GSBS Alumni Reunion 2009, Trevisio Restaurant

Dr. George Stancel, Dean, stands with Dr. John Simpson, 2009 GSBS Distinguished Alumnus, and Dr. Vicky Estrera, 2008-2009 Alumni Association President

Click here for pictures from the event.
Diana and Russell Hawkins establish the first two Discovery Fellowships

Little did Diana Hawkins realize the impact she would ultimately provide for the Graduate School when invited to join the Development Board in 1998 by Peggy Barnett. After working previously as a financial analyst where she enjoyed following the health care industry, and as a daughter of an attorney and a microbiologist (who even spent a few summers in the lab growing up) Diana had a natural affinity for things biomedical and believed in graduate education as well. She has since served/serves on The University of Texas Development Board in a number of leadership roles, and for the last several years has chaired the GSBS Advisory Council.

Diana notes, “I am interested in supporting graduate education for many reasons. I admire the dedication of these bright young people who are willing to dedicate years of their lives to furthering their education and to the pursuit of scientific discovery. It is cliché, but they really are our future and they need to be encouraged—it is and will be crucial that we have the best graduate students in these fields.”

As GSBS Advisory Council chair, Diana and her husband offered their home to host the first Evening of Discovery. She felt that the “Council already knew how wonderful the students were, but we needed a way to let more people in the community know about this very special group of young people, thus the idea for an Evening of Discovery was born, and Russell and I were happy to host the first event.” That night the concept of the Discovery Fellows coalesced.

Graduate students were on hand with their scientific posters related to stem cell research, cancer treatment and environmental toxicology...they visited informally about their research with a group of 30 Council members and friends. The Dean shared his vision stating that the School’s students, while performing an independent research study, must make an original discovery that increases the collective knowledge in the biomedical sciences before they may receive their PhD degree. He proposed that it would be particularly powerful in moving the School and research forward to be able to have dedicated support for small cadres of these bright individuals who could be positioned early to specifically investigate ground-breaking areas of research and lead the country scientifically in this way.

Inspired by the Dean’s words at the Evening of Discovery, Diana and Russell decided to make a five-year financial commitment that would establish a rapid strike-force of exceptional students to work in the most promising cutting-edge areas of research. She states, “This gift, I thought, would affirm the belief in what the School was accomplishing, and I hoped to leverage outstanding innovative research, long term NIH support for the achievements in that new field, and encourage similar gifts dedicated to Discovery Fellowships from others.”

This fall The Russell and Diana Hawkins Family Foundation Discovery Fellows will be named and the very first two of this innovative model will come into being.

BACK COVER
Message to the Alumni:
Joy Marshall, Ph.D.
President 2009-2010
GSBS Alumni Association

FRONT COVER
A view of the new GSBS Alumni website, www.utgsbsalumni.org, launched April, 2010. We look forward to connecting with alumni, students and community friends. Members of the GSBS webteam who helped make this a reality are Laura Sanders, Eric Solberg, Jeannice Theriot and Michael Valladolid. The beautiful template was based on the GSBS website, which was designed by Eric Rasch of the UT Medical School Office of Communications.
Accreditation is a Double A+

Every academic institution must undergo a formal review to be accredited. This is done by regional accrediting bodies sanctioned by the U.S. Department of Education; for us this is the Southern Association of Colleges and Schools (SACS). Major reviews occur every 10 years and the educational programs of both The University of Texas M. D. Anderson Cancer Center and The University of Texas Health Science Center, including GSBS, were reviewed during the Spring 2010 Semester.

A review starts with an institutional self-study begun two years before a formal written report is submitted and followed up by a three-day site visit from a distinguished group of external reviewers. The written report is a comprehensive document thousands of pages long that covers many aspects of the institution being reviewed in addition to its educational programs, e.g., faculty credentials, quality, and adequacy of numbers; physical plant, libraries, and laboratory resources; IT and computing resources; student support, counseling, and academic advising; school and parent institutional finances, governance, and leadership; federal reporting requirements, and so on.

Accreditation reviews have historically examined institutional resources, facilities, and processes to monitor instructional programs noted above to determine if they were acceptable. In recent years reviews have also demanded objective evidence of educational outcomes and student achievement, asking, i.e., how effectively is an institution actually educating its students and what is it doing to continuously assess and improve its educational outcomes. This change from basic “check-offs” to an analysis of outcomes is an important step that makes accreditation a far more meaningful process and a far better measure of how well a school is achieving its primary educational mission.

After the review the site visit team prepares a list of areas of non-compliance that institutions must correct in order to receive full accreditation. Because the review is so thorough and rigorous the great majority of institutions reviewed are found to be deficient in one or more significant areas that must be corrected to receive full accreditation; these corrections take up to two years. Formal accreditation is then awarded at the next annual meeting of SACS.

I am pleased to announce that both of our parent organizations, M. D. Anderson Cancer Center and UTHealth, received unconditional recommendations for accreditation. To have both our parent institutions rated in this very top group is a truly amazing accomplishment and a testament to the quality of GSBS, their other educational programs, and their overall organization and operation. Some of the site visitors remarked that they had never experienced another institutional review that was concluded without major recommendations for improvement. This is a remarkable achievement - for not one, but both of our parents - of which we can be justifiably proud. I want to thank the entire GSBS Faculty, staff, and student body and many other people at our parent institutions for their wonderful support. We would not have received a double A+ on our institutional report card if it were not for their efforts over the past decade, and this outcome sets a very high standard for us to achieve in the coming one.

Congratulations to our parent institutions and the entire GSBS Family for this accomplishment.

This photo was taken at the University of Puerto Rico (UPR) Medical Sciences Campus Research Forum in San Juan. Both students who are from P.R., and enrolled at GSBS currently, were invited to present their work at the forum. Dr. George Stancel delivered the plenary lecture on “Clinical and Translational Research Training Programs” at the Forum on March 24, 2010.
Incoming Students

A
Alcorn, Joseph - Neuroscience, B.S., 5/1/09, University of North Texas, TX
Azizian, Nancy - Genes and Development, M.S., 8/1/07, University of Massachusetts Medical Center at Worcester, MA

B
Baum, Sarah - Neuroscience, B.S., 5/1/09, College of William & Mary, VA
Beaman, Charles - Neuroscience, B.S., 5/1/09, University of Texas at Austin, TX
Bhadkamkar, Nishin - Cancer Biology, M.D., 5/1/05, Baylor College of Medicine, TX
Bill, Katelynn - Cancer Biology, B.S., 5/1/09, Hardin Simmons University, TX
Blatnica, Anthony - Medical Physics, B.S., 12/1/02, Southwest Texas State University, TX
Bouche, Michelle - Cancer Biology, B.S., 5/1/07, Southwestern University, TX
Brady, Samuel - Cancer Biology, B.S., 8/1/09, Brigham Young University, UT
Brand, Cameron - Regulatory Biology, B.S., 5/1/09, University of Texas at Dallas, TX
Bronk, Lawrence - Medical Physics, B.S., 6/1/08, Massachusetts Institute of Technology, MA
Bruno, Debora - Cancer Biology, M.D., 12/1/97, Federal University of Ceara, Brazil
Burgyne, Madeline - Neuroscience, B.S., 5/1/09, Centenary College of Louisiana, LA

C
Cai, Guoshuai - Cancer Biology, M.S., 9/1/09, Wuhan University-PRC, China
Carlock, Colin - Genes and Development, B.S., 5/1/09, Michigan State University, MI
Cernosek, Amanda - Biochemistry, B.S., 5/1/08, University of Oklahoma, OK
Chandrasekar, Anuja - Neuroscience, B.E., 5/1/09, Anna University Madras, India
Chang, Chia-Chi - Cancer Biology, M.S., 8/1/07, National Taiwan University, Taiwan
Chang, Shih-Shin - Cancer Biology, M.S., 7/1/04, National Taiwan University, Taiwan
Chatterji, Tanushree - Cancer Biology, M.S., 11/1/08, Idaho State University, ID
Chen, Lu - Cancer Biology, B.S., 7/1/09, Fudan University, China
Cheung, Joey - Medical Physics, B.A., 5/1/08, University of California at Berkeley, CA
Chiang, Yun-Chen - Cell Biology, M.S., 6/1/09, National Taiwan University, Taiwan
Cho, Hyojin - Cancer Biology, M.S., 12/1/06, University of Missouri-Columbia, MO
Churchill, Jennifer - Human and Molecular Genetics, B.S., 5/1/09, Texas A&M University-College Station, TX
Cope, Kimberly - Microbiology and Molecular Genetics, B.S., 12/1/07, University of California Davis, CA
Cortes Santiago, Nahir - Cancer Biology, B.S., 5/1/04, University of Puerto Rico Mayaguez Campus, P.R.

D
Dash, Sandeep - Molecular Carcinogenesis, M.S., 12/1/08, Uttar Pradesh Rajarshi Tandon Open University, India
Dimarco, Patty - Cancer Biology, B.S., 5/1/09, University of Houston - Main, TX
Dorta-Estremera, Stephanie - Immunology, B.S., 5/1/07, University of Puerto Rico-Rio Piedras, P.R.
Dumont, Amaury - Cancer Biology, D.Pharm., 3/1/06, University of Paris XI, France

E
Edwards, Julianna - Virology and Gene Therapy, B.S., 6/1/08, Massachusetts Institute of Technology, MA
Eley, John - Medical Physics, B.S., 12/1/04, College of Charleston, SC
Erzinger, Stephanie - Virology and Gene Therapy, B.S., 12/1/07, Louisiana State University-Baton Rouge, LA

F
Fahrenholtz, Samuel - Medical Physics, B.S., 5/1/09, Kansas State University, KS
Faught, Austin - Medical Physics, B.A., 5/1/09, Kenyon College, OH

G
Gabitzsch, Emily - Genetic Counseling, B.S., 7/1/07, University of Texas at Austin, TX
Gadhikar, Mayur - Cancer Biology, M.S., 2/1/07, Texas A&M University-College Station, TX
Gao, Yuan - Cancer Biology, B.S., 5/1/09, Texas A&M University-College Station, TX
Gaur, Sanchaika - Cancer Biology, B.S., 2/1/09, SUNY at Buffalo, NY
Gireud, Monica - Cancer Biology, B.S., 5/1/09, University of Texas at Austin, TX
Gonzalez, Dennisse - Biomedical Sciences, B.S., 1/1/06, University of Chile, Chile
Gonzalez-Angulo, Ana - Cancer Biology, M.S., 5/1/07, University of Texas Medical School at Houston, TX
Gowin, Joshua - Neuroscience, M.S., 12/1/08, University of Texas GSBS at Houston, TX
Gutierrez, Kaitlin - Molecular Carcinogenesis, B.S., 5/1/09, Texas A&M University-College Station, TX

