GSBS NEWS

The University of Texas
GRADUATE SCHOOL OF BIOMEDICAL SCIENCES at Houston

AT LAST!

The Class of 2010 embarks on a new journey...
Social Media

It’s only us!

Wonderful, awful, say what you will, Social Media—while it may not be here forever—is definitely amongst us for the near future. Everyone from university presidents to United States presidents are tweeting away. It is about communication—getting the word out (more than imagined possible), education, interaction, distraction, and dislocation. It can evince the best and the worst in us.

The public can compare physicians, ask medical questions; scientists can access scientific journals; long lost friends can meet and greet across the sea. From a personal standpoint, a bit of advice from our resident tech guru Carlos Zepeda, who notes “basically use commonsense about what you post and what you are comfortable with the rest of the world seeing”... and that means friends, colleagues, and potential employers.

One challenge from the institutional perspective is how to stay current with limited person power and staff time—yet maintain a face and place in the social/academic swim. The urgency of continually populating something like Facebook on a regular (daily, weekly, minute to minute) basis for an institution is a bit like keeping up with carnivorous plant Audrey II in Little Shop of Horrors crying, “Feed me, feed me” with the newest photos, facts, and general information. Faculty were recently surveyed about the impact of social media and technology on the conduct of even research studies with human subjects—this becomes very important indeed.

Below is a sample of our own University of Texas Graduate School of Biomedical Sciences social media and technical presence—feel free to sample.

While accessible through either The University of Texas Health Science Center (UTHealth) or The University of Texas M. D. Anderson Cancer Center (M.D. Anderson), the easiest way to get started is to log onto the GSBS website directly: www.uthouston.edu/gsbs.

Check out the GSBS page on Facebook or access it from UTHealth or M. D. Anderson sites.

Hit the “Make a Gift” button if that is your desire.

Log-in to the new Alumni community website www.utgbsalumni.org for the ability to update your own professional/personal information, seek out your classmates, or enjoy reunion photos. (There’s a sign-up reminder card in this issue of the newsletter).

Finally, follow us on iTunesU by clicking on our website to enjoy the most recent Commencement proceedings live, or take in a scientific seminar—free of charge.

A sonnet to close our comments about social media, “Magister Luminous:”

There, at the shoulder of an elder turns
The youth toward a flat pad in her hand
In her eyes its blue reflection burns,
Its pixels bearing views of Samarkand.

What depths beneath that pane of glass may lie
The casual observer cannot see
Or read what images or ciphers ply
Their voyages across her cyber sea.

Beside the youth immersed within her glow
The elder writes his ciphers on a board,
Building his chalk edifice row on row
Then standing back, assessing their accord.

He turns to her, but will she turn to him
Before her brilliant screen begins to dim?

Logos, Brands, and Promises

By the time you read this many of you will already have seen, or will soon see, the new logos rolled out by our two parent institutions, M. D. Anderson and UTHealth. It is pretty obvious that both send a strong message about their missions. The red line in M. D. Anderson’s logo illustrates the progress and commitment to Making Cancer History™ and UTHealth’s indicates a comprehensive health sciences university dedicated to improving the health of the population. I had the opportunity to participate in discussions about developing both of these logos and the process was very educational, especially listening to the in-house professionals and outside consultants who are experts in design, marketing, and institutional branding.

In the process I learned that a logo should be more than a visually appealing symbol that makes an impression, hopefully a lasting one, on the viewer and is useful for marketing purposes. Certainly it should be that, but I came to appreciate that it should be something more. So what else should a logo be? A logo is a visible part of an overall effort that the marketing and advertising world calls branding that is just what it sounds like—it’s about creating a “brand” that marks an institution.

A brand tells people about the essence of an institution and indicates what it values; this is something most of us probably understand instinctively. What I learned that had not previously occurred to me, however, is that a brand also indicates a promise made by an organizational entity to both the public and its internal constituencies. M. D. Anderson is essentially promising that it is working to cure and prevent cancer and UT Health is promising that its six schools, including GSBS, are working together to offer the best hope to improve peoples’ health. These are pretty powerful promises, but in line I believe with the strengths of our parents’ resources, capabilities, intentions, and commitments. They also make me feel great pride in being part of both institutions.

These promises also apply to GSBS. Under the brands of our two parent institutions we are, in effect, promising the public and our students that we are dedicated to teaching the best research methods and approaches that will lead to fundamental discoveries in the biomedical sciences. This is the same mission we had when our School was founded nearly 50 years ago and remains firmly in place. Apropos to the two new logos we now promise something more: to increasingly help translate discoveries into eliminating cancer and improving the overall health of the public. I firmly believe that no school is better positioned than GSBS to fulfill this promise to the public and its students. I am energized and excited by our new logos, brands, and promises.
Commencement 2010 Address

Larry R. Kaiser, M.D., F.A.C.S.
President of UTHealth

“Go Confidently in the Direction of Your Dreams”

Good morning. First, let me say what a privilege it is for me to be here today to congratulate all of you and to recognize the hard work that got you where you are today. I stand in awe of your accomplishments and all of you should take tremendous pride in getting here today. I know that for many of you the road has been a long one and yet today represents just the beginning. But there is no question that it is an exciting time to begin. A recent report from the Commission on the Future of Graduate Education in the United States entitled, “The Path Forward” concluded, “graduate education plays a critical role in today’s world and will continue to do so in the future. A better understanding of that role and a clear path forward depend upon effective collaborations between universities, industry, and government. Finding solutions to 21st century challenges, ensuring continued national prosperity and maintaining our position in the global economy will require a highly skilled, creative and innovative workforce. These creative innovators will be the product of the U.S. graduate education system.” The key assumption is that the competitiveness of the US and our nation’s capacity for innovation hinge fundamentally on a strong system of graduate education.

Our Graduate School is now in its 47th year of existence and it is novel in many ways. As you may already be aware, many institutions like ours do not have formal graduate schools as such but usually mix in the graduate program in biomedical sciences with the Medical School. Our structure gives us the tremendous advantage of being able to draw faculty from all of our Schools and, of course, from The University of Texas M. D. Anderson Cancer Center (MDACC).

• Basic science forms the foundation of much of the work done in the other five schools of the University of Texas Health Science Center at Houston (UTHealth) and all other health related institutions.
• Basic discoveries that lead to intellectual property and real world products are important and valuable to the public, our university, and the discoverer’s department as well as the individual inventor – this source of revenue is critical to allow institutions like ours to continue to flourish.
• It was only in 1980 that the Bayh-Dole Act was passed that gave U.S. universities, small businesses, and non-profits control of intellectual property that resulted from inventions or discoveries that arose from federally funded research. Needless to say this has been and continues to be a considerable source of revenue for many universities. Interestingly prior to the Bayh-Dole Act the US government had accumulated 30,000 patents of which only about 5% were commercially licensed.
• Since knowledge in the basic sciences is so important to progress in health and many other areas, it is our responsibility to train the next generation of research investigators—that’s what you are —and that’s why we’re here today to honor you.

