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Chapter 1: Introduction 

Thanks to science and technology, access to factual knowledge of all kinds is rising 

exponentially while dropping in unit cost... [we are] are drowning in information, 

while starving for wisdom. 

(E. O. Wilson, 1992)  

Clinicians and researchers can no longer keep up-to-date with literature manually, even in 

specialized domains. This problem of extracting knowledge from the rapidly created 

literature was declared as precluding the existence of experts in medical sub-disciplines in 

the appropriately titled article “On the Impossibility of Being an Expert” (Fraser, 2010). 

The authors argued that expertise could theoretically be obtained just as it was time to 

retire. One method to help cope with the increasing information overload is information 

retrieval (IR) systems that help users identify relevant information within large document 

collections. IR systems become increasingly important as the volume of scientific literature 

increases.   

The National Library of Medicine’s (NLM) PubMed is the most widely used IR tool for 

accessing the MEDLINE database of biomedical literature (Falagas, Pitsouni, Malietzis, & 

Pappas, 2008).  PubMed provides access to over 19 million articles and processes over 1.5 

billion queries a year (Islamaj Dogan, Murray, Neveol, & Lu, 2009). By default, PubMed 

ranks the results by reverse chronological order1. Reverse chronological order ranking is 

                                                 
1 At this time this research was done PubMed did not provide relevance ranking. 
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only sufficient if the user is seeking the most recent articles. Other information needs such 

as finding important articles are not well served by reverse chronological ranking. In 

addition, results sets returned from the PubMed IR system can be very large. For example, 

a query for “breast cancer” returns over 200,000 citations. Clearly this result set is too large 

for manual review. Ranking by importance or relevance could assist the user in finding 

articles that are relevant for their information need. In addition, users on average look at 

only the first ten results making ranking by relevance to the query a priority (Islamaj 

Dogan, et al., 2009). 

Numerous approaches exist for ranking documents (Canfora & Cerulo, 2004) and 

similarly numerous approaches exist for characterizing the information seeking behavior 

of IR system users (Bates, 1989; Canfora & Cerulo, 2004; Ingwersen & Jarvelin, 2010; 

Marchionini, 1995). For the purposes of this dissertation, the following definition of 

information seeking behavior from (T. D. Wilson, 2000) is used. 

Information Seeking Behavior is the purposive seeking for information as a consequence 

of a need to satisfy some goal. 

 

Information seeking studies are largely concerned with characterizing how users utilize 

and interact with IR systems. This literature is rooted primarily in social and library 

sciences. In contrast, IR research is typically rooted in computer science and largely 

focuses on the development of algorithms that should, in theory, result in improved user 

experience by improving the search technology. A well-noted chasm exists between the 

information seeking literature and the IR literature (Bates, 1989; Belkin, 1993, 2008; 

Ingwersen, 1992; Ingwersen & Jarvelin, 2010; Saracevic, 1997; Sparck Jones, 1988). 

According to Ingwersen & Jarvelin, “the two camps do not communicate much with each 
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other and it is safe to say, that one camp generally views the other as too narrowly bound 

with technology whereas the other regards the former as an unusable academic exercise” 

(Ingwersen & Jarvelin, 2010). An alarming artifact of this chasm is that the performance 

gains of IR systems found in controlled laboratory experiments do not necessarily translate 

to real-world user satisfaction (Al-Maskari, Sanderson, Clough, & Airio, 2008; Allan, 

Carterette, & Lewis, 2005; W. Hersh et al., 2001; Jarvelin, 2009; Macdonald & Ounis, 

2009; Sanderson, Paramita, Clough, & Kanoulas, 2010; Smith & Kantor, 2008; Smucker 

& Jethani, 2010; Su, 1992; Turpin & Scholer, 2001, 2006; Urbano, McFee, Downie, & 

Schedl, 2012).  

The application of computational cognitive modeling in IR is an emerging area of research 

that seeks to bridge the information seeking and IR viewpoints. According to Pirolli, the 

role of computational cognitive modeling in IR has having the following general goals (P. 

Pirolli & Card, 1999b). 

Goal 1: Explain and predict how people will best shape themselves for their 

information environments 

Goal 2: Understand how information environments can best be shaped for people 

This dissertation is primarily concerned with the second goal. In Chapter 4, I analyze the 

aggregate document accesses by a population of IR users and show that the statistical 

regularities of these aggregate accesses can be used to predict future accesses by individual 

users. In Chapter 5, I present the first application of computational cognitive modeling in 

the biomedical domain. Finally, in Chapter 6 I present an IR system based on the insights 

from the experiments in Chapters 4 and 5.  
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The remainder of this chapter presents the theoretical background and research questions 

that I pursued in this dissertation. Section 1.1 and Section 1.2 present an overview of the 

Adaptive Character of Thought-Rational (ACT-R) and the Information Foraging theory, 

which are necessary for understanding the contributions of this dissertation given that they 

are the theoretical foundation. Section 1.3 provides an overview of the research questions 

pursued in this dissertation and the experiments conducted to explore the questions. Section 

1.4 presents the main contributions of this dissertation. Finally, Section 1.5 presents an 

overview of the structure of the rest of this dissertation.  

1.1 ACT-R Theory of Human Associative Memory 

The term “cognitive architecture” was first introduced to cognitive science in 1971 (Bell 

& Newell, 1971). According to Anderson (J. Anderson, 2007), a cognitive architecture is 

a “specification of the structure of the brain at a level of abstraction that explains how it 

achieves the function of the mind”. ACT-R is a cognitive architecture based on a theory of 

how human cognition works (J. Anderson, 2007).  ACT-R has been applied to gain insight 

into diverse areas of human cognition including perception (Brumby, Salvucci, & Howes, 

2007) and problem solving (Danker & Anderson, 2007). The ACT-R theory asserts that 

the mind is comprised of structural modules and these modules correspond to brain regions. 

Example modules include the declarative memory module and visual perception module. 

The function of the mind (cognitive processes), according to the ACT-R theory, emerges 

through interaction of the modules. Thus, a cognitive model within the ACT-R cognitive 

architecture is a specification of the interaction of modules. For example, the Information 

Foraging Theory (discussed in Section 1.2) is a cognitive model created within ACT-R and 
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is used to understand a specific cognitive process, which is information seeking behavior 

in environments such as the World Wide Web (WWW).   

 This dissertation involves only the long-term memory theory of ACT-R, which Anderson 

developed the rational analysis approach that he invented (J. R. Anderson, 1989). The 

rational analysis approach emphasizes understanding the structure and dynamics of the 

environment, which leads to an understanding of how the cognitive system would perform 

tasks given these constraints. A summary of the rational analysis approach below is 

described in (J. R. Anderson, 1991). 

1. Precisely specify the goals of the agent. 

2. Develop a formal model of the environment to which the agent is adapted. 

3. Make minimal assumptions about the computational costs. 

4. Derive the optimal behavior of the agent considering items 1-3. 

5. Test the optimality predictions against data. 

6. Iterate. 

(J. R. Anderson, 1991) 

Interestingly, Anderson began with the insight that the human memory and IR systems are 

both attempting to solve the same computational challenge, that is, to retrieve the optimal 

set of items from an expansive set (J. R. Anderson & Milson, 1989).  This parallel is 

summarized by (Steyvers & Griffiths, 2010) as follows: 

For a search engine, the retrieval problem is finding the set of documents that are 

most relevant to a user query. In human memory, the retrieval problem can be 

construed in terms of assessing the relevance of items stored in the mind to a 

memory probe (either internally generated or based on environmental cues). The 
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common structure of these problems suggests a simple analogy between human 

memory and computer-based information retrieval:  items stored in memory are 

analogous to documents available in a database of text (such as the world-wide 

Web) and the memory probe is analogous to a user query. 

 (Steyvers & Griffiths, 2010) 

The rational analysis approach generated a branch of cognitive science with the aim of 

understanding many facets of cognition through this approach (Chater & Oaksford, 2008; 

Oaksford & Chater, 2007). In the case of human memory, Anderson & Schooler (1991) 

assert that human memory is an adaptation to the statistical properties of information in the 

environment. In addition, Anderson makes the (sometimes controversial) claim that the 

human memory system is optimal within the view of bounded rationality (for in-depth 

discussions see (Gigerenzer & Selten, 2002; Simon, 1956). Bounded rationality pertains to 

optimization under constraints (Stigler, 1961). That is, human beings must make decisions 

within the constraints of time, physical constraints of the cognitive system, and based on 

uncertain or incomplete information. For example, a Neanderthal with the goal of surviving 

in the savannah would be more likely to survive by falsely identifying an object as a lion 

and fleeing than taking additional seconds or minutes to insure that the classification is 

correct. Simon (Simon, 1956) provided a metaphor of a pair of scissors to describe bounded 

rationality where one blade is “cognitive limitations” and the other is “structure of the 

environment”. According to Simon, “a great deal can be learned about rational decision 

making. By taking into account the fact that the environments to which it must adapt 

possess properties that permit further simplification of its choice mechanisms” (Simon, 

1956).  
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Anderson proposes a Bayesian solution based on rational analysis to model the human 

memory retrieval problem. Equation 1.1 shows the log odds form of Bayes’ Theorem. In 

Equation 1.1, 𝐻 corresponds to the hypothesis that a given memory item is needed and 𝐸 

corresponds to the evidence. The parameter log
𝑃(𝐻)

𝑃(�̅�)
 corresponds to the prior odds that a 

given memory item is needed. The parameter ∑ log
𝑃 (𝑗|𝐻)

𝑃(𝑗|�̅�)𝑗𝜖𝐸  corresponds to the log-

likelihood that a given memory item is need. The log-likelihood is the context-sensitive 

component whereas the prior odds is independent of the context. Context in this chapter 

refers to an utterance or a sentence. For example, if the terms “money” and “bank” were 

viewed within the same context, it would be appropriate to retrieve memory items that 

pertain to the “financial institution” sense and not the “body of land near a river” sense. In 

summary, the ACT-R theory proposes that memory items have a prior probability 

distribution representing how likely a memory is to be needed in the future based on past 

use. Given a memory probe such as an utterance (analogous to a query in IR), the prior 

probabilities for the memory items are updated with the current evidence from the probe 

(likelihood based on each cue in the utterance) and the memory with the highest posterior 

probability is retrieved. 

 

log
𝑃(𝐻|𝐸)

𝑃(�̅�|𝐸)
= log

𝑃(𝐻)

𝑃(𝐻)̅̅̅̅
+∑log

𝑃(𝑗|𝐻)

𝑃(𝑗|�̅�)
𝑗𝜖𝐸

 
(1.1) 

  

 

In mapping back to bounded rationality, the ACT-R theory of long-term memory makes 

two major assertions regarding the structure of the environment to which the human 
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memory system has adapted. The first is that the prior probability of a given memory item 

being needed is learned from the statistical properties of information in the environment. 

The second is that the likelihood is sampled from the environment and the memory 

structure reflects the statistical co-occurrence of information in the environment. Sections 

1.1.1 and Sections 1.1.2 present in detail the theoretical foundation of the prior probability 

and likelihood respectively.  

1.1.1 The prior probability distribution for memory items reflects the 

statistical properties of information to which the memory system has adapted 

Quentin Burrell first defined the notion of desirability in the context of a library as “the 

average number of times an item is borrowed per unit time” (Burrell, 1980, 1985; Burrell 

& Cane, 1982; Burrell & Fenton, 1994). Burrell used a desirability function based on the 

frequency of past circulation to predict how likely a book was to borrowed in the near 

future. The motivation of this model was to identify books that were not likely to be 

checked out such that they could be placed in storage. 

Anderson & Schooler were interested in a similar proposition for human memory (J. R. 

Anderson & Schooler, 1991). That is, whether it possible to create a desirability model for 

human memory. Based on the rational analysis approach discussed previously, Anderson 

& Schooler hypothesized that analyzing the statistical properties of information in the 

environment would reveal a structure, and whatever this structure happened to be, would 

be reflected in the human memory system (J. Anderson, 2007). This reflection of the 

environment in memory would exist since human memory is an evolved system, and 

according to bounded rationality, would provide constraints that would influence the 

optimization of human memory in the environment (J. R. Anderson & Schooler, 1991). 
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Anderson & Schooler (J. R. Anderson & Schooler, 1991) investigated the statistical 

regularities of information in different environments. Specifically they looked at how past 

frequency (number of times an item appeared in the past) and recency (how recently a 

given item last appeared) influenced the probability that the item would appear in the 

future. This is known as the recency and frequency (recency-frequency) effect. Anderson 

& Schooler looked at the appearance of words in New York Times headlines, utterances 

spoken by children as a function of past utterances heard (MacWhinney & Snow, 1990), 

and email correspondences.  In all of these situations, the relationship between probability 

of an item appearing in the future has a power law relationship with the past recency and 

frequency of appearance. Based on the results of the analysis, Anderson & Schooler 

developed a desirability model based on the recency-frequency effect that predicts the 

probability of a memory item being needed in the future. Anderson & Schooler showed 

that their model could accurately account for the long observed recency-frequency effect 

in human memory (Ebbinghaus, 1885). 

1.1.2 The context sensitivity of human memory is learned based on past 

experience 

The context sensitivity of the ACT-R theory of human memory is very similar to the 

distributional hypothesis, which asserts that the meaning of a word can be defined based 

on the contexts in which it occurs (Harris, 1954) and Hebbian learning (Hebb, 1940, 1961) 

which asserts that “cells (in this case concepts) that fire together, wire together” (Doidge, 

2007). For example, the utterance “my lawyer is a shark” is the context and the individual 

cues (ignoring stop terms) are “lawyer” and “shark”. Once this phrase is encountered, the 

memory system would strengthen the relationship between the concepts “lawyer” and 
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“shark”. According to the ACT-R theory of long-term memory, the conditional 

probabilities between concepts are learned through experience based upon the contexts in 

which the concepts appear. These conditional probabilities reflect the likelihood from 

Equation 1.1, which is known as association strength in the ACT-R theory. Schooler & 

Anderson (Schooler, 1993; Schooler & Anderson, 1997) provide the example of the 

associative effect for the terms “AIDS” and “virus” from the New York Times headlines. 

They found that the term “AIDS” was included in 1.8% of the headlines and the term 

“virus” was included in approximately 75% of the headlines. However, if the headline 

contains the term “virus”, the term “AIDS” was 41 times more likely to occur. 

The context sensitivity of the ACT-R theory of human memory emerges through the 

spreading activation equation, which combines influence of the contexts provided by the 

cues. Numerous models of human memory have utilized a spreading activation component 

(J. R. Anderson, 1983; J. R. Anderson & Bower, 1973; Collins & Loftus, 1975). Pitkow 

offers the following intuitive explanation of spreading activation: 

One way to conceptually understand spreading activation is to imagine a system of 

water reservoirs connected via a set of pipes, with the diameter of the pipes 

determining the rate of water flowing between reservoirs. When a large amount of 

water is injected into the system from a particular source reservoir or set of source 

reservoirs, after a period of time, the water levels in all the reservoirs will settle in 

a particular pattern. Based upon this final pattern, each reservoir can be inspected 

and the ones with the most water selected. If one views the flow rates between 

reservoirs as a measure of their connectedness (association), then the reservoirs 
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with the most water at the end are in a sense the ones more connected (related) to 

the source reservoir. 

 (Pitkow, 1997) 

To illustrate the computational problem involved in selecting the correct context given the 

cues consider the problem highlighted in Figure 1.1 (adapted from (Glucksberg, 1998). 

This figure maps the interpretation of the phrase “My lawyer is a shark” to the context 

sensitive solution proposed by the ACT-R theory of long-term memory. For simplicity, 

only the terms “lawyer” and “shark” are only considered. According to the ACT-R theory 

of long-term memory, the association strengths (𝑆𝑗𝑖) between the concepts are accumulated 

based on the past contexts in which these terms have appeared. The association strengths 

between the cues “lawyer” and “shark” and the connected concepts (e.g. “law”) act as 

inhibitory and excitatory links and the connected concepts compete for activation. In this 

example, the concept “shark” would ideally inhibit the concepts “client”, “lawsuit”, and 

“law”, and the concept “lawyer” would ideally inhibit the concepts “gills”, “fins”, “fast-

swimmer”, and “leathery skin”. The concepts “lawyer” and “shark” both have excitatory 

connections with “aggressive” and “vicious”, which results in both of these concepts being 

the candidates for retrieval. According to (W. Kintsch, 2000), the computational goal in 

this specific type of metaphorical reasoning is to select “those features of the (metaphoric) 

predicate (i.e., shark) that are appropriate for it (i.e., lawyer) and inhibit the features that 

do not apply or apply less aptly”. That is, the interpretation of the phrase “my lawyer is a 

shark” is an online process through which the meaning of “my lawyer is a shark” is 

constructed. 
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Figure 1.1. Lawyer-shark network. Adapted from (Glucksberg, 1998) 

 

1.2 Information Foraging Theory 

The Information Foraging Theory is based on the optimal foraging theory (Stephens & 

Krebs, 1986) and the ACT-R theory of long-term memory. Optimal foraging theory has 

been applied to describe the foraging behavior of numerous species of birds (Green, 1980), 

mammals (Kie, Evans, Loft, & Menke, 1991), reptiles (Huey, Bennett, John-Alder, & 

Nagy, 1984), and insects (Waddington & Holden, 1979). The basic concept behind the 

optimal foraging theory is that animals maximize the caloric intake per unit time while 

minimizing the energy expenditure to obtain the calories. Similarly, the information 

foraging theory models the information seeking behavior of humans with the assumption 

that they seek to maximize the intake of information while minimizing the effort taken to 
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obtain the information. The information foraging theory has several components. The 

“maximizing the intake of information per unit time” constraint from the optimal foraging 

theory predicts the amount of time a person will spend on a Web page before abandoning 

it (Huberman, Pirolli, Pitkow, & Lukose, 1998), which yields the Zipf-like distribution of 

the number of pages of user visits within a Web page (Islamaj Dogan, et al., 2009). 

Interestingly, recent studies have found that the search mechanism in human semantic 

memory shares some characteristics with optimal foraging, which strengthen the relation 

between the Information Foraging Theory and the optimal foraging theory (Hills, Todd, & 

Jones, 2009; Rhodes & Turvey, 2007). 

The component of the Information Foraging Theory that is relevant for this work is 

information scent. Information scent is the utility of an information item, which can be 

thought of as a “rational analysis of categorization of cues according to their expected 

utility” (P. Pirolli & Card, 1999b). In the case of the Web, cues refer to “World Wide Web 

links or bibliographic citations, that provide users with concise information about content 

that is not immediately available” (P. Pirolli & Card, 1999b). According to the Information 

Foraging Theory, users attend to the cues with the highest expected utility given their 

information need. For example, consider the search results of a typical search engine shown 

in Figure 1.2. According to Information Foraging Theory, the user will select the hyperlink 

with the highest information scent based on proximal cues such as the Web Page title to 

maximize the probability of satisfying the information need with the distal information 

content (e.g., the Web page associated with a hyperlink). 
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Figure 1.2. Information scent and the WWW. Adapted from (P. Pirolli, 2009) 

 

The Information Foraging Theory can be viewed as a cognitive model within the ACT-R 

cognitive architecture. In fact, much of the Information Foraging Theory was developed 

and conducted in the SNIF-ACT cognitive model (P. Pirolli & W-T., 2006), which was 

implemented within the ACT-R framework. In this work and many previous applications 

of the Information Foraging Theory, information scent is calculated using the ACT-R’s 

spreading activation model (J. Anderson, 2007). It is important to note that the task 

environment of the ACT-R human memory theory and the Information Foraging Theory 

differ, but the rational analyses of the computational tasks are similar and consequently the 

mathematical framework is identical. The ACT-R theory of human memory is based on 

the hypothesis that the human memory system actively predicts the memory items most 

likely to be needed based on the current context and past access of memory items (J. R. 

Anderson & Milson, 1989). In contrast, the Information Foraging Theory is based on the 
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idea that the forager is assessing the utilities (information scent) of distal information (e.g., 

Web pages) based on proximal cues (e.g., textual description of a hyperlink) and selects 

the proximal cue (i.e., hyperlink) that will most likely satisfy the user’s information need. 

In both cases, the computational problem faced by the agent is calculating the utility of 

distal information given the proximal cues. 

1.3 Research Questions 

This section is organized according to the research questions that I address in each chapter 

of this dissertation. Section 1.3.1 presents the research questions explored in Chapter 4, 

which pertain to the recency-frequency effect. Section 1.3.2 presents the research question 

explored in Chapter 5, which involves using information scent to predict document clicks 

for PubMed users. Finally, Section 1.3.3 presents the research question explored in Chapter 

6, which involves combining the insights from Chapter 4 and Chapter 5 for predicting the 

document accesses of PubMed users. 

1.3.1 Leveraging the recency-frequency effect for IR. 

As discussed, an important goal of IR systems is to prioritize documents likely to be needed 

from an expansive corpus. In investigating this optimization problem, we looked at similar 

domains where models exist for estimating the probability of items being retrieved from a 

large set. The first domain is library science where the problem is predicting the book most 

likely to be checked out based on past use (Burrell, 1980).  The second domain is cognitive 

science where the problem is modeling how human memory selects the memory with the 

highest probability of being needed based on past use (J. R. Anderson & Schooler, 1991).  

Burrell (1980) showed that library book circulation could be predicted based on past use. 

Anderson & Schooler linked the optimization problems faced in predicting library book 
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circulation and human memory by adapting Burrell’s model to predict the probability of a 

memory item being accessed as a function of the recency and frequency of past use (J. R. 

Anderson & Schooler, 1991).  

In Chapter 4, I explore the implications of the Anderson & Schooler model for predicting 

future documents accesses based on the past use. In essence, this work links a long line of 

information science research beginning with Burrell that predicted library book circulation, 

which was adapted by Anderson & Schooler to determine the prior probability of a given 

memory item being retrieved, and is explored here to predict document accesses in digital 

repositories. Chapter 4 seeks to answer the following questions regarding the use of 

desirability for document ranking. 

Research Question 1: Why does the recency-frequency effect exist? 

Research Question 2: Do document accesses from digital repositories adhere to the 

recency-frequency effect? 

Research Question 3: Can the recency-frequency effect be exploited to improve document 

ranking performance? 

The remainder of this section explores the experiments used to answer these questions. 

1.3.1 Research Question 1: Why does the recency-frequency effect exist? 

Anderson & Schooler showed that the recency-frequency effect existed in a wide variety 

of different domains including email correspondence, language acquisition of children 

(CHILDES data set), and New York Times headlines (J. R. Anderson & Schooler, 1991). 

Based on these findings, Anderson & Schooler asserted that the recency-frequency effect 

was a natural property of information in the environment. They further hypothesized that, 

given that human memory evolved in this environment, human memory would also display 
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the recency-frequency effect. This hypothesis was experimentally validated when 

Anderson & Schooler showed that the probability of an item being accessed in memory 

adhered to the recency-frequency effect. However, Anderson & Schooler did not explain 

why information in the environment would have such a property.  

Each of the domains that Anderson & Schooler investigated can be conceptualized as an 

evolving network where new nodes appear and new edges form between nodes in the 

network. For example, when looking at the language acquisition of children, new terms 

appear in the utterances of children, which add new nodes to the network and new edges 

are formed between existing nodes as they co-occur in different utterances. Recent research 

in network science has shown that many real-world networks including the WWW 

(Barabasi & Albert, 1999), metabolic networks (Jeong, Tombor, Albert, Oltval, & 

Barabasi, 2000; D. S. Lee et al., 2008), and social networks (Barabasi et al., 2002; Csanyi 

& Szendroi, 2004; Liljeros, Edling, Amaral, Stanley, & Aberg, 2001; Lusseau, 2003) can 

be modeled as scale-free networks. In scale-free networks, the distribution of the degree 

centrality of the nodes in the network is a power law. Degree centrality is a graph theory 

metric that reflects the importance of a node based on the number nodes to which it is 

connected (Opsahi, Agneessens, & Skvoretz, 2010). The mechanism that gives rise to the 

power law distribution was shown by Barabasi (Barabasi & Albert, 1999) to be a 

preferential attachment mechanism. The preferential attachment mechanism means that 

new nodes are more likely to connect with nodes that have larger degree centrality values. 

Recent work has shown that the types of data sets that Anderson & Schooler investigated 

can be characterized or at minimum have been theorized to be scale-free networks. 

Anderson & Schooler investigated the patterns of email correspondence of the first author 
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Anderson and found that the recency-frequency effect was present in the data. Recent 

studies have investigated much larger data sets and found that the correspondence between 

humans through mailed letters (Oliveira & Barabasi, 2005) and through email can be 

characterized as scale-free networks (Barabasi, 2005; Ebel, Mielsch, & Bornholdt, 2002). 

Anderson and Schooler analyzed the appearance of terms in the New York Times headlines 

and found the presence of the recency-frequency effect in this data. A study that was similar 

in nature to using the titles of the New York Times headlines was conducted by Pereira et 

al. (Pereira, Fadigas, Senna, & Moret, 2011). Pereira et al. conducted an analysis of a 

network extracted from the titles of scientific articles and found that it is a scale-free 

network. Anderson & Schooler investigated the utterances of children using the CHILDES 

corpus and found the presence of the recency-frequency effect. Numerous studies have 

found that a network extracted from the utterances of children in the CHILDES corpus is 

a scale-free network (Corominas-Murta, Valverde, & Sole, 2009; Sole, Murta, Valverde, 

& Steels, 2006). Finally, recent studies have provided evidence that the structure of human 

long-term memory is a scale-free network (Deyne & Storms, 2008; Griffiths, Steyvers, & 

Firl, 2007; Morais, Olsson, & Schooler, 2013; Steyvers & Griffiths, 2010; Steyvers & 

Tenenbaum, 2005). 

Section 4.2 explores the idea that the recency-frequency effect is an artifact of scale-free 

network growth. The observation that the recency-frequency effect coexisted in data sets 

that numerous studies characterized as scale-free networks generated the initial hypothesis. 

However, the co-occurrence is not evidence of a causal relationship. To test this hypothesis, 

I generated a variety of networks using network growth rules that are known to yield certain 

properties. I performed experiments on the generated data from each network to determine 
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the presence of the recency-frequency effect. The experiment found that scale-free 

networks were the only type that exhibited the recency-frequency effect. This offers a 

potential mechanistic explanation for why Anderson & Schooler observed the recency-

frequency effect in a wide variety of different domains. Furthermore, this finding has a 

possible implication for human memory. The recency-frequency effect is a well-known 

property of human memory dating back to the work of Ebbinghaus in 1885 (Ebbinghaus, 

1885). This finding supports the hypothesis that the acquisition of concepts by human 

memory can be modeled by the growth of a scale-free network. 

1.3.2 Research Question 2: Do document accesses from biomedical digital 

repositories adhere to the recency-frequency effect? 

There is some evidence that the recency-frequency effect exists for documents accessed 

online. Recker & Pitkow showed that the recency-frequency effect was present for 

documents accessed on the WWW (Recker & Pitkow, 1996). Dezso et al. investigated the 

access of news articles from a major news portal (Dezso et al., 2006). Dezso et al. did not 

specifically investigate the recency-frequency effect, but nonetheless found results that 

could indicate its presence. For example, Dezso et al. found that the visitation rates for 

documents decayed over time as a power law. 

In Section 4.3, I investigate whether the recency-frequency effect exists for document 

accesses for two different populations. The first data set is comprised of documents 

accessed using the PubMed IR system from the users of the Houston Academy of Medicine 

Texas Medical Center (HAM-TMC) library. The HAM-TMC library provides access to 

information resources for over 50 institutions including numerous hospitals, medical 

schools, nursing schools, public health, and dentistry among others (Center, 2013).  The 
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second data set is comprised of documents accessed through the Public Library of Science 

(PLOS) website. PLOS is an open-access publisher that currently has seven journals, which 

have published approximately 60,000 articles. The two data sets offer complimentary 

features for testing for the recency-frequency effect for document accesses in digital 

repositories. By default, PubMed ranks documents in reverse chronological order. In 

contrast, the PLOS search engine ranks documents by similarity to the query (PLOS, 2013). 

If the experiments found the recency-frequency effect in both data sets, this would provide 

evidence that the effect occurs regardless of the type of ranking function that used by the 

IR system. In these experiments, I found that the recency-frequency effect was present in 

both data sets. 

1.3.3 Research Question 3: Can the recency-frequency effect be exploited to 

improve document ranking performance? 

In the previous experiments discussed in Sections 1.3.1 and 1.3.2, I found a possible 

explanation for why the recency-frequency effect exists and found that the recency-

frequency effect was present for documents accessed through two different types of IR 

systems. In and of themselves, these studies are interesting, but they do not necessarily 

mean that the recency-frequency effect can be used to improve document ranking.  

To address this question, I evaluated using desirability computed from document accesses 

from multiple crowd-sourced data sources to improve document ranking. The definition of 

desirability used in this dissertation is “probability of an item receiving attention” (Recker 

& Pitkow, 1996). The desirability function leverages the recency-frequency effect to 

calculate the prior probability of a given document being accessed. I compared the results 

of the desirability model with the Journal Impact Factor (JIF) metric. The JIF is a 
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bibliometric value that reflects the average number of citations for each article in a journal 

(Garfield, 2006). I found that the desirability model, which used information from multiple 

crowd-sourced data sources achieved an accuracy of 68.01% whereas JIF achieved an 

accuracy of 56.97%. A t-test found that the results were statistically significant (p < 0.05). 

Additionally, desirability computed on the multiple crowd-sourced data sources 

outperformed all of the existing document ranking functions that were used as a 

benchmark. These experiments provided the first evidence that a desirability model that 

leverages the recency-frequency effect can improve document ranking. 

1.4 Predicting Document Clicks Using Information Scent 

The information scent model, which is based on the ACT-R spreading activation 

component, has been used to model the interaction of humans in information environments 

such as online browsing (Card et al., 2001; Chi, Pirolli, Chen, & Pitkow, 2001; Chi, Pirolli, 

& Pitkow, 2001), literature-based discovery (Chen et al., 2009; Goodwin, Cohen, & 

Rindflesch, 2012), debugging during programming (Lawrance, Bellamy, & Burnett, 

2007a; Lawrance, Bellamy, Burnett, & Rector, 2008a, 2008b), and tag use and tagging 

behavior in on-line environments (Fu, 2008; S. Zhang, Farooq, & Carroll, 2009). Currently, 

no studies have investigated using information scent to model information seeking 

behavior in the biomedical domain. Additionally, the majority of past studies using 

information scent for click prediction were from the general user population and did not 

focus on modeling expert users. For example, only recently have researches explored using 

information scent to model expert behavior such as finding errors in programs (Lawrance, 

Bellamy, & Burnett, 2007b; Lawrance, Bellamy, Burnett, & Recker, 2008; Lawrance et 

al., 2013). The user population in this study, constrained to users in the Texas Medical 
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Center, has a high percentage of expert users since the user population is composed 

primarily of graduate students, clinicians, and researchers. Additionally, this chapter 

presents an updated mathematical framework for calculating information scent based 

recent insights from statistical IR models, which provides for an interpretation of 

information scent that more closely adheres to the Bayesian theory of the ACT-R theory 

and Information Foraging Theory. The following research question is the subject of 

Chapter 5. 

Research Question 4: Can information scent be used to predict biomedical document 

accesses? 

I conducted several experiments involving information scent on the documents accessed 

by HAM-TMC users through the PubMed IR system. The experiments were conducted 

separately for documents that received clicks (document clicks) and for documents that 

were downloaded (document downloads). The motivation here was to determine how well 

these models can predict accesses that resulted in downloads since downloads can be 

considered a stronger signal of relevance than document clicks alone. For example, a user 

can click a link for a document, view the abstract, and determine from that abstract text 

that they are not interested in reading the full text. A request for the full text is not 

necessarily a relevance judgment, but is an indication that the user wanted to read more of 

the document than just the abstract. 

In all experiments, the best performing model was the new information scent model based 

on recent insights from research in statistical document ranking models. For the purpose of 

this section I will refer to the new information scent model as (IS-S) and the original model 

as IS.  For document clicks, the IS-S model achieved the best performance with an accuracy 
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of 68.14%. However, the performance increase was not statistically significant as 

compared with the IS model, which achieved an accuracy of 65.16% (p > 0.05). For 

document downloads, the best performing model was the IS-S model, which achieved an 

accuracy of 73.18%. In this instance, the model achieved statistically significant 

performance improvement over the IS model, which achieved an accuracy of 67.83% (p < 

0.05). In summary, these results support the hypothesis that information scent can be used 

for predicting document accesses in the biomedical domain. 

1.5 Predicting Document Clicks Using information Scent and Desirability 

The research presented in Chapter 6 is the culmination of the research presented in Chapter 

4 and Chapter 5. The specific goal of this chapter is to evaluate the combination of the 

desirability and information scent models for predicting document clicks. Thus, the 

research question explored in Chapter 6 is the following. 

Research Question 5: Will combining information scent and desirability improve click 

prediction accuracy? 

In the experiments presented in this Chapter 6, I found that the combination of information 

scent and desirability improved performance over the existing ranking functions. For 

document clicks, the combination of information scent and desirability improved 

performance over existing IR models by 9.81% and it improved performance by 6.9% for 

predicting document downloads. In both cases, the performance increase was found to be 

statistically significant (p < 0.05). 

1.6 Contributions 

The following are the main contributions of the work presented in this dissertation. 
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1. Proposed a theory to explain why the recency-frequency effect is present in data 

collected from a wide variety of domains  

2. Demonstrated that the recency-frequency effect exists for documents accessed 

using different types of retrieval functions and different populations of users 

3. Demonstrated that the recency-frequency effect can be leveraged to improve 

document ranking 

4. Demonstrated that the combination of information scent and desirability 

improves ranking over existing state of the art ranking functions 

1.7 Dissertation Outline 

The structure of the remaining chapters of this dissertation is outlined below. Each item in 

the list provides a brief summary of the main purpose of the chapter. 

Chapter 2: Background – This chapter contains background information necessary to 

understand the experiments, evaluation techniques, and alternative information retrieval 

models used in this dissertation. 

Chapter 3: Related Works – This chapter provides an overview of alternative approaches 

to modeling human information seeking behavior and IR applications that draw insight 

from cognitive science. 

Chapter 4: Predicting Document Clicks Using Desirability – This chapter contains the 

experiments related to the recency-frequency effect. This chapter provides a mechanistic 

explanation for the cause of the recency-frequency effect (Research Question 1). In 

addition, this chapter shows that the recency-frequency effect is present for documents 

accessed through IR systems (Research Question 2) and can be leveraged for improving 

document ranking (Research Question 3). 
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Chapter 5: Predicting Document Clicks Using Information Scent – This chapter 

explores using information scent to predict document clicks (Research Question 4). In 

addition, this chapter presents a new interpretation of information scent based recent 

insights from research in probabilistic document ranking models and compares the 

performance to the existing information scent model. 

Chapter 6: Predicting Document Clicks Using Information Scent and Desirability  –

This chapter explores using the combination of information scent and desirability 

(Research Question 5) for predicting document clicks. The performance is compared to a 

variety of existing ranking functions. 

Chapter 7: Conclusion – This chapter summarizes the work in this dissertation and 

discusses limitations, contributions, and directions for future research. 
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Chapter 2: Background 

This chapter presents background information to contextualize the work in this dissertation. 

Section 2.1 presents a brief overview of the history of computational cognitive modeling; 

including the mathematical framework underlying the ACT-R theory of long-term memory 

and information scent. Section 2.2 provides an introduction to graph theory. Section 2.3 

presents an overview of relevant document ranking methods. Section 2.4 provides and 

overview of the dimensionality reduction techniques used in this dissertation. Section 2.5 

provides an overview of the evaluation methods used in this dissertation. In particular, this 

section provides an introduction to using query logs for the evaluation of document ranking 

approaches. Finally, Section 2.6 presents an overview of the method used in this 

dissertation for determining if empirical data obey a power law distribution. 

