The Texas Medical Center Library

Digital Commons@TMC

Dissertations & Theses (Open Access) School of Public Health

Fall 12-2018

Sequential Monitoring Of Adaptive Randomized Clinical Trials
With Sample Size Re-Estimation

Jun Yu
UTHealth School of Public Health

Follow this and additional works at: https://digitalcommons.library.tmc.edu/uthsph_dissertsopen

6‘ Part of the Community Psychology Commons, Health Psychology Commons, and the Public Health

Commons

Recommended Citation

Yu, Jun, "Sequential Monitoring Of Adaptive Randomized Clinical Trials With Sample Size Re-Estimation"
(2018). Dissertations & Theses (Open Access). 14.
https://digitalcommons.library.tmc.edu/uthsph_dissertsopen/14

This is brought to you for free and open access by the
School of Public Health at DigitalCommons@TMC. It has
been accepted for inclusion in Dissertations & Theses The
(Open Access) by an authorized administrator of ‘,
DigitalCommons@TMC. For more information, please -HI—MC LulgRARLY
contact digcommons@library.tmc.edu.

::::::::


https://digitalcommons.library.tmc.edu/
https://digitalcommons.library.tmc.edu/uthsph_dissertsopen
https://digitalcommons.library.tmc.edu/uthsph
https://digitalcommons.library.tmc.edu/uthsph_dissertsopen?utm_source=digitalcommons.library.tmc.edu%2Futhsph_dissertsopen%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/409?utm_source=digitalcommons.library.tmc.edu%2Futhsph_dissertsopen%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/411?utm_source=digitalcommons.library.tmc.edu%2Futhsph_dissertsopen%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/738?utm_source=digitalcommons.library.tmc.edu%2Futhsph_dissertsopen%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/738?utm_source=digitalcommons.library.tmc.edu%2Futhsph_dissertsopen%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.tmc.edu/uthsph_dissertsopen/14?utm_source=digitalcommons.library.tmc.edu%2Futhsph_dissertsopen%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digcommons@library.tmc.edu

SEQUENTIAL MONITORING OF ADAPTIVE RANDOMIZED
CLINICAL TRIALS WITH SAMPLE SIZE RE-ESTIMATION

by
JUN YU, MD EQUIVALENT, MS

APPROVED:

RUOSHA LI, PHD

DEJIAN LAI, PHD

HAN CHEN, PHD

J. MICHAEL SWINT, PHD

DEAN, THE UNIVERSITY OF TEXAS

SCHOOL OF PUBLIC HEALTH



Copyright
by
Jun Yu, MD equivalent, MS, PhD
2018



DEDICATION

To my dearest family



SEQUENTIAL MONITORING OF ADAPTIVE RANDOMIZED
CLINICAL TRIALS WITH SAMPLE SIZE RE-ESTIMATION

by
JUN YU

MD equivalent, Shandong University, China, 2006
MS, University of Virginia, USA, 2008

Presented to the Faculty of The University of Texas
School of Public Health
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS
SCHOOL OF PUBLIC HEALTH
Houston, Texas
December, 2018



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my dissertation
advisor, Dr. Dejian Lai for his excellent guidance and valuable advice on both the
statistical knowledge and computational technology. Without his persistent support, this
dissertation would not have been worked out. In the mean time, I am deeply grateful to
Dr. Ruosha Li for serving as my academic advisor. I thank her for constantly monitoring
my academic progress during the doctorate training and providing thoughtful comments
on my dissertation. I thank Dr. J. Michael Swint for being my minor advisor in Health
Economics to give suggestions on course selection for fulfilling minor requirement. I
thank Dr. Han Chen for being my breadth advisor and configuring course development
for breadth requirement. I also thank Dr. Chunyan Cai for being my external reviewer
for both the dissertation proposal defense and the final dissertation defense. A special
thanks goes to Dr. Wei Ma for his valuable comments and time.

My deepest gratitude goes to my parents, Renzhong Yu and Fei Shan, my hus-
band, Zhu Zhu, my children, Yuqi and Yulin, for their dedicated and unconditional love,
encouragement and always being there for me. Thank you for supporting me through
this entire journey, and helping me becoming a better person. You are my motivation to

keep on fighting and never give up. I am so lucky to have your support.



SEQUENTIAL MONITORING OF ADAPTIVE RANDOMIZED
CLINICAL TRIALS WITH SAMPLE SIZE RE-ESTIMATION

Jun Yu, MD equivalent, MS, PhD

The University of Texas
School of Public Health, 2018

Dissertation Chair: Dejian Lai, PhD

Clinical trials are complicated and involve human beings. Therefore, lots of ethical
and efficient objectives are expected to be achieved. These objectives include maximizing
the power of detecting the treatment effects, assigning more patients to the better treat-
ments, saving the cost and time, and controlling the type I error rate. A variety of adap-
tive designs have been proposed to achieve different aims, among which sequential mon-
itoring and sample size re-estimation are very popular in real clinical trials. In addition,
adaptive randomization designs sequentially update the allocation probability aiming to
target different allocation proportions and achieve different aims. Hu and Rosenberger
(2006) classified adaptive randomization design into four categories, i.e., permuted block
randomization, covariate-adaptive randomization (CAR), response-adaptive randomiza-
tion (RAR), and covariate-adjusted response-adaptive randomization. In this disserta-
tion, I investigate the combination of sequential monitoring, sample size re-estimation,
and two types of adaptive randomization designs, i.e., CAR and RAR. For RAR, I focus
on urn models. For CAR, I study three scenarios depending on whether all, part, or none
of the randomization covariates are included in the data analysis. I propose methods to
control the type I error rate, offer the theoretical results, and perform comprehensive
numerical studies to show that the methods can protect the type I error rate and have

advantages over traditional designs.
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Chapter 1

Introduction

In this dissertation, I investigated the implementation of response-adaptive ran-
domization (RAR) procedures in real clinical trials by investigating the sequential mon-
itoring of response-adaptive randomized clinical trials with sample size re-estimation
(SSR) (Chapter 2). I also theoretically and numerically studied the combination of se-
quential monitoring, SSR, and covariate-adaptive randomization (Chapters 3 and 4).
Such combination is the most popular procedure in Phase III confirmatory clinical trials,
but its theoretical investigation is lacking in the literature. In this chapter, I introduce

my research in the context of clinical trials.

1.1 Significance

Randomized controlled clinical trials (RCTs) are the gold standard for evaluating
the efficacy and safety of new drugs for approval (Friedman et al., 2015). RCTs are
very complicated system involving planning, conducting, analyzing and assessing. Con-
ventionally a two-arm (a new drug arm versus a control arm) trial is well planned. An
assumed effect size, a level of significance and a study power are essential to determine

the sample size of clinical trials. After the sample size estimation, the patients enrollment



starts, followed by a particular randomization procedure to allocate the two arms. A con-
clusion of whether the trial is positive or not is made based on the carefully collected and
analyzed data at the end of the trial. This traditional procedure has several problems

and corresponding solutions have been proposed. I give a brief review as follows.

1.1.1 Covariate-adaptive randomization

In clinical trials, covariates often play an important role. Some covariates are
known to be important risk factors associated with the response of a patient to the
treatment. In a randomized trial, it is crucial to balance such covariates in each of the
treatment arms so as to avoid the biases introduced into the estimation of treatment effect
due to covariate imbalance. Covariate-adaptive randomization (CAR) designs have been
proposed to achieve this aim (Rosenberger and Lachin, 2015).

CAR sequentially allocates patients based on previous treatment assignments and
covariates, and the covariates of the current patient. The most commonly used CAR
designs include stratified permuted block randomization design (Zelen, 1974), Pocock
and Simon’s procedure (1975). However, there are two problems. Firstly, the treatment
assignments and responses from CAR are not independently and identically distributed
any more due to the randomization mechanism (Hu and Hu, 2012; Ma et al., 2015). Sec-
ondly, usually in practice, not all covariates used in the randomization can be completely
utilized in the inference procedures. For instance, in a clinical trial described in Anderson
et al. (2000), the Pocock and Simon’s procedure was applied to balance allocation over
three covariates including disease extent, performance status, and clinical centers. Nev-
ertheless, a two-sample t-test was conducted to compare a continuous primary endpoint
between two treatment groups, without adjusting any covariate effects. The reasons
why some covariates used in randomization are neglected in final analysis include: (i)

controlling for too many covariates means complicated modeling methodology; (ii) it is



hard to interpret some covariates in the analysis model (e.g., clinical centers, etc); (iii)
the justification of the model specification becomes more difficult if more covariates are
included in the model. Concerns are raised about the validity of statistical inference for
CAR designs. Birkett (1985) and Forsythe et al. (1987) found that the two-sample t-
test is conservative in terms of Type I error if Taves’ minimization is utilized to allocate
patients to treatments through simulation studies. In practice, conventional tests are
often conducted without consideration of CAR scheme. ‘Conservative’ means that the
observed type I error rate is smaller than the nominal type I error rate. It remains a

concern if conventional tests are still valid under CAR designs.

1.1.2 Response-adaptive randomization

Balance is not always the optimal allocation proportions in terms of certain ob-
jectives. For example, when comparing the mean of two normal distributions, N (uy,o%)
and N (pg,03), the following Neyman allocation (Neyman, 1934) instead of the equal al-
location is the optimal one in terms of power when the variances of the two distribution

are not the same,
01

o1+ 09

p1= s p2=1—p1, (1.1)

where p; and py are the allocation proportion to treatments 1 and 2, respectively. For bi-
nary responses, the famous optimal allocation proportions with corresponding objectives

are listed below

(1) (Neyman allocation) Objective: Maximizing the power.

pi(1—pi1)

N \/p1(1 —p1) + \/292(1 —p2)

p1 ;P2 =1—p1. (1.2)

(2) (Optimal allocation) Objective: Minimizing the expected number of failures



while fixing power. (Rosenberger et al., 2001)

p1 = Lv p2=1—p1. (1.3)
VD1 + /P2

(3) (Urn Allocation) Objective: Assigning more patients to the better treatment.

y P2 = 1- P1, (14)

where p; and ps as the success rates for two treatments, respectively. Response-adaptive
randomization procedures sequentially update the allocation probability of the next pa-
tient based on all the previous treatment assignments and responses in order to achieve
ethical and efficient objectives such as maximizing the power to detect the treatment dif-
ference, minimizing the total numbers of failures, etc. There are three steps to implement
the optimal RAR procedures in practice. First, we determine the main objectives and
mathematically formulate these objectives. Second, we derive the target allocation pro-
portion which achieves these objectives. Third, we implement certain RAR procedures

to target the optimal allocation proportion.

1.1.3 Sequential monitoring

In clinical trials, it is not rare to perform interim analyses based on accrued
data up to a certain time point during the conduct of a clinical trial due to ethical
consideration, administrative reasons, and economic constraints (Jennison and Turnbull,
2000). Sequential methods usually lead to savings in sample size, cost and time when
compared with the other fixed sample designs. A group sequential test is referred to as
a test performed based on accrued data at some pre-specified intervals rather than after

every new observation is obtained (Jennison and Turnbull, 2000). For a sequential trial



with multiple interim analyses, multiple tests cause an inflation of the type I error rate,
so it is necessary to adjust a-level at each interim analysis. Other research on group
sequential designs can be seen in Simon (1989), Ensign et al. (1994), Chen (1997), Chen
and Ng (1998), Sargent and Goldberg (2001), Wu and Lan (1992), Lan and DeMets
(1983), Wang and Tsiatis (1987), Proschan et al. (2006), Pocock (1977), and O’Brien
and Fleming (1979).

1.1.4 Sample size re-estimation

In clinical trials, a sufficient number of sample size is necessary to reach a desired
power for detecting a treatment difference of clinical importance, if such a meaningful
difference truly exists. To achieve this aim, the number of the required subjects is
estimated under certain assumptions by a power analysis at the planning stage of the
trial. The sample size estimation of the pre-study power analysis is usually based on the
assumed treatment effect. However, the true treatment effect may be different from the
initial assumption, therefore the study is possibly over-powered or under-powered. Thus,
to re-estimate sample sizes adaptively based on observed data in an interim analysis is
of interest (Chow et al., 2008; Lehmacher and Wassmer, 1999; Cui et al., 1999; Mehta
and Pocock, 2011; Lai, 2013).

1.2 Literature review

This dissertation studies the combination of three types of adaptive designs. I
conduct a brief literature review starting from the general concept, adaptive design.

Adaptive designs utilize accumulating data to adjust the clinical trial procedures
without undermining the validity and integrity of the trials. The validity includes in-

ternal and external validity. Internal validity is the reasonable representation of the



treatment effects within the study population. Basically, if the treatment differences are
detected, we will ask whether the differences are due to the treatments, patient charac-
teristics, or chance. If no treatment effects are detected, we would like to ask whether
it is due to the true equivalence, misconduct, or lack of precision (study power). To
support the internal validity, we need to design trials including comparable groups, and
try to avoid or minimize biases in the treatment allocation, assessing treatment effects,
study monitoring and data analysis, and multiple hypothesis testing. These biases can
be minimized by appropriate randomization and stratification, using concurrent control
group and masking the treatment assignment, performing ongoing review by disciplined
investigators and expert statisticians, and predefining hypotheses and endpoints in the
protocol (Shih and Aisner, 2015). External validity is the validity of inferences as they
pertain to the generalizability to future subjects (Rothwell, 2005). In the study protocol,
the patient characteristics, treatment and procedures, outcome measures, and follow-up
together define the generalizability and applicability of the trial results. For supporting
external validity, the later phases of a clinical trial should be conducted by multiple inves-
tigators in different medical settings, including university teaching hospitals, community
medical centers, private clinics, etc., as well as in various geographical regions.