H
Han, Amy - Pharmacology, B.A., 5/1/08, University of Colorado - Boulder, CO
Han, Fei - Biochemistry, B.S., 5/1/09, East Tennessee State University, TN
Hendon, Laura - Genetic Counseling, M.A., 8/1/07, Washington University, MO
Henriksen, Ashley - Genetic Counseling, B.S., 8/1/08, University of Texas at Austin, TX
Hocker, Harrison - Biomathematics and Biostatistics, B.E., 12/1/08, University of Texas at Austin, TX
Hou, Singyi - Biomedical Sciences, M.S., 6/1/05, National Cheng Kung University, Taiwan
<table>
<thead>
<tr>
<th>Name</th>
<th>Program and Degree</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu, Xin</td>
<td>Cancer Biology, M.S.</td>
<td>Shanghai Normal University, China</td>
</tr>
<tr>
<td>Huang, Tzu-Chuan</td>
<td>Cancer Biology, M.D.</td>
<td>Medical College of Georgia, GA</td>
</tr>
<tr>
<td>Izaguirre, Daisy</td>
<td>Biomedical Sciences, M.S.</td>
<td>University of Texas GSBS at Houston, TX</td>
</tr>
<tr>
<td>Jancewicz, Joanna</td>
<td>Biochemistry, B.S.</td>
<td>University of Houston - Main, TX</td>
</tr>
<tr>
<td>Jenkins, Sarah</td>
<td>Microbiology and Molecular Genetics, M.S.</td>
<td>University of Texas GSBS at Houston, TX</td>
</tr>
<tr>
<td>Jimenez-Lopez, Claudia</td>
<td>Microbiology and Molecular Genetics, B.S.</td>
<td>University of Houston-Downtown, TX</td>
</tr>
<tr>
<td>Jones, Devin</td>
<td>Virology and Gene Therapy, B.S.</td>
<td>University of Texas at Austin, TX</td>
</tr>
<tr>
<td>Joy, Sarah</td>
<td>Medical Physics, B.S.</td>
<td>University of Florida, FL</td>
</tr>
<tr>
<td>Jules, Maurice</td>
<td>Biomathematics and Biostatistics, B.S.</td>
<td>Prairie View A&M University, TX</td>
</tr>
<tr>
<td>Kiany, Simin</td>
<td>Immunology, M.S.</td>
<td>Shiraz University of Medical Sciences, Iran</td>
</tr>
<tr>
<td>Klein, Sarah</td>
<td>Pharmacology, B.S.</td>
<td>University of Maryland College Park, MD</td>
</tr>
<tr>
<td>Kwan, Suet Yan</td>
<td>Cancer Biology, B.S.</td>
<td>Imperial College, London, UK</td>
</tr>
<tr>
<td>LaFortune, Tiffany</td>
<td>Cancer Biology, B.S.</td>
<td>Providence College, RI</td>
</tr>
<tr>
<td>Lee, Soo Yeon</td>
<td>Cell Biology, B.S.</td>
<td>Sung Kyun Kwan University, South Korea</td>
</tr>
<tr>
<td>Lowery, Frank</td>
<td>Cancer Biology, B.S.</td>
<td>Duke University, NC</td>
</tr>
<tr>
<td>Ma, Li</td>
<td>Virology and Gene Therapy, B.S.</td>
<td>Virginia Polytechnic Institute & State University, VA</td>
</tr>
<tr>
<td>Manton, Christa</td>
<td>Cancer Biology, B.S.</td>
<td>Truman State University, MO</td>
</tr>
<tr>
<td>Marisetty, Anantha</td>
<td>Cancer Biology, M.S.</td>
<td>University of Massachusetts at Lowell, MA</td>
</tr>
<tr>
<td>May, Caitlin</td>
<td>Molecular Biology, B.S.</td>
<td>Grand Valley State University, MI</td>
</tr>
<tr>
<td>Min, Jungki</td>
<td>Biochemistry, M.S.</td>
<td>Purdue University, IN</td>
</tr>
<tr>
<td>Morrow, John</td>
<td>Cancer Biology, B.S.</td>
<td>University of California at Berkeley, CA</td>
</tr>
<tr>
<td>Mueller, Jonathon</td>
<td>Medical Physics, M.S.</td>
<td>University of Akron, OH</td>
</tr>
<tr>
<td>Najmaei, Sina</td>
<td>Medical Physics, M.S.</td>
<td>University of Texas at Austin, TX</td>
</tr>
<tr>
<td>Nallaparaju, Kalyan</td>
<td>Immunology, M.S.</td>
<td>University of Texas at San Antonio, TX</td>
</tr>
<tr>
<td>Neubauer, Emily</td>
<td>Medical Physics, B.S.</td>
<td>Yale University, CT</td>
</tr>
<tr>
<td>Neveu, Curtis</td>
<td>Neuroscience, B.S.</td>
<td>Oklahoma State University, OK</td>
</tr>
<tr>
<td>Nichols, Trisha</td>
<td>Genetic Counseling, B.S.</td>
<td>Baker University, KS</td>
</tr>
<tr>
<td>Nute, Jessica</td>
<td>Medical Physics, M.S.</td>
<td>Duke University, NC</td>
</tr>
<tr>
<td>Ortiz, Angelica</td>
<td>Cancer Biology, M.A.</td>
<td>University of London, UK</td>
</tr>
<tr>
<td>Ow, Thomas</td>
<td>Cancer Biology, M.D.</td>
<td>Northwestern University, IL</td>
</tr>
<tr>
<td>Panos, Laura</td>
<td>Genetic Counseling, B.S.</td>
<td>University of North Carolina-Chapel Hill, NC</td>
</tr>
<tr>
<td>Park, Jun Young</td>
<td>Neuroscience, B.S.</td>
<td>SUNY at Binghamton, NY</td>
</tr>
<tr>
<td>Parker, Britanny</td>
<td>Neuroscience, B.S.</td>
<td>University of California-Irvine, CA</td>
</tr>
<tr>
<td>Parsons, Henrique</td>
<td>Cancer Biology, M.D.</td>
<td>Pontificia Universidade Catolica de Campinas, Brazil</td>
</tr>
<tr>
<td>Patel, Viralkumar</td>
<td>Pharmacology, M.S.</td>
<td>Grand Valley State University, MI</td>
</tr>
<tr>
<td>Payton, Michelle</td>
<td>Cancer Biology, M.S.</td>
<td>University of Minnesota-Minneapolis/St Paul, MI</td>
</tr>
<tr>
<td>Peng, Gang</td>
<td>Biomathematics and Biostatistics, B.S.</td>
<td>Fudan University, China</td>
</tr>
<tr>
<td>Peters, Andrew</td>
<td>Biochemistry, B.S.</td>
<td>Texas A&M University, TX</td>
</tr>
<tr>
<td>Plummer, Joshua</td>
<td>Cancer Biology, B.S.</td>
<td>University of Texas at Austin, TX</td>
</tr>
<tr>
<td>Pulliam, Kiley</td>
<td>Medical Physics, B.S.</td>
<td>Centenary College of Louisiana, LA</td>
</tr>
<tr>
<td>Rees, Meredith</td>
<td>Molecular Pathology, B.A.</td>
<td>University of Colorado - Boulder, CO</td>
</tr>
<tr>
<td>Reuther, Jacquelyn</td>
<td>Human and Molecular Genetics, B.S.</td>
<td>Texas A&M University-Corpus Christi, TX</td>
</tr>
<tr>
<td>Ritcho, Joan</td>
<td>Cancer Biology, B.A.</td>
<td>Simpson College, IA</td>
</tr>
<tr>
<td>Robinson, Frederick</td>
<td>Cancer Biology, B.S.</td>
<td>University of Texas at El Paso, TX</td>
</tr>
<tr>
<td>Rosoff, Howard</td>
<td>Biomathematics and Biostatistics, B.S.</td>
<td>University of Maryland - Baltimore, MD</td>
</tr>
<tr>
<td>Roybal, Jonathon</td>
<td>Cancer Biology, M.S.</td>
<td>University of Texas GSBS at Houston, TX</td>
</tr>
<tr>
<td>Rupaimoole, Rajesha</td>
<td>Cancer Biology, M.S.</td>
<td>University of Texas at San Antonio, TX</td>
</tr>
</tbody>
</table>
Incoming Students

S
Savage, David - Biophysics, B.A., 5/1/07, Austin College, TX
Schultz, Casey - Genes and Development, M.S., 5/1/05, Washington State University, WA
Shariati, Maryam - Cancer Biology, B.S., 7/1/08, University of California-Irvine, CA
Summers, Paige - Medical Physics, B.S., 6/1/09, Santa Clara University, CA
Swain, Sarah - Genetic Counseling, B.S., 5/1/08, University of Delaware, DE

T
Thokala, Radhika - Cancer Biology, M.S., 8/1/07, Northern Illinois University, IL
Tiller, George - Microbiology and Molecular Genetics, B.S., 5/1/09, Centenary College, NJ
Tito, Antonio - Neuroscience, B.S., 12/1/08, University of Houston - Downtown, TX
Tonigan, Jacqueline - Medical Physics, B.S., 5/1/09, University of New Mexico, NM
Tseng, Chieh - Cancer Biology, B.S., 7/1/06, Central Queensland University, Australia
Tudor, Sarah - Biomathematics and Biostatistics, B.S., 5/1/09, Colorado School of Mines, CO

V
Vemulapalli, Vidyasiri - Molecular Carcinogenesis, M.S., 5/1/09, University of Texas at San Antonio, TX
Venkatanarayan, Avinashnarayan - Genes and Development, M.S., 5/1/09, University of Texas at San Antonio, TX
Vinogradskiy, Yevgeney - Medical Physics, M.S., 8/1/08, University of Texas GSBS at Houston, TX
Vu, Thuy T - Cancer Biology, B.S., 9/1/08, Vietnam National University, Vietnam