2.1 Overview of Computational Cognitive Modeling 

2.1.1 A brief history of computational cognitive modeling 

After the war, together with a small group of selected engineers and 

mathematicians, Johnny built, at the Institute for Advanced Study, an experimental 

electronic calculator, popularly known as Joniac, which eventually became the pilot 

model for similar machines all over the country. Some of the basic principles 

developed in the Joniac are used even today in the fastest and most modern 

calculators. To design the machine, Johnny and his co-workers tried to imitate some 

of the known operations of the live brain.  This is the aspect which led him to study 
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neurology, to seek out men in the fields of neurology and psychiatry, to attend 

meetings on these subjects, and, eventually, to give lectures to groups on the 

possibilities of copying an extremely simplified model of the living brain for man-

made machines. 

(von Neumann, 1958). 

Turing knew perfectly well the job he had to do, which was to manufacture or 

design a machine that would do the complicated sort of mathematics that had to be 

done in the Mathematical Division of [the National Physical Laboratory]. But he 

had all sorts of interesting things that he liked to do: for example, he was really 

quite obsessed with knowing how the human brain worked and the possible 

correspondence with what he was doing on computers …. Turing thought that the 

machine should be made quite simple, and at the same time should make everything 

possible that could be done. His particular purpose was to permit the writing of 

programs that modify programs, not in the simple way now common but rather in 

the way that people think. 

(Newman, 1994) 

As indicated by the above quotes, the idea of leveraging insights from cognitive science to 

inform the development of information systems as well as using information systems to 

understand the mind is not new. Aside from being examples of the earliest thinking in terms 

of the parallels between computers and the mind, the views of John von Neumann and Alan 

Turing represent the dominant research approaches in the field of computational cognitive 

modeling.  
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John von Neumann consulted what were at the time modern theories of the mechanisms of 

the brain when developing the central processing unit, which became utilized in almost all 

computers (von Neumann, 1958). John von Neumann was concerned primarily with 

simulating and developing hardware that mimicked the neural computation of the brain. In 

his posthumously published work, “The Computer and the Brain” (von Neumann, 1958), 

von Neumann discussed in detail how the crisp Boolean operators present in his von 

Neumann machines were inadequate as a model of neural processing and theorized as to 

how such devices could be developed or simulated. John von Neumann’s interests were 

very much in line with the connectionist view of cognition. In contrast, Alan Turing was 

interested in the algorithms of the mind and the general question of whether or not 

machines could think (Turing, 1950a, 1950b, 1956, 1999). The work of Turing became a 

foundation for the symbolic view of computational cognitive modeling. However, it should 

be noted that Turing did anticipate the role of learning and connectionist systems (Copeland 

& Proudfoot, 1996). 

For many years, the connectionist and symbolic views of cognition existed as adversaries, 

which resulted in passionate debate (J. Fodor, 1997; J. A. Fodor & MCLaughlin, 1990; J. 

A. Fodor & Pylyshyn, 1988; Smolensky, 1987). The symbolic view is primarily concerned 

with the development of models using symbol manipulation (Newell & Simon, 1976b). 

The following presents the physical symbol system hypothesis proposed by Newell & 

Simon (1976).  

A physical symbol system consists of a set of entities, called symbols, which are 

physical patterns that can occur as components of another type of entity called an 

expression (symbol structure). Thus, a symbol structure is composed of a number 
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of instances (or tokens) of symbols related in some physical way (such as one token 

being next to another). 

 (Newell & Simon, 1976a) 

The symbolic paradigm resulted in several early cognitive models in the 1960s and 1970s 

(Sternberg, 1966). Examples of early successes include the Logic Theorist (Newell & 

Simon, 1956) and the General Problem Solver (Newell, Shaw, & Simon, 1959). The major 

criticisms during the early days of symbolic cognitive models included brittleness when 

presented with new topics (frame problem (McCarthy & Hayes, 1969)), difficulty in 

ascribing meaning to symbols (symbol grounding problem (Harnad, 1990; Searle, 1980)), 

difficulty handling quantitative data (e.g. vision), difficulty with robust learning, and 

biological plausibility. 

The connectionist2 approach to cognitive modeling largely began in the 1980s with the 

publication of “Parallel distributed processing: Explorations in the microstructures of 

cognition” (McClelland, Rumelhart, & Group, 1986). The basic connectionist model is 

described by (Dawson & Shamanski, 1994) as follows. 

PDP models are defined as networks of simple, interconnected processing units. A 

single processing unit is characterized by three components: a net input function 

which defines the total signal to the unit, an activation function which specifies the 

unit's current "numerical state", and an output function which defines the signal 

sent by the unit to others. Such signals are sent through connections between 

processing units, which serve as communication channels that transfer numeric 

                                                 
2 Connectionist networks are commonly referred to as artificial neural networks (ANN) 

or parallel distributed processing (PDP) 
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signals from one unit to another. Each connection is associated with a numerical 

strength, which is used to scale transmitted signals. Connection strengths can be 

modified by applying a learning rule, which serves to teach a network how to 

perform some desired task. 

 (Dawson & Shamanski, 1994) 

At the time, connectionist approaches seemed to be a viable alternative to symbolic 

modeling. By modeling cognition at the neuronal level, these models were able to excel at 

learning, which was a challenge for symbolic systems. Early on, the connectionist approach 

to cognitive modeling had numerous successes including modeling reading (Hinton & 

Shallice, 1991; Seidenberg & McClelland, 1989), sentence production (Dell, 1986), and 

verb learning (Rumelhart & McClelland, 1986). Connectionist models were eventually 

criticized (see (J. A. Fodor & Pylyshyn, 1988) for a particularly incendiary attack) because 

they could not incorporate background knowledge in learning, could only learn causal 

relationships (e.g. could not learn other semantic relations), and were not biologically 

plausible (e.g. is back-propagation a biologically plausible learning mechanism?). 

Both connectionist and symbolic systems were able to overcome some of the initial 

criticisms through subsequent research. For example, tensor product variable binding 

connectionist systems overcame the inability of ANN to encode symbolic knowledge 

(Smolensky, 1990). Many of current approaches, including ACT-R, can be considered 

hybrid systems (i.e. symbolic-subsymbolic systems). Numerous researchers have argued 

the advantages of symbolic-subsymbolic systems (Kelly, 2003; Simen & Polk, 2010; Sun, 

2001; A. Wilson & Hendler, 1993). The basic motivation for combining both approaches 

is straightforward. Ideally, one could leverage the learning capabilities and general 
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robustness of connectionist systems while taking advantage of the capabilities of symbolic 

systems (e.g. humans are able to follow symbolic reasoning, thus symbolic systems can 

“explain” how they arrived at a conclusion). However, this is a challenging task and is the 

focus of the majority of the research in developing symbolic-subsymbolic cognitive 

architectures.   

2.1.2 ACT-R and Information Foraging Theory 

The computational models used in this dissertation can be classified as symbolic-

subsymbolic models. The ACT-R theory, which is a major influence of the work in this 

dissertation, is a symbolic-subsymbolic model. From one view, ACT-R is a production 

system (rule-based system). The memory representation and the production rules in ACT-

R are familiar to anyone who has worked with expert systems. The memory representation 

allows a developer to encode a network of concepts with typed relations between the 

concepts. Additionally, the developer can construct production rules to retrieve items from 

memory or to perform procedural tasks such as addition. The production rules in ACT-R 

provide access to information from different modules in the ACT-R architecture (e.g. 

visual module) as well as access to the long-term memory structure to satisfy a high-level 

goal. The role of symbols in the ACT-R architecture is summarized by Newell (Newell, 

1990). 

Symbols provide distal access to knowledge-bearing structures that are located 

physically elsewhere within the system. The requirement for distal access is a 

constraint on computing systems that arises form action always being physically 

local, coupled with only a finite amount of knowledge being encodable within a 

finite volume of space, coupled with the human mind’s containing vast amounts of 
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knowledge. Hence, encoded knowledge must be spread out in space, whence it must 

be continually transported from where it is stored to where processing requires it. 

Symbols are the means that accomplish the required distal access.  

  (Newell, 1990) 

Anderson (2007) described symbols in the ACT-R architecture as being analogous to high-

speed fiber cables in the brain allowing access to distal information.  

Many components in the ACT-R architecture are “coated” (to use the term from 

Smolensky’s argument (Smolensky, 1987)) with subsymbolic functions, which enabled the 

architecture to learn and to emulate the general flexibility and adaptation seen in the human 

cognitive system. (J. Anderson, 2007) describes the role of symbolic and subsymbolic 

representations in the ACT-R theory of long-term memory as follows. 

The symbolic level in ACT-R is an abstract characterization of how brain structures 

encode knowledge. The subsymbolic level is an abstract characterization of the role 

of neural computation in making that knowledge available. 

 (J. Anderson, 2007) 

One role of subsymbolic computation in the ACT-R framework is to determine what distal 

information is accessed and how quickly the information is made available. In the case of 

long-term memory, symbolic structure encodes the relationships between items. Each item 

in memory has a prior probability function that describes how likely the item is to be needed 

based on the past access of the item (recency and frequency effect described in Chapter 1). 

This likelihood encodes the probability that a given item is needed given the current context 

(memory probe). It is this integration of the symbolic and subsymbolic that enables the 

ACT-R to replicate the results of numerous human memory experiments (J. R. Anderson, 
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Fincham, & Douglass, 1999; J. R. Anderson & Reder, 1999; J. R. Anderson, Reder, & 

Lebiere, 1996; Pavlik & Anderson, 2005; P. L. Pirolli & Anderson, 1985).  

As discussed in Chapter 1, the information scent calculation used in the Information 

Foraging Theory is based on ACT-R’s spreading activation function. For the purpose of 

this discussion, let the context (query terms within the context of information scent) be 𝑄 

and let the proximal information cues be represented by 𝐷. Equation 2.1 presents the log 

form of Bayes’ Theorem. The parameter log
𝑃(𝐷)

𝑃(𝐷)̅̅̅̅
 corresponds to the prior odds that a given 

document (in the context of Information Foraging Theory) or memory item (in the context 

of the ACT-R theory of long-term memory) would be accessed based on the past access 

patterns of that item. In the ACT-R framework, this is based on the recency-frequency 

effect discussed in Chapter 1. In the ACT-R terminology, this parameter is known as base-

level activation. Generally, within the context of information scent, the prior odds are 

uniform to reflect the fact that people are not generally aware of the access patterns of 

documents. There are of course exceptions such as Google Scholar, where the search 

engine displays the number of citations for each article returned to the user (to the extent 

that accesses and citations can be seen as a reflection of one another). The parameter 

∑ log
𝑃(𝑗|𝐷)

𝑃(𝑗|�̅�)𝑗𝜖𝑄  corresponds to the likelihood, which is a measure of how likely a given URL 

(in the context of Information Foraging Theory) or memory item (in the context of the 

ACT-R theory of long-term memory) is to be needed based on the relationship between the 

terms in the probe and the terms in the URL or memory item. In the ACT-R terminology, 

the likelihood is known as the association strength. 
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log
𝑃(𝐷|𝑄)

𝑃(�̅�|𝑄)
= log

𝑃(𝐷)

𝑃(𝐷)̅̅̅̅
+∑log

𝑃(𝑗|𝐷)

𝑃(𝑗|�̅�)
𝑗𝜖𝑄

 
(2.1) 

 

ACT-R and Information Foraging Theory make the simplifying assumption that the base 

rate probability of a given cue (query term in the context of IR) 𝑗 occurring will not vary 

substantially from when the term appears and a given item 𝐷 is not needed. This reduces 

the log odds calculation to log (
𝑃(𝑄|𝐷)
𝑃(𝑄)

). After making the simplifying assumption, the 

following transformation in Equation 2.2 is applied to yield the approximation in Equation 

2.3. 

 

𝑃(𝑄|𝐷)

𝑃(𝑄)
=
𝑃(𝑄 ∩ 𝐷)

𝑃(𝐷)
∗

1

𝑃(𝑄)
=
𝑃(𝐷|𝑄)𝑃(𝑄)

𝑃(𝐷)
∗
1

𝑃(𝑄)
=
𝑃(𝐷|𝑄)

𝑃(𝐷)
 

(2.2) 

log
𝑃(𝐷|𝑄)

𝑃(�̅�|𝑄)
≈ log

𝑃(𝐷)

𝑃(𝐷)̅̅̅̅
+∑log

𝑃(𝐷|𝑗)

𝑃(𝐷)
𝑗𝜖𝑄

 
(2.3) 

 

Following from Equation 2.3, the activation function used by ACT-R is presented in 

Equation 2.4. The 𝐴𝑖 parameter is the posterior odds of an item such as a document or term 

𝑖 being needed based on the context 𝑄. The 𝐵𝑖 equation reflects the context-independent 

prior odds from Equation 2.3 of an item 𝑖 being needed independent of the current context. 

The parameter ∑ 𝑊𝑗𝑆𝑗𝑖𝑗∈𝑄  reflects the likelihood from equation 2.3. The 𝑊𝑗 parameter is 

the attentional weight, which is used in the ACT-R framework to specify the validity of a 

piece of evidence in the context 𝑄. For example, a given source of evidence may be noisy 
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(e.g. a face in a dimly lit room) and should be given less attentional weight than other cues 

in the context. For information scent, the attentional weight can be used to reflect the 

importance of the terms in the query. The 𝑆𝑗𝑖  parameter is the association strength and 

reflects the probability of an item being needed given the context. 

 

Activation equation 𝐴𝑖 = 𝐵𝑖 +∑𝑊𝑗𝑆𝑗𝑖
𝑗∈𝑄

 
(2.4) 

 

The base-level learning equation (prior odds) is shown in Equation 2.5. In this equation, 𝑑 

is a decay parameter and 𝑡𝑘  is the time since the 𝑘𝑡ℎ  presentation of the item 𝑖 . This 

function takes into account the recency and frequency effect discussed in detail in Chapter 

1. This function requires that each access of the item be stored along with a time stamp for 

each access. In practice, Equation 2.6 is used, which requires storage of the creation date 

𝑑 of an item and the aggregate number of accesses 𝑛 (Petrov, 2006). 

 

Base-level learning equation 1 
𝐵𝑖 = log (∑𝑡𝑘

−𝑑

𝑛

𝑘=1

) 
(2.5) 

Base-level learning equation 2 𝐵𝑖 = log (
𝑛

1 − 𝑑
𝑡𝑛
−𝑑) (2.6) 
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The 𝑆𝑗𝑖 parameter is the context-dependent association strength (likelihood from Equation 

2.3) and is estimated using Equation 2.7. Given the simplifying assumptions made by ACT-

R and the information foraging theory, the likelihood estimation is equivalent to pointwise 

mutual information shown in Equation 2.8. 

 

Association strength equation 
𝑆𝑗𝑖 ≈ log (

𝑃(𝑖|𝑗)

𝑃(𝑖)
) 

(2.7) 

Pointwise mutual information 
𝑝𝑚𝑖(𝑥; 𝑦) = log (

𝑝(𝑦|𝑥)

𝑝(𝑦)
) 

(2.8) 

 

 

 

2.2 Overview of Graph Theory 

This section provides an overview of the graph growth mechanisms and graph metrics used 

in this dissertation. A graph is defined as a set of N vertices (also known as nodes) and set 

of K edges. Edges connect the vertices in the network and can be directed or undirected. 

Neighbors are defined as two vertices that are connected by an edge.  

A frequently used metric for analyzing graphs is degree centrality. The degree centrality of 

vertices in the network have long been used as a measure of importance and numerous 

approaches exist for computing centrality over a graph including eigenvector centrality 

(Bonacich, 1972) and betweenness centrality (Freeman, 1977). In a directed network, the 

centrality of a vertex is known as in-degree and out-degree centrality and defines the 
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number of incoming edges and the number of outgoing edges respectively. If the graph is 

undirected, the in-degree and out-degree centrality measures are identical. The centrality 

metric used in this dissertation is shown in Equation 2.9. In Equation 2.9, the parameter 

𝑑𝑒𝑔(𝑣𝑖) is the number of vertices connected to the vertex 𝑣𝑖  and 𝑛  is the number of 

vertices in the graph. 

 

𝐶(𝑣𝑖) =
𝑑𝑒𝑔(𝑣𝑖)

(𝑛 − 1)
 

(2.9) 

 

Another common metric used for characterizing graphs is the clustering coefficient. The 

clustering coefficient measures the extent to which the neighbors of a vertex tend to form 

cliques, which are regions in a graph where all of the vertices are connected. The clustering 

coefficient (𝛾𝑉) shown in Equation 2.10 is a metric that characterizes the extent to which 

neighbor vertices of a vertex v are also neighbors of each other (Watts & Strogatz, 1998). 

In Equation 2.10, |𝐸(Γ𝑉)| is the number of edges that are neighbors of v and (
𝑘𝑉

2
) is the 

total number of possible edges in Γ𝑉.  

 

𝛾𝑣 =
|𝐸(Γ𝑉)|

(
𝑘𝑉
2 )

 
(2.10) 

 

The structure of a graph is an important feature, which can provide insight into the 

constraints that resulted in the formation of the graph. The networks that are pertinent for 
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this dissertation are random networks, small-world networks, and scale-free networks. 

Random graphs were pioneered by Erdös & Rényi (Bollobas, 1985; Erdos & Renyi, 1959, 

1960, 1961). Random graphs are constructed by connecting the set of vertices in the graph 

to each other at random. Random networks are characterized as having a normal degree 

distribution3 , small clustering coefficient, and short average path length. Small-world 

networks are characterized as having a short average path length (Watts & Strogatz, 1998).  

Finally, scale-free networks are characterized as having a majority of vertices that are 

loosely connected and a few rare vertices that are highly connected. The distribution of 

centrality of the concepts (nodes) in a scale-free network obey a power law distribution. In 

contrast to normal distributions, power-law distributions have a large number of small 

events and a few very large events. For example, if the heights of humans followed a 

power-law distribution, then the majority of people would be a foot tall and a few rare 

people would be hundreds or thousands of feet tall (Barabasi, 2003).  

Several growth methods are used in this work to generate graphs with desired properties 

for experimentation. The motivation behind these types of studies is to investigate 

underlying growth rules that give rise to global properties of the graph such as having a 

power law degree distribution or having a high average clustering coefficient. Table 2.1 

presents an overview of the graph growth methods used in this work and the emergent 

properties generated by the growth mechanisms. 

 

Table 2.1 

 

                                                 
3 If a random growth process is used in a temporal graph, the degree distribution will be 

Poisson. 
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Properties of growth mechanisms 

 

 Power law degree 

centrality distribution 

High clustering 

coefficient 

Short average 

path length 

BA model XXX  XXX 

BA + Triad formation XXX XXX XXX 

ER model   XXX 

ER model + Triad formation  XXX XXX 

 

The first, and most simple, graph growth mechanism is based on the Erdös & Rényi 

(Bollobas, 1985; Erdos & Renyi, 1959, 1960, 1961) random growth model (henceforth ER 

model). This growth process results in a degree distribution that obeys a Poisson 

distribution. The clustering coefficient generated by this growth process is small and the 

growth process generates a network with small average path length. The ER growth model 

works as follows. 

1. Generate random network with 𝑀  nodes where the connections are wired 

randomly with 𝑘 connections per node. 

2. For each new node added to the network, connect the new node with 𝑘 existing 

nodes at random. 

The Barabasi & Albert growth model (henceforth BA model) relies upon preferential 

attachment for connecting edges between new nodes and existing nodes (Barabasi & 

Albert, 1999). Preferential attachment has a relatively long history in the literature. The 

origins of the model are generally attributed to Herbert Simon (Simon, 1955), who in 1955 

showed that the preferential attachment model could be used to account for Zipf’s Law 

(Zipf, 1949). The preferential attachment model works by assuming that there are a set of 

objects that have some quantity attributed to them (e.g. amount of money or number of 
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connections in a graph). The future distribution of the quantity is a function of how much 

the existing quantity a given object has. That is, objects that have more of a given quantity 

will have a higher probability of receiving more quantity than objects that have less. This 

basic model is colloquially referred to as a “rich get richer” model. The contribution of 

Barabasi & Albert was that they showed that the preferential attachment model could 

account for the power law degree distribution observed in many real-world networks such 

as the WWW. The BA model works as follows. 

1. Generate initial random network with 𝑀 nodes where the connections are wired 

randomly with 𝑘 connections per node. 

2. For each new node added to the network, connect 𝑘 edges from the new node 

to the existing nodes where the connection probability is calculated 

as:
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
. 

The result of a graph generated by the BA model yields the power law degree distribution 

seen in many real world networks and a short average path length among the nodes in the 

network. However, the clustering coefficient produced in a graph generated by the BA 

model is orders of magnitude smaller than what is seen in many real-world networks. 

To overcome the shortcoming of the BA model to produce high clustering coefficients, 

several approaches have looked at augmenting the growth processes with triad formation 

(Holme & Kim, 2002; Sousa, 2005; Volz, 2004). The intuition behind triad formation is 

motivated by observations from real-world networks. For example, in a social network, if 

𝑝𝑒𝑟𝑠𝑜𝑛 𝐴 and 𝑝𝑒𝑟𝑠𝑜𝑛 𝐵 are connected then there is a high probability that there is a third 

person that both 𝑝𝑒𝑟𝑠𝑜𝑛 𝐴 and 𝑝𝑒𝑟𝑠𝑜𝑛 𝐵 know. These formations are known as triads. 

Adding a triad formation step to the growth process can result in graphs with average 



 

 41  

clustering coefficients that are magnitudes larger than those generated by either the ER 

model or the BA model. The basic triad formation process is presented below. 

1. Generate initial random network with 𝑀 nodes where the connections are wired 

randomly with 𝑘 connections per node. 

2. Attach new node to a node 𝑁 from the existing network using either BA model 

or ER model. 

3. Attach new node to 𝐾 neighbors of node 𝑁 at random. 

2.3 Overview of Relevant IR models 

This section presents an overview of the IR models that were used in this dissertation. 

Section 2.3.1 presents an overview of language models, which are used extensively in this 

dissertation. The other models covered in the review section were used for performance 

comparison. Section 2.3.2 presents an overview of the TF-IDF ranking function. Section 

2.3.3 presents an overview of the BM25 ranking function. Finally, Section 2.3.4 presents 

an overview of the divergence from randomness ranking function. 

2.3.1 Language models 

Language models originated in machine translation research (Brown et al., 1990) and 

speech recognition (Jelinek, 1997) and were first applied to information retrieval by Ponte 

and Croft (Ponte & Croft, 1998). Language models have many desirable properties. For 

example, they provide theoretical justification for commonly used heuristics such as term 

frequency (TF), inverse document frequency (IDF) weighting, and document length 

normalization (Hiemstra, 2000a; Hiemstra & Kraaij, 1998; Singhal, Buckley, & Mitra, 

1996). The term language model refers to a probabilistic model of text and underlies much 
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of the work in statistical natural language processing (Manning & Schtze, 1999) and 

probabilistic topic models (Blei, Ng, & Jordan, 2003; Griffiths & Steyvers, 2004). 

The basic language model proposed by Ponte and Croft is shown in Equation 2.11. Let 𝑄 

be the query, 𝐷 be the document, and 𝜃𝐷 be a language model estimated on document 𝐷. 

Documents are returned to the user based on the likelihood of the document generating the 

query (𝑠𝑐𝑜𝑟𝑒(𝑄|𝜃𝐷)). The focus of language model research is on estimating the language 

model for a document 𝜃𝐷. In general, the focus is on smoothing language models. For 

example, the maximum likelihood (ML) estimator is shown in Equation 2.12. In this 

equation, 𝑐(𝑤𝑖, 𝐷) represents the counts of word 𝑤𝑖 in document 𝐷 and |𝐷| represents the 

length of document 𝐷. 

 

𝑠𝑐𝑜𝑟𝑒(𝑄, 𝐷) = 𝑝(𝑄|𝜃𝐷) (2.11) 

𝑝(𝑋𝑖 = 1|𝐷) =
𝑐(𝑤𝑖, 𝐷)

|𝐷|
 

(2.12) 

 

The problem with the ML estimate is that a document with an unseen word will receive a 

likelihood score of zero, which has the result of reducing the retrieval to an exact match 

system. Thus, the majority of language model research focuses on smoothing the language 

model estimate such that zero probabilities are not assigned to documents with unseen 

words. Numerous statistical approaches have been proposed for smoothing language 

models. Examples of smoothing approaches are Dirichlet prior smoothing (C. Zhai & 

Lafferty, 2001b) and Kullback–Leibler (KL) divergence (Lafferty & Zhai, 2001; C. Zhai 

& Lafferty, 2001a). Equation 2.13 presents the multinomial distribution model proposed 
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by (Hiemstra & Kraaij, 1998; D. H. Miller, Leek, & Schwartz, 1999), which relies upon 

the ML estimator, but smoothes the estimate using a background language model. This 

model is known as the Jelinek-Mercer (JM) model. The 𝑝(𝑤|𝐶) is the probability of the 

word occurring in the entire document collection. The parameter 𝜆  is a smoothing 

parameter in the range [0,1], which controls the influence of the ML estimate and the 

background language model in the linear integration. 

 

𝑝(𝑤|𝐷) = (1 − 𝜆)
𝑐(𝑤, 𝐷)

|𝐷|
+ 𝜆𝑝(𝑤|𝐶) 

(2.13) 

 

 

An alternative method that has gained interest is the use of Dirichlet smoothing, which is 

shown in Equation 2.14. In Dirichlet smoothing the pseedocount parameter 𝜇 is set to a 

large number (some report as high as 1500). Dirichlet smoothing is generally thought to 

outperform JM smoothing (Smucker & Allan, 2005; C. Zhai & Lafferty, 2001c). In 

Dirichlet smoothing the amount of smoothing is a function of the length of a document. 

For example, longer documents receive less smoothing whereas shorter documents receive 

more smoothing. 

 

𝑝(𝑤|𝐷) =
𝑝(𝑤; 𝑑) + 𝜇𝑝(𝑤|𝐶)

|𝑑| + 𝜇
 

(2.14) 
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Recent work has investigated using term associative networks for smoothing. (Mei, Zhang, 

& Zhai, 2008) proposed a generalized framework for smoothing using networks which is 

shown in Equation 2.15. The parameter 𝑤(𝑢) represents the importance of a vertex in a 

graph, which can be measured using a number of methods such as PageRank, degree 

centrality, or betweenness centrality. The parameter 𝑠𝑖𝑚(𝑢, 𝑣)  is a measure of the 

similarity between the nodes 𝑢  and 𝑣 . The similarity 𝑠𝑖𝑚(𝑢, 𝑣)  can be computed any 

number of methods such as TF-IDF or distributional semantics methods. The parameter 𝑓𝑣 

represents the smoothed value based on the network, which has the same role as the 

background language model in traditional smoothing. The parameter 𝑓�̅�  is the non-

smoothed document language model that is typically computed using the ML estimate. 

Taking the first-order partial derivative of 𝑂(𝐶)  yields Equation 2.16. Finally, letting 

𝜕𝑂(𝐶)

𝜕𝑓𝑢
= 0 yields Equation 2.17, which is the ranking function used for smoothing using an 

associative network. (Mei, et al., 2008) showed that the procedure for document ranking 

using associative networks in Equation 2.17 improved performance over both JM and 

Dirichlet smoothing. 

 

𝑂(𝐶) = (1 − 𝜆)∑𝑤(𝑢)(𝑓𝑢 − 𝑓�̅�)
2
+ 𝜆 ∑ 𝑠𝑖𝑚(𝑢, 𝑣)(𝑓𝑢 − 𝑓𝑣)

2

(𝑢,𝑣)𝑢∈𝑉

 

 

(2.15) 

𝜕𝑂(𝐶)

𝜕𝑓𝑢
= 2(1 − 𝜆)𝐷𝑒𝑔(𝑢)(𝑓𝑢 − 𝑓�̅�) + 2𝜆∑𝑠𝑖𝑚(𝑢, 𝑣)(𝑓𝑢 − 𝑓𝑣)

𝑣∈𝑉

 

 

(2.16) 

𝑓𝑢 = (1 − 𝜆)𝑓�̅� + 𝜆∑
𝑠𝑖𝑚(𝑢, 𝑣)

𝐷𝑒𝑔(𝑢)
𝑓𝑣

𝑣∈𝑉

 

 

(2.17) 
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2.3.1.1 Relationship between language models and TF-IDF ranking 

This section discusses the relationship between language models and TF-IDF ranking. A 

frequently provided motivation for using language models for document ranking is that 

they provide a probabilistic justification for many of the components of TF-IDF ranking 

including document length normalization, term frequency, and term importance. The 

purpose of this section is to demonstrate how the language model accounts for these metrics 

since it is not necessarily obvious from a cursory glance. The derivation of language models 

presented here follows from (Hiemstra, 2000b; Hiemstra & de Vries, 2000). Equation 2.18 

shows the basic JM language model. Next I divide both sides of the equation by 

∏ (1 − 𝜆)𝑃(𝑇𝑖)
𝑛
𝑖=1  to yield Equation 2.19. Both 𝜆 and 𝑃(𝑇𝑖) are constants and dividing by 

both quantities will not impact the ranking. Equation 2.20 is the term frequency rank for a 

term normalized by the total number of terms in the document. Equation 2.21 presents the 

background language model, which is the ratio between the frequency for a term in the 

collection divided by the total term frequency for all of the terms. 

 

𝑃(𝑇1, 𝑇2…𝑇𝑁|𝐷) =∏((1 − 𝜆)𝑃(𝑇𝑖) + 𝜆𝑃(𝑇𝑖|𝐷))

𝑛

𝑖=1

 
(2.18) 

𝑃(𝑇1, 𝑇2…𝑇𝑁|𝐷) ∝∏1+
𝜆𝑃(𝑇𝑖|𝐷)

(1 − 𝜆)𝑃(𝑇𝑖)

𝑛

𝑖=1

 
(2.19) 

𝑃(𝑇𝑖 = 𝑡𝑖|𝐷 = 𝑑) =
𝑡𝑓(𝑡𝑖, 𝑑)

∑ 𝑡𝑓(𝑡, 𝑑)𝑡
 

(2.20) 

𝑃(𝑇𝑖 = 𝑡𝑖) =
𝑑𝑓(𝑡𝑖)

∑ 𝑑𝑓(𝑡)𝑡
 

(2.21) 
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Equation 2.22 presents the log form of Equation 2.19 updated with Equations 2.20 and 

2.21. From this form, Equation 2.22 can be broken down into different components that 

map closely to the TF-IDF weighting function as shown in Table 2.2. 

 

𝑃(𝑇𝑖 = 𝑡𝑖 , 𝑇2 = 𝑡2…𝑇𝑛|𝐷) ∝∑log (1 +
𝜆 ∗ 𝑡𝑓(𝑡𝑖, 𝑑) ∗ ∑ 𝑑𝑓(𝑡)𝑡

(1 − 𝜆) ∗ 𝑑𝑓(𝑡𝑖) ∗ ∑ 𝑡𝑓(𝑡, 𝑑)𝑡
)

𝑛

𝑖=1

 
(2.22) 

 

Table 2.2 

Relationship between language model and TF-IDF ranking 

𝑡𝑓(𝑡𝑖, 𝑑)

𝑑𝑓(𝑡𝑖)
 

TF-IDF weight 

1

∑ 𝑡𝑓(𝑡, 𝑑)𝑡
 

Document length normalization for document 𝑑 

∑𝑑𝑓(𝑡)

𝑡

 Constant for any document 𝑑 and term  

 

2.3.2 TF-IDF overview 

The TF-IDF ranking function is one of the oldest ranking functions (Sparack Jones, 1972), 

but remains competitive when compared to more recent ranking functions (W. R. Hersh et 

al., 2006). The TF-IDF ranking function has three major components: term frequency (TF), 

inverse document frequency (IDF), and document length normalization. The 𝑇𝐹 reflects 

the frequency of a given term in the document (i.e. how well does the term define the 
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document) and the 𝐼𝐷𝐹  is a measure of term selectivity (i.e. how well does the term 

discriminate between documents), which takes into account how frequently the term occurs 

in the entire corpus. The motivation for normalization is that longer documents will 

naturally have higher 𝑇𝐹 values. The normalization essentially turns the term vector for 

the document into a unit vector. The TF-IDF ranking function used in this dissertation is 

shown in Equation 2.23. The IDF function used in this dissertation is shown in Equation 

2.24. 

 

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑑) =∑
𝑡𝑓(𝑡)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑑)
∗ 𝑖𝑑𝑓(𝑡)

𝑡∈𝑞

 
(2.23) 

𝑖𝑑𝑓(𝑡) = 1 + log (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

1 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡
) 

(2.24) 

 

2.3.3 BM25 overview 

The BM25 algorithm is a probabilistic retrieval function based on the probabilistic retrieval 

framework (K. S. Jones, Walker, & Robertson, 2000). The BM25 ranking function was 

implemented as part of the Okapi IR system and is often referred to as Okapi BM25 in the 

literature. Equation 2.25 presents the BM25 ranking function. The BM25 model is similar 

to the TF-IDF ranking function, but is based on probabilistic estimates of the parameters.  

 

𝑤𝑗(�̅�, 𝐶) =
𝑡𝑓 ∗ (𝑘1 + 1)

𝑘1 ((1 − 𝑏) + 𝑏
𝑑𝑙
𝑎𝑣𝑑𝑙

) + 𝑡𝑓

∗ log (
𝑁 − 𝑑𝑓(𝑡) + 0.5

𝑑𝑓(𝑡) + 0.5
) 

(2.25) 
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𝑘1 Is a free parameter that controls the non-linear tf effect in the model. 

𝑏 Is a free parameter that controls the document length normalization.   

𝑡𝑓 is the term frequency of a term in the document 

𝑑𝑙 is the document length 

𝑎𝑣𝑑𝑙 is the average document length 

N is the number of documents 

 

2.3.4 Divergence from randomness overview 

The divergence from randomness model originated in (Amati & van Rijsbergen, 2002). 

The divergence from randomness is a non-parametric model that measures the divergence 

of the term distribution from random. The divergence from randomness model shares 

similarity with language models in that it takes into account a document probability and a 

collection probability. Equation 2.26 presents the divergence from randomness model. The 

parameter 𝑃𝑟𝑜𝑏1 represents the information content of the term in a document. The 

parameter 𝑃𝑟𝑜𝑏2 corresponds to the information gain of a term. There are many different 

instantiations of the model. The instantiations of 𝑃𝑟𝑜𝑏1 and 𝑃𝑟𝑜𝑏2 used in this dissertation 

are shown in Table 2.3 and Table 2.4 respectively. The term frequency normalization 

techniques used in this dissertation are shown in Table 2.5. 