Chang (2014) classified adaptive designs into the following categories: (1) group
sequential designs (2) sample size re-estimation (3) drop-losers designs (4) adaptive ran-
domization design (5) adaptive dose-escalation designs (6) biomarker-adaptive designs
(7) adaptive treatment-switching designs (8) combined adaptive designs.

My dissertation studies three types of adaptive designs listed above: group se-
quential designs, sample size re-estimation, and adaptive randomization designs. The
idea of adaptive randomization can be traced back to Thompson (1933) and Robbins
(1952). Hu and Rosenberger (2006) classified adaptive randomization design into four

categories, i.e., permuted block randomization, covariate-adaptive randomization (CAR),



response-adaptive randomization (RAR), and covariate-adjusted response-adaptive ran-

domization. I study RAR in Chapter 2 and CAR in Chapters 3 and 4.

1.2.1 Covariate-adaptive randomization

To equalize the distribution of covariates within each treatment group and mini-
mize the imbalance, many covariate-adaptive designs were proposed in the literature.

One idea is to stratify the patients according to covariates before randomization
and then to employ separate randomization for each stratum. For a small set of known
discrete covariates, one of the most commonly used methods is the stratified permuted
block randomization design which determines the strata first with the covariates’ levels
and then perform the permuted block randomization within each stratum. One serious
drawback of this method is that the number of strata increases quickly as the num-
ber of covariates and the number of the covariate levels increase. If the sample size is
relatively small compared to the number of strata, it is almost equivalent to complete
randomization, losing its advantages (Rosenberger and Lachin, 2015).

To ensure balance over a large number of covariates, there are various meth-
ods proposed to determine the treatment assignment of a new subject to minimize the
covariate imbalance within each treatment group. The first covariate-adaptive design
was proposed in the mid-1970s by Taves (1974). He proposed the method to minimize
imbalance on key covariates. Pocock and Simon (1975) proposed generalizations of mini-
mization to randomized clinical trials. Because they balance covariates marginally, these
methods are referred as marginal procedures. For notation purposes, if discrete covariate
Zi,t =1,..., 1 has n; levels, then they balance on covariates within each of Zi[=1 n; levels
of given covariates.

In the covariate-adaptive randomization procedure proposed by Pocock and Simon

(1975), let N;ji(n), i=1,..., I, j=1,..., n;, k=1, 2 (1=A, 2=B), be the number of patients



in stratum j of covariate ¢ on treatment k after n patients have been randomized. Suppose
the (n+ 1)th patient to be randomized is a member of strata ry,...,r; of covariates 1,.. .,
I. Then D;(n) = Ny, 1(n) — Nip2(n) is computed for each i=1,..., I. A weighted sum is
then taken as D(n) = 3. (w;Di(n)), where w; are weights chosen depending on which
covariates are deemed of greater importance. The measure D(n) is used to determine
the allocation probability of the (n+ 1)th patient. If D(n) > 0 (< 0), then one decreases
(increases) the probability of being assigned to treatment 1 accordingly. Pocock and

Simon (1975) formulated a general rule using Efron’s (1971) biased coin design as

1/2, if D(n) =0,
Pny1 = p, if D(n) <0,
1—p, if D(n)>0.

When p = 1, we have Taves’s (1974) minimization method, which is non-randomized.
Pocock and Simon (1975) investigated p = 3/4.

Both stratified permuted block design and Pocock and Simon’s marginal method
are widely implemented in clinical research. Stratified permuted block design was em-
ployed in many clinical trials, including Iacono et al. (2006) and Jakob et al. (2012).
According to Taves (2010), Pocock and Simon’s marginal procedure was applied in over
400 clinical trials from 1989 to 2008. Some recent examples include Anderson et al.
(2000), Gridelli et al. (2003), Krueger et al. (2007), Molander et al. (2007), Ohtori et al.
(2012), etc. Hu and Hu (2012) raised some limitations of these traditional approaches and
proposed a generalized family of covariate-adaptive designs along with their theoretical
properties. For more discussion of handling covariates in clinical trials, see McEntegart
(2003), Rosenberger and Sverdlov (2008).

Nowadays, it is widely accepted that all covariates utilized in the CAR design

should be incorporated in statistical inference procedures (Ma et al., 2015). Feinstein and



Landis (1976) and Green and Byar (1978) explored the inference problems for stratified
randomization for binary responses. Forsythe et al. (1987) suggested that all covariates
utilized in minimization method should be included into analysis. Shao et al. (2010) the-
oretically proved that, the two-sample t-test is conservative under the covariate-adaptive
biased coin procedure, by assuming that the response primarily follows a simple homo-
geneous linear model. More discussions can be found in Tu et al. (2000), Aickin (2009),

and so on.

1.2.2 Response-adaptive randomization

Zelen (1969) proposed the play-the-winner rule for comparing two treatments
with binary responses in clinical trials. If the response of the current patient is a success,
then the same treatment will be given to next patient. If the response of the current
patient is a failure, then the other treatment will be given to the next patient. With
play-the-winner rule, more patients will be assigned to the better treatment. But it is a
deterministic design, and a variety of bias could be introduced. The idea of incorporating
randomization in the context of RAR designs stemmed from the randomized-play-the-
winner rule proposed by Wei and Durham (1978). In general, there are two main families
of RAR procedures: doubly-adaptive biased coin designs that is based on certain optimal
criteria and urn models based on intuitive motivation. Next I will introduce the DBCD
and urn-model based randomization procedures respectively.

Doubly-adaptive biased coin design
We start from the Efron’s biased coin design for balancing the experiment and mitigate
various forms of bias at the same time. Let N;(7),7 =1,2,...,j = 1,2 be the number of
patients assigned to treatment j after the ith patient have been enrolled and assigned to

treatments. The Efron’s procedure sequentially assigns the next patient to treatment 1



with probability

¢i1 - 1/2 lf Di—l - 0,
=mnif D,y <0,

:1—7TifDZ'_1>O,

where D; = N;(i) — N(7) is the imbalance between treatment 1 and 2 and 7 € (0.5, 1].

Balance is not always the target. Eisele (1994) and Eisele and Woodroofe (1995)
proposed the doubly-adaptive biased coin design (DBCD) that sequentially assigns the
next patient using both the current allocation proportions and the currently estimated
optimal allocation proportion. But their conditions are very restrictive. Hu and Zhang
(2004) proposed a family of DBCD and derived the asymptotic properties under widely
satisfied conditions. They obtained the strong consistency, a law of the iterated logarithm
and asymptotic normality of the parameter estimators. However, the procedure proposed
by Hu and Zhang (2004) did not reach the asymptotic lower bound on the variability
of response-adaptive designs (Hu et al., 2006). Hu et al. (2009) proposed a new family
of efficient randomized adaptive designs (ERADE) that achieved the asymptotic lower
bound. In this dissertation, I mainly focus on urn models below, since urn models have
been used in real clinical trials (Rout et al., 1993; Bartlett et al., 1985; Tamura et al.,
1994).

Urn-model based randomization
The urn models are originally in the field of probability. The Pdlya urn models was
proposed by Eggenberger and Pélya (1923). The initial urn contains Yy, balls of type
1 and Yj balls of type 2. At every stage, a ball is randomly drawn and replaced and
a balls of same type are added back to the urn. Friedman (1949) modified Pélya urn
models by allowing adding additional [ balls of the opposite type selected. Athreya
and Karlin (1967, 1968) and Athreya (1969) proposed the Generalized Friedman’s Urn
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(GFU) as follows. When comparing K treatments, the initial urn contains balls of K
types with composition Yo = (Yo1,...,Yo k). At stage ¢, ¢ = 1,2,..., a ball, say type
k, is drawn and replaced. Then the treatment k is assigned to the i¢th patient, and
additional d;(k,g,& ) balls of type g, g = 1,2,..., K, are added to the urn, where
di(k,g,& k) is a function of &, the response of the ith patient assigned to treatment
k. After n patients have been assigned, the urn composition is Y,, = (Y, 1,..., Y, k).
Define D,, = (dn(k,9,&nk), kg =1,..., K), & = (§nas - - -, &) and the observed result
of the nth draw X,, = (X,,1,..., Xy k). Let H; = (E[di(k, 9,& k)| Fici) kg =1,..., K),
where the o—field F; is generated by {Yo, Y1,...,Y;, Xq,..., X, &, ..., &} D; and H;
are called the addition rules and the generating matrices, respectively.

Other important urn models in the literature include Wei (1979), Durham and Yu
(1990), Smythe (1996), Durham et al. (1998), Ivanova and Rosenberger (2000), Ivanova
and Flournoy (2001), Ivanova (2003), Andersen et al. (1994), Bai et al. (2002). Finally,
Zhang et al. (2006) proposed the sequential estimation-adjusted urn model (SEU) and
their model can target any allocation proportion and include the randomized play-the-
winner rule as a special case. In this dissertation, I focus on SEU model for trials with

two treatment groups.

1.2.3 Sequential monitoring

There are three primary reasons for conducting interim analysis (Jennison and
Turnbull, 2000): (i) ethical consideration, (ii) administrative reasons, and (iii) economic
constraints. In practice, human subjects are involved in clinical trials, so from an ethical
point of view, interim analysis to make sure that the human subjects are not exposed to
unnecessary negative treatments. The ineffective or unsafe trials should be terminated
as early as possible to protect the subjects. From an administrative point of view, it is

necessary for monitoring the trials to make sure that the clinical trials are being imple-
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mented as planned. If the critical assumptions are violated, modifications or adjustment
should be made so as to guarantee the integrity and quality of the trials. If the violation
of the protocol is found to be much enough to fundamentally alternate the results, the
trial should be stopped early. Often, clinical trials are very expensive and time consum-
ing, so the sponsors would like to know whether there is enough ethical and statistical
evidence to make the decision of stopping or continuing the trials from the economic
point of view. Interim analysis usually lead to savings in sample size, cost and time when
compared with the other fixed sample designs.

In the literature, there are many sequential monitoring design methods proposed,
to stop the trials as early as possible when the test regimen is ineffective or unsafe, and at
the same time, to avoid terminating a trial too early when the test regimen is promising.
For a sequential trial with K interim analyses, the main concern is the inflation of the
type I error rate, since we have more chances to reject the null hypothesis when it is true.
The natural approach is to find the joint distribution of the sequential statistics, and to
find corresponding critical values to control the type I error rate.

Proschan et al. (2006) introduced a unified approach for group sequential trial de-
sign. The unified approach is briefly described below. Consider a group sequential study
consisting of up to K analyses. Thus, we have a sequence of test statistics {Z1,..., Zx}.
Assuming that these test statistics follow a joint canonical distribution with information

levels {14, ..., I} for the treatment effect. Thus, we have

Zp ~ NOVI 1), k=1,... K,

and

Cov(Zya, Zika) = Vi [ Ik2, 1 < by < ke < K.

Table 1.1 summarizes unified formulation for different types of study endpoints
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under a group sequential design.

In the following, I review the general framework to determine the boundaries for
early stopping of a given trial due to (i) efficacy, (ii) futility, and (iii) efficacy or futility
assuming that there are a total of K analyses in the trial (Chow and Chang, 2011).

For the case of early stopping, we consider testing the one-sided null hypothesis
that Hy : pua < pp, where pys and pp could be means, proportions or hazard rates for
treatment groups A and B, respectively.

The decision rules for early stopping for efficacy are

If Z,, < ay, continue on next stage;

If Z;, > oy, stop and reject Hy, k=1,...K-1,

and

If Zx < ak, stop and accept Hy;

If Zx > ak, stop and reject Hy.

Wang and Tsiatis” boundary function is given by

k
ap = aK(_)A—l/Z

K

The decision rules for early stopping for futility are

If Z,, < By, stop and accept Hy;

If Z,, > By, continue on next stage, k=1,...K-1,

and

If Zx < Bk, stop and accept Hy;

If Zx > Bk, stop and reject Hy.
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The boundary function is
k k
_9 L N a-1)2
Br = 2Pk 7 B ( K)
The decision rules for early stopping for efficacy or futility are

If Zr < Br,(k=1,...K), stop and accept Hy;

If Zy > oy, (k=1,...K), stop and reject Hy.

The stopping boundaries are the combination of the previous efficacy and futility

stopping boundaries, which is given by

ap = @K(%)A_l/z

B = 2B\ e — Bre()A12

Lan and DeMets (1983) proposed the spending function methods to distribute
(or spend) the total type I error rate as a continuous function of the information time
in group sequential trial designs for interim analysis. This continuous function of the
information time is referred to as the alpha spending function, denoted by «a(s). Let s;
and sy be two information times, 0 < 57 < s5 < 1. Then 0 < a(s1) < a(s2) < a. a(s;)
is the probability of type I error one wishes to spend at information time s;. For a given
alpha spending function «(s) and a series of standardized test statistic Zy, k=1,...,K. The

corresponding boundaries ¢, k=1,...,K are chosen such that under the null hypothesis
P(Zl <Ciy..-, Zk—l < Ck—1, Zk > Ck) = Oé(—) - O{(—)

Some commonly used alpha-spending functions are summarized in the Table 1.2.
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1.2.4 Sample size re-estimation

In clinical trials, the fact that many parameters, such as assumed treatment effect
size, are uncertain will cause the study to be under-powered or over-powered. Assuming
a conservative effect size and designing a trial with a larger sample size is one solution.
Without a large enough number of sample size, a clinical trial, especially a phase III
study design cannot be convincing from a scientific or a financial viewpoint. To ensure
a desirable power, sample size re-estimation (SSR) design has been proposed. In SSR
design, a sample size based on an guessed effect size is calculated before the study. In
an interim analysis, the sample size is re-estimated adaptively based on the accrued data
and the target power.