• Increasingly basic scientists are also part of clinical and translational research teams that are critical to more effectively and efficiently move new discoveries from the laboratory to the clinic where real lives can benefit. I’m pleased to see that recently our Center for Clinical and Translational Sciences and MD/PhD programs, both of which involve our two institutions, MDACC and UTHealth, are providing special impetus and support for this clinical and translational research training effort. I’m very pleased to see this effort along with our continuing effort in basic fundamental biomedical discovery.
• Finally, and critically important, is that our GSBS is an organizational model that is unique and has shown how we can merge the resources of two strong UT components, UTHealth and MDACC, to synergistically create one entity that is far better able to educate young scientists than either one could alone. There is no place like this in the TMC, the UT System, Texas, or the nation and I really believe GSBS is a model of the kind of cooperation that will be critical to maximize our research and education in more and more of our institutions.
• And it’s people like the GSBS Faculty, student body, staff, and administrative leaders that make this system work and enable it to overcome the challenges that frequently surface. No, it’s not always easy but the value of the combined enterprise far outweighs whatever additional administrative difficulties that might ensue. So, I salute you collectively for providing a model demonstrating to us as well as to other institutions how to effectively and efficiently use resources and maximize our efforts.

The main thrust of my remarks this morning deal with the future, which is always easy to speak about because at least at the present time I can’t be wrong. There are those who would argue that looking at the past we can predict the future. I came across the following quote for which I could not find attribution but I think it expresses this view optimally: “Telling the future by looking at the past assumes that conditions remain constant. This is like driving a car by looking in the rearview mirror.” Needless to say it is a stretch to ever make the assumption that conditions remain constant.
• Notice I stayed away from quoting Yogi Berra mainly because
I quoted him in my remarks last evening at the Nursing School Commencement. For that matter probably very few of you even know who Yogi Berra is but what he is alleged to have said is: “It’s tough to make predictions, especially about the future.”

• Looking at it another way was Lincoln who said, “The best way to predict your future is to create it.” The idea here was that the future will be shaped by knowledge and discoveries we’re in the process of making today yet recognizing the uncertainties that exist. Tennessee Williams in his 1957 play, Orpheus Descending, recognizing this uncertainty said, “The future is called ‘perhaps’ which is the only possible thing to call the future, and the only important thing is not to allow that to scare you.”

• I think there is truth to both perspectives, though in our current environment change is occurring so rapidly that trying to gauge the future based on the past likely will be difficult at best.

But let me talk first about how discoveries in the past have led to benefits we enjoy today. Julius Comroe, one of the most distinguished physiologists of the 20th century noted that one of the most dramatic events in medicine in the 20th century was transplantation of the human heart. He noted that there was a great deal of publicity in the popular press about the race to be the first, about Christian Barnard “scooping” Norman Shumway, with whom Barnard had trained, about how others had done the basic work and Barnard just jumped in. But most importantly he then went on to note that, notwithstanding the race to be first, this incredible accomplishment never would have been conceivable, much less doable, without an enormous amount of previous basic discoveries by many people. These included the discovery of x-rays, angiography, the electrocardiogram, cardiac catheterization and the basic surgical techniques developed for open heart surgery such as cardiopulmonary bypass, which at that time, believe it or not, had been around less than 20 years. Also key were studies by Starling on auto-regulation of the heart that demonstrated that a transplanted heart without neural connections could indeed function. This in itself was an incredible leap since the thought of completely removing the heart from a living person and then replacing it with a completed denervated heart from a non-related donor left great doubt as to whether the heart would function.

• Basic studies in immunology and pharmacology led to the development of immunosuppressive drugs to prevent rejection, drugs that in the early days of transplantation were fairly primitive and not particularly effective. Many other basic discoveries were necessary to allow heart transplantation to become a clinical reality and in fact, after the first few efforts proved less than successful, there was a several year moratorium as investigators went back to the lab to solve a number of problems.

• There are numerous other examples where the practical application resulted from the accumulation of what at one time appeared to be entirely basic and of academic interest only.

For that matter who would have thought that looking at yeast genetics would have led to the important work in elucidating the human genome, or that fruit flies could be used as a model of neurodegenerative disease (and we could go on and on with examples). The point being important basic discoveries inevitably lead to advances that benefit society in ways that often are not understood for many years to come. That’s why the Graduate School is such an important component of the UTHealth and MDACC families.

Based on these examples and many others we could come up with, I’m willing to say fairly confidently that if we’re doing good, careful science that leads to better understanding of fundamental principles or develops new intellectual approaches or new technology, these discoveries will lead to improvements in health and human well being that we can’t even imagine today. Now it doesn’t mean that you can’t make important contributions doing clinical or translational research, or other science-related careers including scientific writing. It just means that society depends upon people like you for a steady stream of basic discoveries as an essential component of progress. Well, what about the other perspective? That is “the best way to predict your future is to create it.” I am the last one to make these sorts of predictions but as we have moved into the era of being able to inexpensively, relatively speaking sequence the entire human genome I think it is safe to say that we will continue to see more work done toward what we refer to as personalized medicine. We already are seeing some examples of this in the marketplace.

We need to consider more complex levels of biological organization and function. In the early 20th century the English physician Archibald Garrod coined the term “inborn errors of metabolism” and proposed the concept that errors in single genes led to inherited diseases. Of course this is true some of the time but what we’re learning today is that many of our most costly human diseases —diabetes, cardiovascular disease, cancer, and others—are often multi-factorial in nature involving many genes and their interaction with each other and with the environment.

So, how are we going to figure this all out?

You may disagree with me, but in my opinion present and future discoveries will hinge upon the collection, storage and manipulation of large amounts of data that allow us to build models to predict how biological systems, both normal and pathological, function. I have invested heavily in our program in biomedical informatics and it’s already paid dividends. As many of you may know we recently were awarded one of only four Specialized Health Information Advanced Research Projects grants to create a national center for cognitive informatics and decision making in healthcare that totaled over $15M. In addition, we also were awarded one of the Regional Health Information
Extension Center grants also for $15M. It’s clear to me that informatics and its related sciences are going to lead to discoveries to create the future, and I think all of us to be successful are going to have to learn how to more effectively and efficiently use informatic tools no matter what our field of research. You probably won’t be surprised if I say that I think new discoveries in genetics are also going to be another critical area for future advances. Within the past few years we have witnessed the ability to rapidly sequence the entire human genome. Now just consider that for a moment. When I was in medical school we barely knew the basic structure of human genes and now we know the entire genome. Your generation now starts with this information and one can only imagine what you’re going to discover during your careers given your starting point.

I think another major interface that will help create the future is that between the physical sciences and the biological ones. Bio-engineering, nanotechnology and biophysics combined with physiology, pharmacology, biochemistry, genetics, neuroscience, cancer biology and so on. The lines between the basic sciences are not just blurring they already are blurred. We have only four basic science departments in the Medical School and those exist only because of issues of appointment and promotion. We could go on and on, and maybe you’d agree with me or not on the future importance of any specific technological area, but I want to make what I think is an even more important, overriding point. With the explosion of information and its accessibility, few if any of us can simultaneously be an expert in more than one area of biomedical science. The world has changed and here’s a little known fact: “Renaissance Men” were very rare in the Renaissance, and I’m going to predict that Renaissance men and women in the traditional sense will likely be non-existent in the future—there’s just too much to know.

So, we are in the midst of an explosion of information and as a society we need to put it all together, but we can’t do it individually—we need to work collaboratively and efficiently with a wide variety of people who are experts in many different fields. It’s obvious to me that communication, leadership, and the ability to work in teams—with a diversity of people in a variety of fields and in many different venues—is going to be absolutely critical in order to make real progress in biology, medicine, or any other field.

- There is now and will continue to be a need for those with an advanced basic science education to be scientific writers and communicators, those who are able to get across scientific information in a way that is accessible to the lay public. It should come as no surprise to any of you that we can read in the New York Times or the Wall Street Journal about a major report that will appear in Science or Nature within the following day or two in a way that makes sense even to a non-scientist. Some of you will need to work in public policy so that policy makers can better understand how to implement basic scientific discoveries and how to base decisions on the best science.
- There are many places in our information-driven modern society where we’re going to increasingly need well trained scientists. Take the week’s major news—the oil rig disaster in the Gulf, BP, the US Coast Guard, the US Navy—all rely on basic scientists and biotech experts, in addition to engineers, to solve a myriad of problems from how to cap the well to the potentially disastrous environmental consequences.

