4.11, I report results for Pocock and Simon’s design (PS) and complete

randomization when both X1 and X2 are binary covariates with success rates of p1 and

p2, respectively. I found that my proposed method can control the type I error rate very

well and estimate the parameters very accurately. In Table 4.12, I report results for

Pocock and Simon’s design and complete randomization when both X1 and X2 follow

standard normal distribution. I use the same way as in Table 4.10 to implement CAR. I

get similar conclusion as in Table 4.11.

In Table 4.13, I report the covariate imbalance for the scenario of Table 4.9. I

report the average and standard deviation of the following values out of 10,000 repli-

cations: overall difference in patient numbers between the two treatments (DIFn), the

differences of patient numbers between the two treatments in the four stratum (DIFgh

for X1 = g and X2 = h, g, h = 0, 1). In Table 4.14, I report the covariate imbalance

for the scenario of Table 4.10. In this table, DIFgh refers to the stratum-level treatment

assignment difference corresponding to the discretized covariates. In these two tables, I

can see that compared to complete randomization, the overall and stratum imbalance can
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be controlled much better by my proposed method. In Table 4.15, I report the covariate

imbalance for the scenario of Table 4.11. I additionally report the marginal imbalance:

DIF1· is the marginal imbalance for X1 = 1, DIF0· is the marginal imbalance for X1 = 0,

DIF·1 is the marginal imbalance for X2 = 1, DIF·0 is the marginal imbalance for X2 = 0.

I found that Pocock and Simon’s design will return better balance in all levels: overall,

marginal and stratum. Compared to the stratum imbalance, Pocock and Simon’s design

can control the marginal and overall imbalance better. In Table 4.16, I report the co-

variate imbalance for the scenario of Table 4.12. In this table, the stratum and marginal

level imbalance corresponds to the discretized covariates. I got similar results to Table

4.15.

In Tables 4.17-4.20, I report results when the sequential data analysis are all based

on the t-test and the adjusted sequential statistics Ut are used. In these tables, I get

similar corresponding results as when I include only one covariate in the model for data

analysis.

4.4 Conclusion

The advantages and challenges of the combination of covariate-adaptive random-

ization, sequential monitoring and sample size re-estimation have been introduced in

Chapter 3. In practice, clinical trial practitioners are often reluctant to include all the

randomization covariates in the data analysis for different reasons, which introduces extra

problems. In this chapter, I study the theoretical and numerical properties for sequential

monitoring of covariate-adaptive clinical trials with sample size re-estimation when not

all the randomization covariates are included in the data analysis. I found that using

the approaches in Chapter 3 without adjustment will lead to conservative type I error

rate. The lower number of randomization covariates I include in the data analysis, the

more conservative the type error rate is. I proposed methods to adjust the sequential
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test statistics based on the theoretical results, and successfully controlled the type I error

rate demonstrated by the numerical study.

In addition to the future research fields mentioned in the conclusion of Chapter

3, it is worth proposing other approaches to adjust the test statistics to control the type

I error rate. Bootstrap is a natural idea to study, since the conservativeness of the type

I error rate comes from a wrong estimation of the variance of the estimator of treatment

difference. Other methods leading to a correct estimation of this variance can also be

investigated. The same problem occurs when CAR is used and longitudinal data analysis

is implemented. I leave all these for future research.
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Chapter 5

Conclusions

In this dissertation, I investigated sequential monitoring of clinical trials with

sample size re-estimation (SSR) under two different adaptive randomization designs, i.e.,

response-adaptive randomization (RAR) and covariate-adaptive randomization (CAR).