Let us assume a randomized trial with two parallel groups (a test treatment vs.
a placebo). Assume that the distribution of the response of the primary endpoint is
distributed as a normal distribution. The total sample size required for obtaining a
desired power of 1 — 8 for a two-sided alternative hypothesis can be obtained using the
following formula (see, e.g., Chow et al., 2003)

N — 402(2@/2 + 23)
A2

where A is the clinically meaningful difference. Usually, o2 is unknown and need to be
estimated based on previous studies. Let o*? be the initial guess of the within-group
variance for sample size determination before the study. Nevertheless, if the true within-
group variance is actually 2, then the sample size to be adjusted to achieve the desired

power 1-3 at the « level of significance for a two-sided alternative is given by

/
’ o 2

N =N

0.*2

Various statistical procedures for sample size re-estimation in group sequential
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trial designs are proposed, such as, Cui-Hung-Wang’s method (1999), Proschan-Hunsberger’s
method (1995), and Bauer and Kdhne’s idea (1994).

In the Cui-Hung-Wang’s approach (1999), suppose that it is planned to perform
up to K-1 interim analyses and one possible final analysis and that nj; subjects are
obtained for each population between the (k-1)th and kth analyses. let Ny be the planned
cumulative sample size from stage 1 to stage k, and let t, = Ny/N be the information
fraction or information time at the kth interim analysis. At the end of the Lth interim
analysis for specified L(1 < L < K — 1), the adjusted total sample size based on the

observed treatment effect A; is

M = N(A/AL)~ (1.5)

Accordingly, the sample size at (L + j)th look is

My j=b(Nryj — Ni) + Np, (1.6)

where b = (M —Np)/(N—Np),7=1,..., K— L. They developed a new group sequential
test based on the repeated significance test that can be asymptotically expressed as a
Brownian motion process. Let B(t) be such a repeated significance test evaluated at
the information time ¢,0 < t < 1. Let Z(t) = B(t)/t'/?. Suppose that the decision to
increase the maximum information from one to w is made at time ¢t = ¢t;, on the basis of
the observed value of Z(t1). Let ¢ = (w —t1)/(1 — tz). Thus the new test statistic can
be constructed as

Ut) = Z(t),t < t1, (1.7)
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and

U(t) = Z(tp){w(te, )} P +{B(c(t—tp)+t)—B(tr)}/ {clt—to) Y2 x [1—w(ty, )] /2 t, < t <1,
(1.8)

where w(ty,t) = tp/t. Cui et al. (1999) showed that using U(t) and original boundary

from the group sequential trial will not inflate the type I error rate, but gain power

substantially.

Cui-Hung-Wang’s method has the following advantages. First, the adjustment of
sample size is easy. Second, using the same stopping boundaries from the traditional
group sequential trial is straightforward. The disadvantages include that (i) this method
is somewhat ad hoc, which does not aim a target power, and (ii) Weighting outcomes
differently for patients from different stages is difficult to explain clinically.

For a given two-stage design, Proschan and Hunsberger(1995) and Proschan (2005)
proposed re-estimating sample size based on the conditional power and offered a new crit-
ical value to control the type I error rate.

Chow and Chang (2011) discussed the SSR methods for Bauer-Kdéhne’s (1994)
sequential method approach. In the Bauer-Kohne method, let P, and P, be the p-values
for the sub-samples obtained from the first stage and second stage, respectively. Fisher’s

criterion leads to rejection of Hy at the end of trial if

1

Plpggcaze 2

X4,1—a

Decision rules at the first stage:

P <ay, Stop trial and reject Hy,
P > «ay, Stop trial and accept Hy,

a; < Py < g, Continue to the second stage.
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For determination of a; and «y, the overall type I error rate is given by

Ca
[e%s) -—
o +/ /P1 dPdP, = oy + caln% = .
a1 0 03]

Decision rule at the final stage is given by
1
__Xi,lfa .
P1P2 S (& 2 s Reject H(),

Otherwise, Accept H,.

Lai (2013) studied the effect of classic Brownian and fractional Brownian motion on
the sample size estimation with interim analysis. The fundamental assumptions in the
Brownian motion is that the increment of the monitoring statistic would be independent.
Nevertheless, this assumption may be violated due to aggregation. The fractional Brow-
nian motion is an extension of the classic Brownian motion, which have a long memory

to apply to interim analysis.

1.3 Public health significance

Clinical trials are the gold standard for evaluating new therapies. ‘A properly
planned and executed clinical trial is the best experimental technique for assessing the
effectiveness of an intervention. It also contributes to the identification of possible harms
(Friedman et al., 2015).” The clinical trial directly involves human beings and cost a lot.
According to the 2015 - 2016 Global Participation in Clinical Trials Report by FDA, ‘the
country contributing the most clinical trial participants was the United States. Com-
pared to the population of the entire world (7.4 Billion), the US (0.35 Billion) makes up
a little more than 4% of the world population.” ‘A Phase 2 clinical trial costs from US

$7.0 million (cardiovascular) to US $19.6 million(hematology), whereas a Phase 3 clinical
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trial costs ranged from US $11.5 million (dermatology) to US $52.9 (pain and anesthesia)
on average’ (Sertkaya, A. et al., 2016).

But traditional clinical trials may suffer from several flaws, exposing patients to infe-
rior treatments and danger and wasting resources and money. Therefore, there is an
urgent need to develop efficient and ethical clinical trial designs and analysis methods.
Response-adaptive randomization can achieve different ethical and efficient objectives.
Covariate-adaptive randomization is proposed to eliminate selection biases and imbal-
ance of covariates across treatments, leading to better analysis of trial results. Sequen-
tial monitoring possesses ethical, administrative and economic advantages. Sample size
re-estimation is an useful approach to guarantee the power and success of a trial.

In this dissertation, I study statistical properties of combining sequential monitoring,
SSR and adaptive randomization in one clinical trial. The success of the research can
lead to a more efficient and ethical trial with effective sample size, saving more patients in

the trial and benefiting the general population related to the corresponding treatments.

1.4 Organization of the dissertation

In Chapter 2, I study sequential monitoring of urn models with SSR. In Chapter
3, I study sequential monitoring of CAR with SSR when all the randomization covariates
are included in the data analysis. In Chapter 4, I study sequential monitoring of CAR
with SSR when a subset of the randomization covariates are included in the data analysis.
The conclusions are in Chapter 5, followed by the reference, and the proofs are in the

Appendix at the end of the dissertation.
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Chapter 2

Sequential monitoring of randomized
clinical trials with urn models and

sample size re-estimation

Abstract: Clinical trials are usually complex involving multiple competitive objectives
such as maximizing the power to detect treatment effects while controlling type I error
rate, assigning more patients to better treatment and decreasing the total sample size
and cost. Response-adaptive randomization (RAR) procedures have been proposed to
achieve these objectives. Sequential monitoring and sample size re-estimation (SSR) are
also commonplace in modern clinical trials. In this chapter, I investigate the sequential
monitoring of randomized clinical trials with urn models and SSR. To perform sequential
monitoring of urn models with SSR, one has to simultaneously address the three sequen-
tial procedures (the allocation of patients, the urn compositions and the estimators), and
deal with sequential statistics with revised information time due to SSR. Therefore, it is
challenging to derive the joint distribution of the sequential statistics, and to control the

type I error rate. I overcome these hurdles by employing appropriate framework and SSR
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methods, and deriving the asymptotic results for the proposed procedure. Under some
regularity conditions, I proved the asymptotic distribution of the proposed sequential
statistics follows Brownian motion under null hypothesis. Therefore, traditional critical
values for sequential monitoring based on Brownian motion can be used for the proposed
procedure to control the type I error rate. I performed simulation studies for three types
of urn models, and the results demonstrated that my proposed approaches can control
the type I error rate well and also demonstrate the advantages of the proposed methods

over traditional designs.

2.1 Introduction

Clinical trials are usually complex involving multiple competitive objectives such
as maximizing the power to detect treatment effects , assigning more patients to better
treatment and decreasing the total sample size and cost. Practical clinical trials suffer
from some inevitable difficulties such as wrong or inaccurate estimate of the required
sample size. A variety of adaptive approaches including group sequential monitoring,
adaptive randomization, and sample size re-estimation (SSR) have been proposed to
solve these problems and achieve ethical and efficient objectives. In this chapter, I study
the advantages of the sequential monitoring of clinical trials with randomized urn models
and SSR.

It is natural to conduct a sequential analysis in clinical trials where data accumu-
lates sequentially. Jennison and Turnbull (2000) summarized three reasons to perform
sequential monitoring in clinical trials. First, it is ethical to monitor progress of the trial
to prevent participants from being exposed to unnecessary unsafe, inferior or ineffective
treatment regimens. Second, the administrative reason for interim analysis is to ensure
that the protocol has been complied. Third, there are obvious economic benefits such as

saving cost and time due to possible early stopping.
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Sequential monitoring originated from the sequential probability ratio test pro-
posed by Wald (1947). Armitage (1975) introduced sequential monitoring to clinical
studies, and his approach was based on a patient-by-patient monitoring. Further, the
following three papers are particularly influential and become the foundation of method-
ological research and basis of practice in clinical trials. Pocock (1977) proposed group
sequential monitoring; O’Brien and Fleming (1979) proposed the most popular and com-
monly used idea of rejection boundaries for sequential monitoring; Lan and DeMets
(1983) investigated the alpha spending function that is very flexible and does not re-
quire pre-set number of interim analysis and schedule. More details about sequential
monitoring can be seen in Jennison and Turnbull (2000), and Whitehead (1997).

Traditional clinical trial designs such as complete randomization and stratified
permuted block randomization emphasize equal allocation. For example, Connor et al.
(1994) compared the effect of Zidovudine and placebo on reducing maternal-infant HIV
transmission with equal allocation. Although the advantages of the new treatment was
successfully detected, the randomization was in question. First, we keep assigning pa-
tients to the two treatment arms with equal chance even if we have opportunity to detect
that the new treatment is probably better during the trial. It is desirable to assign pa-
tients to possibly favorable treatment with higher chance, and such strategy potentially
increases the enrollment rate. Second, equal allocation has been deemed as the best in
terms of power assuming the variances of the two groups are equal, but the assumption
may not be true in practice. In order to achieve better ethical and efficient objectives,
response-adaptive randomization (RAR) that skews the allocation probability according
to the previous treatment assignments and responses has been proposed (Hu and Zhang,
2004). RAR procedure usually consists of three steps: (1) objectives are determined and
mathematically formulated ; (2) the optimal allocation proportions which are usually

the solutions to the optimization problems formulated in the first step are derived; (3)
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appropriate RAR procedures are implemented to target the theoretically derived optimal
allocation proportions derived in the second step.

The idea of RAR stemmed from Thompson (1933) and Robbins (1952). Hu and
Rosenberger (2003) theoretically proved that RAR can increase the efficiency of clini-
cal trials. Tymofyeyev et al. (2007) established a mathematical framework to derive
the optimal allocations. Rosenberger et al. (2001) studied an optimal allocation that
minimizes the total number of failures while fixing the power. Ivanova and Rosenberger
(2000) showed that an unequal allocation can result in a gain in the power. There are
two families of RAR, i.e., doubly adaptive biased coin design (Hu and Zhang, 2004) and
urn models. In this chapter, I focused on urn models.

The idea of urn models can be traced back to Pdlya’s urn model (Eggenberger
and Pdlya, 1923) and the generalized Friedman’s urn model (GFU) by Athreya and
Karlin (1968). Zelen (1969) proposed the play-the-winner (PW) rule for clinical trials
with binary responses. Wei and Durham (1978) investigated the randomized play-the-
winner rule that is the most well-known urn models in clinical trials. Real clinical trials
using urn models include Rout et al. (1993), Bartlett et al. (1985) and Tamura et al.
(1994). Zhang et al. (2006) proposed a family of sequential estimation-adjusted urn
model (SEU) that can target any pre-specified treatment allocation proportion such as
Neyman allocation (Neyman, 1934), optimal allocation (Rosenberger et al., 2001) and
urn allocation and satisfy various needs. The SEU model contains a variety of urn models
such as play-the-winner (PW) rule, randomized play-the-winner (RPW) rule and GFUs
as its special cases. I study sequential monitoring of clinical trials with urn models and
SSR through SEU model.

Usually, in a clinical trial, the sample size is calculated based on overall assump-
tions and prior studies with knowledge of similar design conditions. Unfortunately, the

prior studies often involve different participating populations, medical practices, etc. As
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a result, we may have to modify the sample size to ensure the study power. Wittes
and Brittain (1990), Gould (1992), Gould and Shih (1992, 1998), Shih (1992) studied
SSR approaches using an internal pilot study; Herson and Wittes (1993) studied SSR
approaches for a fixed sample test; Cui et al. (1999) and Denne (1996) studied SSR
approaches for group sequential tests.