Finally, I ask that each of you be intellectually bold! I believe it is important that you not be afraid to envision radically new things and try them out. Resist the urge to stay solely in your comfort zone. Real breakthroughs in any field increasingly occur as the result of generative thinking, coming up with an entirely new way of looking at a problem or perhaps working with people in areas where you might have a steep learning curve. Remember the most important thing you should have taken out of your Master’s or Doctoral education here at GSBS is the ability to think critically and use what you have learned to create new knowledge. That’s far more important than any factoid you’ve learned, some of which will be proven to be poorly understood or even flat wrong in the future. Your critical thinking skills are the most important thing you’re taking away with you from this commencement—don’t be afraid to use them. And if you’re still worried about getting out of your comfort zone, realize this: People who are entrepreneurs who try new things in medicine, basic science, business, or anything else are guaranteed to make mistakes. But those who only wish to maintain the status quo make just as many mistakes. You’ve had a great education in how to think creatively and critically—don’t be afraid to use that education to be bold. You’ll make mistakes, but you’d make some anyway, and on the plus side you’ll learn to find answers to new and truly important questions. That’s how progress is ultimately made.

Your most important task as scientists is to seek the truth in your research and careers in all ways and at all times, without fail. Survey after survey has shown consistently that scientists are among the most trusted and respected professionals in our world, and if people ever lose that faith they will not support the science and research necessary for progress. When you leave this room, remember that the citizens of the world admire you, trust you, and trust in the results of your work. I hope that you’ll do everything you can to strengthen that legacy for future generations of scientists. John M. Richardson, Jr., a Professor at American University who is a pioneer in the field of global modeling and system dynamics, has said, “When it comes to the future, there are three kinds of people: those who let it happen, those who make it happen, and those who wonder what happened.” Don’t be one of those left wondering. Good luck, farewell, and best wishes.
Congratulations on the successful completion of your Ph.D. and M.S. programs. These are amongst the highest degrees that our society offers, and your hard work has earned you these distinctions forever. You should be proud of yourselves, and on behalf of the faculty at The University of Texas Graduate School of Biomedical Sciences I want to let you know that we are proud of you and convey that we have high expectations for you as future scientific leaders.

This is a special day; a day of celebration. And it is truly a pleasure to stand up here and recognize many of you whom I have lectured to in classes, interacted with at GSBS functions, and have trained in my laboratory. You have accomplished so much; you have succeeded. I would like to take this opportunity to lecture to you a little bit more and to ask you a question, a question you might not have thought much about: How will you define success in your lives from this day forward?

This is obviously not an easy question to answer, but it is one you should ponder. Wikipedia defines success as “achievement of an objective or goal;” however, I submit to you that it means much more than this, and that the true definition of success is inherently individualized. For example, you are receiving a top degree from one of the top institutions within the world’s largest Medical Center; you have excelled in this “cutting edge” environment and have accomplished great things. But, the paths you have taken to get here and the struggles you have faced have been varied and have occurred in the context of your personal lives. Clearly many factors contribute to success including hard work and opportunity. However, another factor that I feel is a key component of success, is learning to achieve balance in your professional endeavors and personal lives. “Balance” is a key factor for a successful and sustainable scientific career. Professionally, choose your paths carefully; do what you love, and love what you do. Find the passion for your science and pursue it with all your intellect. This will impart the motivation you need to work hard and get the data you need for those competitive grants and those high profile publications, which in many scientific arenas will contribute to your success. This can be very gratifying and a lot of fun, and many of you will find that you are very good at it. However, be careful not to lose perspective on your way to achieving your scientific goals. Learn to achieve balance in the way that you think about and promote your scientific ideas. As scientists at this level you are all inherently smart and probably very competitive. These are good traits to have, but remember that it is often not only what you do in science that is important, but also who supports your findings that ensure the most is made of your accomplishments. Always respect and acknowledge the scientists who have laid the groundwork for your discoveries and give credit to the collaborators and trainees who assist you in testing your hypotheses. Respect and acknowledge that there are differences in opinion when it comes to science and realize that criticism is an important part of the scientific process. Champion your findings by articulating your rationale and backing it up with data, but remember that balancing your opinions with the opinions of others is an important part of achieving scientific truth.

In addition to your professional activities, you will need to seek balance in your personal life. As a working scientist, the time required to get data, read, think, write and mentor is not easily contained in a conventional work week. It requires long hours and stresses that can easily impact your personal life. You all know what I am talking about; you have been living this way as graduate students. Here you are again—you will likely continue to be very good at this, and may even enjoy it. But, you will need to seek balance in your personal life to ensure sustained success in your career. It is very difficult for an unhappy person to accomplish much, and in our industry you need every advantage you can get. How to accomplish this is obviously a very personal issue. Only you know what makes you happy and only you can set your priorities. I am simply advising that if you have not put much thought into how you will balance your personal life and professional life, you need to. On my career path, the support, love and happiness that my family and friends have provided has been an essential catalyst for any success I have had. For example, taking the time to coach my kids’ soccer teams, traveling with my family, playing hard with my friends and being active in church have all contributed to the balance I need in my life to be happy and be productive in my career.

In conclusion, you have been well trained to think like scientists and are equipped with the fundamentals you need to solve complex scientific questions and make important contributions to our society. I charge you to set your goals high. Abraham Lincoln wrote that you should “always bear in mind that your own resolution to success is more important than any other one thing.” Seek the balance you need in your professional and personal lives to achieve success. At the very least ponder the question: How will you define success in your life?

So, again I congratulate you on the completion of your M.S. and Ph.D. degrees, and wish you all the very best. Work hard, be content with your successes and have fun.

The McGovern Award for Outstanding Teaching recognizes a GSBS faculty member, Stephanie Watowich, Ph.D. who has significantly contributed to the education and training of GSBS students. Each year, students nominate faculty by writing an essay addressing these criteria and including specific examples. Dr. Stephanie Watowich is the McGovern Outstanding Teacher for the 2009-2010 school year. She has been the Immunology Program Director from 2004-2010, served on committees for over 70 students and is Chair of the Graduate Education Committee (GEC). When her students were asked to describe their mentor Dr. Watowich, many described her as accessible, enthusiastic, compassionate and thoughtful. Students admire how she “devotes a lot of her time offering advice on coursework, tutorials, research approaches, and even career plans.”
Commencement Ceremony
Bonato, Vinicius (Kim-Anh Do, Ph.D.)
Survival prediction of brain tumor patients using gene expression data

Broadway, Melissa (Hung Ton-That, Ph.D.)
Molecular basis of corynebacterium diphtheriae virulence and infection in the caenorhabditis elegans model host

Byers, Lauren (Gordon Mills, M.D., Ph.D.)
Serum signature of hypoxia-regulated factors is associated with progression after induction therapy in head and neck squamous cell cancer

Cooper, Justine (Banu Arun, M.D.)
Factors associated with early versus late development of breast and ovarian cancer in BRCA1 and BRCA2 positive women

Caruthers, Douglas (Geoffrey Ibbott, Ph.D.)
Commissioning an anthropomorphic spine and lung phantom for the remote validation of institutions participating in RTOG 0631