Response-adaptive randomization has been shown to have ethical and efficient

advantages such as assigning more patients to the better treatment and maximizing

the power of detecting the treatment differences. Its theoretical and numerical prop-

erties have been well studied. However, in order to apply RAR in real clinical trials,

more research is needed. In modern clinical trials, sequential monitoring and sample

size re-estimation are very popular and desirable. Clinical trial practitioners would like

to combine sequential monitoring, SSR and response-adaptive randomization in one trial

when considering whether to implement RAR in the trials. RAR assigns the next patient

based on previous treatment assignments and responses. Therefore, the commonly used

methods based on independently and identically distributed responses is not applicable

any more. Moreover, sequential monitoring involve interdependent sequential test statis-

tics. The critical step to control the type I error rate is to derive the joint distribution

of the sequential test statistics. Sample size re-estimation is adaptive. Therefore, I have

worked on the combination of three types of adaptive design in one trial. In this dis-
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sertation, I derived the joint distribution of the proposed sequential test statistics when

SSR is implemented. I also performed comprehensive numerical and simulation studies

to show that my proposed method can control the type I error rate well, and enhance

ethical and efficient aspects of clinical trials.

In real clinical trials, covariate-adaptive randomization designs including the strat-

ified permuted block randomization and Pocock and Simon’s design (1975) are popular

randomization design in Phase III confirmatory clinical trials. As mentioned above, se-

quential monitoring and SSR are also very popular in practice. As a result, sequential

monitoring of covariate-adaptive randomized clinical trials with SSR are very commonly

used. However, theoretical investigations on this procedure is lacking in the literature.

In particular, researchers realized that the type I error rate will be conservative if we do

not include all the covariates used in the CAR design in the data analysis. In summary,

I studied sequential monitoring of covariate-adaptive randomized clinical trials with SSR

for three scenarios: 1. all the randomization covariates are used in the data analysis; 2.

part of the randomization covariates are used in the data analysis; 3. none of the ran-

domization covariates are used in the data analysis (t-test). I also theoretically showed

that my method can control the type I error rate. The numerical and simulation studies

supported my theoretical findings.

There are many directions for future research. I have mentioned a few in previous

chapters. Here I emphasize one direction from the point of view of the adaptive random-

ization designs. Clinical trials often involve various covariates since the heterogeneity of

patients’ responses to a treatment is well-accepted as the development of Bioinformat-

ics. At the same time, the ethical and efficient considerations are expected to be dealt

with in clinical trials. Zhang et al. (2007) proposed covariate-adjusted response-adaptive

randomization in order to preserve the advantages of RAR while taking into account

the heterogeneity of patients’ responses to a treatment. However, this design requires
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quite difficult theoretical foundations. As a result, lots of fundamental properties are

unclear for this design. For example, when covariates are continuous, how can we define

the so-called allocation proportion. Even without SSR, how can we sequentially monitor

the CARA design while controlling the type I error rate. Traditional spending function

methods are based on standard Brownian motion with a fundamental assumption that

the increment of the monitoring statistic is independent. Brownian motion have been

used in many fields such as in dynamic systems and economics (Hu et al., 2003; Jumarie,

2006). Brownian motion provided a lot of useful theoretical results in monitoring clinical

trials (Lan and Wittes, 1988; Davis and Hardy, 1990, 1994). Although these methods

were derived under several assumptions, it is a common feature that the test statistic

forms a Brownian motion over the information time (Lachin, 2005). However in practice,

the assumptions may not be satisfied, since patients are followed for a long time period

and the test statistic is formed with aggregations from a group of patients. Fractional

Brownian motion is a model to deal with the long-memory stochastic processes due to

aggregation. Lai (2010) studies the boundaries under factional Brownian motion for five

α spending functions. A more comprehensive method to decide whether stopping or

continuing the trials was provided based on the new results. It is also worth studying

this scenario. I leave all these for future research.
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1969;4:31-5.

101



[7] Athreya KB, Karlin S. Limit theorems for the split times of branching processes.

Journal of Mathematics and Mechanics. 1967 Jan 1;17(3):257-77.

[8] Athreya KB, Karlin S. Embedding of urn schemes into continuous time Markov

branching processes and related limit theorems. The Annals of Mathematical Statis-

tics. 1968 Dec 1;39(6):1801-17.

[9] Bai ZD, Hu F, Shen L. An adaptive design for multi-arm clinical trials. Journal of

Multivariate Analysis. 2002 Apr 1;81(1):1-8.