Despite the numerous advantages of the three adaptive approaches (group sequen-
tial monitoring, urn models, and SSR), the research on combining them in one clinical
trial is lacking in the literature due to the conceptual and theoretical difficulties. One
of the critical statistical problems for all confirmatory clinical trials is the control of the
type I error rate. However, sequential monitoring tends to inflate the type I error rate
due to multiple hypothesis testing; group sequential monitoring involves correlated se-
quential statistics at different time points; the treatment assignment probabilities of urn
models depend on urn composition, allocation of patients and the sequentially estimated
unknown parameters; the responses from urn models depend on all the previous treat-
ment assignments and responses; SSR changes the maximum information and introduces
extra dependence between the observed data. To perform sequential monitoring of urn
models with SSR, one has to simultaneously address the three sequential procedures (the
allocation of patients, the urn compositions and the estimators), and deal with sequential
statistics with revised information time due to SSR. Therefore, it is challenging to derive
the joint distribution of the sequential statistics, and to control the type I error rate.
I overcome these hurdles by employing appropriate framework and SSR methods, and
deriving the asymptotic results for the proposed procedure. In my study, I proposed a
general framework for sequential monitoring clinical trials using urn models and SSR. I
also proposed sequential statistics and proved that its asymptotic distribution is a Brow-
nian motion under null hypothesis. Therefore, traditional critical values for sequential

monitoring Brownian motion can be used for the proposed procedure to control the type
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I error rate. I performed extensive simulations for three types of urn models, and the
results demonstrated that my proposed approaches can control the type I error rate very
well.

In Section 2.2, I introduce the notation, framework, the proposed methods, ex-
amples under the framework, and theoretical findings. In Section 2.3, I present results

from simulations. Conclusions are in Section 2.4.

2.2 Sequential monitoring of SEU model with SSR

2.2.1 Notation and framework

I first offer a general framework for sequential monitoring of SEU model, and
incorporate SSR later. Assume the patients sequentially enter the clinical trial comparing
two treatments, and the originally planned sample size is n. At the beginning, the urn
contains Y (0) balls of type k, k = 1,2, and write Y (0) = (Y1(0), ¥2(0)). When the ith
patient is ready for randomization, ¢ = 1,2,...,n, a ball, say type k, is randomly drew
from the urn, and replaced. Then the ith patient will be allocated to treatment k, and
the response &, will be observed. Additional d;(k, g,&; ) balls of type g,9 = 1,2, are
added to the urn, where d;(k, g, &) is a function of & 5. Denote Y (m) = (Yi(m), Y2(m))
as the urn composition after m patients have been randomly assigned; denote matrix
D,, = (dpn(k,9,&mk), k. g = 1,2) as addition rules; denote X, = (X1, X 2) as the
observed result of the mth draw (X, = 1 if the mth draw is the ball of type k, k = 1,2,
Xy = 0 otherwise). Then N(m) = (Ni(m), Nao(m)) = >_", X; are the number of
patients in the treatments and I have Y (m) = Y (m — 1) + X,,D,,. Further, I assume
that &, = (§m.1, Em,2) are independent and identical distributed with unknown parameter
© = (01,605). To simplify the notation, I use one-dimensional parameter. It is easy to

generalize it to multi-dimensional case. Here, only &, , can be observed if the mth patient
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is assigned to treatment k, k = 1,2. Without loss of generality, I assume © = E[£,,] since
I can transform &, and treat the transformation as responses to make this assumption

hold if such transformation exists. Further discussion can be found in Gwise et al. (2008)

~ ~

and Hu and Zhang (2004). Then I can obtain the estimator @ (m) = (6(m), f2(m)) after

m patients with
j > icy Xigbin +1
Op(m) = =———= k=12,
o(m) Nie(m) +1

where 1 is added to both the numerator and the denominator to avoid discontinuity and
problems caused by the case when no patients are in any certain treatment. Note that
both the addition rules D,, = D(O(m — 1),&,,) and the generating matrices H,, =
H(®(m—1)) = E[D,,|Fn_1] depend on previous responses, where the sigma field F,,_;
is generated by {Y (0),Y (1),...,Y(m —1),X1,..., Xn_1,&1, ..., &n_1}, which implies
that it is a type of RAR design.

Let |-| denote the floor function and ¢ = N/n be the information time when N
is the number of enrolled patients. Accordingly, I have N (|nt]) = (N1(|nt]), Na2(|nt])),
where N;(|nt]|) = Z}Ztlj X, j,7 = 1,2, is the number of patients assigned to treatment j at

information time ¢; Y (|nt]) = (Yi(|nt]), Ya(|nt])) is the urn composition at information

time ¢; the estimators are ©(|nt]) = (6;(|nt]), 6:(|nt))), i.c.,

ZZLZ? Xio&io+1
No(|nt])+1

thﬂ Xii&in+1

and 6,(|nt]) = (2.1)

bi(|nt]) =

In this paper, I perform the following hypothesis testing to compare two treat-

ments in clinical trials:

Hy : h(01) = h(03) versus Hy : h(61) # h(62) (or h(0;) > h(6s)),

where h is a R — R function of parameters and assumed to be continuous and twice
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differentiable on a small neighborhood of 6;,72 = 1,2. The following sequential test

statistics at time point ¢ € (0, 1] will be used, i.e.,

h (6x(nt))) — b (Ba((nt)))

(u(nt)))) + Var (5 (a((n2))))
¢

05 ( mej))) are consistent estimators of the

(2.2)

2 (Ml ol ) -
[nt] \/ Var (

Assume Var (h <é1 (Lntj))) and Var (h (

variances of h (él (LntJ)) and h (92 |nt] )) respectively. We also assume there exist

two functions u; and us satisfying

[ntJV&r(h(éi(Lntj)»:uZ( &Z”) O (|n J))(1+o( ) as i=1,2.

2.2.2 Examples

As a type of RAR design, the SEU model is able to target some pre-specified
allocation proportions that are usually derived based on certain optimization criterion.
In this chapter, I denote the targeted allocation proportion as v = (v, v2), and details
regarding the relationship between v and the generating matrix H can be seen in Zhang
et al. (2006). Next, I offer 3 examples to show how to sequentially monitor the SEU
model, and the simulations in Section 2.3 are based on the three examples.

Example 1 Assume the responses are binary with success rates p; and p, for the two

treatments under study, and the hypotheses to test are
Hy : p1 = po versus Hy : p1 > po.

The SEU model targeting the following optimal allocation proportion proposed by Rosen-
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berger et al. (2001) is used to sequentially assign patients,

I R 03
VP1L+ VP2 VPi+ /P2 '

(%1

This optimal allocation is used to minimize the expected total failure number for fixed
power. Then the updating rule of balls in the urn and the generating matrice can be
derived based on v = (v, v5), where v is the left eigenvector of the limiting generating
matrix H with respect to its largest eigenvalue and satisfying v; + vo = 1. For this case,

I have

VPL VP2
VP VP2

and the corresponding addition rule is that \/pi(m — 1) balls of type 1 and \/ps(m — 1)

balls of type 2 are added to the urn after the mth patient has been randomly assigned.

H:

In this case, ©® = (p1,p2), h(8;) = 0; = p;,j = 1,2, and the sequential statistics

Zi(y, z) is a function from R* to RN:

21— 22 pi([nt]) — pa([nt])
Zi(y,z) = Zi(y1, Y2, 21, 22) = = )
) 2) = 2l v o0, 22) = Y I DAy
ETRTIr N ([nt)) Na([nt))

where y = (Ni([nt])/|nt], No(|nt])/[nt]) and z = (0i(|nt)), 62(|nt])), h(b;(|nt])) =

0;(|nt]) =p;(|nt]),7 =1,2. I also have

Vr (10 (Lot )y) = 22 ]>V<1< L;zj)um))

and

(1 —ps:
Uj(’l),@):p—]< " p])’j:]_,Q.
J

Example 2 (Randomized play-the-winner (RPW) rule) In this example, assume
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the responses are binary with success rates p; and py for the two treatments under study,
and I use SEU model to implement the RPW rule with the targeted urn allocation

proportion,
q2 a1
= ’02 = s
01+ g2 41+ G2

(2.4)

U1

where ¢; =1 —p;,j = 1,2. The hypotheses to test are

Hy : py = py versus Hy : p1 > po.

The addition rule is that one ball of the same type is added to the urn if the response is

success and one ball of the opposite type is added to the urn if the response is failure.

So I have
gn, 1 - gn,
D, — 1 1 |
- ER,Q gn,Z
and
b1 q
H— 1 G
q2 P2

The sequential statistics are the same as in Example 1.
Example 3. Assume the responses of the two treatments follow normal responses

N(p1,0?) and N(ug,032), respectively. The hypothesis are

Hy iy = po versus Hy @ jg > pio.

The SEU model targeting the following Neyman allocation (Neyman, 1934) is used to

sequentially assign patients:

01 02

U1 = Vg = )
o1+ 09 o1+ 09
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Neyman allocation is used to maximize the power. Based on Neyman allocation, I can

derive the generating matrix as follows,

o1 _02
H = o1+o2  o1+02
o1 _02
o1+o2  o1t02

and the addition rule is that - (mill()?ggl()m—l) balls of type 1 and 5 (mi21()747:g21()m—1) balls of

type 2 are added to the urn after the mth patient has been randomly assigned.

The test statistics at time ¢ is then

7, — inllnt) = jia((nt)

G1([nt))? | 62([nt])®
Ni(|nt]) Na([nt])

2.2.3 Incorporation of sample size re-estimation

Next, I implement sample size re-estimation in the above procedure of sequential
monitoring of SEU models. In this chapter, I assume non-decrease of sample size as
recommended by (FDA, 2010). Suppose I have K interim analyses at information time
points tq,...,tr,...,tx, and I implement SSR at the end of the Lth interim analysis
(L < K) based on the observed data using the method in Cui et al. (1999). Define the

treatment effect (A) as

for normal distribution and
A= pP1 — P2
P P
(%1 V2

for binary responses. Because B; — /nAt is asymptotically standard Brownian Motion
according to Zhu and Hu (2012), the conditional power, C'Pp, given the observed treat-

ment effect (A) and the test statistics (Z;) at time ¢ = ¢, with sample size N can be
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calculated in this way
CP,=P(Z, > Cl|Z,A)
= P (Zy —/nA > C —\/nA|Z;, A)

= P (21 —VnA — (VtZ, — /nAt) > C — /nA — (VtZ, — /nAt)| Z;, A)
_P(Zl—ﬁA—MZt—ﬁAt) - C—ﬁA—(ﬂZt—ﬁAt)‘Z A)
= \/m \/m t
:1_@(0_\/Zzt_\/ﬁA(1_t>)

Vi—t

where ®(-) is the CDF of the standard normal distribution, and C' is the final critical

value at the end of the trial. Specifically, I re-estimate the sample size as follows:

(1) Estimate the treatment effect (A) and calculate the test statistics (Z;) at time ¢t = ¢,
based on observed sample size N.

(2) If the conditional power, C'Pp, calculated by plugging in the estimated treatment
effect and observed test statistics from step (1) for originally planned sample size n is
not less than the desirable level ¢p;, then no SSR will be implemented. Otherwise, if the
C Py, is more than 0.01, search n* that satisfies C'P;, = cp;.

(3) Then I increase the original sample size at stages & > L + 1 by a multiplier of
b = min(b*, byax), where by is a prespecified maximum sample size factor, and b* =
(n* = N)/(n—N).

Then I can use the following new sequential statistics to perform sequential monitoring

Z, if t <tp;
Ui=19 [w(ty,)]"* x Zy, +[1 —w(ty, t)]"/?x (2.6)
{[B(b(t —tp) +tr) — B(tp)]/[b(t —t)]V/?}, if t > ¢,

where w(ty,t) =t /t, B(t) = VtZ,.
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2.2.4 Asymptotic results

We need the following assumptions for responses &,,, addition rules D,, = D(@(n—

1),&,) and the function H ().

(A1) There exists a constant v > 0 such that H1’ = 1" and 1 = (1,...,1). In addition,

H has the following Jordan decomposition:

T 'HT = ~diag |1, Js, ..., J,]

where Js is a v; X v, matrix, given by

N 1 0 ... 0
0 A 1 0

Jt = 0 O >\t 0 )
0 0 O At

and T and J; are functions of ©.
(A2) El&1]|" < oo for some r > 2.
(A3) The addition rules D,, > 0 are bounded.

(A4) H(z) is twice differentiable.

Theorem 2.1. Let BY = /tU,. If Assumptions (A1)-(A4) are satisfied, then under Hy,
BY converges to a standard Brownian motion in distribution. The sequential statistics
{(Utyy .o U ),0 <ty <ty < .o <t < 1} follows the asymptotic canonical joint
distribution defined in Jennison and Turnbull (2000): under Hy,

(i) {Us,, ..., Ui, } is multivariate normal;
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and (ii) Cov(Uy,,Uy,) = \/|[nt;]/|nt;], 0<t; <t; <1.

The proof is given in the Appendix.

This theorem reveals the most fundamental properties for the proposed method,
i.e., the asymptotic joint distribution of the sequential statistics. Therefore, a variety of
future research and methods can be performed based on this result, among which the
control of the type I error rate is the focus of this chapter. Since the asymptotic joint
distribution of the sequential statistics is the asymptotic canonical joint distribution
defined in Jennison and Turnbull (2000), all the methods based on this distribution in
that book and in other papers such as Pocock’s test, O’Brien and Fleming’s test, the
tests of Wang and Tsiatis (1987), the tests of Haybittle (1971) and Peto et al. (1976),
the equivalence test, spending functions, stochastic curtailment, and repeated confidence
intervals can be used to control the type I error rate for this procedure and to provide
important information for DSMB to make decision about whether to continue the trial. In
this chapter, I use the alpha spending function mimicking the O’Brien Fleming boundaries

as follows,

aopr(t) = 2( <Za/2/\/_>)

If T perform the sequential monitoring at information time ¢t; = 0.2,¢5, = 0.5, and t3 =1,
the corresponding boundaries are C; = 4.877, Cy = 2.963, C5 = 1.969 (Proschan et al.,
2006).