W
Wanchoo, Sheshali - Neuroscience, B.S., 12/1/06, University of Wisconsin Madison, WI
Wang, Yanran - Neuroscience, B.S., 5/1/07, St. Mary's University, TX
West, Sarah - Virology and Gene Therapy, B.S., 12/1/07, Texas A&M University-College Station, TX
Westin, Jason - Cancer Biology, M.D., 5/1/02, University of Florida, FL
Williams, Jason - Cell Biology, B.A., 5/1/08, Baylor University, TX
Wolfe, Adam - Biomedical Sciences, B.S., 1/5/09, Texas Tech University, TX
Woottton, Landon - Medical Physics, B.S., 12/1/08, University of Texas at Austin, TX
Wu, Zizhen - Biomedical Sciences, M.S., 7/1/01, Huazhong University of Science and Technology, China
Xiao, Feifei - Biomathematics and Biostatistics, M.A., 5/1/09, Boston University, MA
Xia, Sijia - Biomedical Sciences, M.S., 6/1/09, Wuhan University-PRC, China

Y
Yang, Qingshan - Molecular Biology, B.A., 5/1/09, Ohio Wesleyan University, OH
Yang, Yan - Immunology, M.D., 9/1/11, Peking University, China
Yock, Adam - Medical Physics, B.A., 6/1/08, Harvard University, MA
Yu, Wen-Hsuan - Cancer Biology, B.S., 6/1/07, National Taiwan University, Taiwan

Z
Zaid, Tarrik - Cancer Biology, M.B.Ch.B., 6/1/04, Kuwait University, Kuwait
Zhang, Xian - Cancer Biology, B.S., 6/1/09, Zhejiang University, China
Zhang, Xue - Pharmacology, M.S., 5/1/09, University of Texas at San Antonio, TX
Zhu, Limin - Genes and Development, B.A., 5/1/09, Wesleyan College, GA

Highlights from Friday Afternoon Club:

Orientation FAC
FAC services showcase with Alumni table
Halloween FAC
So, financial disclosures. There are two companies that I’ll speak to today, and I am an investor and shareholder and founder of both of them. One is called Avinger; one is called Sawtooth Labs. So just for overall general full disclosure, anything I say about those companies would be very biased, be totally misrepresented of the facts, and so you have to do what you want to.

The thing I learned at the GSBS was sort of why, why not, and what if. Those were kind of the key featured elements. We talked a little bit with George last night about how that all sort of took place, and how we ended up, and who sort of influenced me as I was sort of beginning my journey.

So later the real journey began in 1966, and I was able to convince my wife Lynn to marry me. Team Simpson was formed. It’s been a good team. Forty-three years now. Shortly after that, I was at The Ohio State University. I applied to the GSBS. I was excited but really nervous. That part is absolutely true. Dr. John Hampton, since deceased, was my answer to all of my problems. Dr. Hampton mentored me, I think, through both the master’s and PhD programs and was really of great value.

My research interest while I was here was based on Dr. Hampton’s interests, quite frankly, that I inherited but really enjoyed studying was the mammalian pregnancies, and not knowing why the mammalian pregnancy is not like a fetal allograft. And that was the title of my dissertation, which George just found today, and I thank him again for that.

My dad wanted me to get a job. He was not too impressed that I was going to go to school, but I sort of disagreed. And then eventually I decided I was going to medical school, which he thought was even further deranged. In high school—I struggled a little bit in high school, and a couple of years in college. He said, “Listen, I’ll pay your tuition as long as you make good grades, but if you don’t make good grades, I’m not paying any more tuition for you.” I said, “As long as I made good grades, you’ll pay my tuition, right?” So that was — he said yes, he would. Wow! Did I take full advantage of that. That was really not fair.

So Hampton was really a very good mentor for me. But we are [in] the Dental Science Institute. So most of you here would never know what the Dental Science Institute might be. But keep in mind that when the Graduate School — when David [Smith] and I were at the GSBS — so, 38 years ago, it was in the Dental Science Institute. The dental school, and M. D. Anderson were the only three buildings that even existed. So the Dental Science Institute was where Dr. Hampton lived [his lab], and therefore that’s where I lived. I think I was the last person accepted into the program that year, and I think their project there might have been the last one that GSBS was real excited about. I want to say that I was totally a stepchild for the GSBS, but the Dental Science Institute was not the featured place. I expected to be at M. D. Anderson where Dave Smith was. You know, I thought, “M. D. Anderson, it’s a cool place. Ah, Dental Science Institute is not so cool.” And the basement, uh, less cool. And all the mice. Even less cool than...

But it taught me sort of the key element. One was that I did not want to do mouse studies for the rest of my life, number one. Also, to really think carefully about what we did almost every day. And Hampton just demanded that. And he said, and I think this is a fair quote, “John, you know, it’s not your job necessarily to find the truth, but you have to prove the approximation of the truth every day. That has to be your goal. You have to ask why? Why not? What if? That is really fundamental to who you are, and that’s the way you need to be thinking. And in the process of doing that, then you will find a way to really make a contribution.” So I thought that was valuable — his idea, and incredibly, incredibly helpful.

He also knew somebody at Duke University...knew that I also wanted to go to medical school. He definitely helped me with Bernard Amos, who was a researcher there who discovered the first histocompatibility antigen in man. HLA-1, I guess. So, because we had studied the transplant rejection process here, then that was a part of what Dr. Hampton was proposing, and he also helped me get into Duke.

Duke was a bit of a struggle for me academically. It was a great place, but it’s hard. And I was not, maybe, the smartest guy there; but I always felt like that, based on my training with Dr. Hampton at the GSBS, that I was always well equipped because, you know, I could say, “Why do you?” and, “Why do you do it that way?” and all that stuff. But that was really poorly accepted at Duke University Medical School. Medical training is not about, “Why do you do it this way?” Medical training is about, “You do it this way because I told you to.” And I go, “Ooh. I need to have a better answer than that.” But you do it that way because whatever, it’s been studied, ta-dah, ta-dah. But in that era, I was actually—the path has worked out perfectly. I wouldn’t trade the GSBS experience for anything. But it’s conflicted. So the medical training historically and the training that you
would get in graduate school, they are dissimilar. For very good
reasons, really. In medicine, you have to be a little more concerned
about trying kind of new things than thinking outside the box. But
still they – it was not always so easy. But it was still a valuable
experience, and eventually I applied for my cardiology fellowship at
Duke, thinking that, you know, I’m a good kid, I worked hard, I’d get
a cardiology fellowship at Duke. I did not. They said that program
was full, and so – but they were able to, I think, pull some
strings, and I got into Stanford. (And, the University of Oregon).

But, again, I’d gotten into Stanford a little bit like – go to the Dental
Science Institute. When I got to Stanford, I was pretty excited
about being a Stanford Cardiology Fellow. “Well, this is also pretty
cool.” They said, “Yeah, you are; but you’ll be assigned to the Palo
Alto VA hospital.” And I go, “Well. Okay. good.” Not knowing
anything about the Palo Alto VA, which I will tell you, it was ten
times more valuable experience than staying at Stanford’s main
campus. So it was not exactly the Dental Science Institute,
but it had some feelings that reminded me a little bit of that.

So I went to the VA in Stanford. And they would occasionally let
me come over – little bit like the M. D. Anderson experience –
they’d let me come over to Stanford’s kind of main
campus and the main hospital. While I was over there one day for a noon
conference, I heard this guy Andreas Gruentzig was
going to give a talk, and he said he was going to put a
balloon catheter into somebody’s coronary artery. He was going
to blow it up, and they were going to get a lot better. And I go,
“Ooh, goodness. I don’t know about that.” So I said, “I will go
hear that talk.” Besides that, it had a free sandwich. So you can
imagine that getting a free sandwich is key at that phase of my life.

And also, about the time I heard Andreas Gruentzig give his
talk, I told my wife about the story. I said, “This guy blows a
balloon up in the coronary arteries. I mean, I think he’s either
going to revolutionize the treatment of the disease or he’s going
to go to jail.” I kind of think it was jail for Andreas. After that, I kind of
forget about it. I took a job in Jackson, Mississippi as a cardiologist
in Jackson. Lynn was euphoric, and my dad was just really thrilled.
“Finally, my son has a job. This is really good.”

So although I accepted the job – this was about six months away,
I decided I wanted to go see Gruentzig, the Swiss physician, do some
procedures in Switzerland. The chief of cardiology at Stanford says,
“No way. Actually you do not need to go to Switzerland because it’s
just a boondoggle, and I’m not going to pay for it.” I had to pay my
own way. Borrowed the money for my ticket, $506 dollars, from Bank
of America. I did not have enough money to buy a ticket, nor did I
have a credit card that was not at its full limit. I paid B. of A. back
not too long after that. I saw Gruentzig do a PTCA [percutaneous
transluminal coronary angioplasty] in Frankfurt, Germany, and it was
actually really, really amazing. We also had some wine after that
event, and I will show you a picture of that. But I was very impressed,
so I decided to turn down the job in Jackson, Mississippi and stay at
Stanford for just one more year. So my wife said, “Well, okay,”
but my dad really did not like that at all. One more year at Stanford. One
more year. So that one more year was 30-some-odd years ago. So
my dad is deceased, but he would – he would still complain about,
you know… “You need to get back to Texas, too.” He said, “You go
out to California, it’s weird out there. As soon as you get trained, you
get back to Texas as fast as you can.” I’m not saying that’s too wrong.

So here it is. Switzerland in January of 1978. So I just need to
mention some of these people because Richard Myler was really
kind of the founder of the clinical coronary angioplasty effort in the
United States. This is Andreas Gruentzig. He was the founder of the
concept of how you use a balloon. And so we’re there, and we form
this International Dilatation Society. And we’ve just seen Andreas
Gruentzig do these kind of most amazing cases. And we were all
really, I think everybody was impressed. So I am sort of one of the
last survivors here. But the – you know, we formed the International
Dilatation Society, and you can see we signed a wine cork. Jim Miner
was our leader at the time, but Andreas Gruentzig signs the top
of the cork as the CHBD. That’s the Chairman of the Board. Very
prestigious position. Andreas was a confident man, trust me
on that one. They didn’t know what to do with me. ‘I’m a cardiology
fellow at Stanford right now. I couldn’t be the, you know – well, we
had a treasurer, and we had marketing, and we had all that – I’m just
JBS. I’m the KC. That’s the Keeper of the Cork.