[10] Bai ZD, Hu F, Rosenberger WF. Asymptotic properties of adaptive designs for

clinical trials with delayed response. In Advances In Statistics 2008 (pp. 263-280).

[11] Bartlett RH, Roloff DW, Cornell RG, Andrews AF, Dillon PW, Zwischenberger JB.

Extracorporeal circulation in neonatal respiratory failure: a prospective randomized

study. Pediatrics. 1985 Oct 1;76(4):479-87.
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APPENDIX

Proof of Theorem 2.1, 3.1, 4.1 and 4.2: Note that before involving sample size

re-estimation, the sequential statistics Zt defined in different chapters in this dissertation

are the same as those in Zhu and Hu (2012) (urn models) and Zhu and Hu (2018) (CAR).

Under the regularity conditions of the corresponding chapters, Theorem 2 of Zhu and

Hu (2012) proved that under H0, Bt =
√
tZt in Chapter 2 of this dissertation converges

to a standard Brownian motion in distribution. That is, {Zt1 , ..., ZtK} is multivariate

normal; EZti = 0; and Cov(Zti , Ztj) =
√

[nti]/[ntj], 0 ≤ ti ≤ tj ≤ 1. Theorem 2.1

of Zhu and Hu (2018) proved that under H0, Bt =
√
tZt in Chapter 3, Bt =

√
tZadj

t

and Bt =
√
tZadj′

t in Chapter 4 of this dissertation converge to a standard Brownian

motion in distribution. That is, {Zadj
t1 , ..., Zadj

tK
} is multivariate normal; EZadj

ti = 0; and

Cov(Zadj
ti , Z

adj
tj ) =

√
ti/tj, 0 ≤ ti ≤ tj ≤ 1. To save space, I use the notation Zt to

represent Zt, Z
adj
t and Zadj′

t hereafter to offer a unified proof for Theorem 2.1, 3.1, 4.1

and 4.2.

Note that in this dissertation, my test statistics Ut are defined as follows,

Ut = Zt, if t ≤ tL;

and

Ut = w
1/2
t ZtL + (1− wt)1/2Bb(t−tL)+tL −BtL

{b(t− tL)}1/2
, if tL ≤ t ≤ 1,

where wt = tL/t and b = (w − tL)/(1 − tL). Therefore, based on the conclusion of Zhu

and Hu (2012) and Zhu and Hu (2018), we only need to prove that the joint distribu-

tion of (Ut1 , . . . , UtK ) is the same as that of (Zt1 , . . . , ZtK ) under H0. Firstly, Ut is the

linear combination of Zt, so (Ut1 , . . . , UtK ) also follows multivariate normal distribution.

Next, I will prove that (Ut1 , . . . , UtK ) have the same mean, variance and covariance as

(Zt1 , . . . , ZtK ) .
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It is clear, for t ≤ tL, we have Ut = Zt by definition.

For tL ≤ t ≤ 1, we have

E(Ut|ZtL) = E

(
w

1/2
t ZtL + (1− wt)1/2Bb(t−tL)+tL −BtL

{b(t− tL)}1/2

∣∣∣ZtL)
= E

(
w

1/2
t BtL/

√
tL + (1− wt)1/2Bb(t−tL)+tL −BtL

{b(t− tL)}1/2

∣∣∣BtL

)
= E

(
w

1/2
t BtL/

√
tL

∣∣∣BtL

)
= w

1/2
t BtL/

√
tL

= w
1/2
t ZtL .

E(Ut) = E(E(Ut|ZtL)) = E(w
1/2
t ZtL) = 0.

V ar(Ut|ZtL) = V ar

(
w

1/2
t BtL/

√
tL + (1− wt)1/2Bb(t−tL)+tL −BtL

{b(t− tL)}1/2

∣∣∣BtL

)
= V ar

(
(1− wt)1/2Bb(t−tL)+tL −BtL

{b(t− tL)}1/2

∣∣∣BtL

)
=

1− wt
b(t− tL)

(b(t− tL) + tL − tL)

= 1− wt.