Crain, Carrie (Mariana Raia, M.S.)
An assessment of obesity and hyperphagia in individuals with Smith-Magenis syndrome

Darnes, Deanna (Jennifer Czerwinski, M.S.)
First trimester screening and its impact on uptake of diagnostic testing

Dougall, Triston (Charles Willis, Ph.D.)
Optimization of exposure factors for digital radiography by means of CdTe x-ray spectroscopy

Georgiev, Georgi (David Followill, Ph.D.)
Comparison of secondary doses in pediatric patients from craniospinal irradiations using photon, proton and electron spinal fields

Giebeler, Annelise (Wayne Newhauser, Ph.D.)
Patient specific monitor unit determination for patients receiving proton therapy

Grant, Ryan (Geoffrey Ibbott, Ph.D.)
Implementation of an anthropomorphic pelvis phantom for the evaluation of proton therapy treatment procedures

Hernandez, Jessica (Laszlo Radvanyi, Ph.D.)
Improving melanoma tumor-infiltrating lymphocyte survival and function by co-stimulation through the TNF receptor family member 4-1BB

Hui, David (Eduardo Bruera, M.D.)
A randomized trial of bilevel positive airway pressure device and high flow oxygen for persistent dyspnea in advanced cancer patients

Hulme, Katie (S. Cheenu Kappadath, Ph.D.)
Considerations for computed tomography dose reduction in Tc-99m SPECT/CT protocols

Murphy, Lauren (Hope Northrup, M.D.)
Tuberous sclerosis complex and patient perceptions of psychiatric symptoms: a needs assessment

Newman, Leslie (Louise Strong, M.D.)
Attitudes of parents towards p53 genetic testing in minors

Nguyen, Vuvi (Andrew Bean, Ph.D.)
The expression and localization of CC-Chemokine Receptor 5 (CCR5) after traumatic brain injury

Nuccio, Regina (Claire Singletary, M.S.)
Influence of anchoring on miscarriage risk perception associated with amniocentesis

O’Brien, William (Cheng Lee, Ph.D.)
The physiological and biochemical understanding and classification of 5’-AMP induced deep hypometabolism

Raymond, Aaron (Lalitha Nagarajan, Ph.D.)
FZD6 and MRS2: Two putative MIX1 transcriptional targets

Rotejanaprasert, Chawarat (Ying Yuan, Ph.D.)
Sample size determination for mediation analysis of longitudinal data

Shahzad, Mian Mohammed (Anil Sood, M.D.)
Targeted delivery of small interfering RNA using rHDL nanoparticles

Sirisangtaksin, Natalie (Andrew Bean, Ph.D.)
The ubiquitin ligase UBE4B is required for efficient epidermal growth factor receptor degradation

Sommer, Amy (Jacqueline Hecht, Ph.D.)
Xenobiotic metabolism genes and clubfoot

Stone, Rebecca (Anil Sood, M.D.)
The role of platelets in ovarian carcinoma

Vila, Alejandro (David Marshak, Ph.D.)
Histamine receptor 1 and 2 expression in primate retinas

Vishwamitra, Deeksha (Hesham Amin, M.D.)
Type 1 insulin-like growth factor receptor tyrosine kinase as a molecular target in mantle cell lymphoma

Wanchoo, Sheshali (Alan Swann, M.D.)
Role of dopamine of nucleus accumbens in behavioral sensitization in methylphenidate
Abbas, Hussein (Guillermina Lozano, Ph.D.)
The consequences of disrupting the MDM2-P53 balance in hematopoiesis

Baameur, Faiza (Richard Clark, Ph.D.)
Identification of a conserved cluster in the RH domain of GRK critical for activation by GPCRs

Babcock, Daniel (Michael Galko, Ph.D.)
Damage-induced inflammation and nociceptive hypersensitivity in Drosophila larvae

Bhalla, Angela (Miles Wilkinson, Ph.D.)
The mechanism of T-Cell receptor mRNA downregulation in response to nonsense codons

Chen, Meng (Xifeng Wu, M.D., Ph.D.)
Genetic variations in the P13K-AKT-mTOR pathway and bladder cancer susceptibility and clinical outcomes

Cheng, Xiaoyun (Mien-Chie Hung, Ph.D.)
Roles of Akt activated MDM2 and p21 in mammary development and tumorigenesis

Cho, Kyucheol (Pierre McCrea, Ph.D.)
Characterization of cellular and developmental roles of xenopus arvcf-catenin: Kazrin complex

Chou, Chao-Kai (Mien-Chie Hung, Ph.D.)
The role of AKT-mediated phosphorylation in suppression of MAD1 and the development of new approach in protein complex detection

Colby, Jennifer (Susan Fischer, Ph.D.)
Establishment of a complex inflammatory and protumorigenic microenvironment in mouse pancreas through cyclooxygenase-2 overexpression

Deng, Binbin (Z. Hong Zhou, Ph.D.)
Cryo-electron tomography and single particle cryo-electron microscopy: structures of Kaposi’s sarcoma-associated herpesvirus and propanoyl CoA carboxylase

Deyter, Gary (Jill Schumacher, Ph.D.)
Validation of the activation of aurora B kinase by caenorbhabitis elegans tousled-like kinase and the identification of cyclin B3 as a phospho-specific TLK-1 interactor

Dupart, Jheri (Wei Zhang, Ph.D.)
Roles of insulin-like growth factor binding protein-3 in gastrointestinal stromal tumors

Ester, Audrey (Jacqueline Hecht, Ph.D.)
Analysis of variation in clubfoot candidate genes

Fontenot, Danielle (Jagannadha Sastry, Ph.D.)
The role of mucosal epithelial cells in HIV infection

Gomez, Fabiola (Varsha Gandhi, Ph.D.)
Mechanism-based strategies to enhance the actions of a HSP90 inhibitor using multiple myeloma as a model

Gonzalez-McGehee, Jennifer (Vasanthi Jayaraman, Ph.D.)
AMPA receptor allosteryism: measurement of the conformational changes in the ligand binding domain of a functional receptor

Greathouse, Kristen (Cheryl Walker, Ph.D.)
Xenoestrogen-specific mechanisim of developmental reprogramming correlate with gene expression and tumor development

Guo, Ruifeng (David Johnson, Ph.D.)
E2F1's role in ultraviolet-induced DNA damage response

Gutnisky, Diego (Valentin Dragoi, Ph.D.)
Dynamic population coding in primary visual cortex

Huang, Lulu (Miles Wilkinson, Ph.D.)
Nonsense-mediated decay: a branched and regulated pathway

Iberg, Aimee (Mark Bedford, Ph.D.)
From protein microarray to biology: the discovery of epigenetic regulatory molecules

Irani, Roxanna (Yang Xia, M.D., Ph.D.)
Preeclampsia, autoimmunity and the AT1 receptor

Jen, Emily (Elizabeth Grimm, Ph.D.)
IL-2 regulates IL-24 protein expression leading to growth suppression of melanoma

Jeter, Cameron (Anne Sereno, Ph.D.)
Eye movement measures of cognitive control in children with Tourette Syndrome

Jia, Zhiliang (Keping Xie, M.D., Ph.D.)
Targeted inhibition of Sp1 transcription factor and anti-angiogenesis of human pancreatic cancer

Kapuria, Vaibhav (Nicholas Donato, Ph.D.)
Inhibition of Deubiquitination activity and Ubiquitination of Jak2 blocks cytokine signaling and induces tumor cell apoptosis

Kim, Tae Kon (Krishna Komanduri, M.D.)
The role of MAP kinases on the functional heterogeneity of human CD8+ T cell maturation subsets