 

𝑆𝑐𝑜𝑟𝑒(𝑄, 𝐷) =  ∑𝑤𝑒𝑖𝑔ℎ𝑡(𝑡, 𝐷) =∑(1 − 𝑃𝑟𝑜𝑏2) ∗ (log 𝑃𝑟𝑜𝑏1)

𝑡∈𝑄𝑡∈𝑄

 
(2.26) 

 

Table 2.3 

 

Instantiations of 𝑃𝑟𝑜𝑏1 metric 
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Laplacian normalization 
𝑃𝑟𝑖𝑠𝑘(𝑡|𝐷) =

1

𝑡𝑓 + 1
 

(2.27) 

Bernoulli normalization 
𝑃𝑟𝑖𝑠𝑘(𝑡|𝐷) =

𝑡𝑓𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
𝑑𝑓𝑡 ∗ (𝑡𝑓 + 1)

 
(2.28) 

 

Table 2.4 

Instantiations of 𝑃𝑟𝑜𝑏2 metric 

 

Bose-Einstein 
𝑃𝑚(𝑡|𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛) = (

𝑁

𝑡𝑓𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑁
)(

𝑡𝑓𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
𝑡𝑓𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑁

)
𝑡𝑓

 
(2.29) 

TF-IDF 

randomness 

𝑃𝑚(𝑡|𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛) = (
𝑡𝑓 + 0.5

𝑁 + 1
)
𝑡𝑓

 
(2.30) 

 

Table 2.5 

 

Instantiations of term frequency normalization 

 

𝑡�̂� = tf ∗ log (1 +
𝑎𝑣𝑑𝑙

𝑑𝑙
) 

(2.31) 

𝑡�̂� = tf ∗ log (1 + 𝑐 ∗
𝑠𝑙

𝑑𝑙
) 

(2.32) 

 

2.4 Evaluation Techniques 

2.4.1 Evaluation using the Cranfield method 

 

The vast majority of IR evaluations such as many of the ad-hoc document ranking 

competitions of TREC follow the protocol created by Cleverdon at Cranfield University 

during the 1960s, which are often referred to as the Cranfield experiments (Cleverdon, 



 

 50  

1960, 1967; Cleverdon & Keen, 1966). The standard protocol established by the Cranfield 

experiments is to have judges rate the relevance of documents given particular queries. 

Once the relevance judgments are obtained, different retrieval functions can be evaluated 

on the same queries. The hypothesis of this protocol is that the performance gains found 

by algorithms on these test collections will translate to real-world performance gains. The 

remainder of this section will review the metrics used for Cranfield-based evaluation. 

Precision is the fraction of retrieved documents that are judged as relevant. Recall is the 

fraction of relevant documents that are retrieved. In many of the evaluations in this 

dissertation, the precision and recall are evaluated at different cutoff points. The motivation 

behind evaluating IR systems at different cutoff points is that numerous studies have shown 

that the majority of users only look at the first 1-2 pages of search results (Islamaj Dogan, 

et al., 2009). Thus, it is important that the documents in the first 1-2 pages are relevant to 

the query. The mean average precision (MAP) (also known as “average precision at seen 

relevant documents”) is shown in Equation 2.33. MAP measures the precision at each point 

when a new relevant document is retrieved for each query and averages the scores for all 

queries. Specifically, in this work the MAP at 𝑁 (𝑀𝐴𝑃𝑁) is used where a threshold is 

specified and the MAP for the top 𝑁 documents are used for evaluation. For example, 

𝑀𝐴𝑃10 would evaluate the performance of a ranking algorithm for the first 10 documents 

retrieved for all queries. 

 

𝑀𝐴𝑃 =
1

𝑁
∑

1

𝑄𝑗
∑𝑃(𝑑𝑜𝑐𝑖)

𝑄𝑗

𝑖=1

𝑁

𝑗=1

 

 

(2.33) 
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𝑄𝑗 is the number of relevant documents for query 𝑗 

𝑁 is the number of queries 

𝑃(𝑑𝑜𝑐𝑖) is the precision at ith relevant document 

 

One problem with looking only at MAP for evaluation is that it does not take into account 

recall. Figure 2.1 presents example results for two different ranking functions for the same 

query. In this example, assume that there are four relevant documents for the query. The 

𝑀𝐴𝑃10 results for ranking function 1 is 0.6425 and ranking function 2 is 0.835. The 𝑀𝐴𝑃10 

result for ranking function 2 is higher even though ranking function 1 returned more 

relevant documents. Thus looking only at 𝑀𝐴𝑃𝑁  can be misleading. A solution to this 

problem is to take the harmonic mean of 𝑀𝐴𝑃𝑁  and 𝑟𝑒𝑐𝑎𝑙𝑙𝑁 . The harmonic mean is 

calculated by 2 ∗
𝑀𝐴𝑃𝑁∗𝑟𝑒𝑐𝑎𝑙𝑙𝑁

𝑀𝐴𝑃𝑁+𝑟𝑒𝑐𝑎𝑙𝑙𝑁
. In the examples in Figure 2.1, the harmonic mean for 

ranking function 1 is 0.7823 and ranking function 2 is 0.6255, which reflects the general 

intuition regarding which ranking algorithm achieved the best performance. 

 

 

 

Query 1 with ranking 

function 1 

Rank Relevance P(𝑑𝑜𝑐𝑖) 
1 X 1.00 

2   

3 X 0.67 

4   

5   

6 X 0.5 

Query 1 with ranking 

function 2 

Rank Relevance P(𝑑𝑜𝑐𝑖) 
1 X 1.00 

2   

3 X 0.67 

4   

5   

6   
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7   

8   

9   

10 X 0.4 

Average 0.6425 
 

7   

8   

9   

10   

Average 0.835 
 

 

Figure 2.1. Example 𝑀𝐴𝑃10 for two ranking functions 

 

 

2.4.2 Evaluation using query logs 

One of the drawbacks of Cranfield inspired experiments is that studies have shown that the 

performance gains of IR systems using this protocol do not necessarily translate to real-

world user satisfaction (Al-Maskari, et al., 2008; Allan, et al., 2005; W. Hersh, et al., 2001; 

Jarvelin, 2009; Macdonald & Ounis, 2009; Sanderson, et al., 2010; Smith & Kantor, 2008; 

Smucker & Jethani, 2010; Su, 1992; Turpin & Scholer, 2001, 2006; Urbano, et al., 2012). 

An often-proposed solution to this problem is to evaluate IR systems in the real world with 

many users. Toward this aim, Thorsten Joachims developed a methodology for evaluating 

search engines using query logs (Joachims, 2003; Joachims, Granka, Bing Pan, et al., 2007; 

Joachims, Granka, Pan, Hembrooke, & Gay, 2005; Joachims, Granka, Pan, et al., 2007; 

Radlinski & Joachims, 2006, 2007; Radlinski, Kurup, & Joachims, 2008). Commercial IR 

systems automatically collect query logs that contain information such as IP addresses, 

user emails, user queries, and the documents clicked in response to the query. Thus, query 

logs provide the potential to collect information automatically from thousands of users that 

can later be used to evaluate different ranking functions.  

Joachims showed that document clicks could not be interpreted as absolute relevance 

judgments; however, document clicks can be interpreted as relative relevance judgments 
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within the context of the other documents in the result set. For example, consider a result 

set where document A is at rank 1 and document B is at rank 2. If a user clicked document 

B and not document A, Joachims showed that a pairwise preference of document B > 

document A can be extracted with high precision as compared to explicit judgment.  

The remainder of this section is organized as follows. Section 2.4.2.1 presents an overview 

of the methods for extracting pairwise judgments developed by Joachims. Section 2.4.2.2 

presents an overview of how these pairwise judgments can be used for evaluating the 

performance of ranking functions. 

2.4.2.1 Extracting pairwise judgments 

Table 2.5 presents the rules developed by Joachims for extracting pairwise judgments from 

query logs. The rules were evaluated within one page of query results. Joachims developed 

additional rules for extracting pairwise judgments from query chains (i.e. multiple queries 

pertaining to same information need) (Joachims, et al., 2005). Accurately segmenting query 

logs into query chains is an area of current research (for a review see (Risvik, 

Mikolajewski, & Boros, 2003)). The current methods have accuracy ranging from 75%-

90% depending upon the test collection used. Thus, segmenting query logs into sessions 

can inject additional noise into the pairwise judgment extraction process and I did not 

utilize this approach in this dissertation. The column labeled “Accuracy by abstract 

judgment” presents the accuracy of the extracted pairwise judgments based on explicit 

human judgments made by looking at the abstracts. In these experiments, the Google search 

engine was used and the abstracts are title of the Web page, URL, and first 1-2 sentences 

from the Web page. In these experiments, the inter-judge agreement had a correlation of 

82.5. The column titled “Accuracy by Web page judgment” presents the accuracy of the 
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extracted pairwise judgments and explicit human judgments made by looking at the actual 

Web page content. In these experiments, the inter-judge agreement had a correlation of 

86.4. 

 

Table 2.6 

 

Methods for extracting pairwise judgments 

 

Pairwise judgment extraction 

method 

Accuracy by abstract 

judgment 

Accuracy by Web page 

judgment 

Click > Skip Above 88.0 78.2 

Last Click > Skip Above 89.7 80.9 

Click > Earlier Click 75.0 64.3 

Click > Skip Previous 88.9 80.7 

Click > No Click Next 75.6 67.4 

 

Joachims advised that the rules 𝐶𝑙𝑖𝑐𝑘 > 𝑒𝑎𝑟𝑙𝑖𝑒𝑟 𝑐𝑙𝑖𝑐𝑘 and 𝐶𝑙𝑖𝑐𝑘 > 𝑛𝑜 𝑐𝑙𝑖𝑐𝑘 𝑛𝑒𝑥𝑡 not be 

used. Additional experiments looked at order effects imposed by Google’s ranking by 

reversing the rankings. These studies showed that the accuracy of the 𝐶𝑙𝑖𝑐𝑘 >

𝑒𝑎𝑟𝑙𝑖𝑒𝑟 𝑐𝑙𝑖𝑐𝑘 rule dropped to 28.6% and the accuracy of the 𝐶𝑙𝑖𝑐𝑘 > 𝑁𝑜 𝑐𝑙𝑖𝑐𝑘 𝑛𝑒𝑥𝑡 rule 

dropped to 70%. The other rules were not significantly impacted by the reverse rankings. 

The rules 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and 𝐿𝑎𝑠𝑡 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 both generate pairwise 

judgments that are a subset of the pairwise judgments extracted by the rule 𝐶𝑙𝑖𝑐𝑘 >

𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 . Joachims found that the accuracy improvements of the 𝐶𝑙𝑖𝑐𝑘 >

𝑆𝑘𝑖𝑝 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and 𝐿𝑎𝑠𝑡 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 rules were not statistically significant as 

compared to 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 rule. Thus, only the rule 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 is used 

for extracting pairwise judgments in this dissertation. 
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The following is an example of a query with seven documents in the result set. The clicked 

documents are denoted with a “*”. The example is adapted from  (Radlinski & Joachims, 

2005).  

    Q1: 𝐼1 
∗ 𝐼2 𝐼3

∗ 𝐼4 𝐼5
∗ 𝐼6 𝐼7 

 

The 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 rule states that clicked documents are more relevant than any 

documents that were skipped that preceded it. (Radlinski & Joachims, 2005)formally 

defined the 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 rule as follows. 

 

For a ranking (𝐼1, 𝐼2, 𝐼3…) and a set C containing the ranks of the clicked-on links, 

extract a preference example 𝑟𝑒𝑙(𝐼1
′) >  𝑟𝑒𝑙(𝐼𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 1 ≤ 𝑗 <

𝑖, 𝑤𝑖𝑡ℎ 𝑖 ∈  𝐶 𝑎𝑛𝑑 𝑗 ∉ 𝐶.   

 

The 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 rule would extract the following pairwise judgments from 𝑄1. 

 

𝐼3 > 𝐼2 ,  𝐼5 > 𝐼4,  𝐼5 > 𝐼2 

 

2.4.2.2 Evaluation using pairwise judgments 

This section reviews the use of pairwise judgments for evaluation. Given a corpus of query 

logs, the query sessions are segmented by IP address or email address. For each query 

issued by a user, the rule 𝐶𝑙𝑖𝑐𝑘 > 𝑆𝑘𝑖𝑝 𝐴𝑏𝑜𝑣𝑒 is applied to extract pairwise judgments for 

the user.  

Table 2.7 presents the results for two different data sources that are used for predicting 

document accesses of five users. In this example, assume that the two methods involve the 

use of citation counts and past document accesses for predicting user accesses. Two 

measures are of interest when using this type of information for ranking: click precision 

(Equation 2.34) and click coverage (Equation 2.35). As an example, consider the following 

pairwise judgment extracted for a user: 𝑑𝑜𝑐1 > 𝑑𝑜𝑐2. If the citation count for 𝑑𝑜𝑐1 was 7 
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and the citation count for 𝑑𝑜𝑐2 was 5, this would result in a correct ordering if the results 

were ranked by citation count. The click coverage metric measures the number of pairwise 

judgments where at least one item in the pairwise judgment has information in a given data 

set to enable ranking. For example, if a pairwise judgment is extracted where 𝑑𝑜𝑐1 >

𝑑𝑜𝑐2, and the data set used for ranking contains information for 𝑑𝑜𝑐1, the click coverage 

for the data set would be increased. The click coverage metric primarily pertains to using 

information such as citation counts or document downloads for ranking. Document ranking 

functions such as TF-IDF will produce a ranking for each document thus click precision 

will only matter for these experiments. 

 

𝐶𝑙𝑖𝑐𝑘 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 

(2.34) 

𝐶𝑙𝑖𝑐𝑘 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑔𝑚𝑒𝑛𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑟𝑎𝑛𝑘𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠
 

(2.35) 

 

Table 2.7 presents an example of using pairwise judgments to evaluate two data sources 

(historical document accesses versus citation counts) for five users. Since each user has a 

different number of extracted pairwise judgments, weighted averages are used to compute 

the results. The click precision is higher for the historical document access data, but the 

click coverage is much lower than using citation counts. The harmonic mean for historical 

document accesses is 0.7721 whereas the harmonic mean is 0.7895 for citation counts. For 
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these five users, it can be concluded that the citation count data are more effective for 

predicting document accesses than historical document access data. 

 

Table 2.7 

Example results using pairwise judgments 

User ID Number of 

pairwise 

judgments 

Document accesses Citation counts 

Click 

Precision 

Click 

Coverage 

Harmonic 

Mean 

Click 

Precision 

Click 

Coverage 

Harmonic 

Mean 

User_1 500 75.0% 81.0% 0.7788 65.0% 99.0% 0.7848 

User_2 101 68.0% 82.0% 0.7435 70.0% 98.0% 0.8167 

User_3 260 77.0% 79.0% 0.7799 68.0% 96.0% 0.7961 

User_4 50 76.0% 70.0% 0.7288 75.0% 99.0% 0.8534 

User_5 300 72.0% 83.0% 0.7711 65.0% 95% 0.7719 

Weighted 

Average 

0.7414 0.8070 0.7721 0.6647 0.9728 0.7895 

 

2.5 Finding Power Law Distributions in Empirical Data 

The original method for determining if a data set obeys a power law distribution was 

established by (Pareto, 1964). The first step is to create a log-log plot of the histogram. A 

linear regression is used to fit the data and if the 𝑅2 is above some threshold, then it is 

asserted that the data follow a power law distribution. Additionally, the slope of the fitted 

regression serves as the estimate of the scaling parameter.  

There are several problems with this method. First, real-world data sets rarely follow a 

power law for each point in the data set. The nature of a power law distribution implies that 

there are very large rare events that can inject noise and severely impact a linear regression 

fit. The data set used as an example in this section is the PLOS document accesses for one 

day. Consider the log-log plot of a power law distribution in Figure 2.2. The linear 

regression fit has an 𝑅2 of 0.7993 and is greatly impacted by a few outliers at the tail of the 
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distribution. Many researchers remove the points at the tail and claim that the data obey a 

power law distribution within the truncated range. For example, consider Figure 2.3 which 

shows a truncated log-log plot where documents that have accesses higher than 500 are 

removed. The truncated data set resulted in a linear regression fit of 0.9708. One problem 

with this approach is that the cutoff threshold is determined on an ad-hoc basis. An 

unbiased method for automatically determining the cutoff point is desirable. Additionally, 

alternative distributions such as exponential or lognormal can produce nearly straight lines 

on a log-log plot. This method does not compare the fit of the data to alternative 

distribution, which could describe the data as well as the power law distribution.  

 

 

 
 

 

Figure 2.2. Example power law distribution 
 

Figure 2.3. Example log-log plot 

 

The method developed by (Clauset & Shalizi, 2009) seeks to address the shortcomings of 

traditional methods discussed previously. Clauset & Shalizi (2009) demonstrated that their 

method provided more accurate estimates of the scaling parameter 𝛼 than the traditional 

method based on Pareto’s work. For example, they generated a data set with known 𝛼 =



 

 59  

2.5. They attained an estimate of 𝛼 = 2.50 using their method. Estimates attained using 

regression fits to the log-log plot of the histogram varied widely in the range 1.39 ≤ 𝛼 ≤

2.50 . Additionally, Clauset & Shalizi (2009) analyzed twenty-four data sets where 

previous literature had found power law distributions. They found that the presence of a 

power law distribution was inconclusive for approximately 30% of these studies using the 

more precise method. The summary of Clauset & Shalizi’s method is provided below. 

1. Estimate the parameters 𝑋𝑚𝑖𝑛 and 𝛼 of the power-law model. This method involves 

testing each point in the empirical data set to find the point where the Kolmogorov-

Smirnoff (KS) statistic is minimized. Maximum Likelihood Estimate (MLE) is 

used to obtain an estimate for 𝛼. 

2. Calculate the goodness-of-fit between the truncated empirical data and the power 

law. The first step is to generate a large number of synthetic data sets using the 

estimated parameters from Step 1. (Clauset & Shalizi, 2009) recommend 2,500 

synthetic data sets. The KS statistic is used to compare the synthetic data set and 

the empirical data set. In this case, the null hypothesis is that the two distributions 

come from the same distribution. If the p value is above 0.1, then we fail to reject 

the null. For 2,500 experiments, it is expected than more than 90% should fail to 

reject the null hypothesis in order for the power law to be a good fit. 

3. Compare the power law with alternative hypotheses. This step involves comparing 

the empirical data with alternative distributions. Step 1 and Step 2 are repeated for 

each alternative distribution under consideration. 

The alternative distributions used for comparison in this dissertation are the exponential 

(Equation 2.36) and log normal (Equation 2.37) distributions. In the exponential 
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distribution, the parameter 𝜆  is called the rate parameter and is estimated from the 

empirical data. In the log normal distribution, the mean (𝜇) and standard deviation (𝜎) are 

both estimated from the empirical data. 

 

𝑦 = 𝑓(𝑥; 𝜆) = 𝜆ℯ−𝜆𝑥 (2.36) 

𝑦 = 𝑓(𝑥|𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒
−(ln𝑥−𝜇)2

2𝜎2  
(2.37) 

 

I briefly demonstrate how the Clauset & Shalizi method is applied using the example data 

in Figure 2.2. The estimated parameters are shown for each model of comparison in Table 

2.8. The “xMin” parameter is the cutoff used to truncate the data set. The “xMin results” 

are the results of the tests where the truncated data are used with the estimated xMin 

parameter. The “All points results” column are the results of the experiments where all of 

the data points are used. For each case, 2500 experiments were performed following the 

advice from (Clauset & Shalizi, 2009). The power law distribution passed 98.76% of the 

experiments with 181 data points in the truncated distribution. The exponential distribution 

passed 96.28% of the experiments, but only seven data points in the truncated data set 

obeyed the distribution. The log normal distribution can be completely ruled out since 

neither of the cases passed any of the statistical significance tests. Based on the results of 

this analysis, it can be concluded that the truncated data set obeys a power law. 

Additionally, the power law distribution fits many more data points that the exponential 

distribution. Thus, the power law is the best model of those tested to describe the empirical 

data. 
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Table 2.8 

Results from sample data 

Power law Exponential Log normal 

α xMin Results 𝜆 xMin Results All 

points 

result 

𝜇 𝜎2 xMin Results All 

points 

result 
xMin Result xMin Result xMin Result 

1.33 181 2469 2.33e-06 7 2407 0 11.73 1.87 15 0 0 
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Chapter 3: Related Work 

This chapter presents an overview of research that has leveraged either ACT-R (Adaptive 

Control of Thought—Rational) or Information Foraging Theory in the design of 

information systems (Section 3.1). Additionally, this chapter presents an overview of 

alternative computational theories of cognition that have had impact on IR systems 

(Section 3.2). The review in Section 3.2 is purposefully limited to computational models. 

There are numerous qualitative models that describe information seeking behavior. For 

example, the berry picking model is a qualitative model of information seeking behavior 

with the idea that a user’s information need is satisfied through successive queries with 

evolving information needs (Bates, 1989). While these types of models are useful for 

understanding information seeking behavior they are omitted from this review unless they 

provide insight into how one can model this phenomenon from a computational viewpoint. 

3.1 Impact of ACT-R and Information Foraging Theory on the Design of Information 

Systems 

This section focuses on applications of the ACT-R and Information Foraging Theory for 

the development of information systems. Section 3.1.1 presents studies that have leveraged 

aspects of these theories to develop personal document management systems. Section 3.1.2 

presents studies that have leveraged aspects of these theories to develop recommendation 

systems. Section 3.1.3 presents an overview of algorithms that leveraged the recency-

frequency effect described in Chapters 1 and 2. Finally, Section 3.1.4 presents an overview 
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of technologies developed based on these theories to improve the ability of users to more 

effectively browse. 

3.1.1 Personal document management 

The earliest work, which applied aspects of the ACT-R theory for IR was the Memory 

Extender (W. P. Jones, 1986a, 1986b). The Memory Extender was a personal document 

management system that utilized the ACT-R spreading activation function for retrieving 

and ranking documents from a personal database of documents. The spreading activation 

function ranked documents based on the terms in the documents and “context terms” that 

the user could assign to documents based upon the context of use. For example, I could 

assign a context term such as “dissertation literature review” to the documents (W. P. Jones, 

1986a, 1986b).  

The Memory Extender used the decay mechanism of the ACT-R theory. The association 

between terms and documents slowly decayed over time until they hit zero. At this point, 

Memory Extender notified the user that the document was a candidate for deletion and the 

user would have the option of deleting the document or strengthening the relationships in 

the network to prevent deletion. There were no formal evaluations or user studies 

conducted on the Memory Extender. 

3.1.2 Recommendation systems 

Several studies have investigated the use of the ACT-R theory of long-term memory for 

collaborative filtering (Van Maanen & Marewsi, 2009; Van Maanen et al., 2009). One 

system is the Personal Publication Assistant, which accepts a set of talks to be given at a 

conference and recommends talks in which a user may be interested based on a user profile 

(Van Maanen & Marewsi, 2009; Van Maanen, et al., 2009). The user profile is constructed 
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based on the user’s previous publications. The terms extracted from more recent articles 

are weighted higher than older publications to reflect the fact that research interests evolve 

over time. The user’s profile serves as a query and the ACT-R spreading activation function 

ranks the conference abstracts based on the weighted terms in the profile.  

The Personal Publication Assistant was compared with human judgments and a strong 

correlation was found (Van Maanen & Marewsi, 2009; Van Maanen, et al., 2009). In a 

follow-up study, the ACT-R inspired recommender was compared to six other models 

originating in decision theory (Van Maanen & Marewsi, 2009). The ACT-R inspired 

method was outperformed by a method known as the take-the-best heuristic (Czerlinski, 

Gigerenzer, & Goldstein, 1999), which is a simple heuristic for selecting the best of two 

possible options. 

(Woodruff, Gossweiler, Pitkow, Chi, & Card, 2000) developed a personalized book 

recommender based on the spreading activation mechanism of ACT-R. Woodruff et al. 

(2000) proposed to imbed the recommender within an electronic book (eBook) to provide 

users with suggestions of related content that may be of interest. The user profile is 

comprised of books that a given reader has read. The evaluation of the method showed that 

the spreading activation recommendation engine had a high correlation (0.8) with human 

judgments. 

3.1.3 Document prior probability estimation 

There has been some interest in using the prior probability function of the ACT-R long-

term memory theory to predict document accesses. Pitkow & Recker (1994) analyzed the 

access patterns of Web pages on the WWW and found that these access patterns had the 

recency and frequency effect (Recker & Pitkow, 1996). Based on this finding, Recker & 
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Pitkow (1994) developed an algorithm for caching documents based on the probability of 

future accesses (Pitkow & Recker, 1994). The authors did not compare the new method to 

alternative caching approaches so it is not possible to determine if the method resulted in 

improved performance. However, the method did result in a patent (P. L. Pirolli & Pitkow, 

2000). 

3.1.4 Tools to support browsing 

This section focuses on applications of the Information Foraging Theory and ACT-R long-

term memory theory to develop tools and algorithms to improve information access. 

Substantial research has focused on applying insights from the Information Foraging 

Theory to improve electronic books (Chi, Gumbrecht, & Hong, 2007; Chi, Hong, 

Gumbrecht, & Card, 2005; Chi, Hong, Heiser, & Card, 2004; Chi, Hong, Heiser, Card, & 

Gumbrecht, 2007; Woodruff, et al., 2000). (Chi, Gumbrecht, et al., 2007; Chi, et al., 2005; 

Chi, Hong, et al., 2007) performed several studies of a method known as ScentHighlights, 

which supports the skimming of text by highlighting conceptually related terms and 

sentences in response to a user query. Skimming is a type of reading where the individual 

quickly scans text in order to extract specific information. The goal of ScentHighlights is 

to improve the speed of skimming and to decrease over-looked information. 

ScentHighlights works by accepting a user query and then highlights related concepts and 

sentences using the spreading activation mechanism of ACT-R. The utility of 

ScentHighlights was demonstrated by its ability improved fact-finding and comprehension 

(Chi, Hong, et al., 2007). 

(Chi, et al., 2004; Chi, Hong, Heiser, & Card, 2006) developed an eBook utility known as 

ScentIndex. The goal of ScentIndex is to automatically generate an index for an eBook 
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based on the user query. The ScentIndex generates the custom index using the spreading 

activation component of ACT-R. The user studies found that ScentIndex improved fact-

finding, comparison, and comprehension tasks (Chi, et al., 2006). 

(Olston & Chi, 2003) developed ScentTrails, which sought to help users find information 

on the WWW. The overall goal was to augment the process of browsing with additional 

cues to assist the user in making navigational choices. For example, in browsing a user 

navigates from Web page to Web page using the hyperlinks within the pages. ScentTrails 

allows the user to enter a query and in response, the spreading activation mechanism 

calculates the information scent of the linked pages. ScentTrails then uses the information 

scent values to highlight the links with high information scent to assist the user in finding 

relevant linked pages. When using ScentTrails the amount of highlighting is proportional 

to the information scent to which the hyperlink connects. (Olston & Chi, 2003) found that 

ScentTrails improved browsing performance by allowing users to find information more 

quickly. 

3.2 Overview of Computational Cognitive Models and Applications to Information 

Systems 

This section presents an overview of computational cognitive models that have had an 

impact on the development of information systems. The remainder of this section is 

organized as follows. Section 3.2.1 presents an overview of document ranking approaches 

that have leveraged insights from the spreading activation theory of human memory. 

Section 3.2.2 presents an overview of document ranking methods based on connectionist 

theory. Section 3.2.3 introduces Vector Symbolic Architectures (VSA), which are a recent 

development in cognitive modeling with numerous IR applications. Section 3.2.4 
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introduces an emerging research area that leverages insights from the mathematical 

framework of quantum probability theory in modeling cognition. Finally, Section 3.2.5 

provides an overview of latent semantic analysis (LSA), which is an unsupervised method 

that has been proposed as a model of human semantic memory.  

3.2.1 Overview of spreading activation theory of human memory 

Spreading activation was first proposed as a mechanism involved in memory retrieval 

(Collins & Loftus, 1975) and has served as a component in numerous computational 

cognitive theories including the ACT-R theory of long-term memory. Previous 

applications of the spreading activation theory of human memory are particularly relevant 

for the work contained in this dissertation. A significant portion of the ACT-R theory of 

long-term memory involves the idea that spreading activation is a mechanism involved in 

retrieving memories. Additionally, the Information Foraging Theory heavily uses 

information scent that is based on a spreading activation mechanism. Several variations 

exist, but all follow the same basic principles as detailed here and differ in underlying 

assumptions and computational cost.   

The spreading activation algorithm operates on a network data structure as shown in Figure 

3.1. The network data structure can be an associative network where the connections 

represent the co-occurrence of terms in text or a semantic network where the relations are 

typed. The relationships between the concepts are denoted with weighted links 

(𝑊𝑖𝑗). Figure 3.2 provides an overview of the spreading activation processing technique, 

which is comprised of four phases. The first phase is the preadjustment phase. In this phase, 

the algorithm divides the activation among the available connections to a given node. The 

next step is spreading the activation to concepts connected by associative links. For 
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example, in Figure 3.1, if i were the current activated concept then j would receive 

activation. After the activation spreads to the associated concepts, the algorithm calculates 

the activation levels using Equation 3.1. In Equation 3.1, 𝐼𝑗 is the input of node 𝑗, 𝑂𝑖 is the 

output of node 𝑖 connected to node 𝑗, and 𝑤𝑖𝑗 is the weighted link connecting node 𝑖 to 

node 𝑗. 

 

 

 

Figure 3.1. Semantic network structure Figure 3.2. Spreading activation 

overview 

 

 

Activation input equation  
 

𝐼𝑗 =∑ 𝑂𝑖𝑤𝑖𝑗
𝑖

 

 

(3.1) 

Output activation equation  
 

𝑂𝑗 = 𝑓(𝐼𝑗) (3.2) 

 

Check halting criteria
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After the input 𝐼𝑗  is calculated, the output 𝑂𝑗  is determined. Figure 3.3 shows common 

functions for determining the concept output. After the output is calculated, the algorithm 

spreads activation to all connected nodes in the network. The algorithm continues 

spreading activation until satisfying halting criterion such as a convergence criteria or a set 

number of nodes are processed. 

 

 

 

Figure 3.3. Sample activation functions (Crestani, 1997) 

 

IR applications rarely use unconstrained spreading activation. (Berthold et al., 2009) 

showed that unconstrained spreading activation can converge at query independent 

solutions. A common way of enhancing the process is to use constrained spreading 

activation (CSA), which defines heuristics and rules on how to spread activation. This 

method allows for processing the network according to the semantics of the relations. For 

example, when the algorithm encounters a part-whole relation it may be appropriate to 

restrict the spread of activation to the concept designated as whole if the part receives 

activation. Below are a list of common constrains used for CSA (Crestani, 1997): 
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1. Distance constraint:  Cease activation when the activation spreads a certain number 

of links away from the initial source of activation. This heuristic prevents activation 

of the entire network and prevents query-independent results. 

2. Fan-out constraint: Cease activation when algorithm encounters a highly connected 

concept. This heuristic prevents the spread of activation to overly general concepts. 

The algorithm can also utilize information theory metrics to halt the spread of 

activation at concepts that have low information content. 

3. Path constraint:  Spread activation using preferred paths using inference rules and 

the semantics of the links. The algorithm can spread activation to meaningful links 

and restrict activation of links that are less informative. 

3.2.1.1 Overview of applications of CSA in IR 

A very thorough review of CSA can be found in (Crestani, 1997). The earliest works of 

applying CSA for IR were done in parallel by (Preece, 1981) and (Shoval, 1981). (Preece, 

1981) showed that approaches such as the vector space model could be implemented using 

spreading activation and used relevance feedback in the search process. (Shoval, 1981) 

presented a CSA algorithm that utilized a thesaurus to expand the query terms. The 

approach utilized feedback allowing the user to indicate irrelevant expanded terms or 

spread activation to preferred terms. The work by (Preece, 1981) and (Shoval, 1981) can 

be considered seminal, but neither performed robust evaluations by comparing their 

algorithms to the state of the art.     

The remainder of this section provides an overview of research that has explored using 

CSA for document ranking. This review is limited to the work that included evaluations of 

the results. The remainder of this section is organized as follows. Section 3.2.1.1.1 presents 
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an overview of CSA for document retrieval and ranking. Section 3.2.1.1.2 presents an 

overview of applications of CSA for ranking Web documents. 

3.2.1.1.1 Applications of CSA for bibliographic document ranking and 

retrieval 

(Salton & Buckley, 1988) performed the first robust evaluation of CSA for document 

ranking. The CSA model was constrained to traverse at most two links from the original 

source nodes contained in the query and was much simpler than most subsequent models. 

It did not include a notion of term importance such as inverse document frequency (IDF) 

or document length normalization. Both of these factors are crucial for achieving good IR 

performance. As a result, the vector space model significantly outperformed the CSA 

model in each experiment.  

(Kimoto & Iwadera, 1989) proposed the use of what they described as a dynamic thesaurus. 

This work was an early attempt to personalize ranking using CSA starting with a static 

preexisting terminology. The dynamic network learns from the documents that the user 

marked as relevant. The learning procedure involves extracting term information from the 

relevant documents, which is used to strengthen existing link weights, strengthen node 

weights (analogous to a prior probability), and create new links between nodes. The nodes' 

weights are increased based on the occurrence of the terms in the relevant documents. The 

learning procedure creates a relation if the relevant documents contain relations between 

items that are not present in the static taxonomy. Similarly, the learning procedure 

strengthens the relations between items in the taxonomy if they co-occur within one of the 

relevant documents. In this work, the CSA algorithm operates on the dynamic thesaurus to 
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find terms related to those that are in the query. The evaluation found that the CSA method 

using the dynamic thesaurus improved performance over the static thesaurus.  

(Ngo & Cao, 2011) developed a model for query expansion that worked in conjunction 

with the vector space model. The work used three knowledge sources: KIM (Kiryakov, 

Popov, Terziev, Manov, & Ognyanoff, 2004), WordNet (G. A. Miller, 1995), and YAGO 

(Suchanek, Kasneci, & Weikum, 2007, 2008). An entity extraction engine developed for 

mapping free text to the KIM knowledge source indexed the queries and terms. The 

mapping relations within the KIM ontology allow for connection to WordNet and YAGO. 

A CSA algorithm expands the query with knowledge from the three ontologies. They 

showed that the CSA query expansion algorithm improved the vector space model in terms 

of mean average precision (MAP) from 0.5099 to 0.5652. 

3.2.1.1.2 Applications of CSA for WWW document ranking and retrieval 

(Crestani, 1999; Crestani & Lee, 2000) apply spreading activation for retrieval of 

information on the WWW. The Web Search by Constrained Spreading Activation 

(WebSCSA) prototype treated hypertext links as associations among pages. The work also 

included a CSA mechanism to implement ostensive retrieval (also known as query by 

example) (Campbell & van Rijsbergen, 1996). This implementation allowed the user to 

give an example of the information need by selecting a document or documents and then 

utilize spreading activation to retrieve similar items. The study found a 30% improvement 

over the baseline and shows promise in applying both ostensive retrieval and CSA on the 

Web.  

3.2.2 Overview of connectionist models as IR systems 



 

 73  

Section 2.1 provided an overview of connectionist models of cognition. This section will 

focus on the use of connectionist models for document ranking. For an in-depth review see 

(Cunningham, Holmes, Littin, Beale, & Witten, 1997). This review is limited to methods 

that include formal evaluations. 

The majority of the approaches are based on the network architecture shown in Figure 3.4 

(Belew, 1989; Crouch, Crouch, & Nareddy, 1994; Jennings & Higuchi, 1992; Kowk, 1989; 

Pannu & Sycara, 1996; Wilkinson & Hingston, 1991; Wong, Cai, & Yao, 1993). A family 

of IR models known as inference networks utilize essentially the same approach, but 

provide a probabilistic interpretation (Turtle & Croft, 1990, 1991). In general, the so-called 

connectionist approach to IR bears little resemblance to artificial neural networks or ANNs 

used in modeling cognition. These approaches are more similar to the network topology 

and methods used in the CSA retrieval models presented in Section 3.2.1.  

 

 

 

Figure 3.4. Example connectionist network 
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The network in Figure 3.4 is composed of three layers: one for the query terms, one for the 

document terms, and a third for the documents. Given a query to the system, the activation 

spreads from the query terms to the term layer and then from the term layer to the document 

layer. Equation 3.3 computes the activation level for each document that contains at least 

one query term. Equation 3.3 is the ranking function used in the classic vector space model. 