2.3 Numerical and simulation studies

In this section, I study the finite-sample properties of my proposed methods using
the three SEU models in Example 1-3, and compare the SEU models with complete

randomization. Assume that the originally planned sample size is n = 500 with three
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interim looks at information time ¢; = 0.2 (n; = 100),t, = 0.5 (ne = 250), and t3 =
1 (n = 500). The corresponding O’Brien-Fleming-like spending function boundaries are
C1 = 4877, Cy = 2.963, C3 = 1.969. I implement SSR if the trial is determined to
continue after the second interim analysis. The cap of the sample size at stage 3 is
500. In this case, w(te,t3) = 0.5 and bya.x = 2. The datasets are generated based on
different parameter combinations shown in the tables. All the results are based on 10, 000
replications.

Table 2.1 summarizes the results of the SEU model in Example 1. The initial urn
composition is Y (0) = (5, 5), and the randomization procedure will follow the rule of urn
models explained before. If I decide to continue the trial after the second interim look as
described in Section 2.2.3, I calculate the conditional power based on the observed data. If
the conditional power is less than 0.9, I increase the sample size to make the conditional
power to be 0.9. I report the type I error rate (a) (the proportion of the number of
rejections of Hy out of 10,000 replications, and the intended value is 0.025) and the
average and standard deviation of the following values out of 10,000 replications: actual
allocation proportion in treatment 1 (p; = Ny /(N; + N3)), urn compositions represented
by the proportion of balls of type 1 (Urny = Y1/(Y1 4 Y2)), total sample size (SS), total
failure number (failure) and failure rate (failrate) considering the total sample sizes are
different. I found that my proposed method can control the type I error rate very well.
From the results that both p; and Urn, are close to 0.5, I can see that my method
converges very well. My method does not increase the total sample size.

Table 2.2 reports the empirical power and the average and standard deviation of
the following values out of 10, 000 replications: actual allocation proportion in treatment
1 (p1), urn compositions represented by the proportion of balls of type 1 (U ;“nl), total
sample size (SS), total failure number (failure) and failure rate (failrate). I find that my

proposed method can assign more patients to the better treatment and lead to fewer
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failures while controlling the power at the same level as complete randomization (CR),
which is consistent with the objective of the optimal allocations (2.3).

In Table 2.3, I study the SEU model in example 2. Other settings are the same as
in Table 1. I obtain similar conclusions as in Table 2.1. In Tables 2.1 and 2.3, since there
is no treatment effects, the targeted allocation proportions for both SEU models are equal
allocation. Therefore, the SEU models perform equivalently to complete randomization
in terms of allocation proportion and number of failures. In Tables 2.1 and 2.3, I focus on
the results of type I error rate. In Table 2.4, I study the performance of RPW rule under
H,. I find that my proposed method can assign more patients to the better treatment
and lead to fewer failures, which is consistent with the objective of the urn allocations
(2.4).

In Table 2.5, I study the performance of the SEU model in Example 3 under H,.
In order to get the initial estimate of unknown parameter to update the urn, I randomly
assign 20 patients to the two treatments equally. I found that my proposed method can
control the type I error rate very well. From the results of p; and U }nl, I can see that
my method converges very well. In Table 2.6, I study the performance of the SEU model
in Example 3 under H;. I can see that the SEU model targeting the Neyman allocation

can increase the power.

2.4 Conclusion

RAR designs have been well-accepted to better achieve various ethical and efficient
objectives. In order to promote its application in real clinical trials, it is necessary to
study statistical properties of combining RAR and the commonly used procedures in
clinical trials, such as sequential monitoring and sample size re-estimation. This chapter
addressed this problem using urn models. I established asymptotic results of the proposed

method and performed comprehensive simulations to demonstrate that I can control the
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type I error rate with advantages of assigning more patients to the better treatments,
increasing the power and stopping the trial earlier if necessary.

In this chapter, I used alpha spending function to control the type I error rate.
Other methods such as the optimal spending functions in Anderson (2007) and the beta
spending functions in DeMets (2006) can be investigated. I assumed that the responses
are immediately available, which is not always true in real clinical trials. However,
there is no difficulty in incorporating delayed responses into the RAR procedure (Hu
and Rosenberger, 2006). We can always update the parameter estimators with collected
data. It is worth noting that Bai et al. (2008) and Hu and Zhang (2004) showed that
the asymptotic results for GFU were not be affected if the response time is reasonably
large compared to the entry time intervals. Hu et al. (2008) studied the effect of delayed

responses on DBCD. I leave these for future research.
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Chapter 3

Sequential monitoring of randomized
clinical trials with CAR and SSR-AIl

randomization covariates are

included in the data analysis

Abstract: Clinical trials are usually complex and involve multiple covariates of inter-
est. Therefore, incorporating covariates into randomization design is of special impor-
tance. In particular, it is well accepted that the balance of treatment allocation among
subgroups defined by covariates is critical in evaluating treatment effects without bias.
Covariate-adaptive randomization (CAR) procedures have been proposed to achieve this
aim. Sequential monitoring and sample size re-estimation are also commonly used in
managing clinical trials. In this chapter, I conduct theoretical and simulation study
on the sequential monitoring of CAR with sample size re-estimation (SSR). It is worth
noting that all the three procedures cause complex interdependence among responses,

treatment assignments, covariates, and sequential statistics. I overcame these difficul-
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ties, and derived the asymptotic distribution of the proposed sequential statistics and

evaluated the type I error rate via simulations.

3.1 Introduction

It is well accepted that the balance of treatment allocation among subgroups de-
fined by covariates is critical to properly assess the treatment effects in clinical trials.
Covariate-adaptive randomization (CAR) procedures sequentially assign the patients
based on previous assignments and covariates, and the current covariate profile in or-
der to achieve this aim and increases the credibility of a trial (Rosenberger and Lachin,
2015). Stratified permuted block (SPB) randomization is the most efficient way when
there are a small number of covariates and small numbers of levels within each covariate
(Zelen, 1974). SPB employs permuted block randomization separately within each stra-
tum formed by crossing of covariates levels. However, when there are a larger number
of covariates or many levels within certain covariates, the number of patients belonging
to each stratum is typically very small, and SPB will work more like complete random-
ization. As a result, minimization (Taves, 1974) has been proposed to achieve allocation
balance on covariate margins, instead of within strata. Pocock and Simon’s design has
been described in Chapter 1 of the dissertation. Other research on CAR is in Nordle and
Brantmark (1977), Wei (1978), Signorini et al. (1993), Heritier et al. (2005), and Hu
and Hu (2012). CAR has been widely acknowledged to be able to achieve the balance
of covariates across treatments (Rosenberger and Lachin, 2015). However, it raised con-
cerns about its impact on statistical inference due to the complicated dependence among
covariates, treatment assignments and responses and the discreteness of the allocation
function.

The history of general sequential monitoring and sample size re-estimation has

been offered in Chapter 2. For this current chapter, it is worth noting that Jennison
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and Turnbull (1997) discussed group sequential analysis methods incorporating covariate
information through linear models, general parametric regression models and survival
models. However, they did not take into account the problems caused by CAR and the
scenario where not all the randomization covariates were included in the data analysis.

In this chapter, I formulated a general framework for sequential monitoring clinical
trials using CAR design, linear regression models with all the randomization covariates
for analysis and SSR procedure. In the next chapter, I study the sequential monitor-
ing of clinical trials with the CAR design, linear regression models with a subset of the
randomization covariates for analysis and SSR procedure. 1 defined sequential statistics
and derived its asymptotic distribution to be a Brownian motion under null hypothesis.
Therefore, classic Brownian motion critical values for sequential monitoring can be used
for the proposed procedure to control the type I error rate. I performed extensive simu-
lations and the results demonstrated that my proposed approaches can control the type
I error rate well.

In Section 2.2, I introduce the notation, framework, my proposed methods, and
theoretical findings. In Section 2.3, I offer results from simulation results. Conclusions

are in Section 2.4.

3.2 Sequential monitoring of CAR with SSR when
all the randomization covariates are in the data

analysis
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3.2.1 Framework

Consider a two-arm randomized controlled clinical trial with originally planned
n subjects to be sequentially allocated by CAR procedures. Let T; (i = 1,...,n) be
the treatment assignment(7; = 1 if treatment 1; 7, = 0 if treatment 2). Assume
that the covariates (Xi,...,X,) are used to implement CAR and included in the data
analysis. For simplicity, we only consider one-dimensional covariates, but it is easy
to generalize the results to multi-dimensional covariates. Assume that all the covari-
ates are independent and their expectations are all 0 without loss of generality, i.e.,
E(Xy)=0,i=1,...,n,k=1,...,p. In addition, the errors are assumed to be indepen-

dent. Assume that the ith subject’s response Y; follows the linear model:

Yi=mT; + pe(1 = T;) + Xa B+ ...+ Xiphy + €, (3.1)

where p = (p1, p12)7 is the treatment effect vector for treatments 1 and 2 respectively,

(B1,...,0p) are unknown parameters for covariate effects, and the ¢; are independent

2. Here, we do not have to assume the errors follow

errors with mean 0 and variance o
normal distribution. We write § = (uq, 2, B1,- .., Bp)%, T'(n) = (T1,...,T,)", Y(n) =

(Y1,...,Y)T €(n) = (e1,...,€,)T and

-Tl 1-T7 X1 ... le-
X(n) = T, 1-T, Xo ... Xy
T 1-T, Xm Xop |
So we have
Y =Xn+e
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CAR designs are usually applied with discrete covariates. When implementing CAR
using continuous covariates, I first discretize these continuous covariates, and apply CAR
designs with respect to the discretized covariates. Specifically, let

- X, ij¢cC

j =

dj(X;) ifjeC

where C' = {l : index of continuous covariates among X;,l = 1,...,p} and d;(-) is the
discrete function.

In this chapter, I perform the following hypothesis testing to compare two treat-

ments in clinical trials:

Hy : g = g versus pug # fio. (3.2)

Let || denote the floor function and ¢ = N/n be the information time when N is the
number of enrolled patients. A widely used test statistic including all the randomization

covariates in the data analysis to test the hypothesis (3.2) at time point ¢ € (0, 1] is

Z - La(?) (33)

VoOPLX ([t )T X ([nt])~TLT

where L = (1,—1,0,...,0), n(t) = (X (|nt )T X (|nt])) 1 X (|nt])TY (|nt]),
6(t)* = [Y(Int]) = X ([nt])n@®)] [Y (Lnt]) — X ([nt])n(t)]/(Int] — p—2). These sequen-
tial statistics (3.3) are the commonly used ones including t-test statistic as a special case

when no covariates are included in the model.

3.2.2 Incorporation of sample size re-estimation

We implement SSR in the same way as Section 2.2.3. Note that in this chapter, I
are discussing two-sided hypothesis testing while one-sided hypothesis testing was studied

in Chapter 2. The conditional power for the two-sided hypothesis testing can be obtained
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as follows. According to Zhu and Hu (2018), B; — /nAt is asymptotically standard

Brownian motion, where

for normal distribution and
P1 — P2
Pigr b
U1 V2

A:

for binary responses. Therefore, I have

CP, = P(|Z1| > C|Z, A)

=P(Z, > C or Z), < —C|Z, A)

= P(Zy — v/nA > C —/nA or Z; — /nA < —C — /nAl|Z;, A)

= P(Z) — \/nA — (VtZ; — /nAt) > C — \/nA — (VtZ, — /nAt)| Z;, A)

+P(Zy — /nA — (VtZ; — /nAt) < —C — /nA — (VtZ, — /nAt)|Z,, A)
_P(Zl—\/ﬁA—(\/%Zt—\/ﬁAt) - C_\/HA_<\/EZt_\/ﬁAt)‘Z A)
- \/m \/m ts
%P<a—me4ﬁz—wmw —C—ﬁm—hﬁa—ﬁmm%A>

\/_\/1 —1 = \/_\/1 —1
B C —VtZ, — /nA(l —t) —C —VtZ; — /nA(1 —t)
e (S e ()

3.2.3 Asymptotic results

We need the following notations to formulate the main theorem in this chapter.

Suppose X}, has s, levels, and let W; = (x5, ... ,x;’)’) represents the ith subject’s covariate

profile if X;; is at level zif, k= 1,...,p. Let DIF, be the overall difference in patient

numbers between two treatments after n patients have been enrolled in the trial; similarly,

let DIF:*(k;cy,) be the marginal difference with respect to the level 2}* of covariate X

let DIF,(cy,...,c,) be the difference in patient numbers in the stratum containing the
subjects with covariates (z§', ..., xy7).

50



Theorem 3.1. Let BY = /tU;. Assume the CAR design satisfies DIF,, = O,(1) and
DIFX(k;cx) = Op(1),k = 1,...,p. Then under Hy, BY is asymptotically a standard
Brownian motion in distribution. The sequential statistics {(Uy,, ..., U ),0 <t; <ty <

. < tg < 1} has the asymptotic canonical joint distribution defined in Jennison and

Turnbull (2000), i.e., under Hy,

(i) {Us,, ..., Up } follows multivariate normal distribution,

The proof is given in the Appendix.

This theorem reveals the most fundamental properties for the proposed method,
i.e., the asymptotic joint distribution of the sequential statistics. Therefore, a variety of
future research and methods as introduced in Chapter 2 can be performed based on this
result, among which the control of the type I error rate is the focus of this chapter. I also
note that the conditions, DIF, = O,(1) and DIF;* (k;c) = O,(1),k = 1,...,p, hold for
a variety of CAR procedures including as stratified permuted block randomization and

Pocock ans Simons’s design.