Kopetz, E. Scott (Gary Gallick, Ph.D.)
The role of activation of the protein tyrosine kinase, Src, in colorectal cancer chemoresistance
<table>
<thead>
<tr>
<th>Name</th>
<th>Advisor</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kothmann, William</td>
<td>(John O’Brien, Ph.D.)</td>
<td>Regulation of connexin 36-mediated coupling by phosphorylation</td>
</tr>
<tr>
<td>Kurinna, Svitolana</td>
<td>(Michelle Barton, Ph.D.)</td>
<td>New target genes for tumor suppressors p53 and p73 in regenerating liver</td>
</tr>
<tr>
<td>Latham, Leigh</td>
<td>(Roger Janz, Ph.D.)</td>
<td>Protein-protein interactions that regulate neurotransmitter release from retinal ribbon synapses</td>
</tr>
<tr>
<td>Lee, Alessandro</td>
<td>(Wadih Arap, M.D., Ph.D.)</td>
<td>PC-TSGC: a new cell-growth suppressor gene regulated by the ncRNA PCA3 in prostate cancer</td>
</tr>
<tr>
<td>Li, Yufeng</td>
<td>(Patrick Hwu, M.D.)</td>
<td>Studies on melanoma tumor-infiltrating lymphocytes to improve adaptive T-cell therapy</td>
</tr>
<tr>
<td>Lin, Qingtang</td>
<td>(Isaiah Fidler, Ph.D., D.V.M.)</td>
<td>The role of reactive astrocytes in the resistance of melanoma brain metastasis to chemotherapy</td>
</tr>
<tr>
<td>Lu, Ming</td>
<td>(Xiaomin Chen, Ph.D.)</td>
<td>Macromolecular interaction studies on FF1-3 of human CA150 and STAT1-importin alpha5 using biophysical and biochemical methods</td>
</tr>
<tr>
<td>Meadows, James</td>
<td>(William Klein, Ph.D.)</td>
<td>Myogenin modulates exercise endurance by altering skeletal muscle metabolism</td>
</tr>
<tr>
<td>Riegel, Adam</td>
<td>(Tinsu Pan, Ph.D.)</td>
<td>Thoracic radiotherapy treatment planning with Cine PET/CT</td>
</tr>
<tr>
<td>Schneider, Daniel</td>
<td>(Michael Blackburn, Ph.D.)</td>
<td>Osteopontin and cadherin 11 are novel mediators and drug targets for chronic lung diseases</td>
</tr>
<tr>
<td>Shaw, Joanne</td>
<td>(Yong-Jun Liu, M.D., Ph.D.)</td>
<td>The role of plasmacytoid dendritic cells in the regulation of adaptive immunity</td>
</tr>
<tr>
<td>Smith, Debra</td>
<td>(Gordon Mills, Ph.D.)</td>
<td>GSK3 mediates signaling upstream of Akt</td>
</tr>
<tr>
<td>Song, Hye Won</td>
<td>(Miles Wilkinson, Ph.D.)</td>
<td>Transcriptional and translational regulators of gene expression in germ cell development</td>
</tr>
<tr>
<td>Spellicy, Catherine</td>
<td>(Stephen Daiger, Ph.D.)</td>
<td>Investigating the pathogenicity of mutations in two ubiquitously expressed housekeeping genes that cause autosomal dominant retinitis pigmentosa</td>
</tr>
<tr>
<td>Stewart, Keri</td>
<td>(Eugenie Kleinerman, M.D.)</td>
<td>Delta like ligand 4 is a critical regulator of bone marrow cell differentiation into pericytes/vascular smooth muscle cells and is essential for the vasculogenesis that supports growth of Ewing’s sarcoma</td>
</tr>
<tr>
<td>Sundberg, Laura</td>
<td>(Ponnada Narayana, Ph.D.)</td>
<td>In vivo longitudinal evaluation of spinal cord injury and the effects of vascular endothelial growth factor treatment</td>
</tr>
<tr>
<td>Swulius, Matthew</td>
<td>(M. Neal Waxham, Ph.D.)</td>
<td>Developmental changes in the structure and composition of the postsynaptic density</td>
</tr>
<tr>
<td>Vazquez, Vanessa</td>
<td>(Magnus Hook, Ph.D.)</td>
<td>Host-pathogen interactions of secreted and surface factors of Staphylococcus aureus</td>
</tr>
<tr>
<td>Wang, Yongxing</td>
<td>(Guillermina Lozano, Ph.D.)</td>
<td>Therapeutic potential of P53 restoration in spontaneous tumors</td>
</tr>
<tr>
<td>Yang, Cheng-Chieh</td>
<td>(Mien-Chie Hung, Ph.D.)</td>
<td>Polycomb repressive complex 2 induced basal-like breast cancer phenotype mediated by cyclin E/CDK2</td>
</tr>
<tr>
<td>Zhou, Yang</td>
<td>(Michael Blackburn, Ph.D.)</td>
<td>The role of A2bR signaling in adenosine dependent lung disease</td>
</tr>
</tbody>
</table>
MEMBERS REAPPOINTED WITH COMMENDATION

Yun-Xin Fu
James Hixson
Jean-Pierre Issa
Vasanthi Jayaraman
Razelle Kurzrock
Janet Price
Edgar T. Walters

MEMBERS REAPPOINTED WITH HIGHEST COMMENDATION

Anne Sereno

MEMBERS REAPPOINTED WITH VERY HIGHEST COMMENDATION

Mien-Chie Hung

NEW REGULAR MEMBERS

Zheng “Jake” Chen
Assistant Professor
Biochemistry and Molecular Biology
UTHealth Medical School
Ph.D., Columbia University, 2003
Research interests: molecular mechanism of the circadian clock; clock-related pathophysiology including aging, cancer, CVD and metabolic disease; small molecules as research tools and therapeutic leads; high-throughput screening and chemical biology

Seo-Hee Cho
Assistant Professor
Pediatrics
UTHealth Medical School
Ph.D., Rutgers University, 2000
Research interests: developmental neuroscience; mouse disease models; retina and eye development; degenerative retinal diseases; Wnt and mTOR signaling

Yeonseok Chung
Assistant Professor
Center for Immunology and Autoimmune Diseases
UTHealth Institute of Molecular Medicine
Ph.D., Seoul National University, 2003
Research interests: T cell differentiation by innate immune system; regulation of mucosal immunity; cytokines in inflammation and cancer; plasticity of T cell subset; cancer immunotherapy; transgenic/knockout animal model

Bryant G. Darnay
Assistant Professor
Experimental Therapeutics
M. D. Anderson Cancer Center
Ph.D., Purdue University, 1992
Research interests: signal transduction; structure/function of proteins; NF-κB transcription factors; osteoclast development; leukemia; ubiquitin, E3 ubiquitin ligases, and deubiquitinases

Catherine Denicourt
Assistant Professor
Integrative Biology and Pharmacology
UTHealth Medical School
Ph.D., University of Montreal, 2003
Research interests: cell cycle regulation and cancer; cyclin and cyclin-dependent kinases; oncogenes and tumor suppressors; cell migration and metastasis

C. Thomas Caskey
Professor
UTHealth Institute of Molecular Medicine
M.D., Duke University School of Medicine, 1963
Research interests: inherited disease and mammalian genetics; drug development; vaccine development; cell and viral vector therapeutics (gene therapy)

Swathi Arur
Assistant Professor
Genetics
M. D. Anderson Cancer Center
Ph.D., All India Institute for Medical Sciences, 2002
Research interests: germ line development and morphogenesis of oogenesis; RAS/ERK signaling pathways governing germ cell development; developmental signaling networks (ERK-substrate networks); evolution of developmental pathways; C. elegans genetics