After computing activation values for the documents, activation flows from the top 𝑁 

documents to the terms in the network. This is essentially a theoretical justification for 

pseudo-relevance feedback algorithm (Cao, Nie, Gao, & Robertson, 2008). The basic idea 

is to select the content bearing terms (e.g., terms that constitute a significant percentage of 

the document’s content) from the top 𝑁 documents and spread activation (weighted by the 

document activation value and a measure of term importance) back to the term layer. After 

this step, activation is spread from the newly adjusted term layer, back to the document 

layer. The intuition behind this is that highly ranked documents that contain alternative 

terms such as synonyms that can improve ranking. 

 

∑�̅�𝑖,𝑞�̅�𝑖,𝑗 =
∑ 𝑤𝑖,𝑞𝑤𝑖,𝑗
𝑡
𝑖=1

√∑ 𝑤𝑖,𝑞
2𝑡

𝑖=1 ∗ √∑ 𝑤𝑖,𝑗
2𝑡

𝑖=1

𝑡

𝑖=1

 

(3.3) 

 

Aside from providing a theoretical justification for pseudo-relevance feedback, a 

promising feature of connectionist models is the ability to learn from feedback or from user 

interaction with the IR system. The majority of the studies have looked at modeling explicit 

feedback where the user is asked to judge the relevance of a document, and relevance 
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feedback is then used by a computational process to re-rank the documents (Belew, 1989; 

Bordogna & Pasi, 1996; Crouch, et al., 1994; Kowk, 1991; Kwok, 1989). Belew (1998) 

and Crouch, et al. (1994) exemplify the basic approach. These algorithms increase the 

activation level of the second phase of spreading activation and decrease the activation 

level for documents rated as not relevant. 

3.2.3 Overview of Vector Symbolic Architectures 

Vector Symbolic Architectures (VSAs) are a recent family of symbolic-subsymbolic 

models that seek to implement characteristics that are typically associated with symbolic 

systems within connectionist systems (R. Gayler, 2003). Among other things, VSAs seek 

to encode semantic information using typed relations within a connectionist framework. In 

general, VSAs involve the use of high-dimensional vectors and mathematical operators to 

perform operations such as finding the nearest neighbors of a concept. VSAs began with 

Smolensky’s tensor product variable binding networks (Smolensky, 1990). Smolensky 

described the motivation for this approach (which describes eloquently the motivation for 

VSAs in general) as follows. 

A one-sentence summary of the implications of this view for AI is this: 

connectionist models may well offer an opportunity to escape the brittleness of 

symbolic AI systems, a chance to develop more human-like intelligent systems—

but only if we can find ways of naturally instantiating the sources of power of 

symbolic computation within fully connectionist systems. If we ignore the 

connectionist approach, we may miss an excellent opportunity for formally 

capturing the subtlety, robustness, and flexibility of human cognition, and for 

elucidating the neural underpinnings of intelligence. If we ignore the symbolic 
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approach, we throw out tremendous insights into the nature of the problems that 

must be solved in creating intelligent systems, and of techniques for solving these 

problems; we probably doom the connectionist approach to forever grappling with 

simple cognitive tasks that fall far short of the true capacity of human intelligence. 

If we use connectionist systems merely to implement symbolic systems, we might 

get AI systems that are faster and more tolerant of hardware faults, but they will be 

just as brittle. 

  (Smolensky, 1990) 

The following example of tensor production variable binding follows from (Blank, 1997; 

Smolensky, 1990). There are two basic operations common to all VSAs: binding and 

release. The binding function enables encoding relationships between variables. The 

release operator is the reverse of binding and decodes a relationship between two variables. 

In this section, the bind operation is represented as ⨁  and the release operator is 

represented as ⊝. Smolensky required that items be broken down into roles and fillers. A 

role is a named position and the filler is the specific instance that fills the role. For example, 

the relationship “Barack Obama is president” would be represented by making president 

the role and Barack Obama the filler. Smolensky created a mathematical framework for 

binding a role with its filler. Smolensky represents each role and filler as a vector, which 

contains “activation” values. For example, the vector of activations for Barack Obama 

could be the vector 〈0.1 0.5 0.9 0.1〉  and the vector for the role President could be 

〈0.9 0.1 0.5 0.1〉. The binding between the filler and the role is produced by taking the 

outer product of the two vectors. The resulting matrix, which is shown in Figure 3.5, is 
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produced by the outer product and represents Barack Obama in the role President 

(𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎 ⨁𝑃𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡). 

 

 

 

  

 Figure 3.5. Example of binding role and filler 

 

This basic approach can be used to encode sophisticated structures such as semantic 

networks with typed relations or sentences. A noted challenge for connectionist systems is 

the ability to perform analogical reasoning (Gentner & Markman, 1992). Gentner & 

Markman (1992) stated that the ability of a connectionist system to perform analogical 

reasoning would constitute a watershed moment. Numerous papers exist demonstrating the 

ability of VSAs to solve simple analogies such as the following where the goal is to retrieve 

“Peso” (Eliasmith & Thagard, 2001; R. W. Gayler & Levy, 2009; R. W. Gayler & Sandin, 

2013; Halford, Wiles, Humphreys, & Wilson, 1993; Kanerva, 2010; Plate, 1994, 2000; W. 

H. Wilson, Street, & Halford, 1995). 
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𝑈𝑛𝑖𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑠 ∶ 𝑀𝑒𝑥𝑖𝑐𝑜 ⋮⋮  𝐷𝑜𝑙𝑙𝑎𝑟 ∶ ? 

One problem with the tensor product variable binding networks is that the resultant vector 

after the binding is larger than the vectors involved in binding. This is a very undesirable 

property if one plans to extend such a framework to very large networks (R. Gayler, 2003). 

Later works such as Penti Kanerva’s binary spatter code (BSP) (Kanerva, 1994) and Tony 

Plate’s Holographic Reduced Representation (HRR) (Plate, 1995) were successful in 

encoding semantic knowledge within a connectionist framework with fixed vector size. 

The motivation behind the basic operators for bind and release remain the same, but the 

mathematics behinds behind the operations differ. Table 3.1 presents an overview of the 

bind and release operators for the different models. 

 

 

 

Table 3.1 

Bind, bundle, and release operators for different methods 

 Bind ⨁ Release ⊝ 

Tensor product variable 

binding 

Tensor product 
cos 𝜃𝑗𝑖

‖𝑟𝑗‖

‖𝑟𝑖‖
 

BSP Exclusive OR Exclusive OR 

HRR Circular convolution Circular correlation 

 

The remainder of this section focuses on applications of VSAs for document ranking. The 

review is limited to works that presented formal evaluations. Carillo has conducted 

research on using HRR to encode syntax to improve document ranking (Carillo et al., 2009; 

Carrillo, Eliasmith, & Lopez-Lopez, 2009; Carrillo et al., 2010; Symonds, 2013). The 
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motivation behind this work is that the majority of ranking algorithms represent text as bag 

of words, which ignores the relationships between the terms. Numerous researchers have 

proposed that ranking can be improved through a more granular representation that 

includes relationships between the terms in a given text, but this approach increases the 

modeling complexity and has not led to consistent improvements. The approach taken by 

Carrillo is to use HRR to bind the terms with their roles within a given text. (Carrillo, et 

al., 2009) provides the example of how the relationship between the terms information and 

retrieval would be bound if they were encountered within a sentence. In Carrillo’s work, 

the term vectors are trained using Random Indexing (Sahlgren, 2005), which produces a 

reduced dimensional space similar to that of Latent Semantic Analysis (LSA). In this case, 

the vectors are information (𝑟1⃗⃗⃗  ) and retrieval (𝑟2⃗⃗  ⃗). There are two roles involved, which are 

right noun (𝑟𝑜𝑙𝑒1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and left noun (𝑟𝑜𝑙𝑒2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). Equation 3.4 shows the generation of the vector 

for information retrieval from its constituents. (Carillo, et al., 2009) found that this 

representation approach resulted in a statistically significant performance improvement of 

approximately 7%.  

 

�⃗� = (𝑟𝑜𝑙𝑒1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⨁𝑟1⃗⃗⃗  + 𝑟𝑜𝑙𝑒2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⨁𝑟2⃗⃗  ⃗) (3.4) 

 

(Fishbein & Eliasmith, 2008) explored using an HRR to encode syntax to improve text 

classification. The actual method for encoding syntax is nearly identical to the work of 

(Carillo, et al., 2009; Carrillo, et al., 2009; Carrillo, et al., 2010; Symonds, 2013). They 
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found that by encoding syntax using HRR, they could improve performance over bag-of-

words representation. 

3.2.4 Quantum probability theory and models of cognition 

The use of quantum probability theory to develop cognitive models is an emerging research 

field that is rapidly gaining attention (Buchanan, 2011). This research is relevant to the 

research contained in this dissertation for several reasons. First, the mathematical 

framework of quantum probability theory is an alternative to Bayesian probability theory, 

which is the mathematical framework of the work contained in this dissertation. Like 

Bayes’ theorem, quantum probability theory allows for probabilistic updating of evidence 

and the capability to integrate evidence from multiple sources. Second, the use of quantum 

probability theory is rapidly becoming a valid framework for modeling cognition. An 

excellent review of the motivation behind modeling cognitive processes using the 

framework of quantum probability theory is (Busemeyer & Bruza, 2012; Pothos & 

Busemeyer, 2013). In general, the motivation behind using the mathematical framework of 

quantum probability theory to model cognition stems from numerous studies that have 

shown that people do not make decisions according to classical probability theory 

(Kahneman & Tversky, 1979; Shafir & Tversky, 1992; Tversky, 1977; Tversky & 

Kahneman, 1974; Tversky & Shafir, 1992).  

Quantum probability theory is more general than classical probability theory and provides 

a mathematical language for modeling ambiguity and uncertainty. Quantum probabilities 

are based on a geometric model where events are modeled as regions in a vector space 

(known as a Hilbert space within the quantum probability framework). One difference 

between quantum probability and classical probability is commutativity in conjunction 
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(Pothos et al., 2011). In classical probability, 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐴&𝐵) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐵&𝐴), 

but this commutativity property does not necessarily hold in quantum probability as it can 

be impacted by order effects or context effects. An additional difference is the law of total 

probability in classical probability theory, which holds that 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐴) =

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐴&𝑋) + 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐴&�̅�). In quantum probability theory, the law of total 

probability will not necessarily hold since interference effects may be present.  

Currently, quantum probability theory in modeling cognition has been able to account for 

several experiments where humans were shown to not behave according to classical 

probability theory (Aerts, Aerts, & Gabora, 2009; Bruza et al., 2012; Conte et al., 2009; 

Khrennikov & Haven, 2009; Pothos & Busemeyer, 2009b) (Table 3.2). Each of the models 

in Table 3.2 are very intricate and in-depth explanation of each is beyond the scope of this 

review. Instead, one classical probability violation (conjunction fallacy) and the quantum 

probability model to explain the phenomena will be explored in-depth to provide an 

example of how quantum probability theory can be used to develop cognitive models. 

 

Table 3.2 

Overview of cognitive models using quantum probabilities 

Name of violation Description 

Failures of commutative in 

decision making 

A well-established property of classical probability 

theory the commutative property, which states that 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐴&𝐵) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐵&𝐴) . However, 

numerous psychological experiments have shown that 

the order in which questions are posed can greatly impact 

probability judgments (Feldman & Lynch, 1988; Moore, 

2002; Schuman & Presser, 1981; Tourangeau, Rips, & 

Rasinski, 2000). Wang, Solloway, & Busemeyer 

developed a quantum model to account for the 
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commutativity violation (Wang, Solloway, & 

Busemeyer, 2013). 

Violations of the sure-thing 

principle 

The sure-thing principle asserts the following: if you 

prefer action A over B under state of the world X, and 

you also prefer A over B under the complementary state 

�̅�, then you should prefer A over B when the state is 

unknown (Savage, 1954). Tversky & Shafir showed in 

several experiments that humans violate the sure-thing 

principle (Shafir, 1994; Shafir & Tversky, 1992; Tversky 

& Shafir, 1992). Pothos & Busemeyer developed a 

quantum model to account for violations of the sure-

thing principle (Pothos & Busemeyer, 2009a).  

Asymmetry in human 

similarity judgments 

Intuitively, one would think that the similarity between 

object A and object B would be the same as the similarity 

between object B and object A. Tversky (1977) showed 

that the symmetry assumption was frequently violated 

for human similarity judgments (Tversky, 1977). Pothos 

& Busemeyer (2011) developed a quantum model to 

account for symmetry violations in human similarity 

judgments (Pothos & Busemeyer, 2011). 

 

A basic tenet of classical probability is that the probability of a conjunction such as 

𝑃(𝐴&𝐵) cannot exceed the probability of the constituents 𝑃(𝐴) and 𝑃(𝐵). Tversky and 

Kahneman (1983) showed that humans violated this basic property of classic probability 

in reasoning (Kahneman & Tversky, 1979). Tversky & Kahneman presented the subjects 

with the following description of a woman named Linda. 

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a 

student, she was deeply concerned with the issue of discrimination and social justice, and 

also participated in antinuclear demonstrations. 

 

After presenting the subjects with the above statement, they were asked which of the 

following is more probable.  

Option 1. Linda is a bank teller. 

Option 2. Linda is a bank teller and is active in the feminist movement. 
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Tversky & Kahneman (1974) found that a vast majority of the subjects chose the 

conjunction (Option 2). From a classical probability theory perspective, a conjunction can 

never be more likely than one of its constituents (Option 1). Similar results have been 

obtained with different stories and different situations (Gavanski & Roskos-Ewoldsen, 

1991; Sides, Oshershon, Bonini, & Viale, 2002; Stolarz-Fantino, Fantion, Zizzo, & Wen, 

2003; Tentori & Crupi, 2012; Wedell & Moro, 2008). 

Busemeyer et al. (2011) developed a cognitive model of this task using quantum 

probability theory. The model, after reading the description of Linda, was constructed as 

follows to reflect the initial prior state before reading Option 1 and Option 2. The initial 

state vector (|𝜓) is very near the vector for feminist (|𝑓𝑒𝑚𝑖𝑛𝑖𝑠𝑡). The vector for bank teller 

(|𝑏𝑎𝑛𝑘 𝑡𝑒𝑙𝑙𝑒𝑟) is oriented such that it lies at a non-orthogonal distance from the vector 

|𝑓𝑒𝑚𝑖𝑛𝑖𝑠𝑡 reflecting that it is possible for a feminist to have such a job, but it is not 

necessarily highly likely. The next step of the model is to simulate the results after reading 

Option 1 and Option 2. The event vector is projected onto the feminist vector |𝑓𝑒𝑚𝑖𝑛𝑖𝑠𝑡, 

and is then projected onto the bank teller vector |𝑏𝑎𝑛𝑘 𝑡𝑒𝑙𝑙𝑒𝑟 . The result of these 

operations is that Option 2 is the most likely instead of Option 1 as predicted by classical 

probability theory. These results are explained by Busemeyer et al. (2011) as follows. 

Psychologically, the QP model explains the conjunction fallacy in terms of the 

context dependence of probability assessment. Given the information participants 

receive about Linda, it is extremely unlikely that she is a bank teller. However, once 

participants think of Linda in more general terms as a feminist, they are more able 

to appreciate that feminists can have all sorts of professions, including being bank 

tellers. The projection acts as a kind of abstraction process, so that the projection 
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on to the feminist subspace loses some of the details about Linda, which previously 

made it impossible to think of her as a bank teller. From the more abstract feminist 

point of view, it becomes a bit more likely that Linda could be a bank teller, so that 

while the probability of the conjunction remains low, it is still more likely than the 

probability for just the bank teller property. Of course, from a QP theory 

perspective, the conjunctive fallacy is no longer a fallacy, it arises naturally from 

basic QP axioms. 

 (Busemeyer, Pothos, Franco, & Trueblood, 2011) 

3.2.4.1 Implication of quantum probability theory for IR 

The application of quantum probability to IR largely began with (van Rijsbergen, 2004). 

A review of the motivation for using quantum probabilities for IR is provided by 

(Piwowarski, Frommholz, Lalmas, & Rijsbergen, 2010; Yaoyong & Cunningham, 2008). 

Many mathematical frameworks based on quantum probability theory have been proposed 

which include modeling polyrepresentation in documents (Frommholz et al., 2010; 

Piwowarski, Frommholz, Lalmas, & van Rijsbergen, 2010; Zellhofer, Frommholz, 

Schmitt, Lalmas, & van Rijsbergen, 2011), modeling user interaction (Buccio, Melucci, & 

Song, 2011; Piwowarski & Lalmas, 2009), and modeling context (Melucci, 2007; Melucci 

& White, 2007a, 2007b). The following summary of quantum probability theory to IR is 

provided by (Piwowarski & Lalmas, 2009). 

Our working hypothesis is that a pure, in the sense that we know exactly what the 

user is looking for, user interaction can be represented as a system in quantum 

physics, i.e. as a unit vector in a Hilbert space, and that this state evolves while the 

user is interacting with the system. According to the quantum probability 
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formalism, this interaction vector generates a probability distribution over the 

different subspaces of the Hilbert space. We make the hypothesis that among other 

possible uses, such subspaces can be related to the relevance of documents, 

therefore enabling the computation of a relevance score for a document, and to user 

interactions (like typing a query of clicking on a document), making it possible to 

exploit them. 

The remainder of this section presents an overview of the applications of quantum 

probability for IR. This review is limited to studies that conducted formal evaluations. 

Section 3.2.4.1.1 presents the use of quantum probability theory for query expansion. 

Section 3.2.4.1.2 presents the use of quantum probability theory for representing additional 

information such as syntax for documents. Finally, 3.2.4.1.3 presents an overview of 

quantum negation for document ranking. 

3.2.4.1.1 Quantum probability theory and query expansion 

Zhang, Song, Zhao, & Hou (2011) present an approach to query expansion based on the 

analogy of photon polarization (P. Zhang, Song, Zhao, & Hou, 2011). The full description 

of the photon polarization experiment can be found in (Rieffel & Polak, 2000). In the 

polarization experiment, the experimenter inserts polarization filters between the light 

source (source of photons) and a screen. Quantum probability theory and not classical 

probability theory accurately describes the amount of light on the screen. In the work by 

Zhao et al. (2011), the documents are modeled as photons and the original and expanded 

queries are modeled as the polarization filter.  

A noted problem in query expansion is query drift (Zighelnic & Kurland, 2008). The 

problem occurs when terms are automatically appended to the query, which can cause the 
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query to shift from the original intended meaning. In this work, the document is modeled 

as passing through two polarization filters (the original query and the expanded query). 

The motivation is to fuse the evidence from the original query and the expanded query. For 

query expansion, the top 50 documents are selected and the top 100 terms with the highest 

probability4 are appended to the query. The quantum probability model was compared to 

several alternative models for integrating the results from the original and expanded query. 

In the majority of the cases, the quantum probability model resulted in superior 

performance.  

3.2.4.1.2 Quantum probability theory and document representation 

(Sordoni, Nie, & Bengio, 2013) explored using the quantum probability theory to encode 

terms and relationships between terms in the same space which they call a quantum 

language model. Consider the example from (Sordoni, et al., 2013). In this example, 𝑛 =

3 and the vocabulary in the corpus is composed of {𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟, 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒, 𝑔𝑎𝑚𝑒𝑠}. 

Assume a document 𝑊𝑑 where 𝑊𝑑 = {𝜀𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟, 𝜀𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒}. If the terms are modeled 

separately, this results in the disjoint set of projectors shown below. 

 

𝜀𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = (
1 0 0
0
0

0 0
0 0

) 𝜀𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 = (
0 0 0
0
0

1 0
0 0

) 

 

 

Figure 3.6. Representation of computer and architecture 

                                                 
4 The top N documents are treated as a context. The probability is computed based on the 

probability of the term appearing in this context versus the probability of the term 

occurring within the corpus as a whole. 
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If a term dependency is detected in a document, the relationship is modeled using Equation 

3.5. The parameter 𝜎𝑖 must be chosen such that ∑ 𝜎𝑖
2 = 1𝑖 . The parameter can be used to 

reflect corpus statistics to emphasize important terms. In this example, 

𝜀𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟,𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 is calculated by √2 3⁄ |ℯ𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 +√
1
3⁄ |ℯ𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 resulting in 

the projector shown in Figure 3.7. The important difference here is that the individual terms 

as well as the term relationship are represented within the same space. The results were 

compared to a language model using Dirichlet smoothing. They found that the quantum 

language model was able to improve performance over the language model using Dirichlet 

smoothing in some cases. 

 

∑𝜎𝑖|ℯ𝑤𝑖

𝐾

𝑖=1

 

(3.5) 

 

𝜀𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟,𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 =

(

  
 

2

3

√2

3
0

√2

3

1

3
0

0 0 0)

  
 

 

Figure 3.7. Representation of computer architecture 

 

(Zuccon & Azzopardi, 2010; Zuccon, Azzopardi, & van Rijsbergen, 2009) proposed a 

framework for modeling the dependancy among documents for subtopic retrieval. The goal 
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of subtopic retrieval is to cover all possible subtopics and present the user with unique and 

relevant information quickly in the search results. For example, assume that document A is 

the first document in a search result. Another document B is relevant, but contains 

significant overlapping information with document A. On the other hand, document C is 

relevant and contains no overlapping information with document A. In this case, the goal 

is to identify that documents A and B contain significant duplicate information and rank 

document C higher than document B. The ranking function is shown in Equation 3.6. The 

parameter 𝑃(𝑑𝑖) can be estimated using any probabilistic ranking function. The parameter 

∑ 𝐼𝑑𝑥,𝑑𝑖𝑑𝑥∈𝑅𝐴  is a measure of the inteference (i.e. overlapping information) of a document 

𝑑𝑖 and any document that is ranked above (RA in Equation 3.6) it. That is, documents are 

penalized if they contain duplicate information and boosted if the information is previously 

unseen in the ranked list. (Zuccon & Azzopardi, 2010; Zuccon, et al., 2009) showed that 

modeling the document dependencies resulted in performance improvement for subtopic 

document retrieval in the majority of the experiments. 

 

𝑑 = 𝑃(𝑑𝑖) + ∑ 𝐼𝑑𝑥,𝑑𝑖
𝑑𝑥∈𝑅𝐴

 
(3.6) 

 

𝐼𝐴,𝐵 = 𝑃𝐴 + 𝑃𝐵 + 2√𝑃𝐴√𝑃𝐵 cos 𝜃𝐴𝐵 (3.7) 

 

 

(Wittek, Koopman, Zuccon, & Daranyi, 2013; Zuccon, Piwowarski, & Azzopardi, 2011) 

propose the use of complex numbers within the quantum probability framework to encode 

different semantic representations. The previous applications of quantum probability 
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theory to IR assume real valued vector spaces. They mapped text in the query and 

documents to SNOMED-CT using MetaMAP. The distributional information for the terms 

was encoded using Random Indexing, which is an approach similar to LSA. In the complex 

representation space, the real component encoded distributional semantics using Random 

Indexing whereas the imaginary component is based on the concept space from SNOMED-

CT. They found that combining different semantic representations of text within a complex 

Hilbert space improved performance over either knowledge source alone. However, it 

should be noted that combining representations is known to improve retrieval (Croft, 

2002). The model was not compared to simpler approaches such as linear integration for 

combining the evidence from multiple representations.  

3.2.4.1.3 Negation and document ranking 

(Widdows & Peters, 2003) presented a novel form of negation within a vector space using 

insights from quantum probability theory. The negation is implemented by finding the 

orthogonal subspace using Equation 3.8. In traditional Boolean systems, negation works 

by removing the negated term. For example, the query 𝑎 𝑁𝑂𝑇 𝑏 would remove only the 

term 𝑏. According to (Widdows & Peters, 2003), quantum negation is best understood as 

finding “those features of a to which b is irrelevant”. For example, a query such as 

𝑟𝑜𝑐𝑘 𝑁𝑂𝑇 𝑏𝑎𝑛𝑑 would ideally return terms related to the stone sense of the term rock and 

remove the terms related to the music sense. (Widdows, 2003) evaluated the use of 

quantum negation in document retrieval and found that quantum negation was the best 

model of those evaluated for removing unwanted documents. 
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𝑎 𝑁𝑂𝑇 𝑏 ≡ 𝑎 −
𝑎 ∙ 𝑏

|𝑏|2
𝑏 

 

(3.8) 

 

3.2.5 Latent Semantic Analysis 

LSA originated in the computer science literature (Deerwester, Dumais, Furnas, Landauer, 

& Harshman, 1990). LSA relies upon the distributional hypothesis which asserts that the 

meaning of a word can be defined based on the contexts in which it occurs (Harris, 1954). 

The first step in LSA is to represent the text as a matrix where each row stands for a unique 

word and each column represents the count of the terms in a given context such as a 

passage, sentence, or paragraph.  

Consider the sample text in Table 3.3. In this example, each sentence is treated as context. 

Table 3.4 presents the term-context vector generated from the text. The rows in Table 3.4 

represent the unique terms from the example text in Table 3.3. The columns represent each 

context (sentence in this case) and the term frequency count of the terms in each context. 

The similarity between two terms can be computed by taking the cosine between two term 

vectors. Similarly, the similarity between the contexts is computed by the cosine between 

the two column vectors. 

 

Table 3.3 

Example text data from (Radiohead, 2011) 

C1: Slowly we unfurl 

C2: As lotus flowers 

C3. Cause all I want is the moon upon a stick 

C4. Just to see what if 

C5. Just to see what is 
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Table 3.4 

Word by context vector 

 C1 C2 C3 C4 C5 

a  0 0 1 0 0 

all  0 0 1 0 0 

as  0 1 0 0 0 

cause  0 0 1 0 0 

flowers 0 1 0 0 0 

i 0 0 1 0 0 

if 0 0 0 1 0 

is 0 0 1 0 1 

just  0 0 0 1 1 

lotus  0 1 0 0 0 

moon  0 0 1 0 0 

see  0 0 0 1 1 

Slowly  1 0 0 0 0 

stick 0 0 1 0 0 

the  0 0 1 0 0 

to  0 0 0 1 1 

unfurl 1 0 0 0 0 

upon  0 0 1 0 0 

want  0 0 1 0 0 

we  1 0 0 0 0 
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what  0 0 0 1 1 

 

In practice, the term-context matrix can be very large. For example, the 2013 MEDLINE 

corpus contains 2,864,711 unique terms and nearly 20 million documents (NLM, 2013). 

This would result in a matrix with 2,864,711 rows and 20 million columns. Additionally, 

the matrix is very sparse. For example, a MEDLINE abstract will contain only a small 

percentage of the possible 2,864,711 terms. LSA involves the application of a linear 

algebra technique known as Singular Value Decomposition (SVD) to the sparse term-

context matrix (Golub & Reinsch, 1970). SVD is a dimensionality reduction technique that 

creates a reduced dimensional approximation of the full term-context matrix. This lower 

dimensional space is often referred to as the “latent” space and improves similarity in part 

by removing noise that is present in the sparse high dimensional space. Deerwester et al. 

(1990) describes the strengths of LSA as being able to handle synonymy, polysemy, and 

term dependence. 

LSA has impacted nearly all areas of IR and NLP and has been used in countless 

applications including query expansion and document ranking. A full review of all of the 

applications of LSA for IR is beyond the scope of this review (e.g. a Google Scholar query 

for "latent semantic analysis" 𝐴𝑁𝐷 "𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙"  retrieved over 13,000 

citations). Instead, the remainder of this review will focus on the role of LSA in cognitive 

science. 

After the initial introduction to the computer science community, LSA began to be 

proposed as a general theory learning and meaning (Landauer & Dumais, 1997). One 

particular problem that LSA has been proposed to solve is Plato’s problem, which refers to 
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the general problem of “how we can know what in fact we do know” (Chomsky, 1980). 

This problem is a hypothesis, which asserts that language learners are not exposed to 

sufficient input to have the knowledge that they possess. The view of LSA as a theory of 

semantic memory is summarized by (Landauer & Dumais, 1997). 

The other, more radical, interpretation of this result takes the mechanism of the 

model seriously as a possible theory about all human knowledge acquisition, as a 

homologue of an important underlying mechanism of human cognition in general. 

In particular, the model employs a means of induction – dimension optimization – 

that greatly amplifies its learning ability, allowing it to correctly infer indirect 

similarity relations only implicit in the temporal correlations of experience. 

  (Landauer & Dumais, 1997) 

One of the motivations of LSA as a cognitive theory stems from its high correlation with 

human similarity judgments (Foltz, Kintsch, & Landauer, 1998; Landauer & Dumais, 

1997; Till, Mross, & Kintsch, 1988; P. D. Turney, 2001a). Landauer & Dumais (1997) 

compared the performance of humans and LSA on the synonym portion of the Test of 

English as a Foreign Language (TOEFL) examination. LSA got 51.5% correct whereas 

human subjects got 51.6 correct. Other studies have shown that LSA mirrors the learning 

rates of humans (Landauer & Dumais, 1997; W. Nagy & Anderson, 1984; W. E. Nagy & 

Herman, 1987), has strong correlation with human graders (Islam & Hoque, 2010; 

Landauer, Laham, & Foltz, 2000; T. Miller, 2003; Villacorta & Jammalamadaka, 2009), 

and can be used to model text comprehension (W Kintsch, 1998).  



 

 94  

 

 

Chapter 4: Predicting Document Clicks Using Desirability 

This chapter describes a study of the recency-frequency effect with a particular emphasis 

on predicting document accesses. Anderson & Schooler (1991) presented the original 

investigation of the recency-frequency effect and showed a strong parallel between human 

memory optimization (i.e., predicting the memory item most likely to be needed) and the 

statistical properties of information in a wide variety of domains. According to (J. R. 

Anderson & Milson, 1989), these results provide evidence of a universal law which 

governs the ebb and flow of information. (J. R. Anderson & Milson, 1989) summarize this 

hypothesis as follows. 

Should we really believe that information retrieval by humans has the same form 

as library borrowings and file accesses? The fact that two very different systems 

display the same statistics suggests that there are “universals” of information 

retrieval that transcend device (library, file system, or human memory) and that 

these systems all obey the same form but differ only in parameterization. 

  (J. R. Anderson & Milson, 1989) 

An unanswered question regarding the recency-frequency effect is what is the underlying 

mechanism that makes it such a widespread phenomenon? Understanding this mechanism 

is particularly important because it could provide insight into the workings of human 

memory and lead to new theories. Additionally, as demonstrated by (J. R. Anderson & 

Schooler, 1991), the recency-frequency effect is a widespread phenomena. Thus, gaining 
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insight into the cause of the recency-frequency effect has the potential to touch many 

disciplines. Section 4.1 presents an investigation of the mechanism that gives rise to the 

“universals” of information retrieval proposed by Anderson & Milson. In Section 4.1, I 

show that the preferential attachment mechanism is a sufficient condition for the 

observation of the recency-frequency effect. Additionally, I analyzed six real-world data 

sets and show that the recency-frequency effect co-occurs with the presence of preferential 

attachment. Together, these experiments provide strong evidence that the preferential 

attachment mechanism causes the recency-frequency effect.  

The remainder of this chapter focuses on the use of the recency-frequency effect to predict 

biomedical document accesses. There are several motivations for this work. One 

motivation is enhancing Bayesian IR models, which are a particular type of probabilistic 

IR model based on Bayes’ theorem. Bayesian IR models require calculation of the prior 

probability of a document being relevant. The most common assumption is asserting that 

documents have an equal probability of access (uniform prior) (Turtle & Croft, 1990, 

1991). In Section 4.2, I show that that the uniform prior assumption is sub-optimal. 

Additionally, I show that document access from two different IR systems and two different 

user populations display the recency-frequency effect. The recency-frequency effect 

provides a theoretically-motivated method for estimating the prior probability of a 

document being relevant. Additionally, in Section 4.3, I show that the non-uniform prior 

based on the recency-frequency effect improves prediction of biomedical document 

accesses. 

A second motivation is that the most commonly used prior probability estimates in IR are 

based on utilizing the structure of a document network such as the hyperlink structure on 
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the WWW. Notably, these metrics are often not explicit probability estimates, but can be 

viewed abstractly as estimating the prior probability. An example is the PageRank 

algorithm (Page, Brin, Motwani, & Winograd, 1998), which has had considerable success 

in document ranking. Many domains cannot be modeled explicitly as a graph structure, 

which is required for these methods. The recency-frequency effect can be applied based on 

document accesses alone and does not require an explicit network structure. Additionally, 

the work in Section 4.1 provides evidence that the preferential attachment network growth 

mechanism generates the recency-frequency effect. This implies that the recency-

frequency effect can be viewed as reflecting the degree centrality of the implicit and 

generally unobservable dynamic graph that is generating the document accesses. 

In summary, this chapter presents the following contributions. Section 4.1 presents the 

hypothesis along with experimental evidence that the preferential attachment network 

growth mechanism generates the recency-frequency effect. This section provides a 

mechanistic explanation for the recency-frequency effect and a general explanation of why 

it is present in a wide variety of domains. Section 4.2 presents an analysis of documents 

accesses for two different populations of users. This study showed that the recency-

frequency effect was present for both user populations. Section 4.3 presents an evaluation 

of using the recency-frequency effect for predicting document accesses in a large real-

world data set. These results show that the recency-frequency effect can be used for 

predicting the future accesses. 

4.1 Relationship Between Recency-Frequency Effect and Preferential Attachment 
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The recency-frequency effect has been documented for human memory as well as other 

areas such as email correspondence patterns and word learning in children (J. R. Anderson 

& Schooler, 1991). The recency-frequency effect is as follows: 

1. The relationship between the odds of an item appearing in the future and the 

frequency of past occurrence is a power law. 

2. The relationship between the odds of an item appearing in the future and the 

recency (i.e., how recently was the item last encountered) is a power law. 

In human memory, this effect predicts retention based on the historical encounters with a 

given item. An analogy is caching in a computer system where items that are predicted to 

be needed in the future are stored in faster memory.  

Anderson & Schooler hypothesized that human memory adapted to the statistical properties 

of the appearance of information in the environment. Anderson & Schooler looked at the 

statistical properties of information in the following environments (the data set descriptions 

follow from (J. R. Anderson & Schooler, 1991)). 

1. New York Times headlines. Anderson & Schooler analyzed 730 days of New York 

Times headlines from January 1,1986 to December 31, 1987. 

2. Child early word learning. Anderson & Schooler looked at a subset of the 

CHILDES database (MacWhinney & Snow, 1990). The CHILDES database is a 

large corpus of recorded data from many studies that have looked at the 

development of language in children. According to Anderson & Schooler, every 

time someone says a word to a child, this is a demand on the child to retrieve the 

word’s meaning. 
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3. Email correspondence. Anderson & Schooler looked at the electronic mail 

messages that the first author (J.A.) received from March 1985 to December 1989. 

The study analyzed the communication of J.A. 

In each of these scenarios, Anderson & Schooler demonstrated the presence of the recency-

frequency effect. Subsequently, Anderson & Schooler showed that the recency-frequency 

effect held for human memory retrieval. Based on this finding, Anderson & Schooler 

proposed the hypothesis that human memory adapted to the statistical properties of 

information in the environment. That is, the human memory system attempts to make 

available the memory that is most likely to be needed. In doing so, the human memory 

system has taken advantage of the recency-frequency effect. In addition, Anderson & 

Schooler hypothesized that the ebb and flow of information obeyed a yet unknown 

universal law given that they found the recency-frequency effect in a variety of disparate 

domains (J. R. Anderson & Milson, 1989). 