3.3 Numerical and simulation studies

In this section, I study the finite-sample properties of the proposed procedure.
For all the tables, suppose originally planned 500 patients sequentially enter a clinical

trial, and the responses follow

Y, = T + po(1 = T3) + Xa B + Xiofo + 6,4 =1,...,500, (3.4)

where (p1, pio, 81, B2) are unknown parameters, and ¢; are independent errors from the
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normal distribution N (0, 1). In different tables, I compare the stratified permuted block
randomization (SPB), Pocock and Simon’s procedure (PS) and complete randomization
(CR). The CAR designs will be applied with respect to both X; and X,, and different
distributions of these two covariates will be considered. In this chapter, the sequential

data analysis are all based on the model (3.4). Equivalently, it can be written as

Y = 6o+ Br + Xafr + XiofBa + 6,1 =1,...,500, (3.5)

that is, all the randomization covariates are used in the data analysis. I implement SSR
if the trial is determined to continue after the second interim analysis. The cap of the
sample size at stage 3 is 500. In this case, w(ts, t3) = 0.5 and by = 2. All the results
are based on 10,000 replications.

In Table 3.1, I report results for SPB and complete randomization when both
X, and X, are binary covariates with success rates of p; and ps, respectively. I offer
results for type I error rate (a) (the proportion of the number of rejections of Hy out of
10,000 replications, and the intended value is 0.05), average and standard deviation of
the following values out of 10,000 replications: estimates of 1, f2 and Sr. I can see that
my method can control the type I error rate very well, and estimate the parameters very
accurately.

In Table 3.2, I report results for SPB and complete randomization when both X;
and X5 follow standard normal distribution. When the CAR procedures are implemented

with X, 7 = 1,2, I discretize them in the following way:

~ L if z < 2,
=1 :

0 ifz > 2,

where 2, is the p;-quantile of the standard normal distribution. However, the original
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continuous covariates will be included in the data analysis. 1 can see that my method
can control the type I error rate very well, and estimate the parameters very accurately.

In Table 3.3, I report results for Pocock and Simon’s design (PS) and complete
randomization when both X; and X, are binary covariates with success rates of p; and
pa, respectively. I found that my proposed method can control the type I error rate
very well and estimate the parameters very accurately. In Table 3.4, I report results for
Pocock and Simon’s design and complete randomization when both X; and X, follow
standard normal distribution. I use the same way as in Table 3.2 to implement CAR. I
get similar conclusion as in Table 3.3.

In Table 3.5, I offer results about the covariate imbalance for the scenario of Table
3.1. I report the average and standard deviation of the following values out of 10,000
replications: overall difference in patient numbers between the two treatments (DIF),),
the differences of patient numbers between the two treatments in the four stratum (DI Fy,
for X1 = g and Xy = h, g,h = 0,1). In Table 3.6, I report results about the covariate
imbalance for the scenario of Table 3.2. In this Table, DIF, refers to the stratum-level
treatment assignment difference corresponding to the discretized covariates. I can see
that compared to complete randomization, the overall and stratum imbalance can be
controlled much better by my proposed method.

In Table 3.7, I report results about the covariate imbalance for the scenario of
Table 3.3. In addition to the overall and stratum level imbalance, I also reported the
marginal imbalance: DIF}. is the marginal imbalance for X; = 1, DIF{. is the marginal
imbalance for X7 = 0, DI F; is the marginal imbalance for Xo = 1, DI Fj is the marginal
imbalance for X5 = 0. I found that Pocock and Simon’s design will return better balance
in all levels: overall, marginal and stratum. Compared to the stratum imbalance, Pocock
and Simon’s design can control the marginal and overall imbalance better. In Table 3.8,

I report results about the covariate imbalance for the scenario of Table 3.4. As in Table
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3.6, the stratum and marginal level imbalance corresponds to the discretized covariates.

I got similar conclusion as in Table 3.7.

3.4 Conclusion

Covariate-adaptive randomization designs including stratified permuted block ran-
domization (Zelen, 1974) and Pocock and Simon’s design (1975) are the most popular
randomization design in the Phase III confirmatory clinical trials. Due to ethical, ad-
ministrative and economic reasons, sequential monitoring is desirable in such large clin-
ical trials. Sample size re-estimation is often necessary to guarantee the power of the
trial. However, there is no comprehensive theoretical study on sequential monitoring of
covariate-adaptive clinical trials with sample size re-estimation because all the three pro-
cedures have adaptive properties and simple statistical theory based on independently
and identically distributed responses is not applicable here. In this chapter, I studied the
theoretical and numerical properties for this complex procedure. The proposed methods
can successfully control the type I error rate demonstrated by the numerical study and
supported by the theoretical results.

This chapter opens a door to future research topics. First, I consider the scenario
that all the covariates used in the randomization procedures are used in the data analysis.
However, in practice, clinical trial practitioners often use part of these randomization
covariates or even just t-test in the data analysis. The reasons include: (i) researchers
cannot explain the practical meaning of certain covariates effects; (ii) a large number of
covariates in the model will lead to theoretical difficulties; (iii) the justification of the
model specification becomes more difficult if more covariates are included in the model.
I will study these scenarios in next chapter. Second, in this dissertation, I use the idea of
Cui et al. (1999) to solve the problem of type I error rate, and offer lots of insight for other

approaches such as the Fisher’s product combination test proposed by Bauer and Kohne
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(1994) and the weighted inverse normal method proposed by Lehmacher and Wassmer
(1999). Third, Zhang et al. (2007) proposed the covariate-adjusted response-adaptive
randomization (CARA) that takes into account all the previous treatment assignments,
responses, covariates and the current covariate to achieve different ethical and efficient
aims. The study on sequential monitoring of clinical trials with CARA and SSR is lacking

in the literature. I leave all these for future research.
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Chapter 4

Sequential monitoring of randomized
clinical trials with CAR and SSR-A

subset of the randomization
covariates are included in the data

analysis

Abstract: In Chapter 3, I studied the sequential monitoring of covariate-adaptive ran-
domized clinical trials with sample size re-estimation under the scenario where all the
randomization covariates are included in the data analysis. That is recommended practice
in clinical trials, but the comprehensive theoretical support is lacking in the literature.
Therefore it is worth studying it and offering practical guidance for clinical trials. Another
related but different topic is how to control the type I error rate when sequentially mon-
itoring the covariate-adaptive randomized clinical trials with sample size re-estimation

under the scenario where only a subset of the randomization covariates are included in
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the data analysis. Numerical studies showed that the type I error rate is conservative,
but in practice, clinical trial practitioners often do not include all the randomization co-
variates into the data analysis, which raised lots of concerns. Therefore, it is necessary to
theoretically and numerically study this scenario. In this chapter, I proposed approaches
to control the type I error rate, and performed theoretical and numerical studies on this

procedure.

4.1 Introduction

The significance of covariate-adaptive randomization, sequential monitoring and
sample size re-estimation have been introduced in Chapter 3. In this chapter, I discussed
a situation raising lots of concerns. Theoretical and applied researchers all realized a
common situation in real clinical trials: only some of the randomization covariates are
included in the data analysis such as t-test. For example, Lai et al. (2006) studied the
impact of music on maternal anxiety in kangaroos in a clinical trial where permuted block
randomization stratified on gender was used to allocate the kangaroos and a t-test was
used to perform the data analysis. There are many practical reasons for this scenario, (i)
researchers cannot explain the practical meaning of certain covariates effects; (ii) a large
number of covariates in the model will lead to theoretical difficulties; (iii) the justification
of the model specification becomes more difficult if more covariates are included in the
model.

Shao et al. (2010) is one of the most influential papers in this research topic, and
they provided the following propositions: (1) a test that is valid under any fixed treat-
ment allocation is valid under simple randomization and Efron’s biased coin design; (2)
analysis of covariance is valid if the covariates used in randomization are a function of the
covariates used in the analysis. For linear regression with univariate covariate, they also

proved that (3) the two-sample t-test under stratified randomization with Efron’s biased
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coin design employed within each stratum has a conservative type I error rate. Their
explanation is that the stratified randomization procedure leads to dependence between
the two samples and the variance estimator in the t-statistic ignores this correlation and
overestimates the true variance of the estimator of the treatment effects. In addition,
they proposed the bootstrap method to find an unbiased estimator for the true variance
and the bootstrap t-test to control the correct type I error rate. Shao and Yu (2013)
studied this topic for generalized linear models. Further, Ma et al. (2015) further gen-
eralized the above results to a family of CAR design and allow more covariates in the
model.

Another influential paper in this field is Ma et al. (2015). Shao et al. (2010) has
several limitations. First, they focused one special randomization design that does not
include many other popular CAR designs such as minimization designs as special cases.
Second, they focused on the linear model with only one covariate, which is obviously not
enough in practice. Ma et al. (2015). addressed these two problems, and offered theoret-
ical results for a general family of linear models with multiple covariates and a general
family of CAR designs including the popular stratified permuted block randomization
and the Pocock and Simon’s design (1975). Their results are based on an easily satisfied
condition that the difference in the patient numbers in the two treatment arms on any
covariate margin is bounded in probability. This chapter will follow the framework of
Ma et al. (2015).

In this chapter, I proposed a general framework for sequential monitoring clinical
trials using CAR design for randomization, linear regression models with part of the
randomization covariates or none of the randomization covariates (t-test) for analysis
and SSR procedure. By simulation, I found that originally worked method in Chapter 3
will not work in this scenario and the type I error rate is conservative. Then I proposed

numerical methods to fix this problem and control the type I error rate. I performed
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extensive numerical studies and the results demonstrated that my proposed approaches
can control the type I error rate very well.

In Section 4.2, I introduce the notations, framework, my proposed methods, and
theoretical findings. In Section 4.3, I offer results from numerical results. Conclusions

are in Section 4.4.

4.2 Sequential monitoring of CAR with SSR when
part or none of the randomization covariates are

in the data analysis

4.2.1 Framework

As in Chapter 3, assume that n originally planned subjects are sequentially al-
located to a two-arm randomized controlled clinical trial by CAR procedures. Let T;
(¢ =1,...,n) be the treatment assignment (7; = 1 if treatment 1; 7; = 0 if treatment
2). In this chapter, in addition to the covariates, (Xi,...,X,), I introduce another sets
of covariates, (Vi,...,V,) to fit the scenario where part of the randomization covari-
ates are omitted from the data analysis. That is, (Xi,...,X,) represent the covariates
used for both CAR design and data analysis, and (V4,...,V;) represent those covari-
ates that are used for CAR, but are excluded for data analysis. Assume that all the
covariates are independent and their expectations are all 0 without loss of generality, i.e.,
E(Xy)=0,E(V;)=0,i=1,...,n,k=1,...,p,j =1,...,¢. In addition, the errors are
assumed to be independent with the covariates. Assume that the ith subject’s response

Y; follows the linear model:

Yi=mT + p(1 =T;) + Xabi + ...+ XipBp + Vann + ... + Vigyg + €, (4.1)
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where p; and py are the treatment effects for the treatments 1 and 2, respectively,
(B1y-.-,Bp) and (71,...,7,) are unknown parameters for covariate effects, and the ¢;

2. Here, I do not have to assume

are independent errors with mean (0 and variance o
the errors follow normal distribution. I write g = (u1, u2)®, n = (p1, pa, B, -, Bp)7,

T(n)=(T1,....,T,)",Y(n)=(Y1,....Y,)T €(n) = (e1,...,€6,)" and

T 1-T Xu ... Xy
X(n): T2 1—T2 X21 Xgp
T, 1-T, Xp ... Xup

CAR designs are usually applied with discrete covariates. When implementing
CAR using continuous covariates, I first discretize these continuous covariates, and apply
CAR designs with respect to the discretized covariates. Specifically, let
- X; ifj¢cC

j =

di(X;) ifjeC

and
pog Voo
d;‘(VJ) if jeC”
where C' = {l : index of continuous covariates among X;,l = 1,...,p}, C* = {l :
index of continuous covariates among V;,l = 1,...,q}, and d;(-) and dj(-) are discrete
functions.

In this chapter, I perform the following hypothesis testing to compare two treat-

ments in clinical trials:

Hy : jy = g versus iy # fia. (4.2)
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Let |-| denote the floor function and ¢ = N/n be the information time when N is the
number of enrolled patients. There are two special cases when not all the randomization
covariates are used in the data analysis. First, only part of the covariates, (Xi,...,X,),
are included in the data analysis. Then the sequential statistic to test the hypothesis

(4.2) at time point ¢t € (0, 1] is

Ln(t)

7 = :
Vo) L(X ([nt])T X ([nt])) -1 LT

(4.3)

where L = (1,—1,0,...,0), n(t) = (X (|nt )T X (|nt])) ' X (|nt])TY (|nt]),
6(t)2 = [Y ([nt]) = X([nt] ()] [Y ([nt]) = X (Int))a(0)]/([nt) — p— 2). Second, none
of the covariates are used in the data analysis, which is the t-test or equivalently fitting

the following model:

Y =T+ pe(l1 = T}) +e,i=1,...,n. (4.4)
In this case, I do not have the covariates (X, ..., X,), and the responses follow:
Yi=mTD +po(1=T) +Vam + ...+ Vigyg +e,i=1,...,n. (4.5)

Let @ = (1,—1) and

T 1-1T;

T 1-1T
Tr(n) =

T, 1-1T,
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Then the sequential statistic to test the hypothesis (4.2) at time point ¢ € (0, 1] is

7= Qi) (4.6)

Vo2Q(Tr([nt])TTr([nt])) QT

where fu(t) = (Tr(nt))"Tr(|nt])) " Tr(|nt]) Y (|nt)),

6(t)* = [Y(Int]) = Tr([mt)aO Y (Int]) — Tr([nt])a®)])/(Int] - 2).