So Andreas gave us this book on that particular evening, and it shows
a balloon angioplasty treating a narrowed artery in the leg. And there’s
the balloon that’s inflated, and this is the way the device looked. This
is the way the blood vessel looked at this – my topic here, and I’ll try
to get back to it as I am to be talking about student, graduate, and
then entrepreneur. And I also want to talk about the relevance of
atherogenesis and treatment of critical limb ischemia. And one of my
goals now is to eliminate amputations, so we’ll talk briefly about that
at the end.

So just to let you know that all the devices that are made today are
very sophisticated, this being absolutely one of the most sophisticated
[at that time]. So this was our very first balloon catheter. See the
little balloon down here on the end? It’s the first one that we made
that we could use in animal models. We made it on February 11th of
1978 because in Zurich, I ordered all the equipment from Gruentzig to
do it. I had no interest at all in medical devices. That would be a total
waste of time. I just wanted to buy the equipment. So I talked to
Andreas. He said, “Yeah, we’ll send it out to you.” I went back to
Stanford. They would not pay for it. I said, “Okay, I’ll pay for it.”
And I bought it all.

They sent it out. Everything that I need, all the accessories I needed,
but no balloon. So, ooh, without the balloon, it’s going to be really
hard to test angioplasty. We would be just testing animals at Stanford,
and actually at NASA. However we – so, okay, I’ll make my own balloon
then. Secured some plastic, too, then made my own balloon. The
balloon we got from Raychem Corporation. We got the tubing, which
is the electrical insulation off of the F-4 Phantom jet. It just happened
to be just the right size. So it’s about serendipity. It’s about being
lucky. It’s about being at the right place at the right time. Hearing Andreas give his talk, and just happening to be there for – ‘cause I wanted a sandwich that was free. It tells you that all of these perceptions that all this stuff is really well planned out, perhaps are slightly flawed.

So we make this device, and we use it. We are able to test it in an animal model, having no interest at all in exploring the opportunity to use this in the human anatomy. However, over time, the device, the ones that we’re making start to get a little bit better. We start to look at others – we talked to some people. One of the really important people that we talked to was Norm Shumway. Norm Shumway. This is my little black book, and keeps all my records here. So we’re talking to Norm Shumway, you know, sort of the competition for Denton Cooley, if you will. So he said, “You know what? I think you ought to check that out, and maybe you should talk to somebody about that device and see what you can kind of do with it.” So we ended up starting this small company. The company was called Advanced Cardiovascular Systems (ACS). This would be in probably 1979. We started the company in ’79. And eventually we developed the device, and here’s the tightly narrowed left anterior descending coronary artery, for those of you that are not used to looking at angiograms, which hopefully applies to almost all of you. This is the left anterior descending coronary artery up on the top of the heart. This is a very tightly narrowed vessel. We put the balloon in and inflated it twice. This is the way it looked. And then it [the blockage] never came back. If this always happened to be the case, then drug-eluting stents would not exist. Other balloons would not exist. This would be the only [solution] that is required. But, this is absolutely the exception, certainly not the rule.

It is important to note, this point was made to me through Oscar Matthews from Southern California, who called and told me that he had a VIP to refer to me. And I said, “Great.” I didn’t see many VIPS, and I said, “Who is it?” And he said, “Well, I’d rather not use the name over the phone, but he’s married to Joanne Woodward.” I said, “Okay. Mr. Woodward.” So then I get in bed, sleep like a rock all night. Wake up the next morning. My wife said, “What was the call about last night?” “Well, a VIP coming today.” “Who is it?” “Mr. Woodward.” “What do you mean, Mr. Woodward?” “Married to Joanne Woodward?” She, “You are so dumb. You are so dumb. That is Paul Newman…” She was embarrassed. I think she is still kind of embarrassed when I tell the story.

So Mr. Woodward comes in. And this is Mr. Woodward’s narrowed vessel, which he has had evaluated at Yale University, and they said he had coronary spasms, did not have a narrowing. That was wrong. When these things close, [they are] very frequently associated with sudden death. He went then to UCLA, and they said it was so tightly narrowed that he had to have bypass surgery without an angiogram. That also was wrong. So he signed out and went to Hoag Memorial Hospital in Southern California. They did the study. He came to us, and he actually never had [to have] another coronary intervention and recently died of lung cancer because – yeah, and I think he smoked real heavily when he was young. He did not smoke, actually, at the time that we saw him. He was just a fascinating guy because he came in and said, “Doc, no, don’t cut any corners. I just want you to treat me like a regular patient.” And we did. And, yeah, I think that when you start cutting corners, treating people like VIPs – and I haven’t treated a lot of VIPs; he’s kind of the only one – but also it gets down to be[ing] kind of a rigorous thinker, saying, “Okay, here we’re going to go to A, to B, to C. We’re going to do exactly the way that we’re supposed to do it.”

So that is the device that led to then the beginning of kind of the business journey. So I’ve had several journeys. The academic journey, GSBS, was extraordinary. And I credit a lot of what, the way I think, to that. My training that gave me the opportunity to practice medicine in cardiology at Duke and Stanford, also extraordinary. The business side has been interesting. I am a lousy businessman. I am not a bad doctor. I don’t care what you think. And I’m not a bad scientist. I am a bad, bad, bad businessman, and I’ve confirmed that now over and over again. But I do associate myself with people that are pretty good in the business space. And every time I rely on them, and let them do what they do really well, then I tend to win. Every time I start doing it on my own, then it’s really a disaster.

But just to give you a little bit of an overview of kind of how the business side of it works, and maybe this is of interest to you, and maybe this is not, but as the balloon catheter company, Advanced Cardiovascular Systems, was formed in about 1979. We did a lot of the work on just blowing the balloons late at night at Stanford, but they made a lot of fun of me for doing that because they said it was totally wasted time. I was not allowed to even consider doing angioplasty at Stanford in that era. And so we ended up, I did a few there; but mostly I left Stanford to go do them at a nearby hospital called Sequoia Hospital, which is also in the area. We got our tubing from Raychem Corporation. They said they were happy to supply one time, best grade. They did one extrusion that was great. Then I said, “Okay.” So we finally had enough, we could make some catheters. They decided they were going to make it on their own. Eventually they were going to go into competition with us. At first they had no interest, and then when they see us do pretty well, they said, “Oh, maybe we do have an interest.” So now they’re going to – and then they eventually allege that they were left off of our patent, and so our patent was invalid. To tell you that it gets a little bit sticky, and there’s some politics which will be shocking. I know you don’t have any of that in Texas, but we did have some of that in the other area.

So we – Raychem, the corporation that supplied us with all of our stuff, the tubing, we presented the catheter design to USCI labs, Avery labs, and they all said, “No, thanks. It doesn’t work for us. We don’t see that this is actually going to have any value.” We met a guy named Ray Williams, who is a local VC [venture capitalist]; and he said, “Yes. Let’s give it a try.” In a few minutes, literally raised $400,000, which is still a large amount of money, but in that era it was even a ginormous amount of money; and this company was sold to Eli Lilly after about five years for around $120 million dollars. And the venture company owned essentially all of it by then. I started off with half of it. That’s pretty cool. And so I figured, “Okay, I’ll keep half of it.” Well, that doesn’t work that way. So if you don’t put more money into – like playing poker, I guess; it’s just betting in each round, then you do not – you have to pay to play. And so I didn’t have any
pay to play with, so I ended up owning a little bit over one percent of the company. Starting off with right around $50. But still, you can do the calculation, one percent of that number is still a lot of money. And particularly for a young cardiologist, that's just a ton of money. I thought maybe there would never be that much money ever printed again.

So the people who ran the business were really very good.

Balloon angioplasty is one thing. It squishes the plaque up against the wall. That's really kind of a good thing. I wanted to clean it out. So we developed a device called the SilverHawk catheter, and the SilverHawk Plaque Excision System, you can see it over here. And it's a little catheter that we put into the artery. It's very small, two millimeters in diameter, though it looks very large on the screen. And we advance this little spinning blade down through the artery, and it collects all this tissue. And this is the tissue that was narrowing an artery in a patient that was scheduled for an amputation at Stanford. The amputation was to be done by a friend of mine. And he told us that actually there was nothing else that could be done because he had operated on him twice. And he said, "There's no way that you can help him." So we did help him.

So this journey continued. The catheter that we used to develop that would be the artherectomy catheter. That's the catheter that we use to clean out all the arteries. And so we started a company called FoxHollow. The device was called the SilverHawk, so that was the device that did the shaving mechanism. Forty million dollars was raised from the venture investors to start that company. That company had peak sales in 2007 of about $180 million dollars, and that's mostly U.S. sales. And was merged with a company called ev3, with an implied value of about $740 million dollars in the merger. The value declined after that because the stock, under pressure from a lot of other issues, too, I think. But that was the implied value at the time of the merger. But it is a company that can make – David and I have talked about this a lot – the way that you can have a big impact – and, the way that you have a big financial gain is to have a really, really big clinical impact. It's not about fluff, so don't give me something that's a little prettier, or a little, you know, I don't know, different color.

The venture guys were thrilled, of course, with $40 million dollars invested and they get $700 back. That's way – that's even bigger than the returns even that they want. Pretty hard to outperform what they want, from the venture sector. So this was the device, the SilverHawk Plaque Excision System. It has a little motor on it, and it has this cutter and the blade.

Well, just a couple of examples fairly quickly, and then we'll go on. I want to show some – get to some science, and then we'll finish up here. So this is a stent that we've cleaned out, which is totally blocked off. We clean it out, and it looks like this. This is all the material that we took out. We need to know what is causing this material to grow, what's causing it to form, and what is happening at the biological level. This, again, this is the collection of all of it, and, you know – so this company is now seven years old. It's been about five – so, five years ago, this was impossible. It just couldn't be done. There were no devices out there that would do it. And the SilverHawk device, actually, that ev3 owns right now, is the only device that can remove this amount of material from a narrowed artery. And examples of all the material that's removed.