A yet unanswered question is what is the mechanistic cause of the recency-frequency 

effect? The work in this section attempts to provide insight into underlying mechanisms 

that gives rise to the observation of the recency-frequency effect in a wide variety of 

domains. Specifically, I propose the hypothesis that the recency-frequency effect is a 

byproduct of a preferential attachment growth mechanism. The preferential attachment 

growth mechanism asserts that the probability of a vertex in a graph receiving a new 

connection is proportional to its current degree centrality (Barabasi & Albert, 1999). 

Numerous studies have shown that preferential attachment can account for the emergence 

of scale-free networks found in areas including protein interaction networks (Eisenberg & 

Levanon, 2003), metabolic networks (Light, Kraulis, & Elofsson, 2005), numerous social 
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networks (Capocci et al., 2006; de Blasio, Svensson, & Liljeros, 2006), and the growth of 

the WWW (Barabasi & Albert, 1999). I propose that the preferential attachment growth 

mechanism can account for the observed recency-frequency effect as follows. 

1. The preferential attachment mechanism implies that the future appearance (e.g., 

receiving a connection with a new node) of a vertex is a function of its degree 

centrality. This property will generate the frequency effect. That is, vertices with 

higher degree centralities have appeared with more frequency than vertices with 

lower degree centralities in the past. I hypothesize that if one looks at the frequency 

of appearance of vertices in a network generated with a preferential attachment 

mechanism, the odds of a vertex appearing in the future will have a power law 

relationship with the frequency of past appearances. 

2. I hypothesize that the preferential attachment mechanism accounts for the recency 

effect as follows. The preferential attachment mechanism implies that recently 

accessed vertices tend to have higher degree centralities than those accessed long 

ago since the probability of a new connection is a function of the degree centrality. 

For example, vertices that have not been accessed (e.g., received new connections) 

within a 100-day window will tend to have lower degree centrality measures than 

those that were accessed within a week. Thus, if one bins the vertices by the most 

recent access (e.g., most recent new connection), each recency bin will correspond 

to an average increase in degree centrality for the vertices in the bins. If one 

calculates the odds of the vertices appearing in the future based on the recency bins, 

a power law relationship will exist between the recency and the odds of appearing 

in the future. 
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The remainder of this section is organized as follows. In Section 4.1.1, I analyzed the 

appearance of information generated using different types of network growth mechanisms 

(methods discussed in detail in Chapter 2.2) that are known to generate different types of 

graph statistics. In this analysis, I found that the preferential attachment growth mechanism 

is a sufficient condition for observing the recency-frequency effect. Additionally, in 

Section 4.1.2, I analyze six real-world data sets and confirmed that, at a minimum, the 

recency-frequency effect and preferential attachment co-occur in empirical data. Finally, 

in Section 4.1.3, I present the summary and discussion of the work presented in this section. 

4.1.1 Relationship between recency-frequency effect and network growth 

models 

4.1.1.1 Methods 

I generated the networks using the Barabasi & Albert (BA) model, Erdös & Rényi (ER) 

model, BA+triad model, and ER+triad model. The background for each of these network 

growth models is presented in Chapter 2.2. Each network started with a seed network 

composed of 500 nodes with five edges randomly connected to the other nodes in the 

network. During each step, one hundred new nodes were added and five edges were created 

between the new nodes and the existing nodes using one of the network growth models. If 

a triad formation step was included, the new node was randomly connected to five 

neighbors of the existing node. In each case, the networks were generated with 5,000 steps. 

Table 4.1 presents the properties of the generated networks. The average shortest path 

length and the clustering coefficient was computed using the Gephi API (Bastian, 

Heymann, & Jacomy, 2009). The degree centrality distribution was calculated using the 

method described in Chapter 2.5 (Clauset & Shalizi, 2009).  
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Table 4.1 

Statistical properties of generated graphs 

 Number 

of nodes 

Number 

of edges 

Average 

number of 

edges per node 

Degree 

distribution 

Clustering 

coefficient 

Average 

shortest 

path 

length 

BA 500,100 2,500,000 10.00 Power law 1.838E-4 2.00 

BA + Triad 500,100 5,500,000 21.99 Power law 0.107 1.84 

ER 500,100 2,500,000 10.00 Log normal 3.054E-5 2.42 

ER + Triad 500,100 5,500,000 21.99 None 0.107 1.95 

 

These selected models provided a cross sectional view of the known degree distributions 

(power law versus non power law), average path length, and clustering coefficient (high 

versus low). I evaluated the recency-frequency effect in each of the networks using the 

methods developed by Anderson & Schooler (J. R. Anderson & Schooler, 1991; Recker & 

Pitkow, 1996). The evaluation of each network began at step 1000 and ended at step 5000. 

I started the evaluation at step 1000 as that it gave the network time to stabilize from the 

initial randomly created seed network. In these experiments, I used 100 steps of data to 

predict the next step. The 100-step window was defined as the training window and the 

subsequent step was defined as the testing window.   

For the frequency effect, the nodes in the training window were binned based on frequency 

of appearance in the training set and the odds were calculated based on the number of 

vertices in a given bin that appeared in the testing window. For example, four nodes appear 

three times in the training window. Of the nodes that appear three times in the training 
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window, two were present in the testing window yielding a probability of 50% and odds 

of 1.0.   

For the recency effect testing, the nodes in the training window were binned based on the 

last appearance of the vertex and the odds were calculated based on the number of vertices 

in a given bin that appeared in the testing window. For example, two nodes last appeared 

on step 60. Of the nodes that appeared on step 60, one was present in the testing window 

yielding a probability of 50% and odds of 1.0. For both the recency and frequency effect 

experiments, a sliding window was used. For example, the frequency effect was computed 

on steps 1000-1100 and tested on step 1101. In the next iteration, the frequency effect was 

computed on steps on 1001-1101 and tested on step 1102. This process was repeated until 

reaching step 5000. 

4.1.1.2 Results 

 

Figures 4.1 to 4.4 present the results for the recency-frequency effect for the BA model. 

The results from the frequency experiment in Figure 4.2 show a very strong correlation 

(𝑅2 = 0.9771) with a power law function. Similarly, the results from the recency analysis 

show a very strong correlation (𝑅2 = 0.9952) with a power law function. From this 

analysis, it can be inferred that the recency-frequency effect holds for data that is generated 

from the BA model. Figure 4.5 presents an analysis of the average degree centrality for the 

nodes that are grouped based on recency. This result confirms the hypothesis that nodes 

that are accessed longer ago will tend to have lower degree centrality than those that are 

more recently accessed. Since the new vertices connect to the older vertices based on their 

degree centrality, this observation explains the recency effect. 
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Figure 4.1. BA frequency effect 

 

Figure 4.2. Log-log BA frequency effect 

 

  
 

Figure 4.3. BA recency effect 

 

Figure 4.4. Log-log BA recency effect 

 

 

 

Figure 4.5. Average degree centrality for each recency bin 
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Figures 4.6 to 4.9 present the results for the recency-frequency effect for the BA+triad 

model. The results from the frequency experiment show a very strong correlation (𝑅2 =

0.9522) with a power law function. Similarly, the results from the recency experiment 

show a very strong correlation (𝑅2 = 0.9937) with a power law function. From this 

analysis, it can be inferred that the recency-frequency effect holds for data generated from 

the BA+triad model. Figure 4.10 presents an analysis of the average degree centrality for 

the nodes that are grouped based on recency. This result is consistent with the hypothesis 

that nodes that are accessed longer ago will tend to have lower degree centrality than those 

that are more recently accessed. Since the new vertices connect to the older vertices based 

on their degree centrality, this observation explains the recency effect. 

 

  

 

Figure 4.6. BA+triad frequency effect 
 

Figure 4.7. Log-log BA+triad frequency 

effect 
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Figure 4.8. BA+triad recency effect 
 

Figure 4.9. Log-log BA+triad recency 

effect 

 

 

 

Figure 4.10. Average degree centrality for each recency bin 

 

Figures 4.11 to 4.14 present the results for the recency-frequency effect for the graph 

generated by the ER growth process. Both the frequency and the recency experiments yield 

a fairly uniform yet noisy relationship. This is expected from the ER model since the 

connections are selected at random. Figure 4.15, presents that average degree centrality for 

the vertices grouped by recency. There is no clear pattern visible from this analysis. 
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Figure 4.11. ER model frequency effect Figure 4.12. Log-log ER model frequency 

effect 

 

  
 

Figure 4.13. ER model recency effect 
 

Figure 4.14. Log-log ER model recency 

effect 

 

 

 

Figure 4.15. Average degree centrality for each recency bin 
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Figures 4.16 to 4.20 present the results for the recency-frequency analysis for the ER+triad 

model. In the case of the frequency experiment, a trend is visible whereby a more 

frequently accessed vertex is likely to receive connections in the future. This is explained 

by the ER+triad growth model. Vertices that have more connections have a higher 

probability of receiving new connections at random. That is, the vertices are selected at 

random, but there is a second step where the neighbors of the selected vertex are chosen. 

Thus if a vertex has many neighbors it has an increased probability of being selected at 

random. However, despite the increase in odds based on the frequency of past accesses, the 

results in Figure 4.17 show a curved plot with a relatively low correlation with a power 

law. 

The recency experiment (shown in Figure 4.18) presents a linear relationship between the 

recency and odds of future appearance. This linear relationship is supported by Figure 4.20, 

which presents the average degree centrality where the vertices are binned by recency. The 

log-log plot in Figure 4.19 presents a curved line that is not a good fit (𝑟2 = 0.8444) for a 

power law relationship. In conclusion, the ER+triad model can be seen as producing a very 

weak preferential attachment mechanism. That is, there is some increase in the odds of 

acquiring a new link based on the past recency and frequency of access, but the effect is 

not strong enough to produce a power law relationship. 
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Figure 4.16. ER+triad frequency effect 
 

Figure 4.17. ER+triad frequency effect 

 

  
 

Figure 4.18. ER+triad recency effect 
 

Figure 4.19. Log-log ER+triad recency 

effect 
 

 

 

 

 

Figure 4.20. Average degree centrality for each recency bin 
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4.1.2 Evidence for relationship between preferential attachment and recency-

frequency effect in empirical data 

In Section 4.1.1, I showed using simulation that preferential attachment is a sufficient 

condition for the recency-frequency effect. In this section, I analyze six real-world network 

data sets and demonstrate that the recency-frequency effect co-occurs when a preferential 

attachment growth mechanism is present. Of course, the co-occurrence in and of itself does 

not imply causality. These results should be interpreted within the context of the 

experiments in Section 4.1.1 that provided evidence for a causal relationship between 

preferential attachment and the recency-frequency effect.  

4.1.2.1 Methods 

Different training windows and testing windows were used for each data set. The reasoning 

behind this is that different data sets adapt at different speeds. For example, analyzing 

quotations from news articles and blogs will likely change on an hourly level, whereas 

studying the citation network for a corpus of scientific articles will adapt over a period of 

months or years due to the amount of time it takes to conduct research and create 

publications that cite the existing literature. For each data set, I look for the presence of 

preferential attachment and the recency-frequency effect. I conducted the preferential 

attachment experiments by constructing a network within the training window and then 

testing for new connections in the test window. A sliding window is used and the aggregate 

results are reported.  

The relationship between degree centrality and the odds of the item appearing in the future 

does not necessarily have to follow a power law. However, if the network is scale free, a 

power law relationship between the degree centrality and the odds of receiving a new 
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connection will be observed. The same procedure described in Section 4.1.1.1 is used for 

testing the recency-frequency effect. With the exception of the email communication 

network, I discarded the data points if they were not present in at least 100 experiments 

within the sliding window. For the email communication network, data points were 

discarded if they were not present in at least 20 experiments. The motivation behind this is 

that rare data points do not have enough data and will inject noise. 

1. Quotations extracted from news data – The data used in these experiments were 

extracted by MemeTracker (Leskovec, Backstrom, & Kleinberg, 2009). The MemeTracker 

extracted quotations from news articles and blogs from August 2008 to April 2009. During 

this period, MemeTracker analyzed over 17 million unique phrases from more than 

900,000 news stories. In my experiments, the extracted quotations were analyzed on an 

hourly basis. For the preferential attachment experiments, I constructed the network by 

adding edges between the phrases and the articles that used a given phrase. For all of the 

experiments using this data set, I used a training window of 6 hours and a test window of 

1 hour. 

2. Predication graph - The predication graph data set is generated by the SemRep NLP 

tool, which extracts subject-predicate-object triples (predications) from the medical 

literature (Rindflesch & Fiszman, 2003). This data set contains the predications extracted 

from articles included in MEDLINE from January 1, 2006 to December 2010. I constructed 

the network by connecting the concepts with an undirected edge if a predication contains 

two concepts. The predication graph extracted during this period contains 211,566 concepts 

and 10,518,291 edges. The experiments used a training window of 36 months and a test 

window of one month. 
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3. High energy physics citation network – This data set covers 34,546 papers published 

in high-energy physics. The data set was originally released as part of the 2003 KDD Cup 

(Gehrke, Ginsparg, & Kleinberg, 2003). The data set contains citations only to documents 

within the corpus. In the preferential attachment experiments, I constructed the network by 

adding an edge between an article and the articles that it cites. The corpus contains 421,578 

edges. In these experiments, I used a training window of 700 days and a test window of 7 

days. 

4. Email communication network - This data set was originally created in (Ebel, et al., 

2002). The researchers constructed the data set from the e-mail server at Kiel University 

over a period of 122 days. The data set includes 5,165 student accounts, which had 

communication with 54,647 individuals. In the preferential attachment experiments, I 

constructed the network by adding edges between people if they communicated with each 

other through email. With self-emails removed, the data set is composed of 392,280 edges. 

In this work, I used a training window of 90 days and a test window of 1 day. 

5. Twitter hash-tag network and communication network – This data set was originally 

collected for the work contained in (Li, Wang, & Chang, 2012; Li, Wang, Deng, Wang, & 

Chang, 2012). The data set contains 2,237,351 users and 18,407,690 communications 

among these users. The data set contains communications over a 1000-day period. I derived 

two different data sets from this data source. The first data set analyzes the communication 

patterns of the Twitter users. In the second data set, the use of hash tags was studied. 

In the Twitter communication data set, the creator of the tweet and the other Twitter users 

mentioned in the tweet are used. For the preferential attachment study, I constructed the 

network by adding edges between two users that communicated. I used a training window 
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of 100 days and a test window of 1 day. 

The second data set is constructed based on the hash tags that co-occur in the same tweet. 

The data set contains 522,718 unique hash tags, which were used 41,079,412 times. In the 

preferential attachment experiments, I constructed the network by adding edges between 

hash tags that co-occurred within the same tweet. I used a training window of 100 days and 

a test window of 1 day. 

4.1.2.2 Results 

Figures 4.21-4.26 present the results of the preferential attachment experiments using the 

data sets and parameters discussed in detail in Section 4.1.2.1. Each of the data sets clearly 

display an increase in the odds of a vertex receiving a new connection based on the degree 

centrality. Additionally, each of the data sets showed a high correlation (minimum 𝑅2 =

0.9099) with a straight line on the log-log plot indicating a power law relationship between 

degree centrality and the odds of an existing vertex receiving a new connection. 

 

 
 

Figure 4.21. Preferential attachment for 

quotes from news cycle 

Figure 4.22. Preferential attachment for 

predication graph 
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Figure 4.23. Preferential attachment for 

high energy physics network 

 

Figure 4.24. Preferential attachment email 

communication network 

  
 

Figure 4.25. Preferential attachment for 

Twitter hash tag network 

 

Figure 4.26. Preferential attachment for 

Twitter communication 

 

Figures 4.27-4.32 present the results of the frequency experiments using the data sets and 

parameters discussed in detail in Section 4.1.2.1. In each of the cases, a high correlation 

(minimum 𝑅2 = 0.9080) was found with a linear regression fit between the frequency of 

appearance of an item and the odds of appearance of the item in the future. In all cases, the 

high 𝑅2 indicates that a power law relationship exists between the frequency of appearance 

of an item and the odds of appearance of the item in the future. 
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Figure 4.27. Frequency effect for quotes 

from news cycle 

Figure 4.28. Frequency effect for 

predication graph 

  

Figure 4.29. Frequency effect for high 

energy physics network 

Figure 4.30. Frequency effect for email 

communication network 

 

  

Figure 4.31. Frequency effect for hash tag 

network 

Figure 4.32. Frequency effect for Twitter 

communication 

 

Figures 4.33-4.38 present the results of the recency experiments using the data sets and 

parameters discussed in detail in Section 4.1.2.1. In each experiment, the recency tests 
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revealed a strong power law relationship (minimum 𝑅2 = 0.940) between the recency of 

appearance and the odds of the item appearing in the future. 

  

Figure 4.33. Recency effect for quotes 

from news cycle 

 

Figure 4.34. Recency effect for 

predication graph 

  

Figure 4.35. Recency effect for high 

energy physics network 

Figure 4.36. Recency effect for email 

communication network 

 

  

Figure 4.37. Recency effect for hash tag 

network 

Figure 4.38. Recency effect for Twitter 

communication 
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4.1.3 Discussion 

 

I performed several experiments to investigate the hypothesis that there is a relationship 

between preferential attachment and the recency-frequency effect. In the first set of 

experiments, I generated several graphs using different graph growth mechanisms. The 

results of these experiments were consistent with the hypothesis that the preferential 

attachment growth mechanism was a sufficient condition for the presence of the recency-

frequency effect. In the next set of studies, I analyzed six real-world data sets and found 

that the recency-frequency effect and preferential attachment co-occurred in the data sets. 

The first set of experiments allowed me to isolate the parameters used to generate the 

networks and provides the strongest evidence of a causal link between preferential 

attachment and the recency-frequency effect. The second set of experiments provides 

empirical evidence that the two phenomena co-occur in real-world data sets. 

The weakness of this study is that other, yet unknown, mechanisms could generate the 

recency-frequency effect. The empirical evidence from the real-world data sets shows a 

correlation between the recency-frequency effect and preferential attachment, which of 

course does not imply causality. In real world data sets, many complexities can be involved 

in the growth of the network. However, the preferential attachment mechanism can almost 

be viewed as a first principle. That is, if a dynamic network is scale free over a given time 

interval, the preferential attachment mechanism is, without any known exceptions, 

responsible for the emergent scale free properties of the network. Thus, in the simulated 

network experiments, I showed that the recency-frequency effect was present when the 

preferential attachment mechanism is present. This observation implies that the recency-
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frequency effect would be present in any data set where preferential attachment has been 

found. 

This study has several important implications. First, the work provides insight into the 

mechanisms that give rise to the recency-frequency effect. The recency-frequency effect 

has been validated through numerous experiments, but no mechanistic explanation for why 

information would have such properties have been proposed. The recency-frequency effect 

was first observed in human memory by Ebbinghaus in 1885 (Ebbinghaus, 1885). The 

model derived by Anderson & Schooler was the first computational model capable of 

yielding the experimental results of Ebbinghaus. Anderson & Schooler observed that the 

recency-frequency effect was present in a wide variety of domains and hypothesized that 

there was a universal principle that was giving rise to this effect. In this study, I have 

proposed and provided evidence (both empirical and experimental) that preferential 

attachment is the universal that is responsible for the observation of recency-frequency 

effect.  

Another implication of this work is that it provides an update to Anderson & Schooler’s 

rational theory of long-term memory. Anderson & Schooler hypothesized that human 

memory adapted to the statistical properties of information in the environment. Anderson 

& Schooler provided evidence for the validity of this hypothesis by looking at the statistical 

properties of information in the environment, which revealed that the presence of the 

recency-frequency effect in a wide variety of domains. Since the recency-frequency effect, 

according to Anderson & Schooler, is a universal property of information, they 

hypothesized that the human memory system adapted based on this environmental 

constraint. In other words, if the recency-frequency effect is often observed in the 
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environment and the goal of the human memory system is to make available the memory 

items most likely to be needed, it would serve the goals of the memory system to use the 

recency-frequency effect to predict the memory items most likely to be useful. In this work, 

I showed that a likely mechanistic explanation for the recency-frequency effect is the 

preferential attachment mechanism. Thus, in updating Anderson & Schooler’s hypothesis, 

the preferential attachment mechanism is the universal and it is this universal to which the 

human memory system has adapted. 

This work raises several questions for future research. First, what characteristics of human 

memory retrieval can be understood by viewing human memory as a dynamic network? It 

is widely theorized that human memory is a scale-free and small world network, which 

would make the presence of a preferential attachment mechanism very likely (Steyvers & 

Tenenbaum, 2005). In addition, previous work has shown that degree centrality plays a 

role in human memory retrieval (Griffiths, et al., 2007; P. Pirolli, 2005; Steyvers & 

Griffiths, 2010). The results in this study are previously undocumented, but could have 

been uncovered much sooner had the graph structure and evolution of the memory network 

been taken into account. The open question that could lead to additional insights into 

human memory is how much can be explained by modeling long-term memory as an 

evolving scale-free network? 

Chapter 4.2: Statistical Properties of Document Accesses 

The goal of this section is to determine if the recency-frequency effect is observed in 

documents accessed using IR systems. The practical motivation of this work, which is 

explored in Chapter 4.3, is that if documents accessed from IR systems have the recency-

frequency effect, this information can be exploited to improve document ranking. 
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In this section, I determine whether the recency-frequency effect is present for document 

accesses from two different IR systems. The differences in the data sets provide some 

evidence that recency-frequency effect is generalizable across different populations of 

users and different types of IR systems. The first data set is from the Houston Academy of 

Medicine-Texas Medical Center library (HAM-TMC). In this data set, the document 

accesses come from the users of PubMed. The HAM-TMC library is located in the Houston 

Texas Medical center, which is the largest medical center in the world. The HAM-TMC 

library provides access to published journals for numerous hospitals and universities in the 

Houston Texas Medical Center. PubMed is a Boolean IR system, which ranks the 

documents in reverse chronological order, and had no relevance ranking capabilities at the 

time the study was conducted. The second data set is documents accessed using the PLOS 

search engine. The PLOS search engine is built on top of the Lucene IR system (Hatcher 

& Gospondnetic, 2004). Thus, this data set is composed of document accesses made using 

a system that uses relevance ranking.  

The remainder of this section is organized as follows. The first study, presented in Section 

4.2.1, investigates whether documents accessed through PubMed have the recency-

frequency effect. Additionally, in Section 4.2.1, I determine if a preferential attachment 

mechanism is present for the PubMed document accesses. In the second study, which is 

presented in Section 4.2.2, I determine whether documents accessed through the PLOS IR 

system have the recency-frequency effect. The users in the PLOS data set are not uniquely 

identified so it is not possible to determine if a preferential attachment mechanism is 

present for this data set. Finally, Section 4.2.3 presents a discussion and summary of the 

results of this section. 
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Chapter 4.2.1 Analysis of document accesses on PubMed 

In this section, I investigated whether documents accessed from PubMed have the recency-

frequency effect. Additionally, I tested for a preferential attachment mechanism in the 

documents accessed by users of PubMed. This section is organized as follows. Section 

4.2.1.1 presents the methods used in these experiments. Section 4.2.1.2 presents an analysis 

of the distribution for the documents accessed through PubMed. Section 4.2.1.3 presents 

the experiment to determine if the recency-frequency effect is present. Finally, Section 

4.2.1.4 presents an experiment to determine the presence of a preferential attachment 

mechanism for the document accesses. 

4.2.1.1 Methods 

The data set used in this analysis came from the HAM-TMC library, which is located in 

the largest medical center in the world and provides access to resources for numerous 

institutions. In this analysis, I used server logs which recorded PubMed use for 1,112 days 

(September 30, 2009 to October 17, 2012). The server logs recorded the query and the 

documents accessed in response to the query. The data set was comprised of 4,513,463 

accesses over 2,107,806 unique documents. 

The methods used to conduct the recency-frequency experiments were similar to the 

methods discussed in detail in Section 4.1.1.1. A sliding window was used for both the 

recency and frequency experiments. For the frequency experiments, the number of accesses 

for each document was counted and the documents were binned according to the number 

of accesses. The odds were calculated by computing the number of documents in each bin 

that were present in each test window. Similarly, for the recency testing, the documents 

were binned based on their most recent day of access. The odds in this case were computed 
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based on the number of documents in each bin that were present in each test window. For 

the frequency experiment, I used a window of 365 days and a 1-day window as the test. 

For the recency experiment, I used a 1-day window as a test. I used a variety of window 

sizes for the training window, which were 7 days, 30 days, 180 days, and 365 days.  

For the preferential attachment experiments, a bipartite network was constructed based on 

a 365-day training window. The edges in the network connected the users to the documents 

that they accessed. In the one-day test window, the new connections for the documents 

were extracted and the odds of a document receiving a new connection based on the degree 

centrality in the training window were calculated. 

4.2.1.2 PubMed document access distribution 

Figures 4.39 and 4.40 present the analysis of PubMed document accesses. In both cases, 

the plots are truncated based on the results of the analysis in Table 4.2. The results in Table 

4.2 were generated using the method of Clauset & Shalizi, which is presented in detail in 

Chapter 2.5. From Table 4.2, the power law was the best fit for the most data points. The 

power law distribution fit 64 of the data points and passed 2,464 (98.56%) statistical 

significance experiments. The exponential function fit five of the data points well, but 

could only account for a small amount of the data. The log normal distribution can be 

completely ruled out. Based on these results, the power law distribution is the best fit for 

the distribution. 
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Figure 4.39. Distribution of document 

accesses from PubMed 

Figure 4.40. Log-log distribution of 

document accesses from PubMed 

 

 

Table 4.2 

Results of analysis for PubMed document access distribution 

Power law Exponential Log normal 
α xMin Results 𝜆 xMin Results All 

points 

result 

𝜇 𝜎2 xMin Results All 

points 

result 
xMin Result xMin Result xMin Result 

1.309 14 (64) 2464 2.853e-06 

51859 

(5) 2484 0 3.698 9.872 1 (135) 330 0 

 

4.2.1.3 PubMed recency-frequency experiment 

Figure 4.41 presents the result of the frequency experiment. The results indicate a strong 

power law relationship (𝑅2 = 0.9705) between the frequency of past document access and 

the odds of a document being accessed in the future. 
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Figure 4.41. Log-log plot of frequency versus odds of access 

 

Figures 4.42-4.43 present the result of the recency effect with varying training window 

sizes. The motivation behind using different training window sizes is that PubMed reverse-

chronological ranking could potentially cause the recency effect. The vast majority of users 

look at only the first 1-2 result pages (Islamaj Dogan, et al., 2009). Thus if a wide training 

window were used, older documents would be buried within the search results and new 

articles will receive more clicks since they are ranked more highly. The varying window 

sizes allow for some control over the potential impact of the reverse chronological order 

ranking. For all training window sizes, a very strong power law relationship (minimum 

𝑅2 = 0.9926) was found between the recency of document access and the odds of the 

document being accessed in the future.  
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Figure 4.42. Recency with a 7 day training 

window 

 

Figure 4.43. Recency with a 30 day 

training window 

  

Figure 4.44. Recency with a 180 day 

training window 

Figure 4.45. Recency with a 365 day 

training window 

 

 

4.2.1.4 PubMed preferential attachment experiment 

Figure 4.46 presents the result for the preferential attachment experiment for PubMed 

document accesses. The results show a clear preferential attachment mechanism where the 

odds of a given vertex receiving a new edge increases with degree centrality. Additionally, 

a log-log plot reveals that the relationship between the degree centrality of a given vertex 

and the odds of receiving a new link is a power law. 
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Figure 4.46. Preferential attachment for PubMed document accesses 

 

4.2.2 Analysis of document accesses on PLOS 

This section investigates whether documents accessed from PLOS have the recency-

frequency effect. This section is organized as follows. Section 4.2.2.1 presents the methods 

used in these experiments. Section 4.2.2.2 presents an analysis of the distribution for the 

documents accessed through PLOS. Section 4.2.2.3 presents the experiment to determine 

if the recency-frequency effect is present.  

 

 

4.2.2.1 Methods 

The data set used in this analysis came from PLOS document accesses. PLOS is a nonprofit 

publisher of open-access journals. At the time of this investigation, PLOS published seven 

journals. PLOS makes available article-level metrics for all of their articles which includes 

usage information from the PLOS website, citations, social networking applications, and 

media coverage (Yan & Gerstein, 2011). In this study, I used only document accesses from 
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the PLOS website. The accesses included document downloads and document clicks. The 

data set contained 57,666 documents with 18,576,503 accesses. The article-article level 

metrics data covered June 30, 2012 to November 29, 2012. 

The experiments followed the protocol for testing of the recency-frequency effect 

described in detail Chapter 4.1.1.1. A sliding window is used where a training window and 

test window are slid across the data set for the entire experimental test set. In the training 

window, the documents were binned based on the recency or frequency of access. The odds 

of a document appearing based on recency or frequency were calculated by computing how 

many of the documents in a given bin from the training window appeared in the test 

window. The training window in these experiments was 60 days and the test window was 

1 day. The results were limited to document bins that were present in at least 50 

experiments in the sliding window. 

4.2.2.2 PLOS document access distribution 

In this step, I looked at the distribution of document accesses for each individual day in the 

152-day data set. Table 4.3 presents the aggregate results for each day in the PLOS data 

set using the Clauset & Shalizi method, which is presented in detail in Chapter 2.5. The 

“average number of data points” column presents the number of data points for each day 

that was a good fit for a given distribution. The column “percentage of experiments passed” 

is the number of experiments where a given distribution was determined to be a good fit. 

Based on the aggregate results, the power law distribution is the best fit for the data set as 

it described the most number of data points (average 43.48) and passed all of the statistical 

significance tests for each day. The exponential with cutoff is a good fit for a small number 
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of points (average 7.15) in the majority of the days. Finally, the lognormal distribution can 

be ruled out completely. 

 

Table 4.3 

Aggregate results for each day in PLOS data set 

 Average number of data 

points 

Percentage of experiments 

passed 

Power law with cutoff 43.48 100.0% 

Exponential with cutoff 7.15 98.46% 

Exponential 99.15 0.0% 

Lognormal with cutoff 13.05 0.0% 

Lognormal 99.15 0.0% 

 

4.2.2.3 PLOS recency-frequency experiment 

Figure 4.47 presents the results of the frequency experiment for the PLOS data set. The 

result indicates a strong power law relationship (𝑅2 = 0.9466) between the frequency of 

past document access and the odds of a document being accessed in the future. 
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Figure 4.47. PLOS log-log odds as a function of frequency 

  

Figure 4.48 presents the results of the recency experiment for the PLOS data set. The result 

indicates a strong power law relationship (𝑅2 = 0.9309) between the recency of past 

document access and the odds of a document being accessed in the future. 

 

 

 

Figure 4.48. PLOS log-log odds as a function of recency 
 

 

4.2.3 Discussion 

In this study, I found that the recency-frequency effect holds for documents accessed 

through two different IR systems and two different populations of users. This provides 

evidence that the recency-frequency effect is generalizable and will hold across different 

user populations and different types of ranking functions. Additionally, I showed that a 

preferential attachment mechanism was present for documents accessed through PubMed. 



 

 129  

The finding provides further empirical evidence to support the hypothesis presented in 

Section 4.1 that there is a causal relationship between preferential attachment and the 

recency-frequency effect. 

The HAM-TMC data set is restricted to primarily the faculty and staff of the medical 

facilities and the universities in the Texas Medical Center. According to some estimates, 

approximately 30% of the PubMed users are estimated to be from the general public.  In 

contrast, the HAM-TMC query logs record the document accesses of graduate students, 

scientists, and clinicians and is a population with a lower percentage of general public 

users. The constraints of the HAM-TMC data set eliminate much of the general public 

information seeking behavior. However, the PLOS data set does not have this limitation 

and is unconstrained in regards to who can access the documents. Finally, the underlying 

ranking functions used by the two IR systems differ, but the recency-frequency effect held 

despite the differences in the underlying ranking function used to access the documents.   

This study is the first to show that the recency-frequency effect holds for documents 

accessed through IR systems in the biomedical domain. The most similar study is Recker 

& Pitkow (Recker & Pitkow, 1996) which showed that the assumptions of the Anderson & 

Schooler desirability model were valid for Web retrieval.  The results of Recker & Pitkow 

(Recker & Pitkow, 1996) and the results presented here are mutually reinforcing and show 

that it is possible to model the desirability of documents in a variety of domains. 

 The work presented here has several practical applications. In particular, this work is 

important for probabilistic information retrieval approaches, which often make the 

assumption that all documents are equally likely to be accessed. This work shows that this 

assumption is false and I provide a method for efficiently and accurately predicting the 
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prior probability of a document being accessed. Another important contribution of this 

work is that I present methods for extracting meaningful information from server logs, 

which many search systems automatically collect. If the recency-frequency effect can 

improve document ranking, the methods presented here can be applied to automatically 

extract the information from query logs and improve the ranking of documents. This is the 

focus of the next section. 

4.3 Evaluation of Using the Recency-Frequency Effect for Predicting Document 

Accesses 

In Section 4.1, I proposed the hypothesis and provided evidence to support the hypothesis 

that the recency-frequency effect arises from the growth of networks via a preferential 

attachment mechanism. In Section 4.2, I showed that the recency-frequency effect holds 

for documents accessed in bibliographic databases using two different IR systems and two 

different populations of users. This section seeks to address the currently unexplored 

question of whether the recency-frequency effect has utility for document ranking. 

Additionally, this section investigates whether document usage data from disparate data 

sources can be aggregated and used for predicting document accesses. To evaluate the 

performance of desirability computed on different data sets I extract pairwise judgments 

from query logs, which capture user interactions with the PubMed IR system. Using the 

pair-wise evaluation method discussed in detail in Chapter 2.4.2, I can determine which 

data sets and metrics best agree with the preferences of the IR system users from the query 

logs. 

The remainder of this section is organized as follows. Section 4.3.1 presents the methods 

used in this study. Section 4.3.2 provides a descriptive analysis of the data sets used in this 
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study. Section 4.3.3 presents an evaluation of using recency-frequency effect from multiple 

data sources for predicting the documents accessed in response to user queries. Finally, 

Section 4.3.4 presents a discussion of the work presented in this section. 

 

4.3.1 Methods 

4.3.1.1 Description of data sets used for predicting document access 

This study utilized several different data sets, which were used for computing the 

probability that a document is accessed based on past use. The first data source is HAM-

TMC document accesses, which included abstract views and document downloads. The 

HAM-TMC data set included 4,513,463 accesses over 2,107,806 documents from 

September 30, 2009 to October 17, 2012.  

The second data source was the number of CiteULike users who had a given document 

saved in their reading list (CiteULike). CiteULike is a social networking application that 

allows scientists to manage reference libraries, discuss articles, and rate articles. This data 

source was obtained from the CiteULike website. The third data source was Mendeley, 

which is similar to CiteULike and allows scientists to manage their reference library, rate 

articles, and discuss articles (Curran, 2011; Henning & Reichelt, 2008; Zaugg, West, 

Tateishi, & Randall, 2011). The Mendeley data set contained the number of users that had 

a given document in their personal library. I obtained this data source using the Mendeley 

API, which allowed the download of article metrics such as the number of people that have 

a given document in their library (Mendeley-API, 2013). I obtained the final data source 

from Scopus. Scopus is a bibliographic database that contains citations for scientific 

articles from over 19,000 journals (Archambault, Campbell, Gingras, & Lariviere, 2009; 
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Burnham, 2006). The Scopus data source contained the number of citations for a given 

document. 

I used additional data sources for comparison. One data source was the journal impact 

factor (JIF) from the 2012 Science Citation Index (most recent publically available Science 

Citation Index when the experiments were conducted) (Reuters, 2013). The JIF is a 

bibliometric value that reflects the average number of citations to each article in a journal 

(Garfield, 2006). The intuition behind using this metric is that people may click on articles 

from journals with high JIF (high-impact journals) over articles from journals with lower 

JIF. This provided a base-line measure for comparing the results in this section. An 

additional motivation is that researchers have explored using JIF in document ranking 

(Sidiropoulos & Manolopoulos, 2005; Vesely, Rajman, & Meur, 2008). 