Robert C. Bast, Jr.
Professor
Experimental Therapeutics
M. D. Anderson Cancer Center
M.D., Harvard Medical School, 1971
Research interests: ovarian and breast cancer early detection; biomarkers; paclitaxel sensitivity; imprinted tumor suppressor genes; autophagy; tumor dormancy

Perry E. Bickel
Associate Professor
UTHealth Institute of Molecular Medicine
UTHealth Medical School (Department of Medicine)
M.D., UT Southwestern, 1988
Research interests: adipocyte biology; obesity; diabetes mellitus; cellular lipid metabolism; obesity and cancer risk

Catherine Sereno
Professor
UTHealth Institute of Molecular Medicine
M.D., Duke University School of Medicine, 1963
Research interests: inherited disease and mammalian genetics; drug development; vaccine development; cell and viral vector therapeutics (gene therapy)
Stephen F. Kry
Assistant Professor
Radiation Physics
M. D. Anderson Cancer Center
Ph.D., UTHealth Graduate School of Biomedical Sciences, 2007
Research interests: out-of-field dose; peripheral radiation; neutrons; late effects; secondary malignancies; risk models

Dorothy E. Lewis
Professor
Internal Medicine – Infectious Diseases
UTHealth Medical School
Ph.D., University of Arizona, 1978
Research interests: HIV immunology and pathogenesis; mechanisms of chronic activation in HIV; mechanisms of HIV-associated lipodystrophy; microparticles in maternal plasma for fetal genetic diagnosis; mechanisms of pre-eclampsia; flow cytometric methods

Hariyadarshi Pannu
Assistant Professor
Neurosurgery
UTHealth Medical School
Ph.D., UTHealth GSBS, 2000
Research interests: human genetics; molecular pathogenesis of vascular diseases (including cardiovascular and cerebrovascular disease)

Lidong Qin
Assistant Professor
Nanomedicine and Biomedical Engineering
UTHealth Medical School
Ph.D., Northwestern University, 2007
Research interests: biomedical nanotechnology; cancer nanomedicine; translational science; biosensors; nanomaterials; cell mechanics

Rita E. Serda
Assistant Professor
Nanomedicine and Biomedical Engineering
UTHealth Medical School
Ph.D., University of New Mexico, 2006
Research interests: nanomedicine; drug delivery; intracellular trafficking; cancer research

Nitin Tandon
Associate Professor
Neurosurgery
UTHealth Medical School
M.D., Armed Forces Medical College, 1992
Research interests: human language; functional magnetic resonance imaging (fMRI); electrical cortical stimulation mapping; intra-cranial EEG; diffusion tractography (DTI); functional deficits caused by epilepsy and epilepsy surgery

Ennio Tasciotti
Assistant Professor
NanoMedicine and BioMedical Engineering
UTHealth Medical School
Ph.D., Scuola Normale Superiore Pisa, 2005
Research interests: nanotechnology; molecular medicine; drug delivery; early diagnosis of diseases; proteomic profiling; tissue engineering

S. Ray Taylor
Professor
Restorative Dentistry and Biomaterials
UTHealth Dental Branch
Ph.D., University of Virginia, 1986
Research interests: biomaterials; coatings and surface modification; molecular interactions at surfaces; electrochemical impedance spectroscopy; corrosion inhibition

Jessica K. Tyler
Professor
Biochemistry and Molecular Biology
M. D. Anderson Cancer Center
Ph.D., University of Glasgow, 1994
Research interests: epigenetics; cancer; aging; DNA repair; chromatin; transcription

Sheng Zhang
Assistant Professor
UTHealth Medical School
Institute of Molecular Medicine
Ph.D., Yale University, 2001
Research interests: mechanisms of neuronal degenerative disorders; Huntington’s disease (HD) and the normal functions of the HD gene Huntingtin; Parkinson’s disease (PD); intracellular handling of neurotransmitter dopamine; regulation of the formation of intracellular protein aggregates

Michael Xi Zhu
Professor
Integrative Biology and Pharmacology
UTHealth Medical School
Ph.D., University of Houston, 1991
Research interests: G proteins; ion channels; receptors; calcium signaling; neurotransmitters; learning; sensory; smooth muscle; fluorescence imaging

Carrie A. Cameron
Instructor
Epidemiology
M. D. Anderson Cancer Center
Ph.D., Rice University, 1990
Research interests: scientific communication; scientific writing; international scientists (ESL and cross-cultural); mentoring; career development; linguistics

Rick A. Finch
Associate Professor
Veterinary Sciences
M. D. Anderson Cancer Center
Ph.D., Baylor College of Medicine, 1995

NEW ASSOCIATE MEMBERS
Research interests: experimental cancer therapeutics and in vivo modeling; anticancer drug development and Good Laboratory Practices (GLP); mechanisms of drug/radiation sensitivity and resistance in cancer cells; cancer cell differentiation as a therapeutic approach, functional genomics

Mehran Haidari
Assistant Professor
Internal Medicine – Cardiology
UTHealth Medical School
Ph.D., Tehran University of Medical Sciences, 2002
Research interests: vascular biology of atherosclerosis; endothelial cells dysfunction; recruitment of leukocyte to inflamed vasculatures; the role of actin cytoskeleton in interaction of endothelial cells and monocytes; cholesterol-independent (pleiotropic) effects of statins

Syed Shahrakh Hashmi
Assistant Professor
Pediatrics
UTHealth Medical School
Ph.D., UTHS School of Public Health, 2008
Research interests: epidemiology of birth defects; maternal exposures during pregnancy; gene-environment interactions; study design and methodology

Hong Jiang
Assistant Professor
Neuro-Oncology
M. D. Anderson Cancer Center
Ph.D., Beijing Normal University, 1997
Research interests: oncolytic adenoviruses; adenovirus/host interaction; autophagy; Rb/E2F1 pathway; gliomas

Pablo C. Okhuysen
Professor
Internal Medicine – Infectious Diseases
UTHealth Medical School
M.D., Universidad Autonoma de Guadalajara, 1985
Research interests: human genetics and susceptibility to infectious diseases; pathogenesis and host immune response to the enteropathogens Cryptosporidium and enteroaggregative E. coli

Alexandria T. Phan
Associate Professor
Gastrointestinal Medical Oncology
M. D. Anderson Cancer Center
M.D., University of Irvine – College of Medicine, 1997
Research interests: GI medical oncology

Nicole K. Ruddock
Assistant Professor
Obstetrics & Gynecology – Maternal-Fetal Medicine
UTHealth Medical School
Ph.D., University of Miami School of Medicine, 2002
Research interests: preterm birth; medical complications of pregnancy; renal disease in pregnancy

Teresa Santiago-Sim
Assistant Professor
Neurosurgery
UTHealth Medical School
Ph.D., University of Connecticut Health Center, 2005
Research interests: human genetics; intracranial aneurysms

C. Cameron Yin
Assistant Professor
Hematopathology
M. D. Anderson Cancer Center
Ph.D., University of Wisconsin-Madison, 1998
Research interests: acute myeloid leukemia; chronic myelogenous leukemia; molecular leukemogenesis, monitoring and targeting

Graduate Student Association Officers

2009-2010 Officers

- **LaGina Nosavanh**, Secretary
- **Arkansas, Genetics**

- **Jacob Verghese**, President
- **UTHealth, Microbiology & Molecular Genetics**