So I think with atherosclerosis we are talking primarily about the unknown unknowns. These are those things we don't even know we don't know – I mean, it's so mysterious. But I'll tell you what we did with Merck. We developed or collaborated with Merck Pharmaceuticals, and so we supplied them with the tissue that we just saw [removed from the artery]. We supplied it to them. We had clinical histories of all the patients. We could tell you what the patient had had, and the follow up, and what those were all about. They took the tissue, and they extracted messenger RNA from it, and they put it on this chip, and they get this hybridized micro array. Then they expose all of this to a laser light, and you get the genes that are up regulated are red, the genes that are down regulated are green, and the yellows are just sort of, I guess, in between.

So, anyway, the cool thing is, you get the answer. And here's the answer. Yes! Ha! Okay. So now then that's kind of the breakthrough, right? So then, of course, then they do a computer analysis of it, and then they do heat maps. They look at the gene expression, the patterns for this, and then that becomes more relevant. And I do think that it is more relevant.

The concept is, though, [that] the diabetics have an over expression of the genes that are associated with an inflammatory response, an inflammatory situation. The non-diabetics, which had this normal expression, would be different. So the question comes up, is there a way to convert the diabetics' genetic signature to more like a non-diabetic genetic signature? And the answer is that you can do that by giving the patients a statin.

The concept is that you guys [the researchers] can figure it out. All right. The whole concept of gene expression patterns, and using micro array hybridizations with messenger RNA that’s extracted from tissue that we can provide you with a clinical – we can tell you the clinical history of the patients, and how they are doing. Then it's going to be up to you guys to kind of figure out maybe a little bit more what's going on. You can tell I'm in a little bit over my head here. But the fact that you get this clustering of patients, you get the cluster of these particular genes in a way for the de novo patients, and the restenosis patients have a different clustering, it's kind of remarkable because you can say that, you know, maybe we do have a way. I grant that it's a little bit crude and confusing right now, based on the way this is presented. But we do have a way to look at gene expression patterns and find out more information about the patient, and then maybe we can alter these by something like stantes. Or maybe it is going to take more than a statin.

So, again, sort of the same thing. I wanted to get to the ones for the restenosis patients. Sorry. Okay. The concept, though, still is there is an up regulation, down regulation of different gene components, and what is up regulated and what is down regulated is a function of the genetic predisposition of the individual to do that, and then what intervention the lesion has seen. So you've done something to it. You stir it up, and it behaves differently in the gene expression patterns that are also quite different.
For us to really characterize all this, though, we want to put a camera on the end of a device. The camera is the little laser light thing here. When we shine it into the artery wall, we get this kind of a picture. If we take it out and study it, then we know a little bit more about what we are studying, and maybe that will be more relevant to us in terms of the patients. And oh that – then we could see this, and maybe we look at this and say, “Ah, ha. This area needs to be treated with some specific drug. Or it needs to be studied if we are going to treat it. And we’ll leave this area alone. It doesn’t have much of a problem.” So it will allow us to differentiate areas of the disease process within the artery wall, selectively direct the therapies toward those specific areas, and then that may be – or the hope would be that that will make us more effective.

A few parting thoughts about starting a company: Some venture firms are very sophisticated in the way they understand the disease process, and there are some venture firms that focus on cardiovascular disease. And they frequently have a physician as a partner. Maybe more than one. That physician maybe knows a pathologist that would – so they do have ways of evaluating. So they are the experts. And then sometimes the doctor thinks he’s an expert, and honestly, frequently he’s not. But the venture firms will definitely defer to him. But through totally a different process than it is presenting to a scientific audience, what you have to do, you have to establish the same kind of trust. You have to be sure you are telling the truth. Have the same kind of trust that you would with the scientific community. The way you usually do that – and I have used that to my advantage – you do one company, and have it work well. And then it’s a little bit easier the next time. They develop a little bit more trust. And then if you do it a third time, every time the trust increases a little bit. So they believe that you are telling the truth. But as long as you are really, really truthful, and then if you have something really special to offer up, usually there’s a chance to raise money.

Question: How has the regulatory environment changed since your first device in ’79 and what you’re dealing with today? Yeah. So it’s changed. There is no doubt about that. I still do not believe that that is the biggest impediment to doing something in this space. And I did not address that part of the question with you. The regulatory costs went into the first $40 million dollars. My guess is that it’s about, oh, probably 20 to 30 percent of the startup cost ended up going to the regulatory process. That’s just a guess. We could find out. But the regulatory process is almost like – not so much that the regulatory process is so expensive in terms of generating the trial data and all of that. That is always expensive a little bit. But for a startup company, the biggest delay is, okay, you get all the trial data, and you get it, and you submit it, and you still pay the salaries of all the employees sitting there for the next six months waiting for the FDA to… If everybody would take a leave of absence and go skiing, it could be a lot less expensive; but that just does not occur. So that’s kind of where the cost comes in. It’s sort of these delays. And that’s why companies that have several products in the line are a little bit safer because, you know, you can get one product through the process of being approved, and move it.

Question: How has the regulatory environment changed since your first device in ’79 and what you’re dealing with today? Yeah. So it’s changed. There is no doubt about that. I still do not believe that that is the biggest impediment to doing something in this space. And I did not address that part of the question with you. The regulatory costs went into the first $40 million dollars. My guess is that it’s about, oh, probably 20 to 30 percent of the startup cost ended up going to the regulatory process. That’s just a guess. We could find out. But the regulatory process is almost like – not so much that the regulatory process is so expensive in terms of generating the trial data and all of that. That is always expensive a little bit. But for a startup company, the biggest delay is, okay, you get all the trial data, and you get it, and you submit it, and you still pay the salaries of all the employees sitting there for the next six months waiting for the FDA to… If everybody would take a leave of absence and go skiing, it could be a lot less expensive; but that just does not occur. So that’s kind of where the cost comes in. It’s sort of these delays. And that’s why companies that have several products in the line are a little bit safer because, you know, you can get one product through the process of being approved, and move it.

Question: How has the regulatory environment changed since your first device in ’79 and what you are dealing with today? Yeah. So it’s changed. There is no doubt about that. I still do not believe that that is the biggest impediment to doing something in this space. And I did not address that part of the question with you. The regulatory costs went into the first $40 million dollars. My guess is that it’s about, oh, probably 20 to 30 percent of the startup cost ended up going to the regulatory process. That’s just a guess. We could find out. But the regulatory process is almost like – not so much that the regulatory process is so expensive in terms of generating the trial data and all of that. That is always expensive a little bit. But for a startup company, the biggest delay is, okay, you get all the trial data, and you get it, and you submit it, and you still pay the salaries of all the employees sitting there for the next six months waiting for the FDA to… If everybody would take a leave of absence and go skiing, it could be a lot less expensive; but that just does not occur. So that’s kind of where the cost comes in. It’s sort of these delays. And that’s why companies that have several products in the line are a little bit safer because, you know, you can get one product through the process of being approved, and move it.

Question: Have you started a couple of companies even though you said you were not a good business person. But what lesson would you impart where you would say, “Hey, as an entrepreneur, or as a business person, here is a key lesson for you.” Sure. I may exaggerate my limitations as a business person a little bit because I have no confidence in my business abilities. I do not have a bad track record, but it’s just something really, really hard for me. You know, give me somebody with a heart attack, and I’m all over it. You know, I feel totally comfortable. I just do not have that same feeling about business, and I have been tricked a lot more in business. I tell everybody, “You can fool me a lot with a P&L or balance sheet or something like that. You know, put me inside an artery, and I’ve gotcha.” Because that’s sort of my space.

So my advice would be, when I’ve been really successful, I’d be closely aligned with somebody who could run the business and do it in a very traditional and a very sound way. And I think that it’s a great thing, it’s about this team thing. And I talked about Team Simpson, and my wife and I. You actually have a team. But I think that if you actually associate yourself with people that are expert at doing that, then… But what happens is, you have to give up ownership position of the company, right? This is dilution. So you’ll have to provide them, you know, with five, ten percent of the company sometimes. And if it’s early phase, you, “Ah, maybe I could do this for another month.” And you get sucked into this crazy stuff. But always rely on putting together a team. This is not a one [person effort] -- I don’t care how smart you are, that’s not going to work. Ah, that’s my experience. It hadn’t worked for me.

Question: When you mentioned about one percent...you bought the company, and you worked, I think, from my perspective you were not paid commensurate to your investment and know how. That’s a really good point. Just keep in mind you never are. That never occurs. It’s never fair. Okay? That – you need to get – that’s another... If you want to talk about some advice, you need to get rid of that concept right now. You know, they didn’t treat you right. Mmm. They’re never going to treat you right. They are going to treat you any way they can afford to treat you, and you have to resist about how you can afford to be treated like that. It means, how much money are you going to invest? So every time they would raise – you know, they raise, what? $15 million dollars – I had no money to put in. So, you know, I start off with 50 percent, and then 25 percent. Then, you know, 15, 10. It just goes down each time there’s a financing round. And the way you protect yourself against that... I guess you could go, “Now, come on, treat me fairly, guys.” Mmm. Maybe I should have tried that. I don’t think I – I think I did try that. But that – there’s no, there’s nothing in it for them because they are representing their investors in their fund, right? So you have all these limited partners that are investing all this money in their fund, and they are expecting a three-fold return. And whatever they can do to extract money out of you, it goes to their investors, makes them more money; and the next time they raise another venture fund. That’s my scoop. So thank you very much.
Alumni Reunion 2009
MEMBERS REAPPOINTED WITH COMMENDATION

Fernando Cabral
Susan Fischer
Michael Gambello
Khandan Keyomarsi
Randy Legerski
Xin Lin
Jingfei Ma
Gregory May
Timothy McDonnell
Hope Northrup
Mohammed Salehpour
Stephen Ullrich
Jack Waymire
Richard Wendt

MEMBERS REAPPOINTED WITH HIGHEST COMMENDATION

Richard Behringer
Jennifer Hoskovec
Theresa Koehler
George Starkschall

MEMBER REAPPOINTED WITH VERY HIGHEST COMMENDATION

Claire Singletary

NEW REGULAR MEMBERS

Catherine G. Ambrose
Associate Professor
Orthopaedic Surgery
UTHealth Medical School
Ph.D., The University of Texas at Austin, 1992
Research interests: design of new biomaterials for orthopaedic implants; drug-delivery systems for treating orthopaedic infections; diagnosis, treatment, and prevention of orthopaedic infections; bone density and strength measurements