For further comparison, I extracted a second data source from the HAM-TMC data set by 

creating a network of documents that were clicked in response to the same query, which is 

referred to as the click graph. That is, if two documents were clicked in response to the 

same query an edge is created between the two documents. Figure 4.49 presents a sub-

network of the click graph. Similar methods have been used where a document-document 

network is constructed by creating edges between documents that are highly similar 

(Kurland & Lee, 2005). Once the network was constructed, network metrics could be 

computed such as degree centrality or PageRank for the documents. In this particular case, 

the edge weights between the documents can be seen as human curated similarity 

judgments. That is, two documents connected with high edge weights indicate that many 

users clicked the two documents in response to the same query. 
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Figure 4.49. Sub-network of click graph extracted from HAM-TMC data set consisting 

of edge weights > 20 

 

4.3.1.2 Description of experiments and evaluation method 

The purpose of this section is to discuss the preprocessing required for constructing the 

query log data set for evaluation and to discuss the design of the experiments. Section 

4.3.1.2.1 presents the preprocessing required to extract the pairwise judgments from the 

HAM-TMC query logs. Section 4.3.1.2.2 presents the design of the experiments conducted 

using the pairwise judgments to evaluate different algorithms. Finally, 4.3.1.2.3 presents a 

review of the metrics used for evaluation. 

 

4.3.1.2.1 Preprocessing of query logs 
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The data set used for evaluation was collected from HAM-TMC users that accessed 

PubMed from October 18, 2012 to November 4, 2012 (19 days). I distinguished 

informational from navigational queries. Informational queries are queries where the 

underlying information need is to gain information about a topic (Broder, 2002).  For 

example, “link between fish oil and blood pressure” is an informational query. 

Navigational queries in contrast, are queries where the user is looking for a specific item, 

such as a specific paper or papers published by a particular author. For example, a query 

for the document title “Predicting biomedical document accesses” is a navigational query 

where the user is requesting a specific article. I used the following criteria for identifying 

navigational queries. Queries were considered to be navigational if: 

1. The query contained only a PubMed document identifier. 

2. The query contained a title of an abstract. Queries containing titles were identified 

by submitting the query to PubMed using eUtils (Sayers & Wheeler, 2004). 

3. The query was composed only of the following: Author, journal name, year, or 

volume. This information was obtained by submitting the query to PubMed using 

eUtils (Sayers & Wheeler, 2004). 

By using the above constraints, 4,665 queries were classified as navigational and removed 

from the data set. This left 11,880 queries which where either informational or mixed 

(informational with some component of navigational such as author). From these queries, 

the method for extracting pairwise judgments (described in detail in Chapter 2.4.2) was 

used to extract pairwise judgments for each query. The final data set consisted of 156,623 

pairwise judgments for 2,960 users. 

4.3.1.2.2 Design of experiments 
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Figure 4.50 presents an example of an experimental configuration for computing 

desirability. Specifically, Figure 4.50 presents the experimental configuration for 

computing desirability on the combination of the Scopus, CiteULike, HAM-TMC, and 

Mendeley data sets. The only change for each experiment was removing one of the data 

sets to attain the desired configuration. For each query, the documents viewed in response 

to the query were extracted from the query logs. The desirability score was computed for 

each document that was viewed based on the data sets being used in a given experimental 

configuration. Based on these desirability scores for the documents, the pairwise judgments 

extracted from the query logs were used to evaluate how well the documents’ desirability 

scores reflect the preference of the user. 

 

 

 

Figure 4.50. Configuration for desirability experiments 

Desirability

CiteULikeScopus Mendeley

All documents 
viewed by user 
in response to 

query

HAM-TMC 

Evaluation 
based on 
pairwise 

judgments



 

 136  

 

I used several existing query dependent ranking functions to benchmark the performance 

of desirability. Specifically, I compared the performance of desirability with TF-IDF, 

divergence from randomness Bose-Einstein (DFR_BE), and divergence from randomness 

TF-IDF (DFR_IDF). These functions were discussed in detail previously in Section 2.3 of 

this dissertation. For the IR models, the training window was used to compute the corpus 

statistics. The corpus statistics for all of the models was computed using the titles and 

abstracts from the MEDLINE corpus. I utilized the stop word list generated by Salton and 

Buckley for the SMART IR system for calculating the corpus statistics (Salton, 1971). 

Figure 4.51 presents the experimental design for the existing IR models. Each of the 

existing IR models required different types of corpus statistics (e.g. number of documents 

containing a given term) in order to calculate the relevance score. For each query, the 

documents viewed in response to the query were extracted from the query logs. The score 

for each of the viewed documents was computed based on the similarity between the 

document and query using one of the existing IR models. I used the pairwise judgments 

extracted from the query logs to evaluate how well the documents’ relevance scores reflect 

the preferences of the user. 
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Figure 4.51. Configuration for experiments with existing IR models 

 

A sliding window was used to perform the experiments. Figure 4.52 and Figure 4.53 

present a pictorial representation of how the sliding window was utilized to conduct the 

experiments for desirability and existing IR models respectively. On each test day 𝑛, the 

pairwise judgments were extracted. For desirability, the training data was comprised of all 

document accesses from the data sources described in Section 4.3.1.2 for days occurring 

on or before 𝑛 − 1. For document accesses, the training data is composed of days occurring 

on or before 𝑛 − 1 to reflect the real-world environment in which such a system would be 

deployed where past document accesses are used to rank the documents returned by current 

user queries. For the existing IR models, the corpus statistics were computed for documents 

published on days 𝑛 or earlier. For the existing IR models, the data used during the training 

window was composed of documents published on days 𝑛 or earlier because a document 
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has to be in the database in order to be returned in response to the query therefore it is 

reasonable to assume that the corpus statistics should reflect all of the documents currently 

in the database. For both desirability and the existing IR models, the information in the 

training window were used to rank the documents, which were subsequently evaluated 

using the pairwise judgments. 

 

 

 

Figure 4.52. Desirability experiments with sliding window 
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Figure 4.53. Experiments with existing IR models with sliding window 

 

4.3.1.2.3 Evaluation metrics 

Evaluation using pairwise judgments extracted from query logs was previously discussed 

in detail in Chapter 2.4.2. An overview of the metrics used to evaluate the performance of 

the existing IR models and desirability is repeated here for reader convenience. Equation 

4.1 presents the accuracy metric. The accuracy metric is conceptually similar to the notion 

of precision, which indicates how many of the extracted pairwise judgments were correctly 

ordered by the different algorithms. For example, consider 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐴 which has 10 user 

clicks and 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐵  which has 5 user clicks. Further, assume that the following 

pairwise judgment was extracted: 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐴 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝑂𝑣𝑒𝑟 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐵 . If the 

documents were ordered based on the number of document clicks alone then this would 

result in an ordering that was consistent with the extracted pairwise judgment. 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 

(4.1) 

 

Equation 4.2 presents the coverage metric. The notion of the coverage metric is 

conceptually similar to recall. In this case, the goal was to determine how many of the 

extracted pairwise judgments could be ordered by the data available regardless of whether 

or not those orders were correct. This metric was used to characterize how much 

information from one given data source can be used for ranking documents on the HAM-

TMC data set. For example, consider that there are two documents where 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐴 

was accessed 10 times in the past and 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐵 was not accessed in the past. Since 

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐴 has some past access information this enables ranking thus the coverage 

would be increased. Now suppose that 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐴 was not accessed in the past and 

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐵 was not accessed in the past. In this case there is no information in terms of 

document accesses that can be used to enable ranking, thus the coverage would be 

decreased. 

The engaged reader will recall that the desirability equation includes a decay function, 

which includes a parameter that encodes the amount of time since publication of the 

document. Thus, in theory, if two documents contain no document accesses then it would 

be possible to rank them based on the decay parameter and the age of the document alone. 

For example, if two documents have no accesses, but one document is newer than the other 

then the newer document would be ranked higher. However, this would inject an unfair 

bias into the experiments given the nature of the HAM-TMC corpus. Recall that PubMed 
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ranks by reverse chronological order. To illustrate the problem consider that a document 

(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐴) is clicked and a document higher (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐵) in the result set is it not 

clicked. Due to the PubMed ranking 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐴  will always be published after 

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐵. If the desirability equation is applied to these two documents this will result 

in predicted pairwise ordering where 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐵 > 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐴 , which will be 

incorrect. In summary, an incorrect ordering will be predicted every time based solely upon 

the characteristics of the corpus. This bias would contaminate the results thus the 

desirability metric is not applied when no document access information is available. 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑔𝑚𝑒𝑛𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑡𝑒𝑚 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑎𝑛𝑘𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠
 

(4.2) 

 

Equation 4.3 presents the harmonic mean, which was used to summarize the results for a 

given data set in terms of accuracy and coverage. The metric in 4.3 is exactly the metric 

used to compute the f-measure, which is a widely used metric for evaluating IR algorithms. 

In this work, the metric was referred to as harmonic mean to distinguish that the metric 

was computed using accuracy and coverage and not precision and recall as in traditional 

IR applications. 

 

2 ∗
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
 (4.3) 
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A final metric that was used for evaluation is accuracy with ties broken at random. In this 

scenario, when two documents contain no document access information, they were ordered 

at random. 

4.3.1.3 Equations 

The equations used for calculating the odds that a given document is accessed in the future 

based on the past accesses is known as the desirability function. Desirability is defined as 

the probability of an item being accessed (Pitkow & Recker, 1994). In this work, 

desirability was computed based on the recency-frequency effect. The two desirability 

equations used in this work are shown in Equations 4.4 and 4.5 (Petrov, 2006).  

 

𝐵𝑖 = log (
𝑛

1 − 𝑑
𝑡𝑛
−𝑑) (4.4) 

 

 

𝐵𝑖 = log(∑𝑡𝑖
−𝑑

𝑘

𝑖=1

+
(𝑛 − 𝑘)(𝑡𝑛

1−𝑑 − 𝑡𝑘
1−𝑑)

(1 − 𝑑)(𝑡𝑛 − 𝑡𝑘)
) 

(4.5) 

 

In Equation 4.4, the parameter 𝑛 represents the total number of accesses for a document. 

The parameter 𝑑 is a decay parameter, which controls the overall shape of the power law 

function. For equations 4.4 and 4.5 in this work, the decay parameter was set to 0.1, which 

was experimentally determined in (Goodwin, Johnson, Cohen, Herskovic, & Bernstam, 

2011). Finally, the parameter 𝑡𝑛 represents the amount of time since the publication of a 

document. The desirability function in Equation 4.4 is an approximation that assumes that 

accesses are distributed evenly over time. This equation was used for the CiteULike, 
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Mendeley, and Scopus data sets since only the publication date and the number of accesses 

was known, but time of each individual access was not recorded. 

The desirability function in Equation 4.5 does not assume a uniform rate for the accesses. 

In this work, a fixed sized window was used which stores the last 𝑘  accesses for the 

documents. In this work, 𝑘 = 1 so only the last access day was stored. The influence of the 

recency effect is computed by the parameter ∑ 𝑡𝑖
−𝑑𝑘

𝑖=1 . The rest of the equation makes the 

same assumption as that of 4.4, which is that the document accesses are evenly distributed 

over the period of time 𝑡𝑛. The motivation for this function is that storing a time stamp for 

each document poses a computational challenge. For example, the PubMed search system 

processes millions of queries per day, which will produce many document clicks. In this 

case, each document click would require the storage of the time stamp for each access. This 

equation requires the storage of a fixed window of accesses, which eliminates (or at 

minimum allows for a priori knowledge of the storage and computational requirements for 

computing desirability) much of the computational burden and can be used in large 

systems. 

The click graph was used to compute degree centrality and PageRank for each document 

in the network. Chapter 2.2 provides an in-depth discussion of relevant graph theory 

concepts. The degree centrality metrics used in this study is shown in Equation 4.6. The 

parameter 𝑑𝑒𝑔(𝑣𝑖)  is the number of unique connections for the document 𝑣𝑖 . The 

parameter 𝑛  is the number of unique documents in the click graph. The parameter 𝑘 

represents the time since the publication of a given document and is used for normalization. 

In some domains, the 𝑘  parameter may not be necessary. In this study, the pairwise 

judgments were extracted from a retrieval system that ranks in reverse chronological order. 
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Recall that the rule to extract the pairwise judgments in this work was 𝑐𝑙𝑖𝑐𝑘 > 𝑠𝑘𝑖𝑝 𝑎𝑏𝑜𝑣𝑒. 

In this particular data set, the clicked document (with very few exceptions) will be older 

than the documents skipped above it. Thus, metrics that are correlated with the age of the 

document are likely to result in improved performance in this particular data set. For 

example, older documents will have many more chances to receive clicks than newer 

documents simply due to them being around longer. Subsequently, these older documents 

will have many more chances to be clicked along with other documents in response to the 

same query, which results in a bias where older documents will tend to have higher degree 

centralities. The desirability functions in Equations 4.4 and 4.5 normalize the score by 

taking into account the number of accesses and the age of the documents. Thus, for fair 

comparison and to remove bias from the age of the document, Equation 4.6 was used to 

calculate the degree centrality of the document while taking into account the age (𝑘) of the 

document. 

 

𝐶(𝑣𝑖) =
(
𝑑𝑒𝑔(𝑣𝑖)
(𝑛 − 1)

)

𝑘
 

(4.6) 

 

In addition to degree centrality, PageRank was computed for each document in the click 

graph (Page, et al., 1998). Equation 4.7 presents the PageRank function used in this work. 

The parameter 𝑣 ∈ 𝑉(𝑣𝑖) is the set of documents that are connected to the document 𝑣𝑖. 

The parameter 𝑃𝑅(𝑣) is the PageRank for a connected document 𝑣. The parameter 𝐿(𝑣) is 

the number of documents connected to 𝑣. The parameter 𝑘 represents the time since the 
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publication of a given document and was used for normalization as discussed previously. 

The PageRank algorithm is an iterative algorithm given that the PageRank score for a given 

document is based on the PageRank score of the connected documents. I used the Gephi 

API to calculate the PageRank values for the documents in the click graph (Bastian, et al., 

2009). The instantiation of Gephi’s PageRank algorithm has two tunable parameters: 

restart probability and epsilon. The restart probability is the probability of jumping to a 

random vertex in the graph (i.e. the random surfer model) and was set to 0.85. Epsilon is 

the convergence criteria and halts the PageRank computation for the click graph. This 

parameter was set to 0.001. 

 

𝑃𝑅(𝑣𝑖) =
∑

𝑃𝑅(𝑣)
𝐿(𝑣)𝑣𝑣∈𝑉(𝑣𝑖)

𝑘
 

(4.7) 

 

4.3.2 Descriptive analysis of document viewed during testing window 

This section analyzes the document accesses during the testing period from October 18, 

2012 to November 4, 2012. Additionally, this section analyzes the differences between the 

data sets used for predicting document accesses discussed in Section 4.3.1.1. Shown in 

Figure 4.54 is a histogram for the documents that were viewed (i.e. clicked or not clicked) 

by HAM-TMC users from October 18, 2012 to November 4, 2012 binned by publication 

year. In total 116,450 documents were viewed within this time frame. A small number of 

publications have a publication date of 2013 and were available ahead of the official print 

date. From the histogram, we see that the vast majority of viewed documents tended to be 
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newer documents. This is an unsurprising result since PubMed ranks by reverse 

chronological order and it is known that the vast majority of users only look at only 1-2 

pages of the search results (Islamaj Dogan, et al., 2009). 

 

 

 

Figure 4.54. Distribution for documents viewed by year 

 

Table 4.4 presents analysis of the information contained in each data set that is used for 

predicting accesses. The data set that contained the most information about the viewed 

documents was Mendeley, which contained information on 60.07% of the documents. The 

CiteULike data set contained very little information about the documents viewed. Overall, 

the four data sets contained information about 78.83% of the documents that were viewed 

in the test interval. 
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Table 4.4 

Information content of each data source 

Data set Percentage of documents viewed that were previously accessed 

Scopus 51.79% 

Mendeley 60.07% 

HAM-TMC 48.41% 

CiteULike 7.57% 

All data sets 78.83% 

 

Looking at the aggregate information in Table 4.4 can be deceptive. For example, Figure 

4.54 shows that a disproportionate number of views were for newer documents. If a data 

set contains a lot of information about recently published documents, then this data set 

would be particularly useful, as many pairwise judgments will involve newer documents. 

Figure 4.55 presents the number of documents viewed based on the year and the percentage 

of documents where a given data set had information about the viewed documents. For 

example, if 2,000 documents were viewed by PubMed users from October 18, 2012 to 

November 4, 2012 that had a publication date of 1995 and the Scopus data set had 

information about 1,000 documents, this would yield a percentage of 50%. The data points 

earlier than 1970 were omitted from the chart since these were relatively rare. Table 4.5 

provides the correlation between the information contained in each of the data sets. There 

is considerable difference in the information contained in the data sets. For example, the 
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Mendeley and Scopus coverage is highly correlated (0.8577). The HAM-TMC document 

coverage differs greatly from both Mendeley and Scopus. This difference is highlighted by 

Figure 4.56, which shows the viewed documents and the information content of the data 

sources from 2000-2013. Notably, the documents accessed from 2000-2013 contain 

93.31% of the views of the HAM-TMC users. In particular, the documents accessed from 

2011-2013 contain a disproportionate number of views. It is this period of accesses where 

the HAM-TMC data set had better coverage than both Scopus and Mendeley. 

 

 

 

Figure 4.55. Information content of data sources from 1970-2013 

 

Table 4.5 

Correlation between coverage of data sets 

 Scopus Mendeley HAM-TMC CiteULike 

Scopus NA 0.8577 0.1849 0.3148 

Mendeley 0.8577 NA 0.4153 0.4393 

HAM-TMC 0.1849 0.4153 NA 0.9188 
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CiteULike 0.3148 0.4393 0.9188 NA 

 

 

 

Figure 4.56. Information content of data sources from 2000-2013 

 

4.3.3 Results 

Table 4.6 presents the results for desirability computed on the Mendeley, Scopus, HAM-

TMC, and CiteULike data sets individually. Table 4.7 presents the results of using JIF for 

predicting document accesses. Table 4.8 presents the results of using degree centrality and 

PageRank on the click graph for predicting accesses. Finally, Table 4.9 presents the results 

for existing IR models. 
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Table 4.6 

Desirability performance from different data sets 

Data sources Accuracy and coverage Accuracy with ties 

broken Accuracy Coverage Harmonic 

mean 

Mendeley 60.52% 71.27% 0.6546 57.54% 

Scopus 70.49% 70.10% 0.7029 64.36% 

HAM-TMC 63.02% 73.31% 0.6778 59.54% 

CiteULike 69.22% 4.703% 0.0881 50.90% 

 

Table 4.7 

Performance from JIF 

Data sources Accuracy and coverage Accuracy with ties 

broken Accuracy Coverage Harmonic 

mean 

JIF 57.28% 95.78% 0.7178 56.97% 

 

Table 4.8 

Performance from graph metrics computed on click graph 

Data sources Accuracy and coverage Accuracy with ties 

broken Accuracy Coverage Harmonic 

mean 

Degree centrality 

(normalized by date) 

57.68% 68.48% 0.6262 55.26% 

 

PageRank 

(normalized by date) 
58.15% 68.48% 0.6289 55.58% 

 

 



 

 151  

 

 

Table 4.9 

Results for existing document ranking models 

Model  Accuracy with ties broken 

TF-IDF 64.20% 

DFR_BE 63.90% 

DFR_IDF 63.90% 

 

In terms of accuracy, the click graph metrics and desirability metrics using the HAM-TMC, 

Mendeley, and Scopus data sets outperformed JIF. However, JIF had a large coverage of 

95.78%, which gave it a higher harmonic mean. The Scopus data set had the highest 

harmonic mean of the document access data sources. An unpaired t-test found that the 

results of the Scopus data set and the JIF in terms of the harmonic mean were not 

statistically significant  (p value > 0.05). 

When looking at the accuracy with ties broken at random, desirability computed on the 

Scopus data set performed the highest of any of the methods in Tables 4.6-4.9 with an 

accuracy of 64.36%. A t-test found that the accuracy with ties broken at random for 

desirability computed using the Scopus data set was statistically significant compared to 

the performance of the click graph metrics and the JIF metric in terms. 

All of the existing IR models outperformed the JIF metric and metrics computed from the 

click graph. In both cases, a t-test found the performance to be statistically significant (p < 

0.05). The existing IR models outperformed desirability computed on the HAM-TMC, 

Mendeley, and CiteULike data sets. The performance for each of the existing IR models 
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was statistically significant as compared to the performance of desirability computed on 

the HAM-TMC, Mendeley, and CiteULike data sets individually (p < 0.05). Desirability 

computed on the Scopus data set outperformed all of the existing IR models. However, the 

increase in performance was small (e.g. 0.16% over TF-IDF) and was not statistically 

significant (p > 0.05). 

In the next set of experiments, I explore combining the data sources to improve coverage 

and accuracy for desirability. Table 4.9 presents the results of the experiments. Overall, the 

combination experiments improved both accuracy and coverage. The best performance, in 

terms of the harmonic mean was found using the combination of the CiteULike, HAM-

TMC, Mendeley, and Scopus data sets, which attained a harmonic mean of 0.7877. A t-

test found that the results were statistically significant as compared to the JIF metric, 

desirability computed on individual data sets, and the metrics computed on the click graph 

(p < 0.05). 

 

Table 4.10 

Desirability results from combining multiple data sources 

Data sources Accuracy and coverage Accuracy 

with ties 

broken 
Accuracy Coverage Harmonic 

mean 

CiteULike, HAM-TMC, Mendeley, 

Scopus 

69.41% 91.19% 0.7882 67.70% 

CiteULike, HAM-TMC, Mendeley 63.86% 88.38% 0.7415 62.25% 

CiteULike, HAM-TMC, Scopus 70.34% 88.55% 0.7840 68.01% 

CiteULike, HAM-TMC 62.86% 75.44% 0.6858 59.70% 

CiteULike, Scopus 71.32% 69.62% 0.7046 64.84% 

CiteULike, Mendeley 61.77% 72.83% 0.6685 58.57% 

HAM-TMC, Scopus 69.77% 88.46% 0.7801 67.49% 

HAM-TMC, Mendeley 61.77% 72.83% 0.6685 58.57% 

HAM-TMC, Scopus, Mendeley 68.53% 91.29% 0.7829 66.92% 
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Mendeley, Scopus 67.96% 82.06% 0.7435 64.74% 

 

In terms of accuracy with the ties broken at random, desirability computed on the 

CiteULike, HAM-TMC, and Scopus data set was the best with an accuracy of 68.01%. 

This combination outperformed the CiteULike, HAM-TMC, Mendeley, and Scopus data, 

which was the best in terms of harmonic mean, by 0.31%, which was not statistically 

significant. The combination out performed desirability computed on the individual data 

sets from Table 4.6 for Mendeley (+10.47%), HAM-TMC (+8.56%), and CiteULike 

(+17.92%) (p < 0.05). The combination outperformed desirability computed on the Scopus 

data set by 3.65%, but this increase was not statistically significant (p > 0.05). Similarly, 

the combination improved performance over TF-IDF by 3.81%, but this increase was not 

statistically significant (p > 0.05). Desirability computed on the CiteULike, HAM-TMC, 

and Scopus combination outperformed the DFR_BE (+4.11%) and DFR_IDF (4.11%) 

document ranking functions from Table 4.9. This performance increase was found to be 

statistically significant. 

4.3.4 Discussion 

 

In this section, I performed an evaluation of using desirability computed on multiple data 

sources for predicting document accesses. For summarization purposes, I will only discuss 

the performance for accuracy with ties broken at random. The performance of desirability 

was compared with JIF, graph metrics computed on the click graph, and existing IR 

models. I found that desirability computed on the Scopus data set outperformed JIF, the 

existing IR models, and desirability computed on the other individual data sets. A t-test 

found that the performance increase of desirability computed on the Scopus data set was 
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statistically significant for JIF and desirability computed on the individual data sets (p < 

0.05). However, the performance increase over the existing IR models was not statistically 

significant (p > 0.05). In the next set of experiments, I looked at the possible combinations 

of the individual data sets for computing desirability. The best performing combination 

was the CiteULike, HAM-TMC, and Scopus data sets. The combination of CiteULike, 

HAM-TMC, and Scopus outperformed desirability computed on the Scopus data set by 

3.65%, but a t-test found that this improvement was not statistically significant (p > 0.05). 

Similarly, the combination outperformed TF-IDF by 3.81%, but again was found to not be 

statistically significant (p > 0.05). The combination outperformed DFR_BE and DFR_IDF 

by 4.11%, which was found to be statistically significant (p < 0.05). 

The primary weakness of this study is the availability of data itself. The goal of this study 

was to show that desirability had utility for document ranking. In that aim, I was successful. 

For example, I showed that desirability computed on the CiteULike, HAM-TMC, and 

Scopus data sets outperformed the existing document ranking algorithms (though the 

increase over TF-IDF was not statistically significant). This is a very interesting finding as 

TF-IDF (though dated) and BM25 are competitive ranking algorithms. Additionally, 

desirability is independent of the query so it relies on information not present in the query 

or in the document text, which means that it provides information that can be utilized in 

conjunction with traditional query dependent metrics for ranking. However, the study was 

not able to answer precisely how well desirability can perform if adequate data are 

available. With all of the available data sets combined, a coverage of 91.19% was attained. 

However, when looking at individual data sets, the document accesses from HAM-TMC 

alone attained a coverage of only 73.31%. This means that while a large number of accesses 
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were available from the historical query logs, there were still 26.69% of the data for which 

there was no access information. Referring back to Figure 4.54, I showed that a 

disproportionate amount of the viewed documents were from 2013. This is unsurprising as 

PubMed ranks by reverse chronological order. The coverage of the Scopus data set 

decreased dramatically for 2013 and had less than 10% coverage for that year as shown in 

Figure 4.56. This is unsurprising as it takes time for authors to generate new papers that 

cite newly published works. However, this is exactly where click data such as HAM-TMC 

can be very valuable. Once a paper is published, information can be quickly gathered about 

their usage if a service has the number of users as PubMed. To fully understand the utility 

of desirability experiments and especially the utility of leveraging document access 

information for ranking studies must be conducted over much larger data sets. To 

summarize, the data sparseness problem precludes drawing a definitive conclusion on how 

much performance can be squeezed from click data alone. However, there is an optimistic 

interpretation available. Even though the available data in this experiment were sparse, I 

was able to show that desirability was competitive with existing and well-established 

document ranking functions. 

In this study, I showed that desirability was competitive with existing document ranking 

functions. However, desirability is a query independent (i.e. prior probability) score and is 

intended for use in conjunction with a query dependent score such as that produced by 

BM25 or TF-IDF. Specifically, this study did left unanswered the question of how much 

improvement can be gained by using a non-uniform prior in conjunction with a query 

dependent ranking function. I explore this question in Chapter 6.  
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Chapter 5: Predicting Document Clicks Using Information Scent 

According to the ACT-R theory of human memory, memory items are retrieved based on 

the prior probability and the current context. Chapter 4 presented an in-depth investigation 

of estimating the prior probability of a document being accessed and using this prior 

probability function for predicting document accesses. This chapter seeks to predict 

document accesses using context.  

Before proceeding, I discuss the use of the term “context” in the literature as it pertains to 

IR. There are many different types of context (for in-depth discussion see (Ingwersen & 

Jarvelin, 2010)). The most straightforward example of context is the terms that comprise 

the user query. Based on the context provided by the user query, many IR systems rank the 

documents based on a measure of similarity between the documents in the corpora and the 

user query (D. L. LEE, Chuang, & Seamons, 1997). Another example of context that can 

be used in an IR system is information about the user who issued the query (Pohl, Radlinski, 

& Joachims, 2007). This work uses the user query to define the context. 

Recall from previous discussions that Pirolli defines information scent as a rational analysis 

of the categorization of cues (P. Pirolli, 2009). The information scent calculation is a 

prediction of how likely a given user is to click a document based on the context (cues from 

the text of the document and the user’s information need). The click predictions are based 

on the interaction (through a spreading activation mechanism) of the textual inputs (such 
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as title of the documents) and the information need of the user (which is represented as the 

user query). 

The Information Foraging Theory extends the ACT-R theory to predict the browsing 

behavior of users. The Information Foraging Theory’s information scent calculation uses 

ACT-R’s spreading activation theory, which ACT-R uses for predicting the memory items 

that will most likely be needed given the current context. The Information Foraging Theory 

uses the spreading activation mechanism to compute the information scent for a given 

document or URL given the user’s information need (query used as proxy) and the 

information present to the user on the screen.  

This work makes several contributions. From an applied viewpoint, this work is the first 

attempt to apply insights from computational cognitive modeling to model users as they 

interact with document retrieval systems in the biomedical domain. The previous 

applications of the Information Foraging Theory were applied entirely outside of the 

biomedical domain (Budiu, Pirolli, & Hong, 2009; Card, et al., 2001; Chi, Pirolli, Chen, et 

al., 2001; Chi, Pirolli, & Pitkow, 2001; Hong, Chi, Budiu, Pirolli, & Nelson, 2008; 

Huberman, et al., 1998; P. Pirolli, 2005, 2009; P. Pirolli & Card, 1995, 1999b; P. Pirolli & 

W-T., 2006; P. L. Pirolli & Anderson, 1985; P. L. Pirolli & Pitkow, 2000). Additionally, 

the majority of past studies using information scent for click prediction modeled the general 

user population rather than expert users. For example, only recently have researchers 

explored using information scent to model expert behavior such as finding errors in 

programs (Lawrance, et al., 2007b; Lawrance, Bellamy, Burnett, & Recker, 2008; 

Lawrance, et al., 2013). The user population in this study, constrained to users in the Texas 

Medical Center, has a high percentage of expert users since the user population is 
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composed primarily of graduate students, clinicians, and researchers. Additionally, this 

chapter presents an updated mathematical framework for calculating information scent 

based on the mathematical framework of language models, which provides an 

interpretation of information scent that more closely adheres to the underlying Bayesian 

mathematical framework of the ACT-R theory and Information Foraging Theory.  

The remainder of this chapter is organized as follows. Section 5.1 presents an overview of 

using information scent to model user interactions with the PubMed retrieval system. 

Section 5.2 presents an overview of the mathematical frameworks for computing 

information scent. Section 5.3 discusses how spreading activation handles context 

sensitivity. Section 5.4 presents the methods which discuss the creation of the corpus 

statistics used in this work as well as the evaluation method used in this work. Section 5.5 

presents the results of the experiments. Finally, Section 5.6 presents the discussion of the 

work in this chapter. 

5.1 Overview of Modeling Biomedical Document Accesses Using Information Scent 

Figure 5.1 presents the information displayed for a typical document on PubMed. 

Examples of information that could influence whether or not a given document is clicked 

includes the title, date, authors, and journal name. The evidence used for computing 

information scent in this work is the title of the document. Future work will explore using 

additional information visible to the user through the PubMed interface, such as the authors 

and the journal in which the document was published. 
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Figure 5.1. Example result from PubMed 

 

Figure 5.2 presents an example of applying information scent to predict the document 

accesses of users browsing PubMed. In this example, the user has the high-level 

information need of finding documents that discuss predicting document accesses. The user 

compiles the information need into the query “predicting document accesses” which is 

submitted to the PubMed IR system. PubMed subsequently returns a list of six documents. 

According to the assumptions of the Information Foraging Theory, which is supported by 

studies of human browsing behavior (Granka, Joachims, & Gay, 2004), users browse the 

set of returned documents in descending order5.  In this example, the user looks at the first 

item that is returned, which is the document “Predicting biomedical document access as a 

function of past use” (Goodwin, et al., 2011). The network in Figure 5.2 represents how 

the information scent is calculated for the first document. 

 

                                                 
5 The Information Foraging Theory contains additional models that predict the amount of 

time a user will spend within a page of results before abandoning the result set or issuing 

another query (Huberman, et al., 1998). I did not explore this aspect of the Information 

Foraging Theory in this dissertation, but this is an area for future exploration. 
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Figure 5.2. Mapping information scent to PubMed search 

 

The network in Figure 5.2 is nearly identical to the network used to model spreading 

activation in human memory by the ACT-R theory of human memory. The only noted 

difference is the direction of the inference. The ACT-R model of human memory models 

the memory probe as originating from the external environment. For example, a person 

hears the phrase “my lawyer is a shark” and the activation is modeled as propagating from 

the nodes “lawyer” and “shark”. In the case of information scent, the information need 

(query terms used as proxy) is modeled as a goal state (e.g. finding documents about the 

goal (information need)) in the user’s mind. In this case, the information scent calculation 

models the activation as flowing from the proximal cues (e.g. title of an article) to the 
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information need. In terms of cognitive modeling, the goal is satisfied as the user finds 

documents that contain information about the information need. That is, the activation level 

of the goal represents the utility of the given link (e.g. how likely is a given link to satisfy 

the information need) and the user clicks the links with high utility values. 

5.2 Overview of Information Scent Calculation 

This section presents an overview of information scent, discusses previous 

implementations, and presents the new interpretation based on recent research in 

probabilistic IR systems. Section 5.2.1 presents the mathematical framework that underlies 

information scent. Section 5.2.2 presents an overview of the previous implementations of 

information scent. Finally, Section 5.2.3 presents the new interpretation of information 

scent. 

5.2.1 Mathematical framework for information scent 

The information scent component of the Information Foraging Theory is derived from the 

log-odds form of Bayes theorem provided in Equation 5.1. The symbol 𝐷 represents the 

terms in a proximal cue. In this work the proximal cue is the title of the document, but it 

can include other information such as the authors or journal in which the document was 

published. The symbol 𝑄 represents the user query, which is a representation of the user’s 

information need. In Equation 5.1, the component log (
𝑃(𝑄)

𝑃(�̅�)
) is the prior odds of a given 

information need. The information scent calculation assumes that the prior odds are 

uniform which reduces the calculation to Equation 5.2. The component log (
𝑃(𝐷|𝑄)

𝑃(𝐷|�̅�)
) 

represents the log likelihood ratio. 
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log (
𝑃(𝑄|𝐷)

𝑃(�̅�|𝐷)
) = log (

𝑃(𝑄)

𝑃(�̅�)
) + log (

𝑃(𝐷|𝑄)

𝑃(𝐷|�̅�)
) 

(5.1) 

log (
𝑃(𝑄|𝐷)

𝑃(�̅�|𝐷)
) ≈ log (

𝑃(𝐷|𝑄)

𝑃(𝐷|�̅�)
) 

(5.2) 

 

The information scent calculation in Information Foraging Theory makes the simplifying 

assumption that the base rate probability of an information need 𝑄 occurring will not vary 

substantially from when the information need is present and a given item 𝐷 is not needed. 

In other they assert the following: 𝑃(𝐷|�̅�) ≈ 𝑃(𝑄). This reduces the log odd calculation 

to log (
𝑃(𝐷|𝑄)
𝑃(𝑄)

). After making the simplifying assumption, the following transformation is 

applied. 

 

𝑃(𝐷|𝑄)

𝑃(𝐷)
=
𝑃(𝑄 ∩ 𝐷)

𝑃(𝐷)
∗

1

𝑃(𝑄)
=
𝑃(𝑄|𝐷)

𝑃(𝑄)
 

 

The simplifying assumptions and the transformation yield the association strength (𝑆𝑗𝑖) 

equation in Equation 5.3. Equation 5.4 presents the final activation (𝐴𝑖) equation used to 

calculate information scent. 