4.2.2 Incorporation of sample size re-estimation
In this chapter, I use the same SSR approach as in Chapter 3. The following
sequential statistics were used in Chapter 3 and the type I error rate was successfully

controlled when all the randomization covariates are included in the data analysis.

Z, if t <tp;
Ur =< [w(ty, )]V x Zy, +[1 — w(ty, t)]/2x (4.7)

([BO(t —tr) +t1) — Bt/ [b(t — t2)]V2), it t > 1y,

where w(ty,t) =t /t, B(t) = VtZ,.

We first perform numerical study to investigate whether the same method can work
when not all the randomization covariates are included in the data analysis. For all the
tables, suppose originally planned 500 patients sequentially enter a clinical trial, and the

responses follow
Y; = T 4 po(1 = T3) + Xa 1 + XiofBo + €, =1,...,500, (4.8)

where (1, o, 81, f2) are unknown parameters, and ¢; are independent errors from the
normal distribution N(0,1). Here I do not distinguish the notation X and V to save
space. The CAR designs will be applied with respect to both X; and X5, and different

distributions of these two covariates will be considered. I implement SSR if the trial is
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determined to continue after the second interim analysis. The cap of the sample size at
stage 3 is 500. In this case, w(ta,t3) = 0.5 and by = 2. All the results are based on
10,000 replications.

In Table 4.1, T report results for SPB when both X; and X, are binary covariates
with success rates of p; and po, respectively, and only X is included in the working model
as follows

Y =Po+ BrTi + Xafi+e,i=1,...,500. (4.9)

I offer results for type I error rate («), average and standard deviation of estimates of
/1 and SBr out of 10,000 replications. In Table 4.2, I report results for SPB when both
X; and X; follow standard normal distribution and only X is included in the working
model as in Table 1. When the CAR procedures are implemented with X;, 7 = 1,2, I

discretize them in the following way:

P L ifw <z, |
0 ifx> 2p;
where 2, is the p;-quantile of the standard normal distribution. However, the original
continuous covariates will be included in the data analysis. I get similar conclusions as in
Table 4.1. In Table 4.3, I report results for Pocock and Simon’s design (PS) when both
X, and X5 are binary covariates with success rates of p; and ps, respectively and only
X is included in the working model as in Table 4.1. In Table 4.4, T report results for
Pocock and Simon’s design when both X; and X, follow standard normal distribution
and only X is included in the working model as in Table 4.1. I use the same way as
in Table 4.2 to implement CAR. In all the tables, I can see that the type I error rates
are all conservative. But I can still estimate the parameters very accurately. In Tables

4.5-4.8, T perform numerical study for the similar scenarios to Tables 4.1-4.4, but use
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t-test statistics in the data analysis. I found the type I error rates are more conservative

but the unknown parameters can be estimated very well.

4.2.3 Asymptotic results

In this chapter, I propose to revise Z; and Z; and the corresponding U; to control

the type I error rate.

Let
; Ln(t
704 = n(t) 7 (4.10)
é(t)y/o(t)*L(X ([nt])" X ([nt])) 1 LT
where é(t)? is any consistent estimator of
3 20, + o
jecr
7 : (4.11)
o2+ 21 Var(‘/}’yf)
]:

o3, = E [Var (6;d:(V;))], and 6; = V;— E(V;|d;(V;)). Then I have the following theorem
for the scenario when part of the randomization covariates are included in the data

analysis.

Theorem 4.1. Let BY = \/tU;,. Assume the CAR design satisfies DIF, = O,(1),
DIF}(kicr) = Op(1),k =1,...,p, and DIF) (j;¢;) = Op(1),j = 1,...,q. Then under
Hy, BY is asymptotically a standard Brownian motion in distribution. The sequence of
test statistics {(Uy,, ..., U ),0 <13 <ty < .. <tg <1} has the asymptotic canonical
joint distribution defined in Jennison and Turnbull (2000), i.e., under Hy,

(1) {Us,, ..., Up } follows multivariate normal distribution,

(ii) EU,, = 0;

(iii) Cov(Uy,, Uy,) = /[nts] [|nt;], 0<t; <t; <1

When t-test is used in the data analysis, I revise Z] in the following way and the
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corresponding U; can be calculated. Let

, 412
(/a0 ([t T () (412)

where fu(t) = (Tr(|nt))"Tr(|nt])) " Tr(|nt]) Y (|nt)),
6(t)? = [Y(|nt]) — Tr(|nt)) (O] [Y (Int]) — Tr([nt))ia(t))/(|nt] - 2), and (t)? s a

consistent estimator of

> 732‘7(%3‘ +0°
jec

- )
o2+ > Var(‘/}’yf)

=1

Then I have the following theorem.

Theorem 4.2. Let BY = /tU,. Assume the CAR design satisfies DIF, = O,(1) and
D[F,Y(j;c;) = 0,(1),7 = 1,...,q. Then under Hy, BY is asymptotically a standard
Brownian motion in distribution. The sequence of test statistics {(Uy,, ..., U, ),0 < t; <
to < ... < tg < 1} has the asymptotic canonical joint distribution defined in Jennison
and Turnbull (2000), i.e., under Hy,

(i) {Us, ..., Up. } follows multivariate normal distribution;

(ii) EU,, = 0;

(iii) Cov(Uy,, Uy,) = /|nts) /|nt;], 0<t; <t; < 1.

This theorem reveals the most fundamental properties for the proposed method,
i.e., the asymptotic joint distribution of the sequential statistics. From this theorem and
the numerical studies above, I can easily see and understand the conservativeness of the
type I error rates when not all the randomization covariates are included in the data
analysis, since
5 2o+
jecH

q
o2+ > Var(‘/}fyf)

Jj=1

?

is always less than 1.
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4.3 Numerical and simulation studies

In this section, I study the finite-sample properties of the proposed procedure.
For all the tables, suppose originally planned 500 patients sequentially enter a clinical

trial, and the responses follow

Y, = T + po(1 = T;) + Xa B + Xiofo + 6,1 =1,...,500, (4.13)

where (1, pio, 81, B2) are unknown parameters, and ¢; are independent errors from the
normal distribution N (0, 1). In different tables, I compare the stratified permuted block
randomization (SPB), Pocock and Simon’s procedure (PS) and complete randomization.
The CAR designs will be applied with respect to both X; and X5, and different dis-
tributions of these two covariates will be considered. I implement SSR if the trial is
determined to continue after the second interim analysis. The cap of the sample size
at stage 3 is 500. In this case, w(ta,t3) = 0.5 and bya, = 2. It is worth noting that a
variety of approaches such as bootstraps can be used to obtain €. In this dissertation, I
obtain € in the following way. At each interim look, I fit model (4.13) with full data to
obtain consistent estimators of the unknown parameters. I can also easily obtain consis-
tent estimators of os5; and Var(V;) based on the observed covariates due to the law of
large numbers. Thus the consistency of € follows the fundamental large-sample theory
(Lehmann, 2004). All the results are based on 10,000 replications.

In Tables 4.9-4.12, the sequential data analysis are all based on the model (4.9),
and the adjusted sequential statistics U, are used. In Table 4.9, I report results for SPB
and complete randomization when both X; and X, are binary covariates with success
rates of p; and ps, respectively. I offer results for type I error rate () (the proportion
of the number of rejections of Hy out of 10,000 replications, and the intended value is

0.05), average and standard deviation of the following values out of 10,000 replications:
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estimates of #; and Sr. I can see that my method can control the type I error rate very
well, and estimate the parameters very accurately.

In Table 4.10, I report results for SPB and complete randomization when both X;
and X follow standard normal distribution. When the CAR procedures are implemented

with X, 7 = 1,2, I discretize them in the following way:

P L ifw <z, |
0 ifz > 2,
where 2, is the p;-quantile of the standard normal distribution. However, the original
continuous covariates will be included in the data analysis. I get similar conclusions as
in Table 4.9.

In Table 4.11, I report results for Pocock and Simon’s design (PS) and complete
randomization when both X; and X, are binary covariates with success rates of p; and
P2, respectively. I found that my proposed method can control the type I error rate very
well and estimate the parameters very accurately. In Table 4.12, 1 report results for
Pocock and Simon’s design and complete randomization when both X; and X, follow
standard normal distribution. I use the same way as in Table 4.10 to implement CAR. I
get similar conclusion as in Table 4.11.

In Table 4.13, I report the covariate imbalance for the scenario of Table 4.9. 1
report the average and standard deviation of the following values out of 10,000 repli-
cations: overall difference in patient numbers between the two treatments (DIF,), the
differences of patient numbers between the two treatments in the four stratum (DIFy,
for X; = g and Xy = h, g,h = 0,1). In Table 4.14, I report the covariate imbalance
for the scenario of Table 4.10. In this table, DIF, refers to the stratum-level treatment
assignment difference corresponding to the discretized covariates. In these two tables, I

can see that compared to complete randomization, the overall and stratum imbalance can
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be controlled much better by my proposed method. In Table 4.15, I report the covariate
imbalance for the scenario of Table 4.11. I additionally report the marginal imbalance:
DIF;. is the marginal imbalance for X; = 1, DI Fy. is the marginal imbalance for X; = 0,
DIF is the marginal imbalance for Xy = 1, DI Fj is the marginal imbalance for X, = 0.
I found that Pocock and Simon’s design will return better balance in all levels: overall,
marginal and stratum. Compared to the stratum imbalance, Pocock and Simon’s design
can control the marginal and overall imbalance better. In Table 4.16, I report the co-
variate imbalance for the scenario of Table 4.12. In this table, the stratum and marginal
level imbalance corresponds to the discretized covariates. I got similar results to Table
4.15.

In Tables 4.17-4.20, I report results when the sequential data analysis are all based
on the t-test and the adjusted sequential statistics U; are used. In these tables, I get
similar corresponding results as when I include only one covariate in the model for data

analysis.

4.4 Conclusion

The advantages and challenges of the combination of covariate-adaptive random-
ization, sequential monitoring and sample size re-estimation have been introduced in
Chapter 3. In practice, clinical trial practitioners are often reluctant to include all the
randomization covariates in the data analysis for different reasons, which introduces extra
problems. In this chapter, I study the theoretical and numerical properties for sequential
monitoring of covariate-adaptive clinical trials with sample size re-estimation when not
all the randomization covariates are included in the data analysis. I found that using
the approaches in Chapter 3 without adjustment will lead to conservative type I error
rate. The lower number of randomization covariates I include in the data analysis, the

more conservative the type error rate is. I proposed methods to adjust the sequential
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test statistics based on the theoretical results, and successfully controlled the type I error
rate demonstrated by the numerical study.

In addition to the future research fields mentioned in the conclusion of Chapter
3, it is worth proposing other approaches to adjust the test statistics to control the type
I error rate. Bootstrap is a natural idea to study, since the conservativeness of the type
I error rate comes from a wrong estimation of the variance of the estimator of treatment
difference. Other methods leading to a correct estimation of this variance can also be
investigated. The same problem occurs when CAR is used and longitudinal data analysis

is implemented. I leave all these for future research.
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Chapter 5

Conclusions

In this dissertation, I investigated sequential monitoring of clinical trials with
sample size re-estimation (SSR) under two different adaptive randomization designs, i.e.,
response-adaptive randomization (RAR) and covariate-adaptive randomization (CAR).

Response-adaptive randomization has been shown to have ethical and efficient
advantages such as assigning more patients to the better treatment and maximizing
the power of detecting the treatment differences. Its theoretical and numerical prop-
erties have been well studied. However, in order to apply RAR in real clinical trials,
more research is needed. In modern clinical trials, sequential monitoring and sample
size re-estimation are very popular and desirable. Clinical trial practitioners would like
to combine sequential monitoring, SSR and response-adaptive randomization in one trial
when considering whether to implement RAR in the trials. RAR assigns the next patient
based on previous treatment assignments and responses. Therefore, the commonly used
methods based on independently and identically distributed responses is not applicable
any more. Moreover, sequential monitoring involve interdependent sequential test statis-
tics. The critical step to control the type I error rate is to derive the joint distribution
of the sequential test statistics. Sample size re-estimation is adaptive. Therefore, I have

worked on the combination of three types of adaptive design in one trial. In this dis-
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sertation, I derived the joint distribution of the proposed sequential test statistics when
SSR is implemented. I also performed comprehensive numerical and simulation studies
to show that my proposed method can control the type I error rate well, and enhance
ethical and efficient aspects of clinical trials.

In real clinical trials, covariate-adaptive randomization designs including the strat-
ified permuted block randomization and Pocock and Simon’s design (1975) are popular
randomization design in Phase III confirmatory clinical trials. As mentioned above, se-
quential monitoring and SSR are also very popular in practice. As a result, sequential
monitoring of covariate-adaptive randomized clinical trials with SSR are very commonly
used. However, theoretical investigations on this procedure is lacking in the literature.
In particular, researchers realized that the type I error rate will be conservative if we do
not include all the covariates used in the CAR design in the data analysis. In summary,
I studied sequential monitoring of covariate-adaptive randomized clinical trials with SSR
for three scenarios: 1. all the randomization covariates are used in the data analysis; 2.
part of the randomization covariates are used in the data analysis; 3. none of the ran-
domization covariates are used in the data analysis (t-test). I also theoretically showed
that my method can control the type I error rate. The numerical and simulation studies
supported my theoretical findings.