V ar(Ut) = E(V ar(Ut|ZtL)) + V ar(E(Ut|ZtL))

= E(1− wt) + V ar(w
1/2
t ZtL)

= 1− wt + wt

= 1.
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When tL < t1 < t2 < 1,

Cov(Ut1 , Ut2 |ZtL) = Cov

(
(1− wt1)1/2Bb(t1−tL)+tL −BtL

{b(t1 − tL)}1/2
, (1− wt2)1/2Bb(t2−tL)+tL −BtL

{b(t2 − tL)}1/2

∣∣∣BtL

)
=

(1− wt1)1/2(1− wt2)1/2

{b(t1 − tL)}1/2{b(t2 − tL)}1/2
Cov

(
Bb(t1−tL)+tL −BtL , Bb(t2−tL)+tL −BtL

∣∣∣BtL

)
=

1

b
√
t1t2

Cov
(
Bb(t1−tL)+tL −BtL ,

[Bb(t1−tL)+tL −BtL ] + [Bb(t2−tL)+tL −Bb(t1−tL)+tL ]
∣∣BtL)

=
1

b
√
t1t2

V ar
(
Bb(t1−tL)+tL −BtL

∣∣BtL)+

1

b
√
t1t2

Cov
(
Bb(t1−tL)+tL −BtL , [Bb(t2−tL)+tL −Bb(t1−tL)+tL ]

∣∣BtL)

=
1

b
√
t1t2

V ar
(
Bb(t1−tL)+tL −BtL

∣∣BtL)

=
1

b
√
t1t2

(b(t1 − tL) + tL − tL)

=
t1 − tL√
t1t2

.

Cov(Ut1 , Ut2) = E(Cov(Ut1 , Ut2|ZtL) + Cov(E(Ut1|ZtL), E(Ut2|ZtL))

= E(
t1 − tL√
t1t2

) + Cov(w
1/2
t1 ZtL , w

1/2
t2 ZtL)

=
t1 − tL√
t1t2

+ w
1/2
t1 w

1/2
t2 V ar(ZtL)

=
t1 − tL√
t1t2

+ (tL/t1)1/2(tL/t2)1/2

= (t1/t2)1/2.

Therefore, we have the joint distribution of (Ut1 , . . . , UtK ) is the same as that of

(Zt1 , . . . , ZtK ) under H0.
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R code for Example 1 of Chapter 2

s imu la t ion=funct i on (pa , pb , n1 , n2 , n3 0 ,m, c1 , c2 , c3 , s s r f l )

{

#pa pb are suc c e s s r a t e s f o r treatment A and B, r e s p e c t i v e l y

#n1 , n2 , n3 0 are the o r i g i n a l l y planned sample s i z e f o r the three s t age s

#m i s the number o f r e p l i c a t i o n s

#c1 , c2 , c3 are the c r i t i c a l va lues

#s s r f l i s the i n d i c a t o r f o r whether to implement SSR .

#t o t a l sample s i z e o r i g i n a l l y planned

nto ta l=n1+n2+n3 0

#max number f o r 3 rd s tage a f t e r SSR

nmax = 500

#de s i r ed c o n d i t i o n a l power value

pcut =0.9

#t1 and t2 are the in format ion times f o r the f i r s t two looks

t1 =0.2

t2 =0.5

#t o t a l number o f f a i l u r e s

f a i l u r e=NULL

#f a i l u r e r a t e s

f a i l u r e r a t i o=NULL

#number o f r e j e c t i o n o f H 0 out o f m r e p l i c a t i o n s

number=0

#number o f ca s e s when SSR was implemented

numofssr=0

#rho1 and rho2 are ac tua l a l l o c a t i o n propor t i ons f o r the two treatments , r e s p e c t i v e l y

rho1<−NULL

rho2<−NULL

#urn1 and urn2 are the urn compos i t ions (number o f b a l l s o f type 1 and 2)