Wei R. Chen
Associate Professor
Neurobiology and Anatomy
UTHealth Medical School
Ph.D., Chinese Academy of Science, Shanghai
Brain Research Institute, 1994
Research interests: signal transmission and processing within single neurons as well as across neuronal circuits; olfactory sensory coding and processing; neuron population activity and ensemble codes during a sensory process

Richard Eric Davis
Associate Professor
Lymphoma and Myeloma
UT M. D. Anderson Cancer Center
M.D., Medical University of South Carolina, 1984
Research interests: cancer cell biology; B-cell receptor signaling; translational genomics; gene expression profiling; microarrays; understanding therapy response and resistance; targeted therapy; personalized medicine

E. Scott Kopetz
Assistant Professor
Gastrointestinal Medical Oncology
UT M. D. Anderson Cancer Center
M.D., Johns Hopkins School of Medicine, 2001
Ph.D., UT-H Graduate School of Biomedical Sciences, 2009
Research interests: role of protein tyrosine kinases in cancer maintenance and growth; metastatic colorectal cancer

Shulin Li
Professor
Pediatrics
UT M. D. Anderson Cancer Center
Ph.D., Washington State University, 1993
Research interests: Gene delivery/gene therapy; tumor and host cell communication; immune therapy; cytokine

Ziyin Li
Assistant Professor
Microbiology and Molecular Genetics
UTHealth Medical School
Ph.D., Institute of Genetics, Chinese Academy of Sciences, 2000
Research interests: molecular mechanisms of spindle assembly, chromosome segregation and cytokinesis; mitochondrial DNA replication licensing; ubiquitin-dependent and –independent protein degradation

Rajagopal Ramesh
Associate Professor
Thoracic and Cardiovascular Surgery
UT M. D. Anderson Cancer Center
Ph.D., All India Institute of Medical Sciences, 1994
Research interests: gene therapy; adenovirus; non-viral vector; liposome; nanoparticle; lung cancer; ovarian cancer; melanoma; IL-24; mda-7; apoptosis; angiogenesis; tumor suppressor; cytokine

Christophe P. Ribelayga
Assistant Professor
Ophthalmology and Visual Science
UTHealth Medical School
Ph.D., The University of Louis Pasteur, 2000
Research interests: sensory neuroscience; circadian organization of retinal function; signaling mechanisms in visual adaptation
Qingchun Tong
Assistant Professor
Institute of Molecular Medicine and Internal Medicine/Endocrinology
UTHealth Medical School
Ph.D., SUNY Downstate Medical Center, 2003
Research interests: obesity and diabetes; hypothalamic neural circuits controlling energy and glucose homeostasis; brain neural circuits underlying the regulation of behavior; roles of GABAergic and glutamatergic neurotransmission in the control of energy and glucose homeostasis

Yunzhi Yang
Assistant Professor
Restorative Dentistry and Biomaterials
UTHealth Dental Branch
Ph.D., Sichuan University, 1997
Research interests: biomaterials; implant devices; cancer treatment

Mei Tian
Assistant Professor
Experimental Diagnostic Imaging
M. D. Anderson Cancer Center
M.D., Shanxi Medical University, 1996
Ph.D., Gunma University, 2004
Research interests: radiology; nuclear medicine

Apostolia Maria Tsimberidou
Assistant Professor
Investigational Cancer Therapeutics
M. D. Anderson Cancer Center
M.D., Aristotelian University of Thessaloniki, 1991
Ph.D., Kapodistrian University of Athens, 2001
Research interests: cancer; leukemia; molecular targeting/personalized therapy; Richter’s syndrome

GSBS welcomes Dr. Mary Ellen Lane, who joined the Graduate School in October 2009 as Assistant Dean for Admissions. Previously, Dr. Lane served as a faculty member at Rice University in the Department of Biochemistry and Cell Biology.

Read more about Dr. Lane on page 22.

NEW ASSOCIATE MEMBERS

Dejka Araujo
Assistant Professor
Sarcoma Medical Oncology
UT M. D. Anderson Cancer Center
M.D., University of Arkansas for Medical Sciences, 1999
Research interests: soft tissue sarcoma; bone sarcoma; hemangiopericytoma; solitary fibrous tumor

Milind Javle
Associate Professor
Gastrointestinal Medical Oncology
UT M. D. Anderson Cancer Center
M.D., Grant Medical College, 1991
Research interests: development and efficacy of targeted therapies for the treatment of prostate cancer

Richard A. Johnston
Assistant Professor
Pediatrics
UTHealth Medical School
Ph.D., West Virginia University, 2000
Research interests: obesity and asthma; pulmonary responses to air pollutants

Sarah Guerra Seth
Genetic Counselor/Clinical Instructor
Pediatrics/Medical Genetics
UTHealth Medical School
M.P.H., UT Health School of Public Health, 2003
M.S., UT Health Graduate School of Biomedical Sciences, 2008
Research interests: genetic counseling
Wadhih Arap, M.D., Ph.D., and Renata Pasqualini, Ph.D., are co-authors on a study that revealed a new technique for growing 3-D cell cultures, as opposed to the flat petri dish that could save millions of dollars in drug-testing costs. Other co-authors include James Bankson, Ph.D., Juri Gelovani, M.D., Ph.D., and Maria-Magdalena Georgescu, M.D., Ph.D., along with GSBS students Jennifer Molina, Michael Ozawa and Lawrence Bronk, who contributed to this study that was reported in Nature Nanotechnology in March 2010.

Gábor Balázsi, has won a New Innovator Award from the National Institutes of Health for a unique approach to understanding how cells develop resistance to drugs. The first winner from M. D. Anderson, Dr. Balázsi will receive $1.5 million over five years for his research.

Chandra Bartholomeusz, M.D., Ph.D., a GSBS Alumnus, has been awarded the K99/R00 Pathway to Independence Award titled “Development of Targeted Therapy for ERK Pathway in Breast Cancer.” Her primary mentor is Anil Sood, M.D. and GSBS Alumnus Naoto Ueno, Ph.D. She is also one of the recipients of the American Association of Cancer Research – Women in Cancer Research (AACR-WICR) Scholar-in-Training Award, which is awarded to only ten cancer research scientists who are women and presenters of meritorious scientific papers.

Michael Blackburn, Ph.D., is senior author on the study of the osteopontin (OPN) protein and how it links to chronic obstructive pulmonary disease (COPD). Findings suggest that osteopontin could serve as both an indicator of disease progression and a therapeutic target. The research appeared online in the January print issue of The FASEB Journal, the journal of The Federation of American Societies for Experimental Biology. Other contributors to the study are senior author Daniel Schneider and Yang Zhou, who are both GSBS students.

Nathan Bryan, Ph.D., is senior author on a study that suggests that ancient Chinese herbal formulas may produce large amounts of artery-widening nitric oxide. Yong-Jian Geng, M.D., Ph.D. is co-author on the study that appeared in the September 15 print issue of the journal Free Radical Biology & Medicine. Ancient Chinese herbal formulas used primarily for cardiovascular indications are made up of three to 25 herbs, and can be administered as tablets, elixirs, soups and teas.

Eric Boerwinkle, Ph.D., received a $26 million federal stimulus grant to lead an effort to pinpoint genetic factors affecting the risk of heart, lung and blood diseases.

Thomas Buchholz, M.D., is senior author on a study of racial disparities in radiation therapy rates in early stage breast cancer. Wendy Woodward, M.D., Ph.D., was another author on the study.

Sharon Dent, Ph.D., is senior author on a report of the protein Gcn5’s role in protecting chromosome tips that has been published in the August 13, 2009 edition of Molecular Cell. Sandy Chang, Ph.D. is a co-author on this study.

Valentin Dragoi, Ph.D., has been awarded a four-year, $1.2 million grant through a National Institutes of Health (NIH) initiative designed to support high-impact, medical investigations. The initiative is called Exceptional, Unconventional Research Enabling Knowledge Acceleration (EUREKA) and will support his project titled, “Real-time population coding underlying behavioral decisions.”

Mauro Ferrari, Ph.D., is principal investigator for the Center for Transport Oncophysics (CTO), one of 12 Physical Sciences-Oncology (PS-OCs) being created by the National Cancer Institute. A consortium lead by UTHealth, which includes The University of Texas M. D. Anderson Cancer Center, University of Texas at Austin, Rice University, and Harvard University/Massachusetts General Hospital, has been awarded a five-year grant to create the CTO to conduct innovative cancer research.

Isaiah Fidler, D.V.M., Ph.D., has received the Lifetime Achievement Award from Nature Publishing at the 2010 Miami Winter Symposium-Targeting Cancer Invasion and Metastasis.

Millicent Goldschmidt, Ph.D., was keynote speaker at the Fall 2009 meeting of the Texas Branch of The American Society for Microbiology in Tyler, Texas.

Mien-Chie Hung, Ph.D., is senior author on a study of a tumor-suppressing protein, KEAP1, that was featured in the journal Molecular Cell in October 2009. First author on this research is GSBS Alumnus Dung-Fang Lee, Ph.D.

Khandan Keyomarsi, Ph.D., reported in Clinical Cancer Research that low forms of Cyclin E reduce breast cancer drug’s effectiveness. Co-authors on this report are Susan Tucker, Ph.D., and GSBS Alumnus Hannah Wingate, Ph.D.

Aarif Khakoo, M.D., is corresponding author on a study of platelet-derived growth factor receptor (PDGFR), a type of protein that controls cell growth. The study appeared online in the Journal of Clinical Investigation in January and showed that, while PDGFR-inhibiting agents may slow the growth of cancer cells, they also may impair the heart’s ability to respond to stress. Co-authors on this study are James Bankson, Ph.D., Kevin Coombes, Ph.D., and L. Maximilian Buja, M.D.

Hui-Kuan Lin, Ph.D., is senior author on a study of TRAF6, a protein that, in mutant form, activates a cell-signaling molecule that is associated with cancer growth. He is also lead author on a report of the Skp2 gene and how it may lead to the development of novel agents that can suppress tumor development in common types of cancer. The report was featured in the journal Nature.

Shiaw-Yih Lin, Ph.D., has earned an Era of Hope Scholar Award from the U.S. Department of Defense for his novel approach to detecting and targeting flaws in first line of defense against cancer. The award, one of only three given nationally, provides $3.5 million over five years and supports outstanding early-career scientists with high potential for innovation in breast cancer. The award is part of the 2009 Breast Cancer Research Program administered by the U.S. Army Medical Research and Material Command Congressionally Directed Medical Research Programs.