- **Nam Tonthat**, Vice President
- **MDACC, Biochemistry & Molecular Biology**

2010-2011 Officers

- **Ana (Ale) Klauer**, Secretary
- **UTHealth, Microbiology & Molecular Genetics**

- **Edward Wang**, Vice President
- **MDACC, Molecular & Cellular Oncology**

Find more about GSA meetings and events http://www.uthouston.edu/gsbs/current-students/student-life/gsa/
At the most recent M. D. Anderson Faculty Convocation, the following faculty members were recognized:

Endowed Professorships
- Christian Abe, D.V.M. - Doctor R. Lee Clark Professorship
- Bharat Aggarwal, Ph.D. - Ransom Horne, Jr., Professorship for Cancer Research
- Wadhi Arap, M.D., Ph.D. - Hubert L. and Olive Stringer Professorship for Cancer Treatment and Research
- Varsha Gandhi, Ph.D. - Ashbel Smith Professorship
- Elizabeth Grimm, Ph.D. - Frances King Black Memorial Professorship for Cancer Research
- Jean-Pierre Issa, M.D. - Bessie McGoldrick Professorship in Clinical Cancer Care
- Khandan Keyomarsi, Ph.D. - Hubert L. and Olive Stringer Professorship in Medical Oncology
- Jonathan Kurie, M.D. - Elza A. and Ina Shackelford Freeman Endowed Professorship in Lung Cancer
- Karen Lu, M.D. - H.E.B. Professorship in Cancer Research
- Marvin Meistrich, Ph.D. - Florence Maude Thomas Cancer Research Professorship
- Raymond Meyn, Jr., Ph.D. - Kathryn O’Conner Research Professorship
- Jeffrey Myers, M.D., Ph.D. - Ashbel Smith Professorship
- Renata Pasqualini, Ph.D. - Helen Buchanan and Stanley Joseph Seeger Research Professorship
- Elizabeth Travis, Ph.D. - Mattie Allen Fair Professorship in Cancer Research
- Stephen Ullrich, Ph.D. - Dallas/Fort Worth Living Legend Professorship
- Cheryl Walker, Ph.D. - Ruth and Walter Sterling Professorship
- Edward Yeh, M.D. - A Conversation with a Living Legend Professorship

Endowed Distinguished Professorships
- Jonas Almeida, Ph.D. - Abell-Hanger Foundation Distinguished Professorship
- Christopher Amos, Ph.D. - Annie Laurie Howard Distinguished Professorship
- Laurence Cooper, M.D., Ph.D. - H. Grant Taylor, M.D., W. W. Sutow, M.D., and Margaret P. Sullivan, M.D. Distinguished Professorship in Pediatics
- Walter Hittalman, Ph.D. - Sophie Caroline Stives Distinguished Professorship in Cancer Research
- John Ladbury, Ph.D. - Edward Rotan Distinguished Professorship in Cancer Research
- Jeffrey Molldrem, M.D. - Virginia H. Cockrell Distinguished Professorship in Immunology
- Hui-Lin Pan, M.D., Ph.D. - N. G. and Helen T. Hawkins

Distinguished Professorship for Cancer Research
- Anil Sood, M.D. - Bettyann Asche Murray Distinguished Professorship in Ovarian Cancer Research
- Richard Wood, Ph.D. - Grady F. Saunders, Ph.D. distinguished Professorship in Molecular Biology
- Dihua Yu, M.D., Ph.D. - Nylene Eckles Distinguished Professorship in Breast Cancer Research

Faculty Achievement Awards were given to Guillermina Lozano, Ph.D., Karen Lu, M.D., and William Mattox, Ph.D.

GSBS faculty members have been awarded research grants from the Cancer Prevention & Research Institute of Texas (CPRIT) in the following categories:

Planning Awards
- Howard Gutstein
- Sharon Dent

High Impact/High Risk Awards
- Garth Powis
- Zhen Fan
- Eric Wagner
- Mikhail Kolonin

Individual Investigator Awards
- Raymond DuBois
- Dihua Yu
- Gordon Mills
- Georg Halder
- Guillermina Lozano
- Sharon Dent
- Christopher Amos
- Larry Kwak
- John Hancock
- Samuel Mok
- Guilleremo Garcia-Manero
- Vicki Huff

Sharon Dent, Ph.D has been appointed Chair of Carcinogenesis and administrative director of the Science Park, Research Division in Smithville effective August 1, 2010. She will also be professor of Carcinogenesis and continue to serve as co-director for the Center for Cancer Epigenetics.

Larry Kwak, M.D., Ph.D has been recognized for his 20-year commitment to the science of cancer vaccines and named to TIME magazine’s list of the 100 most influential people in the world. This list recognizes activism, innovation and achievement.

Wadhi Arap, M.D., Ph.D., Renata Pasqualini, Ph.D., and Maria-Magdalena Georgescu, M.D., Ph.D. are co-authors on a study that revealed a new technique for growing 3-D cell cultures, as opposed to the flat petri dish that could save millions of dollars in drug-testing costs. Other co-authors include James Bankson, Ph.D., and Juri Gelovani, M.D., Ph.D., along with GSBS students Jennifer Molina, Michael Ozawa and Lawrence Bronk, who contributed to this study that was reported in Nature Nanotechnology in March 2010. (Editor’s Note: This material has been repeated to include Dr. Maria-Magdalena Georgescu).

The Graduate School has won the 2010 United to Serve Volunteer Day Award for having the highest number of participants in the University of Texas System’s “United to Serve” volunteer projects. This effort is organized each year through the Student InterCouncil.

Please submit news items to Laura.Sanders@uth.tmc.edu
Aaron Blanchard Research Award in Medical Physics

Named in memory of Aaron M. Blanchard, a GSBS student in the Medical Physics Program who succumbed to brain cancer in 1998, this $500 cash award recognizes a Medical Physics graduate (M.S. or Ph.D.) for completion of an outstanding thesis or dissertation judged to make a significant contribution to cancer therapy or diagnosis. This year’s recipient is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malcolm Heard</td>
<td>Dr. Chun Li</td>
</tr>
</tbody>
</table>

Harry S. & Isabel C. Cameron Foundation Fellowship

The Cameron Foundation provides a fellowship to an exceptional post-candidacy student working in research fields related to Alzheimer’s or cardiovascular diseases. The Foundation gift of $15,000 is matched by GSBS and Faculty. The 2009-2010 recipient is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rui Zhang</td>
<td>Dr. Chun Li</td>
</tr>
</tbody>
</table>

Michael Farley Moyers Endowed Heavy Particle Therapy Travel Award

In 2006 GSBS Alumnus Michael F. Moyers, Ph.D. (1991/Horton) created this award for an exceptional Medical Physics student who has had a paper accepted at the American Association of Physicists in Medicine (AAPM) to attend the annual meeting. Adam Melancon received first place in the John R. Cameron Young Investigator Competition for his dissertation titled Range Adaptive Proton Therapy for Prostate Cancer, and in turn received $750 this year.