 

𝑆𝑗𝑖 ≈ log (
𝑃(𝑖|𝑗)

𝑃(𝑖)
)   

(5.3) 
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𝐴𝑖 =∑log (
𝑃(𝑖|𝑗)

𝑃(𝑖)
)  

𝑗𝜖𝑄

 
(5.4) 

 

Given the simplifying assumptions made by the Information Foraging Theory, the 

likelihood estimation is equivalent to pointwise mutual information (PMI) (Equation 5.5). 

PMI has shown promising correlations with human similarity judgments even when 

compared with more sophisticated methods such as latent semantic analysis (LSA) 

(Recchia & Jones, 2009; P. D. Turney, 2001b). Numerous studies utilized PMI as a 

component in IR systems with its primary role being finding synonyms and related terms 

(Aminul & Inkpen, 2006; Terra & Clarke, 2004; P. Turney, 2001). In addition, although 

PMI is a component in some ranking functions, it lacks document length normalization and 

a term importance measure which are commonly incorporated into ranking functions. For 

the purposes of document ranking, an interpretation of the likelihood component of Bayes 

Theorem that avoids a simplification to PMI while incorporating term importance and 

document length normalization would be ideal. I present this interpretation in Section 5.2.2. 

 

𝑝𝑚𝑖(𝑥; 𝑦) = log (
𝑝(𝑦|𝑥)

𝑝(𝑦)
) 

(5.5) 

 

 

 

 

5.2.2 Previous information scent implementations 
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The actual implementations of the information scent calculation made additional 

assumptions than the reduction to PMI discussed previously in Section 5.2.1. This goal of 

this section is to discuss the actual implementation of the mathematical framework 

presented in the previous section. 

Many implementations of Information Foraging Theory have been developed within the 

ACT-R environment (P. Pirolli, 2005; P. Pirolli & Card, 1998, 1999a; P. Pirolli, Chi, & 

Farahat, 2005; P. Pirolli & W-T., 2006). In these instances, the information scent 

calculation relied upon ACT-R’s mathematical framework. In other instances, Pirolli 

implemented information scent using TF-IDF (Chi, Pirolli, Chen, et al., 2001). 

Additionally, Pirolli has explored using alternative models such as LSA for calculating 

information scent (Budiu, Royer, & Pirolli, 2007). 

The implementation of Information Foraging Theory is not alone in its loose interpretation 

of the underlying Bayesian theory of ACT-R. First, ACT-R makes assumptions that reduce 

the strength of association calculation to PMI (Equation 5.5). ACT-R implementations 

further simplify the strength of association calculation by setting the Sij value to 1 for query 

terms that are not present in the document. If the term is present, then the strength depends 

on the ratio of the number of documents that contain a term and the total number of 

documents in the corpus. In other words, ACT-R approximates the 𝑆𝑖𝑗 using the standard 

IDF equation shown in Equation 5.6. Thus, the actual implementation of the ACT-R 

activation function is described in Equation 5.7. This interpretation is extremely close to 

the standard TF-IDF interpretation shown in Equation 5.8, but lacks a length normalization 

and TF component. 
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𝐼𝐷𝐹 = log (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚
) 

(5.6) 

𝐴𝑖 = ∑ 𝐼𝐷𝐹𝑗
𝑗𝜖𝑄∩𝐷

 
(5.7) 

𝑇𝐹 − 𝐼𝐷𝐹 = ∑
𝑡𝑓

|𝐷|
∗ 𝑖𝑑𝑓

𝑡∈𝑞∩𝐷

 
(5.8) 

  

An additional extension to the ACT-R theory called partial matching enables synonym 

matching through partial matching. In the ACT-R model, the partial matching mechanism 

enabled modeling tasks such as memory retrieval errors (Lebiere, Anderson, & Reder, 

1994). Historically, partial matching is not generally used in the Information Foraging 

Theory implementations. Equation 5.9 presents the ACT-R function with partial 

matching6. The partial matching works by assigning scores to semantically related terms. 

Numerous methods such as LSA and PMI can compute a semantic relatedness score. The 

𝑀𝑘𝑖 parameter reflects the semantic relatedness between an element in the goal (in this case 

a query term) and a given memory element (a term in a document in this case). In the ACT-

R framework, these values take on the range [−1,0]. The value -1 is used when there is no 

similarity between items. The 𝑃𝑘  parameter is known as the mismatch penalty, which 

weights the amount of evidence given to partial matches. Equation 5.10 shows the equation 

implemented in this work.  

 

                                                 
6 In this chapter, the prior probability (𝐵𝑖) is assumed equal for each document so this 

parameter can be ignored. The next chapter explores using a non-uniform 𝐵𝑖. 
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𝐴𝑖 = 𝐵𝑖 +∑𝑊𝑗𝑆𝑗𝑖 +∑𝑃𝑘𝑀𝑘𝑖
𝑘𝑗

 
(5.9) 

𝐴𝑖 =∑𝐼𝐷𝐹𝑗
𝑗𝜖𝑄

+∑𝑃𝑘𝑀𝑘𝑖
𝑘

 
(5.10) 

 

5.2.3 Interpretation of information scent based on language models 

Two methods are explored in the work for estimating 𝑃(𝑄|𝐷) based on the mathematical 

framework of language models. Previously, I presented an introduction to language models 

in Chapter 2.3.1. Equation 5.11 presents the first method which is based on Dirichlet 

smoothing (MacKay & Peto, 1995; C. Zhai & Lafferty, 2002). The parameter 𝑤 represents 

an element of the query 𝑄. For the purpose of information scent, 𝐷 represents the proximal 

cue. The proximal cue that is used in this work is the document title since this information 

is visible to the user and influences whether or not a document is clicked. Additional 

information is available to the user such as the journal in which the article is published and 

the authors of the paper. These additional cues are not investigated in this dissertation and 

will be the focus of future research. Equation 5.12 and Equation 5.13 present the maximum 

likelihood estimate for the document language model and the background language model 

respectively. The maximum likelihood estimate in Equation 5.13 calculates the probability 

𝑝(𝑤|𝐷) based on the number times 𝑤  occurs in the proximal cue 𝐷 . The background 

language model shown in Equation 5.13 is based on the frequency of occurrence of 𝑤 and 

the frequency of all terms in the collection 𝐶 . The parameter 𝜇  is the pseudo count 

parameter, which controls the amount of smoothing. 
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𝑃(𝑤|𝐷) =
𝑃(𝑤|𝐷) + 𝜇𝑃(𝑤|𝐶)

|𝐷| + 𝜇
 

(5.11) 

𝑃(𝑤|𝐷) ≈ 𝑃𝑀𝐿(𝑤|𝐷) =
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑤, 𝐷)

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝐷)
 

(5.12) 

𝑃(𝑤|𝐶) ≈ 𝑃𝑀𝐿(𝑤|𝐶) =
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑤)

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝐶)
 

(5.13) 

 

The second version of the spreading activation model is based on the generalized 

framework for language model smoothing using graphs, which I previously discussed in 

Section 2.3.1. This is the analogue to ACT-R’s partial matching discussed in Section 5.2.2. 

In Equation 5.14, the language model in Equation 5.11 is updated with evidence from 

sematic relatedness scores, which enables partial matching. Conceptually, one can view 

this as combining a score, which reflects the likelihood of an element of the query 𝑤 given 

the proximal cue (e.g. document title) with the likelihood of the neighbors of 𝑤 given the 

proximal cue. The semantic relatedness measure can be computed using several different 

methods such as LSA or topic modeling. Equation 5.15 presents the degree centrality 

metric used in this work, which is equivalent to the generalized measure for computing 

degree centrality in weighted networks (Barrat, Barthelemy, Pastor-Satorras, & 

Vespignani, 2004). The 𝑃(𝑣|𝐷) for the connected term 𝑣  is calculated using Equation 

5.11. 

 

𝑃(𝑤|𝐷) = (1 − 𝜆)�̇�(𝑤|𝐷) + 𝜆∑
𝑤(𝑤, 𝑣)

𝐷𝑒𝑔(𝑣)
𝑃(𝑣|𝐷)

𝑣𝜖𝑉

 
(5.14) 
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𝐷𝑒𝑔(𝑣) = ∑𝑤(𝑢, 𝑣)

𝑢∈𝑉

 
(5.15) 

 

5.3 Understanding Context Sensitivity and Spreading Activation 

The ACT-R theory of human memory has primarily focused on the role of spreading 

activation in modeling memory retrieval and, with some exceptions (Budiu, 2001; Budiu 

& Anderson, 2000, 2002, 2004, 2006; Guhe, Smaill, & Pease, 2010), has not focused on 

the role of spreading activation in modeling text comprehension. In contrast, Kintsch has 

deeply explored spreading activation models for developing a computational theory of text 

comprehension as part of his construction-integration model (W Kintsch, 1998). The 

purpose of this section is to look at spreading activation through the lens of Kintch’s theory 

to gain additional insight into how spreading activation models handle context using an 

illustrative example. 

In this work and in Kintsch’s construction-integration theory, the background knowledge 

of a user is constructed of a network of propositions (Kintsch refers to this as the 

“knowledge network”), which are theorized to be the fundamental unit of knowledge in 

theories of comprehension (W Kintsch, 1998). In this work, as well as in much of Kitsch’s 

work, the propositions are unlabeled and encode the number of times that the terms 

occurred in the same context (the context in this work is terms co-occurring within the 

same abstract).  

According to Kintsch, the meaning of a node in the network is based on its position in the 

network. That is, the meaning of the node is based on the strength of the connections of the 

given node with its direct neighbors in the network and indirectly through nodes that are 



 

 169  

connected to the direct neighbors. Spreading activation is the theorized mechanism by 

which activation values are computed on the network given a probe. Given a probe (e.g. 

query term(s)), the spreading activation mechanism computes the activation of the 

connected nodes by aggregating the association strengths between the probe and the nodes 

connected to the probe. According to Kintsch, the spreading activation mechanism plays 

an integral role in text comprehension. This role is described by Kintsch by the following 

(W Kintsch, 1998). 

Knowledge nets thus imply a commitment to a radical constructionist position in 

the controversy about the mental representation of word meanings. In a mental 

lexicon, one looks up the meaning of a word. In a knowledge net, there is nothing 

to look up. Meaning has to be constructed by activating nodes in the neighborhood 

of a word. This activation process is probabilistic, with activation probabilities 

being proportional to the strengths of connections among the nodes, and it may 

continue for a variable amount of time, spreading outward into the knowledge net 

from the source node. The meaning of the source word is then, the set of activated 

nodes in the knowledge net. 

 (W Kintsch, 1998) 

To summarize, Kintsch views the meaning construction process and thus the 

comprehension of concepts to be highly contextual. In this framework, the meaning of 

concepts is not static and simply retrieved, but is constructed and the meaning, which is an 

activated sub-network, will vary based upon context.   

The significance of Kintsch’s work is that it provides a more general view of spreading 

activation than that of the ACT-R theory of human memory. In the ACT-R theory of human 
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memory, the spreading activation is theorized to be context-sensitive (J. Anderson, 2007; 

J. R. Anderson & Bower, 1973), but plays the role of calculating the activation values of 

the nodes connected to the memory probe to determine the single item that will be retrieved 

from long-term memory. Within Kintsch’s framework, the spreading activation model 

creates a sub-network that represents the meaning of the memory probe which facilitates 

text comprehension.  

In the remainder of this section, I provide a demonstration of the context sensitivity of 

spreading activation using the Wikipedia abstracts (first two lines of a Wikipedia article). 

In this example, I use the spreading activation model based on language models presented 

previously in Equation 5.14. In this example, I explore the term space of the terms “bank” 

and “money”. Table 5.1 presents the top twenty terms associated with the terms “bank” 

and “money”. The term “bank” is composed of several different meanings which includes 

“financial institution”, “body of land near a river”, and “location known as West Bank”. 

The related terms for the concept “money” are primarily synonyms and activities done with 

money such as lending. Figure 5.3 presents a graphical representation of the sub-network 

formed by the terms “bank” and “money”. The activation values in this particular case are 

not context sensitive (i.e. the activation values are computed based on the terms “bank” 

and “money” in isolation of each other). 

 

Table 5.1 

Top 20 activated terms for “bank” and “money” in decreasing order of activation value 

Terms for bank Terms for money 

banking, nablus, theban, ramallah, banco, 

savings, banque, szczecin, jenin, krka, 

laundering, purses, pga, raise, banknotes, 

monetary, totalling, currency, majors, 
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regulator, kolpa, sava, hebron, tulkarm, 

luxor, bireh, hsbc, drava, banks 

raises, lending, payment, cash, sums, 

interbank, fraud, borrow, borrowing, scam, 

debt 

 

 

 

Figure 5.3. Sub-network created by the terms bank and money with independent 

activation calculation. The node size represents the activation value. The color of the 

node is on the scale high (red) to low (blue) activation. The line width represents the 

number of times the two terms co-occurred. 

 

The symbol ⨁ is used here to denote the combination of two terms. Table 5.2 presents the 

top twenty terms for the combination bank ⨁ money. In this case, the spreading activation 

algorithm suppressed the unwanted meanings of the term “bank” such as the “location 
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known as West Bank”. The top terms deal primarily with the desired “banking as a financial 

institution” meaning. Figure 5.4 presents the same sub-graph as Figure 5.3, but in this case, 

the node size and colors reflect the activation values from the combination bank ⨁ money. 

With a cursory glance, it is apparent that the combination bank ⨁ money has suppressed 

many of the unwanted terms. In mapping this example back to Kintch’s view, the 

comprehension of the combination bank ⨁ money is the subnetwork in Figure 5.4 with the 

activation values of the nodes in the network representing the level of contribution of each 

term to the combination’s meaning. 

 

Table 5.2  

Top 20 activated concepts for Bank ⨁ money in descending order of activation value 

banknotes, banking, monetary, savings, laundering, currency, deposit, lending, banks, 

loans, loan, interbank, liquidity, payment, robbery, financing, assets, financial, 

depositors, bankers 
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Figure 5.4. Sub-network created by the terms bank and money with context dependent 

activation. The node sizes reflect the activation value. The color of the node is on the 

scale high (red) to low (blue) activation. The line width represents the number of times 

the two terms co-occurred. 

 

To further illustrate the effect of context sensitivity, I manually categorized the top 20 terms 

for the terms “bank” and “money” into topics (presented in Table 5.3). If a term (e.g. 

“purses”) would require the creation of a category where it would be the only instance in 

that category, I placed it into the “Other concepts” category for the purpose of this 

illustration.  
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Table 5.3 

Manual term classification 

Financial institution Banking, banco, savings, banque, 

regulator, hsbc, laundering, banknotes, 

lending, interbank, borrow, borrowing, 

deposit, loans, robbery, financing, bankers, 

depositors, assets 

West bank Nablus, Ramallah, jenin, hebron, tulkarm, 

bireh 

Thebes Theban, luxor 

River Krka, kolpa, sava, drava 

Name or type of money Monetary, currency, payment, cash, debt, 

liquidity, financial 

Tasks done with money Raise, totaling, raises, sums, fraud, scam 

Other concepts Szczecin, majors, pga, purses  

 

Figure 5.5 presents the activation values for each category from Table 5.3 for the probes 

“bank” and “money” in isolation of each other. For the term “bank”, the “financial 

institution” meaning comprises approximately 2% of the total possible activation. From 

Figure 5.5, it is noticeable that the term “bank”, while being predominately composed of 

the “financial institution” meaning, is spread across the other meanings of the term. Figure 

5.6 compares the activation values for the combination bank ⨁ money and the terms 

“bank” and “money” in isolation. The combination bank ⨁ money suppressed the majority 

of the unwanted meanings such as “location known as West Bank” and “body of land near 

a river”. Most notable is the high concentration of the activation values for the category 

“financial institution”. In this case, the concentration of activation for the “financial 

institution” category was increased to nearly 20% from the maximum of around 2% for the 

“bank” term alone. 
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Figure 5.5. Activation values by category for bank and money 

 

 
 

Figure 5.6. Activation values by category for bank, money, and bank ⨁ money 
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5.4 Methods 

5.4.1 Design of experiments 

Figure 5.7 presents an overview of an experiment conducted for one query from the HAM-

TMC pairwise judgment data set using information scent. In the experiments, the 

“information scent calculation” module in Figure 5.7 was replaced with a variation of the 

information scent calculation in this work. The experiment in Figure 5.7 relied upon the 

HAM-TMC pairwise judgment data set, which contained the query that was issued, the 

documents clicked by HAM-TMC PubMed users, and the pairwise judgments extracted 

for the documents that were clicked. I previously discussed the method for extracting 

pairwise judgments and using them to evaluate IR algorithms in Section 2.4.2. As a review, 

I extracted two sets of pairwise judgments for evaluating the models in this work. I 

extracted the first set of pairwise judgments between documents that were clicked and 

documents that were not clicked. The goal of this set of pairwise judgments was to evaluate 

how well a given model could predict the documents that receive clicks and is referred to 

as the document click pairwise judgments in the remainder of this chapter. The second set 

of pairwise judgments was extracted between documents that were downloaded and 

documents that were not downloaded. The goal of this set of pairwise judgments was to 

evaluate how well a given model could predict document clicks that resulted in a download 

and is referred to as the document download pairwise judgments in the remainder of this 

chapter. The motivation for the document download pairwise judgment data set was to 

determine how well the information scent models could predict accesses that resulted in 

downloads since downloads could be considered a stronger signal of relevance than 
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document clicks alone. For example, a user can click a link for a document, view the 

abstract, and determine from that abstract text that they are not interested in reading the 

full text. A request for the full text is not necessarily a relevance judgment, but is an 

indication that the user wanted to read more of the document than just the abstract. For all 

of the approaches, the documents that the HAM-TMC users viewed were assigned a 

ranking score by one of the models in the experiments. The ranking scores were used to 

determine how many of the extracted pairwise judgments from the document download 

pairwise judgment data set or document click pairwise judgment data set were correctly 

ordered (e.g., documentA is preferred over documentB) based on the ranking scores. 

 

 

 

Figure 5.7. Experiment for computing information scent 
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I used a sliding window for evaluating all of the models in this work. In each window, I 

divided the data into training and test sets. The algorithms used in this work rely on corpus 

statistics such as IDF. The corpus statistics for all of the models were computed using the 

titles and abstracts from the MEDLINE corpus. I utilized the stop word list generated by 

Salton and Buckley for the SMART information retrieval system for calculating the corpus 

statistics (Salton, 1971). Some of the information scent models required the use of a 

semantic relatedness measure. The semantic relatedness measures are discussed in Section 

5.4.2. In the training period, the information sent model used the corpus statistics to 

compute the information scent score for the documents, which were subsequently 

evaluated using the pairwise judgments extracted from the test sets. Each test set was 

comprised of one of the days from the HAM-TMC pairwise judgment data set. If the test 

window was day 𝑁 then the training set was comprised of corpus statistics on day 𝑁 or 

earlier. The data used during the training window was composed of documents published 

on days 𝑛 or earlier because a document has to be in the database in order to be returned in 

response to the query therefore it is reasonable to assume that the corpus statistics should 

reflect all of the documents currently in the database. Figure 5.8 presents an example of 

how the sliding window could be used to evaluate the information scent model over each 

day in the HAM-TMC pairwise judgment data set. 
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Figure 5.8. Sliding window for calculating information scent 

 

The pairwise judgments were extracted from the query logs of HAM-TMC users, which 

captured their interactions with the PubMed IR system from October 18, 2012 to November 

4, 2012 (19 days). I will refer to this data set as the HAM-TMC pairwise judgment data 

set. Some of the information scent models had free parameters that required tuning for a 

particular data set. To tune the parameters, I divided the HAM-TMC pairwise judgment 

data set into 50% for parameter tuning and 50% for evaluation. This resulted in nine 

windows for parameter tuning (October 18, 2012-October 26, 2012) experiments and nine 

windows for evaluation (October 27, 2012-November 4, 2012). Table 5.4 presents an 

overview of the number of pairwise judgments for the parameter tuning experiments and 

evaluation. 

Information 
scent

Corpus statistics from 

October 1, 2012 or earlier

Pairwise judgments extracted

October 18, 2012

Information 
scent

Information 
scent

Corpus statistics from

November 3, 2012 or earlier

Pairwise judgments extracted

November 4, 2012

Information 
scent

Window 1

Window 18

Training Test

Training Test
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Table 5.4 

Number of pairwise judgments for parameter tuning and evaluation 

Data set Number of pairwise judgments 

Parameter tuning experiments – document 

click pairwise judgments 

85,435 

Evaluation – document click pairwise 

judgments 

68,716 

Evaluation – document download pairwise 

judgments 

8,435 

 

Section 2.4.2 presented in detail the methods used in this experiment to extract pairwise 

judgments and use them for evaluation. For reader convenience, Equation 6.8 presents the 

accuracy metric used to evaluate the performance of the models in these experiments. If a 

given algorithm resulted in a tie for the two documents in the pairwise judgment, the tie 

was broken at random. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠
 

(6.8) 

 

5.4.2 Semantic relatedness models 

I used two models for calculating semantic relatedness in this work. In Section 5.4.2.1 and 

5.4.2.2, I discuss in brief the creation of the semantic relatedness models. Both models 

were generated on the same 10 million document randomly sampled subset of the 

MEDLINE corpus. The motivation behind creating the subset is that topic modeling is very 

computationally expensive and generating the topic model on the full corpus for each 

period in the sliding window could require months of computation. However, the models 
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developed from the subset (in this case approximately 50% of the available documents) 

could be used to perform inference to generate a topic distribution for text that was not in 

the training corpus. The random indexing model is more scalable than the topic model, but 

I used the same corpus as the topic model for comparison. 

5.4.2.1 Topic Modeling 

I used the MALLET package to generate the LDA topic model (McCallum, 2002). I 

selected 500 topics for this model. The MALLET package inferred the topic distribution 

for new pieces of text using Gibb’s sampling. Table 5.5 presents the first nine topics 

generated using LDA along with the top ten terms associated with each topic. 

Table 5.5 

First nine topics for LDA model 

Topic 1 Topic 2 Topic 3 
liver, hepatic, hepatocytes, 

cirrhosis, hcc, hepatocellular, 

hepatitis, livers, fibrosis, portal 

plant, plants, arabidopsis, 

thaliana, transgenic, pollen, 

development, tobacco, ft, leaves 

acid, acids, ascorbic, uric, 

nucleic, acetic, lactic, 

arachidonic, cla, citric  

Topic 4 Topic 5 Topic 6 
driving, military, traffic, vehicle, 

accidents, accident, medical, 

drivers, car, safety 

uptake, pet, imaging, emission, 

tomography, scintigraphy, spect, 

positron, performed, scan  

eyes, eye, corneal, lens, ocular, 

cataract, intraocular, visual, 

glaucoma, anterior 

Topic 7 Topic 8 Topic 9 
pregnancy, women, pregnant, 

abortion, postpartum, 

pregnancies, fertility, birth, 

reproductive, maternal  

methylation, histone, chromatin, 

dna, epigenetic, cpg, gene, 

promoter, acetylation, h3  

tumor, tumors, malignant, 

carcinoma, metastatic, 

metastasis, metastases, 

carcinomas, primary, cancer 

 

5.4.2.2 Random Indexing 

I used the Semantic Vectors package to generate the term-document RI model (Semantic 

Vectors Package, 2012; Widdows & Cohen, 2010; Widdows & Ferraro, 2008). I set the 

dimensionality for each vector to 500, the number of seeds to 20, and I utilized the stop 

word list generated by Salton and Buckley for the SMART IR system.  Table 5.6 presents 
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several terms (loosely corresponding to the topics in Table 5.5) and the most related terms 

for each.  

 

Table 5.6 

Top ten most related terms from RI 

Liver Plant Acid 
hepatic, livers, cirrhosis, 

tartarcontrol, fauci, aquaregia, 

hepatocyte, nonutilitarian, 

highld, virusmoloney 

plants, lymphotic, variable, 

Arabidopsis, cllcells, 

doxcontaining, fibrillates, 

demethylate, aiken, mlkgday 

amino, acids, fatty, arachidonic, 

ascorbic, nonane, nonsimilar, 

sivinfected, noetia. solvolyses 

Driving PET Eyes 
drivers, city, coutilized, 

homethanol, shouldered, 

nikolaus, preligand, amulv, 

43oxosteroid, vkdependent 

positron, fdg, disagreeableness, 

emission, ffdg, alpha1atd, mfms, 

antilesion, dbcampstimulated, 

tillaux 

intraocular, acuity, pacer, eye, 

macular, vitrectomy, fellow, 

detachment, choroidal, 18mers 

Pregnancy Methylation Tumor 
pregnant, pregnancies, maternal, 

women, irondoped, trimester, 

glucuronidates, opc21268, 

endosulfani, xeliri 

mythylated, cpg, 

methylationspecific, epigenetic, 

hypermethylation, 

demethylating, 5aza2, icnp, 

ddstata, pupexposed 

tumors, cancer, transection, 

carcinoma, metastasis, cells, 

leukaphereses, epitheliumbruch, 

prognostic, fosaprepitant 

 

5.5 Information scent experiments 

This section includes the results for the parameter fitting experiments and the results for 

the evaluation of information scent using the extracted pairwise judgments. Section 5.5.1 

presents the results for the parameter fitting experiments. Section 5.5.2 presents the results 

for evaluation of information scent. 

5.5.1 Parameter fitting experiments 

This section presents the parameter fitting experiments on the training data. Figure 5.9 

presents the performance results for the language model (henceforth denoted as LM) with 
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different settings for the Dirichlet smoothing in the range [10,5000]. I attained the best 

performance with a Dirichlet smoothing value of 10 with 65.11% accuracy. 

 

 

 

Figure 5.9. Smoothing level for language model with exact matching 

 

 

Figure 5.10 presents the parameter fitting results for the language model with the topic 

model used for partial matching (henceforth denoted as LM_TM). I tested the model in the 

range [10,5000]. I attained the best performance with a smoothing value of 10 with an 

accuracy of 66.49%. 
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Figure 5.10. Smoothing level for language model with partial matching using a topic 

model 

 

Figure 5.11 presents the result of the parameter fitting experiments for the language model 

with the RI model used for partial matching (henceforth denoted as LM_RI). I tested the 

model in the range [10,5000]. I attained the best performance with a smoothing value of 

10 with accuracy 65.87%. 
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Figure 5.11. Smoothing level for language model with partial matching using RI 

 

Figure 5.12 presents the results for the ACT-R model with the topic model used for partial 

matching (henceforth known as ACT-R_TM). I tested the match penalty in the range 

[0.0,1.0]. I attained the best performance when the best performance when the match 

penalty had a value of 0.7 with an accuracy of 66.14%. 
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Figure 5.12. Match penalty for ACT-R using a topic model 

 

Figure 5.13 presents the results for the ACT-R model with the RI used for partial matching 

(henceforth known as ACT-R_RI). I tested the match penalty in the range [0.01,0.5]. I 

achieved the best performance when the match penalty had a value of 0.55 with an accuracy 

of 64.07%. 
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Figure 5.13. Match penalty for ACT-R using RI 

 

5.5.2 Results 

The experiments are divided according to the pairwise judgments used for evaluation. 

Section 5.5.2.1 presents the evaluation of all of the models using the document click 

pairwise judgments. Section 5.5.2.2 presents the evaluation of all of the models using the 

document download pairwise judgments. 

5.5.2.1 Results for document click pairwise judgments 

Table 5.7 presents the results for the information scent models evaluated using the 

document click pairwise judgments. The best performing model was LM_TM. However, 

this model achieved a marginal improvement over the LM model. The LM model achieved 

a performance improvement of 2.89% over the ACT-R model. However, this performance 

increase was not statistically significant (p > 0.05). 
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Table 5.7 

Results on test data for all pairwise judgments 

Model Accuracy 

ACT-R 65.16% 

ACT-R_RI 67.65% 

ACT-R_TM 67.66% 

LM 68.05% 

LM_RI 68.14% 

LM_TM 68.61% 

 

5.5.2.2 Results for document download pairwise judgments 

Table 5.8 presents the results for all of the models for the document download pairwise 

judgments. The LM_TM model achieved the best performance. The LM_TM model 

achieved a 2.26% performance increase over the LM baseline, which was not statistically 

significant. However, the LM_TM model achieved a 5.35% performance increase over the 

ACT-R baseline. A t-test found that this performance improvement for both the LM_RI 

and LM_TM models was statistically significant over the ACT-R model (p < 0.05). 

 

Table 5.8 

Results on test set for pairwise judgments extracted for document downloads 

Model Accuracy 

ACT-R 67.83% 

ACT-R_RI 69.46% 

ACT-R_TM 69.50% 

LM 70.92% 

LM_RI 72.92% 

LM_TM 73.18% 

 

5.6 Discussion 
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This chapter presented the first exploration of the Information Foraging Theory for 

predicting biomedical document accesses. This chapter had several goals. The first goal 

was to demonstrate that information scent could be used to predict document accesses in 

the biomedical domain. The top performance for document click pairwise judgments was 

the LM_TM model with an accuracy of 68.14%. However, the performance increase was 

not statistically significant as compared with the performance of the LM and ACT-R 

models, which achieved an accuracy of 68.05% and 65.16% respectively. I performed the 

second experiment on the document download pairwise judgment data set. In this 

experiment, the best performing model was the LM_TM model, which achieved an 

accuracy of 73.18%. In this instance, the model achieved statistically significant 

performance improvement over the ACT-R model, which achieved an accuracy of 67.83%. 

In summary, these results support the hypothesis that information scent can be used for 

predicting document accesses in the biomedical domain. 

The second goal of this work was to propose a model that is more closely aligned with the 

Bayesian theory upon which the Information Foraging Theory relies. The ACT-R model, 

which has been leveraged in several implementations of the Information Foraging Theory, 

made a simplifying assumption that reduced the Bayesian mathematical theory to a PMI 

equivalence. Furthermore, in implementation, the model was further reduced to the product 

of IDF scores. IDF is generally regarded as a heuristic measure and a probabilistic 

interpretation of IDF is often debated, but is uncertain at best (Aizawa, 2003; Hiemstra, 

2000c; Papieni, 2001; S. Robertson, 2004; Siegler & Witbrock, 1999). Additionally, the 

model did not include a 𝑡𝑓 component, which has a long history of use in IR (K. S. Jones, 

1972). It is important to note that in this particular instance, where the text is a very short 



 

 190  

title, the lack of a 𝑡𝑓 component will not be as significant since titles are not likely to 

contain many duplicate terms. In this corpus, the average length of the titles is 8.87 terms 

(ignoring stop terms) and only 15.0% of the documents had duplicate terms in the title. 

However, over longer texts, the lack of a 𝑡𝑓  component will probably become more 

evident. 

The language model framework presented in this chapter enables computing the likelihood 

scores directly without having to rely on simplifying heuristics. At worst, the updated 

model was comparable to the ACT-R performance. In fact, the model generally 

outperformed the ACT-R model, but the performance improvement was not statistically 

significant in many of the cases. When looking at document download pairwise judgment 

data, the language model had statistically significant performance improvement over the 

ACT-R model (p < 0.05).  

An obvious weakness of this current chapter is that I did not compare the information scent 

models to traditional IR models. That is, this chapter showed that the language model 

interpretation of information scent had comparable performance to the ACT-R model (in 

some cases improved performance), but in and of itself these results do not clearly indicate 

that information scent is superior to traditional IR models. In the next chapter, I explore 

this question. In addition, I explore the full model, which takes into account the prior 

probability model discussed in detail in Chapter 4. 

 

 

 

 

 

Chapter 6: Predicting Document Clicks Using Information Scent and Desirability 
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The research presented in this chapter is the culmination of the research presented 

previously in Chapter 4 and Chapter 5. The specific goal of this chapter is to evaluate the 

combination of the desirability and information scent models. The function used for 

predicting document accesses in this chapter is presented in Equation 6.17. This Bayesian 

function has been proposed by previous researchers for use in IR systems (Hiemstra & 

Kraaij, 1998; D. H. Miller, et al., 1999), but it is the instantiation of the parameters of this 

function that makes this work unique. The prior probability 𝑃(𝐷) corresponds to the work 

presented in Chapter 4. Chapter 4 was motivated by research in cognitive science that 

showed the prior probability of a memory being retrieved can be calculated based on the 

recency and frequency of past accesses. The cognitive science literature refers to this 

property as the recency-frequency effect. For the purpose of document ranking this metric 

is known as desirability. In Chapter 4, I verified that the recency-frequency effect was 

present for documents accessed through the PubMed and PLOS search engines. Finally, I 

showed that desirability could be used to predict documents on which a user will click. The 

likelihood 𝑃(𝑄|𝐷)  corresponds to the work presented in Chapter 5. In Chapter 5, I 

introduced a novel instantiation of the information scent calculation based on recent 

insights from language models. 

 

𝑃(𝐷|𝑄) =
𝑃(𝑄|𝐷)𝑃(𝐷)

𝑃(𝑄)
∝ 𝑃(𝑄|𝐷)𝑃(𝐷) 

(6.1) 

 

                                                 
7 𝑃(𝑄) is assumed to be uniform. 
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The remainder of this chapter is organized as follows. Section 6.1 presents an overview of 

the work presented in Chapter 4 and Chapter 5. The purpose of this review is to refresh the 

reader on the results of the previous chapters. Section 6.2 presents a discussion of the 

motivation for the experiments in this chapter. Section 6.3 presents the methods used in 

this chapter. Section 6.4 presents the results of the experiments. Finally, section 6.5 

presents the discussion of the results. 

6.1 Review of Desirability and Information Scent 

This section contains a brief overview of the desirability and information scent studies 

conducted in Chapter 4 and Chapter 5. The goal of this section is to present the key results 

to contextualize the work in this chapter. Section 6.1.1 presents an overview of desirability. 

Section 6.1.2 presents an overview of information scent. 

6.1.1 Review of desirability 

Quentin Burrell first introduced the notion of desirability and defined it for his particular 

use case as “the average number of times an item is borrowed per unit time” (Burrell, 1980, 

1985; Burrell & Cane, 1982; Burrell & Fenton, 1994). Burrell used a desirability function 

based on the frequency of past circulation to predict how likely a book was to be borrowed 

in the near future. 

Anderson & Schooler were interested in a similar proposition for human memory (J. R. 

Anderson & Schooler, 1991). That is, is it possible to create a desirability model for human 

memory? Anderson & Schooler (J. R. Anderson & Schooler, 1991) investigated the 

statistical regularities of information in different environments. Specifically they looked at 

how past frequency (number of times an item appeared in the past) and recency (how 

recently a given item last appeared) influenced the probability that the item would appear 
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in the future. This is known as the recency-frequency effect. In all of the situations that 

they investigated, the probability of an item appearing in the future has a power law 

relationship with the past recency and frequency of appearance. Based on the results of the 

analysis, Anderson & Schooler developed a desirability model based on the recency-

frequency effect that predicts the probability of a memory item being needed in the future. 

Chapter 4 presented an in-depth investigation of desirability. Section 4.1 investigated the 

question of why the recency-frequency effect exists in such a wide variety of different 

environments. Section 4.1 explored the idea that the recency-frequency effect is an artifact 

of scale-free network growth. I generated the initial hypothesis from the observation that 

the recency-frequency effect coexisted in data sets that numerous studies characterized as 

scale-free networks. To test the hypothesis, I generated numerous networks using network 

growth models that are known to yield networks with certain statistical properties. I 

performed experiments on the generated data from each network to determine the presence 

of the recency-frequency effect. I found that the preferential attachment growth rule was 

the only one of the tested growth rules tested that exhibited the recency-frequency effect. 

This offers a potential mechanistic explanation for why Anderson & Schooler observed the 

recency-frequency effect in a wide variety of different domains. 