There are many directions for future research. I have mentioned a few in previous
chapters. Here I emphasize one direction from the point of view of the adaptive random-
ization designs. Clinical trials often involve various covariates since the heterogeneity of
patients’ responses to a treatment is well-accepted as the development of Bioinformat-
ics. At the same time, the ethical and efficient considerations are expected to be dealt
with in clinical trials. Zhang et al. (2007) proposed covariate-adjusted response-adaptive
randomization in order to preserve the advantages of RAR while taking into account

the heterogeneity of patients’ responses to a treatment. However, this design requires
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quite difficult theoretical foundations. As a result, lots of fundamental properties are
unclear for this design. For example, when covariates are continuous, how can we define
the so-called allocation proportion. Even without SSR, how can we sequentially monitor
the CARA design while controlling the type I error rate. Traditional spending function
methods are based on standard Brownian motion with a fundamental assumption that
the increment of the monitoring statistic is independent. Brownian motion have been
used in many fields such as in dynamic systems and economics (Hu et al., 2003; Jumarie,
2006). Brownian motion provided a lot of useful theoretical results in monitoring clinical
trials (Lan and Wittes, 1988; Davis and Hardy, 1990, 1994). Although these methods
were derived under several assumptions, it is a common feature that the test statistic
forms a Brownian motion over the information time (Lachin, 2005). However in practice,
the assumptions may not be satisfied, since patients are followed for a long time period
and the test statistic is formed with aggregations from a group of patients. Fractional
Brownian motion is a model to deal with the long-memory stochastic processes due to
aggregation. Lai (2010) studies the boundaries under factional Brownian motion for five
a spending functions. A more comprehensive method to decide whether stopping or
continuing the trials was provided based on the new results. It is also worth studying

this scenario. I leave all these for future research.
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APPENDIX

Proof of Theorem 2.1, 3.1, 4.1 and 4.2: Note that before involving sample size
re-estimation, the sequential statistics Z; defined in different chapters in this dissertation
are the same as those in Zhu and Hu (2012) (urn models) and Zhu and Hu (2018) (CAR).
Under the regularity conditions of the corresponding chapters, Theorem 2 of Zhu and
Hu (2012) proved that under Hy, B, = v/tZ, in Chapter 2 of this dissertation converges
to a standard Brownian motion in distribution. That is, {Z;,, ..., Z:, } is multivariate
normal; EZ;, = 0; and Cov(Zy,, Z \/W 0 <t <t; <1 Theorem 2.1
of Zhu and Hu (2018) proved that under Hy, B, = v/tZ, in Chapter 3, B, = VtZ"¥
and B; = \/tha 4" in Chapter 4 of this dissertation converge to a standard Brownian
motion in distribution. That is, {Ztald] s ngj} is multivariate normal; EZZdj = 0; and
Cov(Z, “,dj Z“d] = /ti/t;, 0 < t; < t; < 1. To save space, | use the notation Z; to
represent Z;, Z'Y and Z!" 4" hereafter to offer a unified proof for Theorem 2.1, 3.1, 4.1

and 4.2.

Note that in this dissertation, my test statistics U, are defined as follows,
Ut Zt, if ¢ < t L;

and

Byit1101, — B
Uy =w*Zy, + (1 —w,)/? ?2(;{*;;)}1/2“, i, <t<1,

where w; =ty /t and b = (w —t)/(1 — t). Therefore, based on the conclusion of Zhu
and Hu (2012) and Zhu and Hu (2018), we only need to prove that the joint distribu-

tion of (Uy,,...,Us,) is the same as that of (Zy,,...,Z;,) under Hy. Firstly, U; is the

linear combination of Z;, so (Uy,, ..., Uy, ) also follows multivariate normal distribution.
Next, I will prove that (Ui, ..., U;, ) have the same mean, variance and covariance as
VA
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It is clear, for t < t;, we have U; = Z; by definition.

For t;, <t <1, we have

1/2 By—t,)+t, — By, 7
(b(t —tp)}/2 17"

Byi— - B
= (wi/ "By, [V + (1 —wy)'? ?&ETZ )}1/2%

E(Ut|ZtL) =F (wtl/QZtL + (1 - wt)

)

_ B <wt1/2BtL/\/E‘BtL>
= wtl/QBtL/\/E

1/2
— wt ZtL'

E(U,) = E(E(Ui|Z,,)) = E(w*Z,,) = 0.

1/2 By—t,)+t, — B,
{o(t —tr)}/?

B )

Var(UyZ;,) = Var (wgﬂBtL/\/E + (1 —wy)

B _B
. B 1/2 Pb(t—tr)+t t
= Var (1w

)

1—wt
=——(b(t—t tr, — 1t
b(t—tL)(( L) +tL—tr)
—1—wt.

Var(U;) = E(Var(Ui|Z:,)) + Var(E(Ui| Zt,))
=E(1l—w)+ Var(wtl/zZtL)
=1- Wt + Wt

=1.
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When i, <t <ty < ]_,

Byt - - B
CO'U(Utl, Ut2|ZtL) = CO'U ((1 _ wt1>1/2 b(t1—tr)+tr tr,

(1 _ )1/2 Bb(t2—tL)+tL - BtL
{b(ty —to) /2 7 2

{b(ty —tr)}1/?

BtL)
(1 = w,)?(1 = wy,)'?
- {b( 1= t) P2{b(te — 1) 312 Cov (B”(“*tL)“L — Biyy Bo—tr)+6, — By

b /t_l =000 (Bt 1)1, — Biy,

[Bb(tl_tL)‘f'tL - BtL] [Bb(tg—tL)+tL - Bb(tl—tL)-i—tL] ‘BtL)

b\/_vaT(Bb ti—tr)+tr — BtL‘BtL)—i_
—b —tltz Cov (Bb(tl—tL)+tL — By, [Bo(ta—tr)+tr — Boi—tr)+1,] ‘BtL)

mem‘(Bb ti—tr)+tr, BtL‘BtL)

1
N

_ti—tg

Vit

(b(t; — 1)+t —tr)

COU(UtU Utz) = E(COU(Utu Ut2 |ZtL) + COU(E(UH |ZtL)7 E<Ut2 |ZtL))

bt — 1 1/2
— E( \/@ ) + COU(wtl ZtL7 th/ ZtL>
th =1 1/2 1/2
= —m +w, “w, " Var(Zy,)

ty —tr

= Jhh +(tL/t1)1/2(tL/t2)1/2

- (tl/t2)1/2.

Therefore, we have the joint distribution of (Uy,,..., U, ) is the same as that of

(Zeyy- .y Zyy) under H,.
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R code for Example 1 of Chapter 2

simulation=function (pa,pb,nl,n2,n3.0 ,m,cl,c2,c3,ssrfl)

{

#pa pb are success rates for treatment A and B, respectively
#nl,n2,n3_0 are the originally planned sample size for the three stages
#m is the number of replications

#cl,c2,c3 are the critical values

#ssrfl is the indicator for whether to implement SSR.

#total sample size originally planned

ntotal=nl4+n2+4+n3_.0

#max number for 3rd stage after SSR

nmax = 500

#desired conditional power value

pcut=0.9

#t1 and t2 are the information times for the first two looks

t1=0.2

t2=0.5

#total number of failures

failure=NULL

#failure rates

failureratio=NULL

#number of rejection of H_0 out of m replications

number=0

#number of cases when SSR was implemented

numofssr=0

#rhol and rho2 are actual allocation proportions for the two treatments, respectively
rhol <—NULL

rho2<-NULL

#urnl and urn2 are the urn compositions (number of balls of type 1 and 2)
urnl<—NULL

urn2<-NULL

#number of rejection at first/second/third look

reject1l=0
reject2=0
reject3=0

#final sample size
SS=NULL
#if SSR will be done, the increase of sample size
SSplus=NULL
for (i in 1:m ){
#number of type 1 ball in the urn, initial numbers are 5 for both treatments
balll=5
ball2=5
#responses of patients in treatment 1/2
xx1<—NULL
xx2<-NULL
#number of patients in treatment 1/2
N1=0
N2=0

for (j in 1:n1){
Rhol=balll /(balll4+ball2)
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#Rhol is the probability that drawing type 1
x<—runif(1,0,1)
if (x>=0 & x<Rhol) {
N1<—NI1+1
new=rbinom (1,1 ,pa)
xx1<—c (xx1,new)
}
if (x>=Rhol & x<=1) {
N2<—N2+1
new=rbinom (1,1 ,pb)
xx2<—c (xx2 ,new)
}
plhat=(sum(xx1)+1)/(N1+1)
p2hat=(sum(xx2)+1)/(N2+1)
balll=balll+4sqrt(plhat)
ball2=ball2+4sqrt (p2hat)
}
plhat=(sum(xx1)+4+1)/(N1+1)
p2hat=(sum(xx2)+4+1)/(N2+1)

stat=abs ((plhat—p2hat)/sqrt(plhat*(l—plhat)/Nl4+p2hat*(1—p2hat)/N2)) #statistic
if (stat>cl) {
number=number-+1
rejectl=rejectl+1
} else {
for (j in 1:n2){
Rhol=balll /(balll+ball2)
#probability that drawing type 1
x<—runif (1,0,1)
if (x>=0 & x<Rhol) {
N1<—N1+1
new=rbinom (1,1 ,pa)
xx1<—c (xx1,new)
}
if (x>=Rhol & x<=1) {
N2<—N2+1
new=rbinom (1,1 ,pb)
xx2<—c (xx2,new)
}
plhat=(sum(xx1)+4+1)/(N1+1)
p2hat=(sum(xx2)+1)/(N2+1)
balll=balll4sqrt(plhat)
ball2=ball24sqrt (p2hat)
}
plhat=(sum(xx1)+1)/(N1+4+1)
p2hat=(sum(xx2)+1)/(N2+1)

stat2=abs ((plhat—p2hat)/sqrt(plhat*x(l—plhat)/Nl+p2hat*(1—p2hat)/N2))
if (stat2>c2) {

number=number+1

reject2=reject2+1

} else {

#indicator of whether SSR will be implemented
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cpfl = FALSE
#treatment effect Delta in this dissertation
mu-1 = (mean(xx2)—mean(xx1))/sqrt(mean(xx1l)*(l—mean(xx1))/(N1/(N14N2))
“mean (xx2)* (1 —mean (xx2)) / (N2/(N14N2)))
#conditional power
cp-1 =l-pnorm((c3 — stat2*sqrt(t2)— mu_-lxsqrt(ntotal)*(1—t2))/sqrt(1—t2) )
if(0.01<cp-1 & cp-l<pcut) cpfl = TRUE

fx = function(ntotal, pcut0 = pcut ){
l—pnorm( (c3 — stat2x*sqrt(t2)— mu_-l*sqrt(ntotal)*(1—t2))/sqrt(l1—t2) )— pcutO
}
if(ssrfl & cpfl){
#sample size needed for the 3rd stage
ncp = floor (uniroot (fx,c(n3.0,1000000)) $root) — nl — n2
#final sample size after SSR following the rule of the dissertation
n3 = min(nmax, max(n3_.0, ncp))
SSplus=c(SSplus ,n3—n3_0)
} else {
n3=n3_.0
¥
for (j in 1:n3){
#probability that drawing type 1
Rhol=balll /(balll+ball2)
x<—runif(1,0,1)
if (x>=0 & x<Rhol) {
N1<—NI1+1
new=rbinom (1,1 ,pa)
xx1<—c (xx1,new)
}
if (x>=Rhol & x<=1) {
N2<—N2+1
new=rbinom (1,1 ,pb)
xx2<—c (xx2 ,new)
}
plhat=(sum(xx1)+4+1)/(N1+1)
p2hat=(sum(xx2)+1)/(N2+1)
balll=balll+4sqrt(plhat)
ball2=ball2+4sqrt (p2hat)
}
b = n3/n3.0
stat30=(mean(xx2)—mean(xx1))/sqrt (mean(xx1)*(1l—mean(xx1))/Nl4+mean(xx2)*(1—mean(xx2))/N2)
#the third test statistic U_t
stat3 = stat2x*sqrt ((nl4+n2)/(nl4n2+n3-0))+
sqrt ((n14n24n3)/(nl4n24n3_-0))*
(mean(xx2)—mean(xx1))/sqrt (mean(xx1l)*(1l—mean(xx1))/Nl+mean(xx2)*(1—mean(xx2))/N2)
*sqrt(1—(nl4+n2)/(nl4n2+4+n3.0))
/sqrt (bx(n3.0/(nl4n2+4n3_0)))
— stat2*sqrt ((nl+n2)/(nl4+n2+n3-0))
xsqrt(1—(nl4+n2)/(nl4n2+n3_0))
/sart (bx(n3-0/(nl4n24+n3.0)))
if (ssrfl & cpfl){
stat = stat3

}elsed{
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stat = stat30
¥
if (stat>c3) {
number=number+1
reject3=reject3+1
}
}
}
rhol=c(rhol ,N1/(N14N2))
rho2=c (rho2 ,N2/(N14N2))
urnl=c(urnl, balll /(balll4+ball2))
urn2=c (urn2, ball2 /(balll4+ball2))
SS=c (SS,N14N2)
failure=c(failure ,length (xxl)+length (xx2)—sum(xx1)—sum(xx2))
failureratio=c(failureratio ,(length (xxl)+length (xx2)—sum(xx1l)—sum(xx2))/(length(xx1)+length (xx2)))
}
result=c(number/m, mean(rhol),sd(rhol),mean(urnl),sd(urnl),

mean (SS),sd(SS) ,mean(failure),sd(failure),mean(failureratio),sd(failureratio
(

rm(list = ls(all = TRUE))
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