James Reuben, Ph.D., is senior author on a study of circulating metastatic breast cancer cells that lose their epithelial receptors, which enables them to travel through the bloodstream undetected. These findings were presented at the Cancer Therapy & Research Center – American Association for Cancer Research (CTRC-AACR) San Antonio Breast Cancer Symposium in December 2009. Co-authors on this research are Massimo Cristofanilli, M.D., and GSBS student Evan Cohen.

Elizabeth Travis, Ph.D., has received the 2009 Association of American Medical Colleges (AAMC) Women in Medicine Leadership Development Award. She is one of only 17 people to receive this honor since 1993.

Cheryl Walker, Ph.D., is senior author on a study of ATM, a protein that reacts to DNA damage by ordering repairs or the suicide of the defective cell, which plays a similar, previously unknown role in response to oxidative damage outside of the nucleus. Co-authors on this study are Gordon Mills, M.D., Ph.D., and GSBS student Angela Alexander.

Xifeng Wu, M.D., Ph.D., is the lead author on a study of a specific gene variation that causes increased risk of urinary bladder cancer. The study was reported in the online publication of Nature Genetics. Co-authors on this study are Christopher Amos, Ph.D., and Gordon Mills, M.D., Ph.D. She
is also senior author on a study of genetic variations that indicate risk of recurrence for early-stage head and neck cancer patients, and their likelihood of developing a second type of cancer. This research was reported at the American Association for Cancer Prevention Research Conference. Co-authors on this study are J. Jack Lee, Ph.D., and Reuben Lotan, Ph.D.

Dihua Yu, M.D., Ph.D., reported in the September 9, 2009 issue of the journal Cancer Cell on an overexpressed protein that converts noninvasive breast cancer into invasive disease. Mien-Chie Hung, Ph.D., is a co-author on this study.

Student News

M.D./Ph.D. student Shiraj Sen has received the 2010 American Medical Association (AMA) Foundation Seed Grant Research Award for $2,500 for his project: Metabolic Signals as Regulators of Cardiac Growth Pathways. His advisor is Dr. Heinrich Taegtmeyer.

M.D./Ph.D. student Amy Reid ran the New York Marathon in November 2009. Her time was an impressive 4 hours and 36 minutes, as published in the New York Times.

Sumaiyah Rehman has been awarded the American Association of Cancer Research (AACR) Scholar-in-Training Award for 2010, as well as the Department of Defense Breast Cancer Pre-doctoral Traineeship Award for 2010-2013.

Proleta Datta attended the annual Biophysical Society meeting in San Francisco, CA, where she was awarded a Student Research Achievement Award for her poster presentation.

Timothy Jones, a student who participated in the Graduate School’s Summer Undergraduate Research Program (SURP), received an award from the Conference Experience for Undergraduates (CEU) based on his abstract from the research he did last summer in Dr. Wayne Newhauser’s lab. His poster was presented at the American Physical Society Division of Nuclear Physics in Hawaii. He also won an award for his oral presentation at the Texas Sections American Physical Society in fall 2009.

Alumni News

Both Vicky (Lin/2001) and Tony Estrera, and Susan (Marshall/2005) and Steve Ritter are celebrating the arrival of a newborn baby. Congratulations!

Rena D’Souza (Levy/1987) has received the Presidential Award for Excellence in Research, which honors significant contributions that enhance, facilitate or accelerate the HSC research enterprise.

Esther Guzman (Owen/2004) recently received two grants: a three-year grant by way of the State of Florida Bankhead Coley new investigator award for $375,000, and a two-year NIH R03 Pilot Studies in Pancreatic Cancer award for $142,500. She is the principle investigator for both.

J. Daniel Heck (Costa/1983), who is principle scientist for Lorillard Tobacco Company, will serve as a non-voting representative of the tobacco manufacturing industry on the Tobacco Scientific Advisory Committee of the Food and Drug Administration.

Kathryn Louie (Dowhan/1983) has been appointed a three-year term as national president of Iota Sigma Pi, the chemistry honor society for women.

BethLynn Maxwell (Hsu/1980) has been named Top Online Fundraiser for the 6th Annual Muscular Dystrophy Stride and Ride in Austin, Texas.

Tom Piantanida (Sperling/1972) has published a book entitled In the Shadow of the Big Apple (Diversion Press, 2009), which is a story about Kenny, a mischievous boy growing up in an Italian neighborhood in 1950s New Jersey.

In Memory

Susan Fitzpatrick, Ph.D., 1957-2009

With sympathy for her family

Dr. Fitzpatrick was a student in Grady Saunders’ lab and received her Ph.D. degree from GSBS in 1989. Most recently she was Senior Portfolio Manager at Wyeth Research.
American Legion Auxiliary Scholarship Awards

Since 1971 the American Legion Auxiliary has provided scholarships for GSBS students involved in cancer research. The money for this funding is raised through a wide range of Auxiliary activities. To date the Auxiliary has raised over $1,150,000 to present over 80 renewable scholarships of $5,000 each. The recipients for 2009-2010 are:

Student	Advisor
Brandi Baird | Dr. Paul Simmons
Suzanne Chan | Dr. Sandy Chang
Mylinh Duong | Dr. Khandan Keyomarsi
Hilary Gibbons | Dr. Laurence Cooper
Denise Kellar | Dr. Laurence Cooper

Student	Advisor
Brian Pickering | Dr. Dihua Yu
Krithi Rao | Dr. Eugenie Kleinerman
Sumaiyah Rehman | Dr. Dihua Yu
Sarah Scarboro | Dr. Rebecca Howell
Jillian Wise | Dr. Felipe Samaniego

The R. W. (Bill) Butcher Award

Established in 1997, the R. W. (Bill) Butcher Endowed Fund provides an annual award of $2,500 for students who demonstrate excellence in research, have a commitment to a career in biomedical research, and make a professional contribution to the community or have faced a particular challenge. This year’s recipient is:

Student	Advisor
Angela Alexander | Dr. Cheryl Walker

The City Federation of Women’s Clubs Endowed Scholarship in the Biomedical Sciences

Established in 2005, this $2,000 scholarship rewards an exceptional GSBS student who is working in an area vital to the biomedical sciences and of particular current significance in that year’s national research perspective. For 2009-2010 The City Federation of Women’s Clubs Scholarship focus is the identification of new sites for therapeutic interventions in human disease. This year’s recipient is:

Student	Advisor
Randala Hamdan | Dr. Eugenie Kleinerman

The Cullen Trust for Higher Education Physician/Scientist Fellowship Program

The $1.15 million grant from the Cullen Trust for Higher Education provides dramatic growth opportunities for M.D./Ph.D. students at UTHealth, UT M. D. Anderson Cancer Center, and Baylor College of Medicine. The 2009-2010 recipients are:

Meagan Barry, Baylor College of Medicine
Stefanie Alexander, Baylor College of Medicine
Andrew Peters, The University of Texas Health Science Center
ISAAH J. FIDLER GRADUATE FELLOWSHIP IN CANCER METASTASIS

This Fellowship is provided by the graduate program in Cancer Metastasis Research: From Bench to Bedside. It provides a $3,000 supplement of the GSBS graduate assistantship and may be renewed for up to 3 years. It is awarded to a pre-candidacy Ph.D. student whose research is related to cancer metastasis. The first recipient is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tony Caruso</td>
<td>Dr. Khandan Keyomarsi</td>
</tr>
</tbody>
</table>

GIGLI FAMILY ENDOWED SCHOLARSHIP

This $1,000 endowed scholarship was created by Dr. Irma Gigli, GSBS faculty member and deputy director emeritus of The Brown Foundation Institute of Molecular Medicine, to honor her parents. The scholarship is intended to help exceptional graduate students who are making excellent progress towards their degree, particularly those who are first generation in their family to enroll in graduate school. The recipient for 2009-2010 is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaGina Nosavanh</td>
<td>Dr. Vicky Huff</td>
</tr>
</tbody>
</table>

FLOYD HAAR, M.D., ENDOWED MEMORIAL RESEARCH AWARD IN MEMORY OF FREDA HAAR

This $1,500 Award is provided to recognize an exceptional GSBS degree student conducting critical research in stem cells. Research should be in the area of stem cells as it applies to leukemia or the study of stem cells and their use in treatment of human disease. The recipient for this year is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erika Spaeth</td>
<td>Dr. Frank Marini</td>
</tr>
</tbody>
</table>

THE T. C. HSU ENDOWED MEMORIAL SCHOLARSHIP

To remember Dr. Hsu and his remarkable research work, his daughter Margaret established this memorial scholarship in 2003. Early supporters included M. D. Anderson Cancer Center Foundation, colleagues, faculty, friends and former students of Dr. Hsu. The endowment is a living testimony and serves to acknowledge the stellar research accomplishments of graduate students focusing on Dr. Hsu’s areas of research: genetics and cell biology. The 2009-2010 recipient is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liem Phan</td>
<td>Dr. Mong-Hong Lee</td>
</tr>
</tbody>
</table>

ROSALIE B. HITE FELLOWSHIP

In 1946 Houston citizen Rosalie B. Hite left her entire estate to establish a fellowship program for cancer research. In 2009-2010 this award is for $28,400 and includes stipend, tuition and fees, plus a single travel allowance up to $850 for each student to present his or her research at a national meeting. The recipients are:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandy Geryk Hall</td>
<td>Dr. Dennis Hughes</td>
</tr>
<tr>
<td>Qingtang Lin</td>
<td>Dr. Isaiah Fidler</td>
</tr>
<tr>
<td>Brian Pickering</td>
<td>Dr. Dihua Yu</td>
</tr>
<tr>
<td>Liem Phan</td>
<td>Dr. Mong-Hong Lee</td>
</tr>
</tbody>
</table>
Student Awards

William W. and Pearl Wallis Knox Foundation Scholarship

Established in 2007, this is the third year to award a scholarship from the Knox Foundation, whose interests are research in the areas of AIDS and other infectious diseases in humans. This $2,500 award is presented to:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris</td>
<td>Dr. Jagannath Chinnaswamy</td>
</tr>
</tbody>
</table>