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam Melancon</td>
<td>Dr. Lei Dong</td>
</tr>
</tbody>
</table>

Andrew Sowell-Wade Huggins Endowed Scholars, Professor and Fellows

The Andrew Sowell-Wade Huggins Scholars, Professor and Fellow, and the Cancer Answers/Sylvan Rodriguez Scholars represent the culmination of nineteen years of determined support and growth of the Cancer Answers charitable organization through two founding mothers, Joann Sowell and Marcia Huggins Jahncke, their families, cancer survivors, and contributing foundations including the Vivian L. Smith Foundation, Sylvan Rodriguez Charities, and especially Bobby Sue Smith Cohn and Bo and Amy Huggins. Originally started as the fundraising entity to support the Andrew Sowell-Wade Huggins Endowment which generates support for all of these awards to fund graduate education in cancer research, it has gained in size and prestige. Since 1991 over 50 scholars and 4 sets of professor/fellow teams (renewable up to three years) have been honored with awards ranging from $3,000 scholarships up to $20,000 in stipend support. The 2009-2010 Sowell-Huggins Endowed Scholars receiving $5,000 are:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenka Hurton</td>
<td>Dr. Laurence Cooper</td>
</tr>
<tr>
<td>Sumaiyah Rehman</td>
<td>Dr. Dihua Yu</td>
</tr>
<tr>
<td>Aman Mann</td>
<td>Dr. Mauro Ferrari</td>
</tr>
<tr>
<td>Brian Taylor</td>
<td>Dr. Jason Stafford</td>
</tr>
<tr>
<td>Rui Zhang</td>
<td>Dr. Wayne Newhauser</td>
</tr>
<tr>
<td>Erika Spaeth</td>
<td>Dr. Frank Marini</td>
</tr>
</tbody>
</table>

The 2009-2010 Professor/Fellow team is:

<table>
<thead>
<tr>
<th>Student</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angela Alexander</td>
<td>Dr. Cheryl Walker</td>
</tr>
</tbody>
</table>

Endowed Scholars and Professor/Fellow team is pictured here with Amy Huggins (front left), Joann Sowell and Marcia Huggins Jahncke (front center).
I received my Ph.D. in 1973 (under Dr. Carl Tessmer; Pathology). I took postdoctoral training (with Dr. Burr Furlong; Biochemistry), and then worked for 12 ½ years as a toxicologist at Shell and have worked since 1990 as a health and environmental consultant. A few years ago, I began to develop post-polio syndrome – a progressive and irreversible return of the paralysis of my childhood. This forced me to rethink my career once again, and I created a company dedicated to providing clean water to communities and businesses around the world, CleanBlue Water, LLC.

My professional life has taken me into the full range of biomedical issues, as well as into regulatory negotiation, expert witness testimony, even into the minutia of business and management. I have repeatedly been struck by how well my education at GSBS prepared me to be successful. Linda Carter asked me what insights I would offer our current students. I think that my experience can be summarized in one piece of advice:

Understand that you absolutely control the level of success that you will achieve in your career and in your life. Any problem should be approached by a) identifying the objective (specific and measurable); b) planning in detail what actions must be taken to achieve that objective; and c) having the courage to implement the plan. If you are not successful on your first attempt, evaluate what went wrong, modify the plan, and try it again. Life will undoubtedly put hurdles in your way, but none are higher than those you create for yourself by saying that you can’t do something.
Special Thanks and Gratitude
April 1, 2010 – August 1, 2010

Our Benefactors

American Legion Auxiliary
Harry S. & Isabel C. Cameron Foundation
Mimi Cho-Rohlfesen
Jessie Heath
Marilyn Lummis
The Schissler Foundation
The William A. and Madeline Welder Smith Foundation

All gifts at any scale and to any category:
Will be acknowledged.
Are tax deductible.
May be matched by a corporation to enhance the value of your gift.
May be used for memorial gifts to honor a favorite faculty, family member or friend. A notice will be sent to inform the family of the honor (not the amount) of your gift, and you will be acknowledged individually.
Consider a charitable gift annuity to increase your retirement earnings.
The easiest way to give is to designate the Graduate School as beneficiary of all or part of the balance of your estate. All bequests and beneficiary designations should be made to “Board of Regents of the University of Texas System for the benefit of The University of Texas Graduate School of Biomedical Sciences at Houston. This gift shall be used for the further benefit of the School and shall be used to ______________.”

Our Contributors

Paul Darlington Aaron Roome
Ann Wright Douglas Stickle
R. W. Butcher Zhongming Zhao
Mark Kunkel Kiva Hokanson
Raul Nemeth Eric Goldin
Bette Campbell Joy Marshall
Mary Yehle Thomas Goka
Lovely Krishen Peter Lomedico

Brenda Gaughan (right), Faculty Affairs, is the 2010 Recipient of the GSBS Melva S. Ramsay Award for outstanding service to faculty, students and staff. The award of $500 (and plaque) is presented by George Stancel, Dean, in memory of Melva Ramsay, long time beloved employee of GSBS.

New GSBS Staff Member: Lisa Wetter, CCTS Senior Administrative Coordinator

Lisa joined the GSBS in February 2010 to coordinate all aspects of the Center for Clinical and Translational Science (CCTS) T32 translational research training grant. Previously, Lisa worked at M. D. Anderson Cancer Center and has a total of over 20 years working in large academic medical institutions. She lives with her 17 year old daughter and their two small dogs in the Museum District. Lisa spends much of her leisure time chaperoning her daughter who is a professional Hannah Montana impersonator. Born, raised and college educated in Oregon, Lisa now considers herself a true Texan.
Hello Alumni,

Congratulations to Cathy Wicklund, M.S. in Genetic Counseling (1993/Hecht), who is the newly named Distinguished Alumna for 2010-2011. Please plan to join me and other GSBS alumni and colleagues for the annual Alumni Reunion, Friday, November 19 at Trevisio Restaurant. Ms. Wicklund, M.S., C.G.C., is currently Director of the Genetic Counseling Program at Northwestern University, Department of Obstetrics and Gynecology, Chicago, Illinois. She is a past president of the National Society of Genetic Counselors, has served or currently serves on the Health Resources & Services Administration, U.S. Department of Health & Human Services, the Genetics Task Force of Illinois and the American Board of Genetic Counseling, among other national roles and honors.

As your Alumni president I have had the privilege of welcoming 67 graduates at the May Commencement into the “fold” of this esteemed group—the Graduate School of Biomedical Sciences Alumni Association. We are growing, with now over 2,000 alumni, nearly 500 in the Houston area with the rest across the United States and around the world. GSBS alumni reflect leadership in academia, education, pharmaceutical and biotech industries, oil and energy corporations, governmental agencies, the media, and law offices with intellectual property expertise. It was terrific to see the confident soon-to-be alumni at the “Graduation Celebration,” which the Alumni Association hosts a few nights before Commencement. This year’s group received nearly 50 named scholarships, fellowships or other awards of excellence during their time at GSBS—several supported by Alumni donations. Thank you!

Thank you to my partners in this effort, the Alumni Association Steering Committee: Vicky Estrera, Ph.D. (2001) president ex-officio; Jackie Peltier Horn, Ph.D. (1981) president-elect; Dorrine Lamb, Ph.D., (1980); Ben Thomas, Ph.D., (1973); Molianne McGahren Murray, Ph.D., (2007); and new members Sol Bobst, Ph.D. (2003); and Dianne Hammond, Ph.D. (1989). Among other exciting programs they energized this year were a very successful Career Day, and the kickoff for the new and improved interactive website, alive and well as of April 1—hooray! Please log-in and sign up today—you are able to edit your own contact and other information to stay current as well as gather/post the latest news www.utgsbsalumni.org.

Special thanks to Dean Stancel. I personally appreciate his foresight in starting the Alumni Association and providing continued support that strengthens the organization and the School. Thank you to BethLynn Maxwell, Ph.D. (1980) and hubby Stephen Reed for hosting a wonderful Fiesta for Austin-area alumni in their beautiful home —it was great to visit with all!

Enjoy these last days of summer and mark your calendars for November 19th!

Best wishes,

GSBS Alumni Association President
2009-2010