urn1<−NULL

urn2<−NULL

#number o f r e j e c t i o n at f i r s t / second / th i rd look

r e j e c t 1=0

r e j e c t 2=0

r e j e c t 3=0

#f i n a l sample s i z e

SS=NULL

#i f SSR w i l l be done , the i n c r e a s e o f sample s i z e

SSplus=NULL

f o r ( i in 1 :m ){

#number o f type 1 b a l l in the urn , i n i t i a l numbers are 5 f o r both treatments

b a l l 1=5

b a l l 2=5

#response s o f pa t i en t s in treatment 1/2

xx1<−NULL

xx2<−NULL

#number o f pa t i en t s in treatment 1/2

N1=0

N2=0

f o r ( j in 1 : n1 ){

Rho1=b a l l 1 /( b a l l 1+b a l l 2 )
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#Rho1 i s the p r o b a b i l i t y that drawing type 1

x<−r u n i f ( 1 , 0 , 1 )

i f (x>=0 & x<Rho1) {

N1<−N1+1

new=rbinom (1 ,1 , pa )

xx1<−c ( xx1 , new)

}

i f (x>=Rho1 & x<=1) {

N2<−N2+1

new=rbinom (1 ,1 , pb)

xx2<−c ( xx2 , new)

}

p1hat=(sum( xx1 )+1)/(N1+1)

p2hat=(sum( xx2 )+1)/(N2+1)

b a l l 1=b a l l 1+sq r t ( p1hat )

b a l l 2=b a l l 2+sq r t ( p2hat )

}

p1hat=(sum( xx1 )+1)/(N1+1)

p2hat=(sum( xx2 )+1)/(N2+1)

s t a t=abs ( ( p1hat−p2hat )/ sq r t ( p1hat∗(1−p1hat )/N1+p2hat∗(1−p2hat )/N2) ) #s t a t i s t i c

i f ( s tat>c1 ) {

number=number+1

r e j e c t 1=r e j e c t 1+1

} e l s e {

f o r ( j in 1 : n2 ){

Rho1=b a l l 1 /( b a l l 1+b a l l 2 )

#p r o b a b i l i t y that drawing type 1

x<−r u n i f ( 1 , 0 , 1 )

i f (x>=0 & x<Rho1) {

N1<−N1+1

new=rbinom (1 ,1 , pa )

xx1<−c ( xx1 , new)

}

i f (x>=Rho1 & x<=1) {

N2<−N2+1

new=rbinom (1 ,1 , pb)

xx2<−c ( xx2 , new)

}

p1hat=(sum( xx1 )+1)/(N1+1)

p2hat=(sum( xx2 )+1)/(N2+1)

b a l l 1=b a l l 1+sq r t ( p1hat )

b a l l 2=b a l l 2+sq r t ( p2hat )

}

p1hat=(sum( xx1 )+1)/(N1+1)

p2hat=(sum( xx2 )+1)/(N2+1)

s ta t2=abs ( ( p1hat−p2hat )/ sq r t ( p1hat∗(1−p1hat )/N1+p2hat∗(1−p2hat )/N2) )

i f ( stat2>c2 ) {

number=number+1

r e j e c t 2=r e j e c t 2+1

} e l s e {

#i n d i c a t o r o f whether SSR w i l l be implemented
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c p f l = FALSE

#treatment e f f e c t Delta in t h i s d i s s e r t a t i o n

mu 1 = (mean( xx2)−mean( xx1 ) )/ sq r t (mean( xx1)∗(1−mean( xx1 ) ) / (N1/(N1+N2) )

+mean( xx2)∗(1−mean( xx2 ) ) / (N2/(N1+N2) ) )

#c o n d i t i o n a l power

cp 1 =1−pnorm ( ( c3 − s t a t2 ∗ sq r t ( t2)− mu 1∗ sq r t ( n to ta l )∗(1− t2 ) )/ sq r t (1− t2 ) )

i f (0.01< cp 1 & cp 1<pcut ) c p f l = TRUE

fx = func t i on ( ntota l , pcut0 = pcut ){

1−pnorm( ( c3 − s t a t2 ∗ sq r t ( t2)− mu 1∗ sq r t ( n to ta l )∗(1− t2 ) )/ sq r t (1− t2 ) )− pcut0