Marilyn & Frederick R. Lummis, Jr., M.D., Fellowship in the Biomedical Sciences

Dr. and Mrs. Lummis have made a generous gift to GSBS to create this award given for scientific excellence and innovation in any area of biomedical research. A $25,000 stipend given each year is intended to encourage novel research with a high potential to impact the particular field of study and ultimately human health. The 2009-2010 recipient:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randala</td>
<td>Dr. Eugenie Kleinerman</td>
</tr>
</tbody>
</table>

The Ralph H. and Ruth J. McCullough Foundation Scholarship

In 2010 $5,000 was provided by the Ralph H. and Ruth J. McCullough Foundation to support a student whose scientific excellence and novel research will have a high potential to impact biomedical science. The 2009-2010 recipient is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jennifer</td>
<td>Dr. Peter Christie</td>
</tr>
</tbody>
</table>

Dee S. & Patricia Osborne Endowed Scholarship in the Neurosciences

Established by the Linda and Ronny Finger Foundation in 2001-2002, this endowed scholarship honors former University of Texas Health Science Center at Houston Development Board president, Dee Osborne, and his wife Patricia. In 2006, the Ralph H. and Ruth J. McCullough Foundation made an additional generous gift in support of this award. Through the endowment an award of $1,000 is provided to the winning presenter in the graduate student category at the Annual Neuroscience Scientific Poster Session, and an additional $500 allotment is given for travel to a scientific meeting. This year the recipient is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew</td>
<td>Dr. M. Neal Waxham</td>
</tr>
</tbody>
</table>

William and Madeline Welder Smith Foundation Scholarship

This year the William and Madeline Welder Smith Foundation’s gift of $5,000 supports an exceptional student whose interest is in the field of stem cell research that has the potential to ultimately impact human health in a significant way. This year’s scholar is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hussein</td>
<td>Dr. Guillermina Lozano</td>
</tr>
</tbody>
</table>
Student Awards

Tzu Chi Foundation Scholarship Award for Excellence

The Tzu Chi Foundation provides this $1,000 Scholarship to recognize and assist outstanding GSBS doctoral students. Successful applicants will be able to demonstrate both excellence in academic achievement and persistent community involvement. Students must be in a Ph.D. program; in good academic standing in GSBS; and making timely progress toward completion of their degree. Current award recipient:

Student
Angela Alexander

Advisor
Dr. Cheryl Walker

Sam Taub and Beatrice Burton Fellowship in Vision Disease

Mary Wright and her sister, Joanna Ross, established this $2,000 endowed fellowship in 2004. The Sam Taub and Beatrice Burton Fellowship in Vision Disease honors their grandfather and great aunt and supports excellence in the research of eye and sight-related problems, and the potential therapies. The 2009-2010 recipient is:

Student
Leigh Curtis

Advisor
Dr. Roger Janz

Tzu Chi Foundation Scholarship Award for Excellence

This endowed scholarship of $1,000 fosters exceptional students working in the fields of the behavioral sciences or neurosciences particularly in the areas of addiction or obsessive/compulsive behavior. The recipient for 2009-2010 is:

Student
Lorena Maili

Advisor
Dr. F. Gerard Moeller

James T. and Nancy Beamer Willerson Endowed Scholarships in Genetic Counseling

This is the second year the James T. and Nancy Beamer Willerson Endowed Scholarships have been awarded. These $1,000 scholarships from the endowment provide one for an incoming student (Nancy Beamer Willerson Scholarship) and one for a second year student (James T. Willerson Scholarship). The recipients this year are:

Student
Emily Gabitzsch
Regina Nuccio

Advisor
Ms. Claire Singletary
Ms. Claire Singletary

1st Year
2nd Year
I joined GSBS in October after having been on the faculty at Rice University since 2001. I am a developmental biologist by training, and have been working in the field since I received my undergraduate degree in Molecular Biology from Colgate University in 1988. My graduate work at Columbia University, and postdoctoral work at the Max Planck Institute in Tübingen, Germany, and the Whitehead Institute in Cambridge, were focused on determining the mechanisms that govern early embryonic development. At Rice, my NIH funded research program investigated the coordination of cell cycle progression with developmental programming in vertebrate embryos. I taught upper level classes in developmental biology and signal transduction, and served in academic advising and curriculum development. From teaching and mentoring undergraduate and graduate students, I’ve learned how to identify students with the potential to excel in graduate studies and beyond.

This is a time of transition, not only for my career, but also for the Graduate School, and for graduate education in the sciences in general. The economic climate is going to force some contractions in the number of graduate students that can be supported by graduate school funding and by faculty grants. However, this crisis presents an opportunity to focus on attracting and admitting very high-caliber students. The current season is shaping up well, and will soon be complete with approximately fifty students admitted with funding from GSBS, and another twenty or so admitted with faculty or program sponsorship. We are enjoying a high yield this year, with a larger percentage of our offers of admission being accepted, and we are enrolling some outstanding students. The increased yield reflects both the success of targeted recruiting efforts—more of our applicants consider us to be among their top choices—as well as the excellent experience (courtesy of the GSBS staff, the faculty and the current students) that applicants have when they visit.

I have a number of impressions about how the graduate student population is changing, especially compared with what I have experienced in the early part of my career. First, we are drawing a large number of highly qualified international students who are already in the country on student visas. Because Houston is a large city with a diverse international population, we are well situated to attract students from all over the world, including China, India, South Korea, Vietnam, the Middle East, and Europe. Second, the applicant pool has more women than men, and the incoming class is overwhelmingly female. We make admission decisions without considering gender or nationality—that is just how it is turning out. Finally, GSBS is doing very well with recruiting talented individuals from backgrounds that have been under-represented in the sciences. This includes both ethnic and socioeconomic diversity. We are seeing many first generation college-educated students in our applicant pool and incoming class, and we’re also seeing mothers who have returned to their education after getting their kids started in school, and men and women who have served in the military. Many of these trends are occurring nationally, but our size, reputation and geographic location will allow us to have a leading role in the changing scientific landscape in both the U.S. and the world.

Farewell, Jeannice!

Jeannice Theriot, our GSBS Data Management Analyst, is leaving the Graduate School after 21 years. Her many duties included structure and function of the GSBS databases, as well as maintaining integrity of data and running reports for every area of the School. She was an active member of the UTHSCSA Classified Staff Council (UCSC) for seven years, and UCSC Chair in 2008-2009. We are grateful for Jeannice’s many years of great service and sorry to see her go, but we wish her the very best.

Patricia Cruz Bruesch (pictured with Jeannice) will move into this position as Business Systems Analyst. In addition to database management, Pat will oversee the accuracy of the Graduate School’s assessment documentation and reporting for administrative operations, academic programs and assessment of student learning outcomes.
Special Thanks and Gratitude
September 1, 2009 - April 1, 2010

Our Benefactors

Anonymous
Leslie & Jack Blanton, Jr.
Cancer Answers, Inc.
William Drushel, Jr.*
S. Stacy Eastland*
Michael Gambello
Irina Gigli
Goldman Sachs & Co.
Diana & Russell Hawkins*
Jacqueline Hecht
Margaret Hsu
Robert W. & Pearl W. Knox Foundation
Laboratory Corporation of America
Anand & Sandhya Lagoo
Milton Marshall
Ralph H. & Ruth J. McCullough Foundation
John P. McGovern Foundation
Memorial Hermann Hospital System
Myriad Genetics, Inc.
Hope Northrup
Peggy O’Neill
Doris Ross
William A. & Madeline Welder Smith Foundation
Mary Ruth & Thomas Williams, Jr.
Wei Yu

*Advisory Council members

The Blackwell Foundation
Fidelity Charitable Gift Fund
The Mars Family Charitable Foundation
Phi Beta Kappa Alumni of Greater Houston
Schering-Plough Foundation
Shell Oil Company Foundation

All gifts at any scale and to any category:

- Will be acknowledged.
- Are tax deductible.
- May be accomplished through an estate plan or will.
- May be matched by a corporation to enhance the value of your gift.
- May be used for memorial gifts to honor a favorite faculty, family member or friend. A notice will be sent to inform the family of the honor (not the amount) of your gift, and you will be acknowledged individually.
- Consider a charitable gift annuity to increase your retirement earnings.
Hello Alumni,

Your Steering Committee is gearing up with terrific spring-summer activities so please arm yourself with Date Planner, Blackberry, or iPhone and get ready to calendar.

A few days before The Big Day, all alumni are invited to the “last hurrah” of Graduation Celebration to welcome the soon-to-be alumni (and their families) into their new roles as full-fledged Masters or PhDs. Based on the tried and true model of Friday Afternoon Clubs, (except in this instance it’s on Thursday, 5:00-7:00 p.m., May 6, 2010 third floor GSBS foyer in the Mitchell BSRB Building), it is for both new and seasoned alums. You are invited to join in the toast (and nacho buffet) to these talented newbies before they hit the next stage running of postdocs, real jobs, and beyond! The Big Day Commencement takes place, May 8, 10:00 a.m., Rice University, Alice Pratt Brown Hall—as you see from the location, GSBS is collaborative to the end, and this is a wonderful new venue.

Speaking of jobs, the alumni and graduate students will be co-sponsoring this year’s Career Day/Fair on June 12, Saturday, 10:00 a.m.-2:00 p.m., 3rd floor at the Graduate School. Along with a stellar panel of successful alumni presenters from various scientific career paths, students and postdocs will have the opportunity for resume review, questions answered, and new companies/connections to explore.

Finally, this year’s offsite mini-reunion reception and dinner is scheduled for Austin and environs alumni and will take place at the lovely home of BethLynn Maxwell, Ph.D. (1980) 6:30-9:30, Saturday, June 19. Invitations go into the mail in May.

The sparkling new GSBS Alumni website www.utgsbsalumni.org is up and running at last. Please check it out, sign on, and see what else we’re up to. You will be able to securely update your own contact information and data, make a gift via credit card, socialize, or even nominate that favorite potential distinguished alumnus or alumna you’ve had the occasion to know.

Thank you for the major time and effort that my predecessor, Vicky Estrera, Ph.D. (2001) spent on everyone’s behalf; welcome to new Steering Committee members, Sol Bobst, Ph.D. (2003) and Dianne Hammond, Ph.D. (1989). And, thank you for the opportunity to lead such an illustrious group. I look forward to celebrating with you on May 6.

Regards!

GSBS Alumni Association President
2009-2010