}

i f ( s s r f l & c p f l ){

#sample s i z e needed f o r the 3 rd s tage

ncp = f l o o r ( un i root ( fx , c ( n3 0 ,1000000) ) $root ) − n1 − n2

#f i n a l sample s i z e a f t e r SSR f o l l o w i n g the ru l e o f the d i s s e r t a t i o n

n3 = min(nmax , max( n3 0 , ncp ) )

SSplus=c ( SSplus , n3−n3 0 )

} e l s e {

n3=n3 0

}

f o r ( j in 1 : n3 ){

#p r o b a b i l i t y that drawing type 1

Rho1=b a l l 1 /( b a l l 1+b a l l 2 )

x<−r u n i f ( 1 , 0 , 1 )

i f (x>=0 & x<Rho1) {

N1<−N1+1

new=rbinom (1 ,1 , pa )

xx1<−c ( xx1 , new)

}

i f (x>=Rho1 & x<=1) {

N2<−N2+1

new=rbinom (1 ,1 , pb)

xx2<−c ( xx2 , new)

}

p1hat=(sum( xx1 )+1)/(N1+1)

p2hat=(sum( xx2 )+1)/(N2+1)

b a l l 1=b a l l 1+sq r t ( p1hat )

b a l l 2=b a l l 2+sq r t ( p2hat )

}

b = n3/ n3 0

s ta t30 =(mean( xx2)−mean( xx1 ) )/ sq r t (mean( xx1)∗(1−mean( xx1 ) )/N1+mean( xx2)∗(1−mean( xx2 ) )/N2)

#the th i rd t e s t s t a t i s t i c U t

s ta t3 = s ta t2 ∗ sq r t ( ( n1+n2 )/( n1+n2+n3 0 ))+

sq r t ( ( n1+n2+n3 )/( n1+n2+n3 0 ))∗

(mean( xx2)−mean( xx1 ) )/ sq r t (mean( xx1)∗(1−mean( xx1 ) )/N1+mean( xx2)∗(1−mean( xx2 ) )/N2)

∗ sq r t (1−(n1+n2 )/( n1+n2+n3 0 ) )

/ sq r t (b∗( n3 0 /( n1+n2+n3 0 ) ) )

− s t a t2 ∗ sq r t ( ( n1+n2 )/( n1+n2+n3 0 ) )

∗ sq r t (1−(n1+n2 )/( n1+n2+n3 0 ) )

/ sq r t (b∗( n3 0 /( n1+n2+n3 0 ) ) )

i f ( s s r f l & c p f l ){

s t a t = s ta t3

} e l s e {
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s t a t = sta t30

}

i f ( s tat>c3 ) {

number=number+1

r e j e c t 3=r e j e c t 3+1

}

}

}

rho1=c ( rho1 , N1/(N1+N2) )

rho2=c ( rho2 , N2/(N1+N2) )

urn1=c ( urn1 , b a l l 1 /( b a l l 1+b a l l 2 ) )

urn2=c ( urn2 , b a l l 2 /( b a l l 1+b a l l 2 ) )

SS=c (SS , N1+N2)

f a i l u r e=c ( f a i l u r e , l ength ( xx1)+ length ( xx2)−sum( xx1)−sum( xx2 ) )

f a i l u r e r a t i o=c ( f a i l u r e r a t i o , ( l ength ( xx1)+ length ( xx2)−sum( xx1)−sum( xx2 ) ) / ( l ength ( xx1)+ length ( xx2 ) ) )

}

r e s u l t=c (number/m, mean( rho1 ) , sd ( rho1 ) , mean( urn1 ) , sd ( urn1 ) ,

mean(SS ) , sd (SS ) , mean( f a i l u r e ) , sd ( f a i l u r e ) , mean( f a i l u r e r a t i o ) , sd ( f a i l u r e r a t i o ) )

rm( l i s t = l s ( a l l = TRUE))

}
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