In Section 4.2, I investigated whether the recency-frequency effect exists for document 

accesses for two different populations. The first data set was comprised of documents 

accessed using the PubMed IR system from the users of the Houston Academy of Medicine 

Texas Medical Center (HAM-TMC) library. The second data set was comprised of 

documents accessed through the Public Library of Science (PLoS) website. In these 

experiments, I found that the recency-frequency effect was present in both data sets. 
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The research presented in Section 4.3 is the most relevant for this chapter. In this section, 

I evaluated using desirability computed from document accesses from multiple crowd-

sourced data sources for predicting document accesses. An in-depth description of all of 

the data sets is presented in Section 4.3.1.1. The data sets used for calculating desirability 

in Section 4.3.1.1 were CiteULike, HAM-TMC, Mendeley, and Scopus. The HAM-TMC 

data set contained the number of abstract views and document downloads. The CiteULike 

data set contained the number of users who had a given document saved in their reading 

list. The Mendeley data set contained the number of users that had a given document in 

their personal library. The Scopus data set contained the number of citations for a given 

document. 

In Section 4.3.3, I presented an in-depth investigation of these data sets and evaluated them 

in numerous combinations. The desirability function in Equation 6.1 leverages the recency-

frequency effect to calculate the prior probability of a given document being accessed. I 

used Equation 6.1 to calculate the desirability for the documents accessed in the HAM-

TMC collection since the date of each access was known. The desirability function in 

Equation 6.2 assumes that the accesses were uniformly distributed. I used Equation 6.2 to 

calculate the desirability for the CiteULike, Mendeley, and Scopus data sets since only the 

frequency was known. The best performance resulted from combining evidence from 

CiteULike, HAM-TMC, Mendeley, and Scopus data sets. 

 

𝐵𝑖 = log(∑𝑡𝑖
−𝑑

𝑘

𝑖=1

+
(𝑛 − 𝑘)(𝑡𝑛

1−𝑑 − 𝑡𝑘
1−𝑑)

(1 − 𝑑)(𝑡𝑛 − 𝑡𝑘)
) 

(6.1) 
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𝐵𝑖 = log (
𝑛

1 − 𝑑
𝑡𝑛
−𝑑) (6.2) 

 

6.1.2 Review of information scent 

Information scent is the utility of an information item, which can be thought of as a 

“rational analysis of categorization of cues according to their expected utility” (P. Pirolli 

& Card, 1999b). In the case of the Web, cues refer to “World Wide Web links or 

bibliographic citations, that provide users with concise information about content that is 

not immediately available” (P. Pirolli & Card, 1999b). According to the Information 

Foraging Theory, users attend to the cues with the highest expected utility given their 

information need. For example, consider the search results of a typical search engine shown 

in Figure 6.1. According to Information Foraging Theory, the user will select the hyperlink 

with the highest information scent based on proximal cues such as the Web Page title to 

maximize the probability of satisfying the information need with the distal information 

content (e.g., the Web page associated with a hyperlink). 
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Figure 6.1. Information scent and the WWW. Adapted from (P. Pirolli, 2009) 

 

Chapter 5 had two goals. The first goal was to investigate using information scent for 

predicting document accesses in the biomedical domain. The second goal was to provide 

an updated mathematical interpretation of information scent that is more consistent with 

the Bayesian theory of the ACT-R and the Information Foraging Theory. In 

implementation, the ACT-R and Information Foraging Theory make assumptions that 

result in what is essentially a TF-IDF model. In Chapter 5, I presented an update to 

information scent based on insights from language models, which enabled a probabilistic 

interpretation that is more consistent with the theoretical foundations of the ACT-R and 

Information Foraging theories.  

For a full discussion on language models see the overview in Chapter 2.3.1. For an in-depth 

discussion of information scent and the interpretation of information scent based on 

language models see Chapter 5. Equation 6.3 presents the basic language model based on 

Dirichlet smoothing (MacKay & Peto, 1995; C. Zhai & Lafferty, 2002). The parameter 𝑤 

represents an element of the query 𝑄. For the purpose of information scent, 𝐷 represents 

the proximal cue. The proximal cue that is used in this work is the document title since this 

information is visible to the user and influences whether or not a document is clicked. 

Additional information is available to the user such as the journal in which the article is 

published and the authors of the paper. These additional cues are not investigated in this 

dissertation and will be the focus of future research. The maximum likelihood estimate in 

Equation 6.4 calculates the probability 𝑝(𝑤|𝐷) based on the number times 𝑤 occurs in the 

proximal cue 𝐷 . Equation 6.5 presents the maximum likelihood estimate for the 



 

 197  

background language model. This estimate is based on the frequency of occurrence of 𝑤 

and the frequency of all terms in the collection 𝐶. The parameter 𝜇 is the pseudo count 

parameter, which controls the amount of smoothing. 

 

𝑃(𝑤|𝐷) =
𝑃(𝑤|𝐷) + 𝜇𝑃(𝑤|𝐶)

|𝐷| + 𝜇
 

(6.3) 

𝑃(𝑤|𝐷) ≈ 𝑃𝑀𝐿(𝑤|𝐷) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑤, 𝐷)

𝑙𝑒𝑛𝑔𝑡ℎ(𝐷)
 

(6.4) 

𝑃(𝑤|𝐶) ≈ 𝑃𝑀𝐿(𝑤|𝐶) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑤)

|𝐶|
 

(6.5) 

 

In Equation 6.6, the language model in Equation 6.3 is updated with evidence from 

semantic relatedness scores, which enables partial matching. Conceptually, one can view 

this as combining a score, which reflects the likelihood of an element of the query 𝑤 given 

the proximal cue (e.g., document title) with the likelihood of the neighbors of 𝑤 given the 

proximal cue. Equation 6.7 presents the degree centrality, which is equivalent to the 

generalized measure for computing degree centrality in weighted networks (Barrat, et al., 

2004). The 𝑃(𝑤|𝐷) for the connected term 𝑣 is calculated using Equation 6.3. 

 

𝑃(𝑤|𝐷) = (1 − 𝜆)�̇�(𝑤|𝐷) + 𝜆∑
𝑤(𝑤, 𝑣)

𝐷𝑒𝑔(𝑣)
𝑃(𝑣|𝐷)

𝑣𝜖𝑉

 
(6.6) 

𝐷𝑒𝑔(𝑣) = ∑𝑤(𝑢, 𝑣)

𝑢∈𝑉

 
(6.7) 
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Chapter 5 described experiments with several semantic relatedness models to compute 

𝑤(𝑤, 𝑣)  in Equation 6.6. The best performing model from the experiments utilized 

Equation 6.6 and used a topic model to compute the semantic relatedness score 𝑤(𝑤, 𝑣). I 

will refer to this model as LM_TM. For reference, Table 6.1 presents the results for the 

LM_TM model for predicting document clicks and document downloads. 

 

Table 6.1 

Desirability results from combining multiple data sources 

Pairwise judgments Accuracy 

Document clicks 68.14% 

Document downloads 73.18% 

 

6.2 Motivation and discussion of experiments 

The goal of these experiments is to evaluate the combination of the desirability and 

information scent models, which were presented separately in Chapters 4 and 5 of this 

dissertation. Additionally, these models are compared to existing state-of-the-art IR 

models. 

The desirability model was discussed in detail in Chapter 4. The desirability model in these 

experiments used the CiteULike, HAM-TMC, Mendeley, and Scopus data sources. I used 

the LM_TM model for calculating information scent, which was presented in Chapter 5. 

Recall that the desirability model is independent of the query and that the information scent 

model is dependent on the query. The information scent model ranks the documents using 

only the information that is visible to the user (i.e., the terms in the title of the document).  
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For comparison, I present the results for four existing IR models, which were presented 

previously in Chapter 2. These models include TF-IDF, BM25, divergence from 

randomness Bose-Einstein (DFR_BE), and divergence from randomness TF-IDF 

(DFR_IDF). I selected what can be considered the state of the art in IR models and used 

them in the traditional IR context where, at least for document ranking using MEDLINE 

abstracts, the models matched the query against the title and abstract of the document for 

ranking. The TF-IDF model is the oldest IR model in these experiments and it originated 

in the 1970s (K. S. Jones, 1972). Despite its age, TF-IDF remains widely used (Public 

Websites using Solr). The BM25 and DFR are probabilistic models that emerged in the 

1990s (S. E. Robertson, Walker, Beaulieu, Gatford, & Paynet, 1996) and 2000s (Amati & 

Rijsbergen, 2002) respectively. 

 

 

 

6.3 Methods and Data Sets 

6.3.1 Data sets 

The pairwise judgments used for evaluation were extracted from the query logs of HAM-

TMC users, which captured their interactions with the PubMed IR system from October 

18, 2012 to November 4, 2012 (19 days). I will refer to this data set as the HAM-TMC 

pairwise judgment data set. An additional data set was extracted from the HAM-TMC 

users. This data set contained PubMed accesses for 1,112 days (September 30, 2009 to 

October 17, 2012). The data set was comprised of 4,513,463 accesses over 2,107,806 

documents (abstract views and full document downloads). I will refer to this data set as the 
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HAM-TMC document access data set. Only the number of document accesses was used 

from this data set and no pairwise judgments were extracted. In other words, this data set 

was used only for calculating desirability and not for evaluation. 

I used the remaining data sets as additional evidence for calculating desirability. The 

CiteULike data set contained the number of CiteULike users who have a given document 

saved in their reading list (CiteULike). I obtained the data from the CiteULike website 

(http://www.citeulike.org/). The Mendeley application allows scientists to manage their 

reference library, rate articles, and discuss articles (Curran, 2011; Henning & Reichelt, 

2008; Zaugg, et al., 2011). The Mendeley data set contained the number of users that have 

a given document in their personal library. I obtained this data source using the Mendeley 

API, which allows the download of article metrics such as the number of readers 

(Mendeley-API, 2013). Scopus is a bibliographic database that contains citations for 

scientific articles from over 19,000 journals (Archambault, et al., 2009; Burnham, 2006). 

The Scopus data source contained the number of citations for a given document. I obtained 

the Scopus citation counts through manual download. 

6.3.2 Methods 

Figure 6.2 presents an overview of an experiment conducted for one query from the HAM-

TMC pairwise judgment data set using the combination of information scent and 

desirability. Figure 6.3 presents an overview of the experiments conducted for one query 

from the HAM-TMC pairwise judgment data set that is representative for the TF-IDF, 

BM25, and DFR models. The experiments in Figure 6.2 and Figure 6.3 both rely upon the 

HAM-TMC pairwise judgment data set, which contains the query that was issued, the 

documents clicked by HAM-TMC PubMed users, and the pairwise judgments extracted 
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for the documents that were clicked. I previously discussed the method for extracting 

pairwise judgments and using them to evaluate IR algorithms in Section 2.4.2. As a review, 

I extracted two sets of pairwise judgments for evaluating the models in this work. I 

extracted the first set of pairwise judgments between documents that were clicked and 

documents that were not clicked. The goal of this set of pairwise judgments is to evaluate 

how well a given model can predict the documents that receive clicks and is referred to as 

the document click pairwise judgments in the remainder of this chapter. The second set of 

pairwise judgments was extracted between documents that were downloaded and 

documents that were not downloaded. The goal of this set of pairwise judgments is to 

evaluate how well a given model can predict document clicks that resulted in a download 

and is referred to as the document download pairwise judgments in the remainder of this 

chapter. For all of the approaches, the documents that the HAM-TMC users viewed were 

assigned a ranking score by one of the models in the experiments. The ranking scores were 

used to determine how many of the extracted pairwise judgments from the document 

download pairwise judgment data set or document click pairwise judgment data set were 

correctly ordered (e.g., documentA is preferred over documentB) based on the ranking 

scores. 
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Figure 6.2. Overview of experiments for the combination of the information scent and 

desirability models 

 

 

 

 

Figure 6.3. Overview of experiments for the existing IR models 
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I used a sliding window for evaluating all of the models in this work. In each window, I 

divided the data into training and test sets. The training set contained the data used to 

calculate the click prediction scores, which were subsequently evaluated using the pairwise 

judgments extracted from the test sets. Each test set was comprised of one of the days from 

the HAM-TMC pairwise judgment data set. If the test window was day 𝑁 then the training 

set was comprised of data on day 𝑁 − 1  or earlier. Figure 6.4 presents an example of how 

the sliding window could be used to evaluate the combination of the information scent and 

desirability models over each day in the HAM-TMC pairwise judgment data set. 

 

 

 

Figure 6.4. Example of sliding window evaluation for the combination of information 

scent and desirability 
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The algorithms in these experiments used different data from the training set to rank the 

documents in the test set. For desirability, the training set for each iteration was composed 

of document access information from Mendeley, Scopus, HAM-TMC document access 

data set, and CiteULike. All of the IR models including information scent, TF-IDF, BM25, 

etc. required some form of corpus statistics such as IDF. For the IR models, the training 

window was used to compute the corpus statistics. The corpus statistics for all of the models 

was computed using the titles and abstracts from the PubMed corpus. I utilized the stop 

word list generated by Salton and Buckley for the SMART information retrieval system 

for calculating the corpus statistics (Salton, 1971). 

The information scent model required the use of a semantic relatedness measure that was 

not required for the TF-IDF, BM25, and DFR models. For the topic model used in this 

work, I excluded terms that occurred less than 10 times in the entire corpus. I used the 

MALLET package to generate the LDA topic model (McCallum, 2002). I selected 500 

topics for this model. The MALLET package infers the topic distribution for new pieces 

of text using Gibb’s sampling. 

The BM25 and the LM_TM model had free parameters that required tuning for a particular 

data set. To tune the parameters, I divided the HAM-TMC pairwise judgment data set into 

50% for parameter tuning and 50% for evaluation. This resulted in nine windows for 

parameter tuning (October 18, 2012-October 26, 2012) experiments and nine windows for 

evaluation (October 27, 2012-November 4, 2012). Table 6.2 presents an overview of the 

number of pairwise judgments for the parameter tuning experiments and evaluation. 

 

Table 6.2 
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Number of pairwise judgments for parameter tuning and evaluation 

Data set Number of pairwise judgments 

Parameter tuning experiments – document click 

pairwise judgments 

85,435 

Evaluation – document click pairwise judgments 68,716 

Evaluation – document download pairwise 

judgments 

8,435 

 

Section 2.4.2 presented in detail the methods used in this experiment to extract pairwise 

judgments and use them for evaluation. For reader convenience, Equation 6.8 presents the 

accuracy metric used to evaluate the performance of the models in these experiments. If a 

given algorithm resulted in a tie for the two documents in the pairwise judgment, the tie 

was broken at random. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠
 

(6.8) 

 

6.4 Results 

6.4.1 Parameter tuning experiments 

The BM25 model has two free parameters: 𝑏  and 𝑘1 . The 𝑏  parameter controls the 

document length normalization and the 𝑘1  parameter controls the influence of the 𝑡𝑓 

component. The BM25 model was tested in the range [0.5,1.0] with increments of 0.1 for 

the 𝑏 parameter and in in the range [0.5,2.5] with increments of 0.5 for the 𝑘1 parameter. 

Figure 6.5 presents the results of the parameter tuning experiments. The model obtained 

the best performance where 𝑏 = 0.6 and 𝑘1 = 1.0 with an accuracy of 62.48%. 
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Figure 6.5. Results for parameter tuning for BM25 

 

Figure 6.6 presents the parameter fitting results for the LM_TM model. I tested the model 

in the range [0,5000]8. I attained the best performance with a smoothing value of 10 with 

an accuracy of 66.49%, but smoothing had a very small impact on performance (<0.5%). 

 

                                                 
8 The result for smoothing value of 0 is not shown in Figure 6.6. The accuracy at 

smoothing value 0 was 60.23% and adding the data point to Figure 6.6 rendered the 

remaining values illegible. 
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Figure 6.6. Smoothing level for language model with partial matching using a topic 

model 

 

6.4.2 Results for predicting document clicks 

The experiments are divided according to the pairwise judgments used for evaluation. 

Section 6.4.2.1 presents the evaluation of all of the models using the document click 

pairwise judgments. Section 6.4.2.2 presents the evaluation of all of the models using the 

document download pairwise judgments. 

6.4.2.1 Results for document click pairwise judgments 

Table 6.3 presents the results for all of the models for the document click pairwise 

judgments. One interesting finding was that, when evaluated separately, the difference in 

performance of the desirability and information scent models was not statistically 

significant. That is, the desirability model was able to attain comparable performance to 

the LM_TM model based on past accesses alone without considering the query terms. In 

combination, the LM_TM and desirability model (henceforth known as LM_TM + 
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Desirability) had an accuracy of 74.01%. This is an improvement of 5.87% over the 

information scent model and 6.47% over the desirability model (t-test; p < 0.05). 

Additionally, the LM_TM + Desirability model outperformed TF-IDF, BM25, and DFR 

models. Of the existing IR models used as a base-line, TF-IDF performed the best. The 

LM_TM + Desirability model outperformed TF-IDF by 9.81% (t-test; p < 0.05). 

 

Table 6.3 

Information scent and desirability results for all pairwise judgments 

Model Accuracy 

LM_TM 68.14% 

Desirability 67.70% 

LM_TM + Desirability 74.01% 

TF-IDF 64.20% 

BM25 63.57% 

DFR_BE 63.90% 

DFR_IDF 63.90% 

 

6.4.2.2 Results for document download pairwise judgments 

Table 6.4 presents the results for all of the models for the document download pairwise 

judgments. In this experiment, the desirability model showed significant performance 

degradation for predicting downloads. The results show that the LM_TM model 

outperformed the desirability model by 8.92% (t-test; p < 0.05). The LM_TM + 

Desirability model resulted in a small 0.95% performance increase over the LM_TM model 

(t-test; p > 0.05). Of the existing IR models used as a base-line, TF-IDF performed the best. 

The LM_TM + Desirability model attained a 6.9% performance improvement over TF-

IDF (t-test; p < 0.05). 
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Table 6.4 

Information scent and desirability results for predicting downloads 

Model Accuracy 

LM_TM 73.18% 

Desirability 64.26% 

LM_TM + Desirability 74.13% 

TF-IDF 67.23% 

BM25 66.69% 

DFR_BE 66.53% 

DFR_IDF 66.47% 

 

6.5 Discussion 

To summarize the results of this chapter, for document clicks, the LM_TM + Desirability 

model improved performance over either LM_TM (+5.86%) or desirability (+6.47%) 

alone. For downloads, the performance gain from LM_TM + Desirability was small 

(+0.95% for LM_TM). Holistically, when comparing to LM_TM or desirability alone, the 

LM_TM + Desirability model resulted in higher accuracy (5.87%) for document clicks 

while retaining comparable performances for downloads (74.13%). The performance of 

the LM_TM + Desirability model was particularly dramatic when compared to the existing 

IR models. Table 6.5 summarizes the performance improvement of the LM_TM + 

Desirability model as compared to the existing IR models. The TF-IDF model had the best 

performance of the existing IR models. The LM_TM + Desirability improved performance 

by 9.81% for document clicks and 6.9% for document downloads. 
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Table 6.5 

Summary of performance increase of LM_TM + Desirability compared to existing IR 

models  

 

Algorithm Performance increase by LM_TM 

+ Desirability for document clicks 

Performance increase by LM_TM + 

Desirability document downloads 

TF-IDF 9.81% 6.90% 

BM25 10.44% 7.44% 

DFR_BE 10.11% 7.60% 

DFR_IDF 10.11% 7.66% 

 

The contributions of this chapter cannot be isolated from those of Chapters 4 and 5. 

Previous research in information foraging theory used small user populations (Chi, Pirolli, 

Chen, et al., 2001; Chi, Pirolli, & Pitkow, 2001) and were conducted entirely outside of the 

biomedical domain. Additionally, the numerous studies conducted by Pirolli were 

investigated from a usability viewpoint. For example, these studies focused primarily on 

how well information scent could predict user browsing behavior in small laboratory 

experiments. These studies did not investigate if insights from ACT-R and the Information 

Foraging Theory could ultimately result in improved IR systems, which was the focus of 

this chapter. 

All of the previous experiments by Pirolli assumed that the documents had a uniform prior 

probability of being accessed, which essentially ignored this component of the ACT-R 

model. Chapter 4 investigated desirability in-depth and showed that this property was 

present for documents accessed through PubMed. This chapter demonstrated that 

desirability has utility for predicting document accesses. In fact, the performance of the 

information scent model and the desirability model was not statistically significant for 

predicting document clicks. This finding shows that both models performed equally well 
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for predicting document clicks despite the desirability model being independent of the 

query. More importantly, these experiments demonstrated that desirability is an important 

component, which can improve IR performance. Thus, the prior probability of a document 

being accessed should not be assumed to be uniform. 

The final contribution of this chapter is that it combined the information scent model and 

desirability model and showed that together these components improved performance over 

either component alone. Once again, this is the first study to investigate these components 

together for predicting document accesses. In addition, I showed that the combination of 

these components greatly outperformed the existing IR models (9.81% improvement for 

all document clicks and 6.9% improvement for document downloads). 

An additional result of note from these experiments was that the LM_TM model 

outperformed all of the existing IR models. A summary the performance gains of LM_TM 

over the existing IR models is show in Table 6.6. For the document click data set the 

performance improvement was statistically significant (p < 0.05) for BM25, DFR_BE, and 

DFR_IDF. For the document downloads all of the performance gains were statistically 

significant. These results are interesting as the LM_TM model relies only upon information 

that the user can see, which was the document title in this case. The existing IR models 

rely upon the document title and abstract text. This is a somewhat counterintuitive result. 

Conventional wisdom would assert that the abstract text would provide a better 

representation of the document than the title alone. However, users are influenced only by 

what is visible on their screen and including the abstract text may not help if the goal is to 

predict document clicks or to model user information seeking behavior. From the results 

presented here I cannot make that claim. This would require a different experiment that 
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compared the click accuracy for each model using the abstract and title text or just using 

the title text. What can be asserted from this study is that using only the title resulted in a 

competitive model. 

 

Table 6.6 

Summary of performance increase of LM_TM compared to existing IR models  

Algorithm Performance increase by LM_TM 

for document clicks 

Performance increase by LM_TM 

document downloads 

TF-IDF 3.94% 5.95% 

BM25 4.57% 6.49% 

DFR_BE 4.24% 6.65% 

DFR_IDF 4.24% 6.71% 

 

An additional interesting result from these experiments is that all of the existing IR models 

performed essentially the same (i.e. none of their results were statistically significant from 

one another). This is in contrast to much of the published literature. In fact, the literature is 

full of examples where these models have been claimed to outperform one another on 

various data sets. The results of a brief literature review is shown in Table 6.7. The results 

of the literature review highlight the contradictory findings that are prevalent in the 

literature. The results of this chapter showed that the performance results for BM25, DFR, 

and TF-IDF are essentially the same when compared to the preferences of the users. 

Interestingly, in this study, TF-IDF performed the best overall for the existing IR models, 

which is the defacto straw man for any new method. These findings, though alarming, is 

not entirely surprising. One of the drawbacks of Cranfield inspired experiments is that 

numerous studies have shown that the performance gains of IR systems using this protocol 
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do not necessarily translate to real-world user satisfaction (Al-Maskari, et al., 2008; Allan, 

et al., 2005; W. Hersh, et al., 2001; Jarvelin, 2009; Macdonald & Ounis, 2009; Sanderson, 

et al., 2010; Smith & Kantor, 2008; Smucker & Jethani, 2010; Su, 1992; Turpin & Scholer, 

2001, 2006; Urbano, et al., 2012). It is quite possible that the lack of performance 

differences between BM25, TF-IDF, and DFR is that these models were evaluated based 

on preferences of real-world users and the performance gains in laboratory experiments 

often vanish in this scenario. 

 

Table 6.7 

Summary of findings for different studies 

Study Finding 

(Zhao, Huang, Ye, & Zhu, 2009) BM25 outperformed DFR 

(Amati, 2003) DFR outperformed BM25 

(Kraaij, 2004; Trotman, Puurula, & Burgess, 2014; 

Urbain, Goharian, & Frieder, 2005) 

BM25 outperformed language models 

(Zhu, Song, & Ruger, 2009) Language models outperformed BM25 

(Bache, 2011) BM25 outperformed TF-IDF 

(de Almeida, Goncalves, Cristo, & Calado, 2007) TF-IDF outperformed BM25 

(Ye, He, Huang, & Lin, 2010) Language models outperformed DFR 

 

 

 

 

 

 

 

Chapter 7: Conclusion and Future Research 
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This dissertation has presented numerous experiments to advance computational cognitive 

modeling applied to IR. The goal of this chapter is to summarize the research conducted in 

this dissertation and to discuss areas for future research. This chapter is organized as 

follows. Section 7.1 presents a summary and discussion of the work in this dissertation. 

Section 7.2 outlines areas for future research on the topics presented in this dissertation. 

7.1 Summary and Discussion of Research in This Dissertation 

The theme of this dissertation is the application of cognitive science to information 

retrieval. Specifically, there are two main topics: desirability and information scent, which 

are both components of the overarching theoretical frameworks of the Information 

Foraging Theory and ACT-R. Chapter 4 provided an in-depth investigation into 

desirability. Chapter 5 focused on the information scent calculation. Finally, Chapter 6 

unified the research threads in Chapter 4 and Chapter 5 by evaluating the components 

together. The remainder of this section will summarize and discuss the main results of this 

dissertation. 

In this dissertation, desirability was computed based on the research of Anderson & 

Schooler (J. R. Anderson & Schooler, 1991) in which they showed that the past frequency 

(number of times an item appeared in the past) and recency (how recently a given item last 

appeared) influenced the probability that the item would appear in the future. However, the 

observations made by Anderson & Schooler lacked a mechanistic theory to explain the 

underlying phenomena. According to (J. R. Anderson & Milson, 1989), these results 

provide evidence of a universal law which governs the ebb and flow of information. (J. R. 

Anderson & Milson, 1989) summarize this hypothesis as follows. 
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Should we really believe that information retrieval by humans has the same form 

as library borrowings and file accesses? The fact that two very different systems 

display the same statistics suggests that there are “universals” of information 

retrieval that transcend device (library, file system, or human memory) and that 

these systems all obey the same form but differ only in parameterization. 

 (J. R. Anderson & Milson, 1989) 

In this dissertation, I proposed the hypothesis that the recency-frequency effect is produced 

by the preferential attachment network growth mechanism which has shown in numerous 

experiments to give rise to scale free networks (Albert, Jeong, & Barabasi, 2000; Barabasi, 

2003, 2005; Barabasi & Albert, 1999; Barabasi, et al., 2002; Dezso, et al., 2006; Jeong, et 

al., 2000; D. S. Lee, et al., 2008; Oliveira & Barabasi, 2005). As a review, the preferential 

attachment growth mechanism asserts that the probability of a vertex in a graph receiving 

a new connection is proportional to its current degree centrality (Barabasi & Albert, 1999). 

In a series of experiments, I showed that the recency-frequency effect was present only 

when the preferential attachment growth mechanism was present. This finding offers a 

potential mechanistic explanation for why Anderson & Schooler observed the recency-

frequency effect in a wide variety of different domains.  

The remainder of the research on desirability in this dissertation focused on whether the 

recency-frequency effect was present for document accesses and whether this information 

could be leveraged to improve click prediction performance. I performed a series of 

experiments on the HAM-TMC and Scopus datasets and found that the recency-frequency 

effect was present for both populations. 
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After verifying that the recency-frequency effect held for document accesses, I performed 

a series of experiments to determine if the recency-frequency effect could predict document 

accesses. In these experiments, I calculated desirability on several document access data 

sets and evaluated the performance of each data set individually and in combination with 

the other datasets. The most interesting finding from these experiments was that desirability 

outperformed existing IR models including TF-IDF and two instantiations of divergence 

from randomness. That is, the query-independent desirability function outperformed 

widely-used query-dependent ranking approaches that computed similarity between the 

document and the query. This finding provides strong support that desirability has utility 

for document ranking. 

Chapter 5 focused entirely on information scent. The primary contribution is that it is the 

first exploration of applying the Information Foraging Theory in the medical domain. The 

previous applications of the Information Foraging Theory were applied entirely outside of 

the biomedical domain (Budiu, et al., 2009; Card, et al., 2001; Chi, Pirolli, Chen, et al., 

2001; Chi, Pirolli, & Pitkow, 2001; Hong, et al., 2008; Huberman, et al., 1998; P. Pirolli, 

2005, 2009; P. Pirolli & Card, 1995, 1999b; P. Pirolli & W-T., 2006; P. L. Pirolli & 

Anderson, 1985; P. L. Pirolli & Pitkow, 2000).  Additionally, this chapter presented 

an updated mathematical framework that was more consistent with the underlying 

Bayesian theory of ACT-R and the Information Foraging Theory. As discussed in detail in 

Chapter 5, the actual implementation of ACT-R and Information Foraging Theory made 

many simplifying assumptions that reduced it to what is essentially a TF-IDF computation. 

In Chapter 5, I presented a new mathematical interpretation based on recent insights from 
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statistical language models (C. X. Zhai, 2008) that avoids the simplifications made in 

previous implementations of information scent. 

The purpose of Chapter 6 was to investigate the performance of combining desirability and 

information scent. The primary contribution of this chapter is that all other applications of 

information scent assumed a uniform prior probability. In this chapter, I combined 

information scent with the prior probability estimate discussed in detail in Chapter 4. I 

found that the combination of information scent improved click prediction by 6.31% over 

desirability alone and 5.87% over information scent alone. Additionally, the combination 

outperformed the existing IR models (TF-IDF, divergence from randomness, and BM-25) 

by over 9.0% in each experiment. These results provide compelling evidence to support 

the assertion that prior probabilities should not be assumed uniform. 

7.2 Future Work 

This section outlines potential areas for future research in the topics covered in this 

dissertation. The remainder of this section is organized as follows. Section 7.2.1 discusses 

modeling additional features for click prediction. Section 7.2.2 discusses the development 

of a personal information scent model. Finally, Section 7.2.3 discusses modeling 

desirability at different levels of granularity. 

7.2.1 Modeling additional information visible to the user in PubMed search 

results 

A primary weakness of the information scent experiments in this chapter is that it did not 

include all of the information visible to a user in the search results that could influence a 

document access. Figure 7.1 presents an example of the search results from PubMed. In 

this dissertation, I used only the title of the document for calculating information scent. 
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However, additional information such as the authors and journal in which the article was 

published were not used for calculating information scent.  

 

 

 

Figure 7.1. Example result from PubMed 

 

The author names and journal names can be modeled in terms of desirability (i.e. query-

independent prior probability) and likelihood (query-dependent) components. The 

desirability for an author corresponds to document access patterns for their authored 

documents. Similarly, the desirability for the journal corresponds to document access 

patterns for all of the documents published by a given journal. For each model, 

experimentation will be required to model the underlying probability distribution. I showed 

that the recency-frequency effect held for document accesses in general, but it does not 

necessarily follow that the recency-frequency effect will hold for document clicks for 

authors or journals. Thus, additional experiments are required to determine the underlying 

distribution for estimating desirability of authors and journals. Once the underlying 

distribution is established, the desirability scores for the document, authors, and journal 

can be integrated using linear integration as shown in Equation 7.1. 
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𝐵𝑖 = 𝜆1𝐵𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 + 𝜆2𝐵𝑗𝑜𝑢𝑟𝑛𝑎𝑙 + 𝜆3𝐵𝑎𝑢𝑡ℎ𝑜𝑟𝑠 (7.1) 

 

The information scent calculation for authors and journals follows from the information 

scent equations presented in Chapter 5 and Chapter 6 of this dissertation. Instead of 

calculating the likelihood of the terms in the query given the title of the document, the new 

components focus on calculating the likelihood of the terms in the query given the authors 

of the document or the journal in which the article was published. 

For brevity, I focus on how the information scent calculation would apply to journals, but 

the application to authors would be nearly identical. I previously discussed in Chapter 5 

and Chapter 6 the equations presented in the remainder of this section as they applied to 

modeling information scent for document titles. Equation 7.2 presents the information 

scent model for computing the likelihood of the query given the journal. Equation 7.3 and 

Equation 7.4 present the maximum likelihood estimate for the document language model 

and the background language model respectively. Here a journal 𝐽 would be represented as 

all of the terms in the documents which 𝐽 published. In other words, a journal is treated as 

a large document. The maximum likelihood estimate in Equation 7.3 calculates the 

probability 𝑝(𝑤|𝐽) based on the number times a term 𝑤 occurs in the abstracts published 

by a journal 𝐽 and the total number of terms in the abstracts published by J (|𝐽|). The 

background language model shown in Equation 7.4 is based on the frequency of occurrence 

of 𝑤 and the frequency of all terms in the collection 𝐶. The parameter 𝜇 is the pseudo count 

parameter, which controls the amount of smoothing. 

 



 

 220  

𝑃(𝑤|𝐽) =
𝑃(𝑤|𝐽) + 𝜇𝑃(𝑤|𝐶)

|𝐽| + 𝜇
 

(7.2) 

𝑃(𝑤|𝐽) ≈ 𝑃𝑀𝐿(𝑤|𝐽) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑤, 𝐽)

|𝐽|
 

(7.3) 

𝑃(𝑤|𝐽) ≈ 𝑃𝑀𝐿(𝑤|𝐶) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑤)

|𝐶|
 

(7.4) 

 

Next, I describe how partial matching could work within the context of modeling 

information scent for journals. Equation 7.5 presents the information scent model with 

partial matching for calculating the likelihood of the query given the journal. Equation 7.5 

updates the output of Equation 7.2 with evidence from semantic relatedness scores, which 

enables partial matching. Conceptually, one can view this as combining a score, which 

reflects the likelihood of an element of the query 𝑤 given the proximal cue (e.g. journal 

name) with the likelihood of the neighbors of 𝑤 given the proximal cue. The semantic 

relatedness between the term 𝑤 and a term 𝑣 in the document is represented by 𝑤(𝑤, 𝑣). 

The semantic relatedness score can be computed using a topic model as was done in 

Chapter 5 and Chapter 6. Equation 7.6 presents the degree centrality metric used in this 

work, which is equivalent to the generalized measure for computing degree centrality in 

weighted networks (Barrat, et al., 2004). The 𝑃(𝑣|𝐷)  for the connected term 𝑣  is 

calculated using Equation 7.6. 

 

𝑃(𝑤|𝐽) = (1 − 𝜆)�̇�(𝑤|𝐽) + 𝜆∑
𝑤(𝑤, 𝑣)

𝐷𝑒𝑔(𝑣)
𝑃(𝑣|𝐽)

𝑣𝜖𝑉

 
(7.5) 
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𝐷𝑒𝑔(𝑣) = ∑𝑤(𝑢, 𝑣)

𝑢∈𝑉

 
(7.6) 

 

7.2.2 Personalized information scent model 

The information scent model in this dissertation uses a “one-size-fits-all” model to predict 

document accesses. However, this is a simplifying assumption. Numerous studies have 

shown that individual users have different relevance judgments for the same set of 

documents returned by a query (Teevan, Dumais, & Horvitz, 2005; White & Drucker, 

2007; Wu, Turpin, & Zobel, 2008). For example, (Teevan, et al., 2005) compared the 

relevance judgments for identical documents returned by identical queries and found a low 

inter-agreement of 56%. One proposed reason for the low agreement is that queries are 

often ambiguous. For example, for the query term “cancer”, it was observed by (Teevan, 

et al., 2005) that some of the users were looking for information about cancer treatments 

and some users were looking for information about the astrological sign cancer. One 

method for dealing with ambiguous information needs to develop user models to enable 

personalized ranking. Towards this aim, I propose a personalized scent model and 

hypothesize that the “one-size-fits-all” information scent calculation can be improved by 

incorporating background information about the user who issued the query. 

The notion of utilizing user background information in information scent calculation is 

closely related to personalized ranking and collaborative filtering. That is, each requires 

some notion of a user profile. One method for constructing a user profile is to have the user 

manually express their interests (Google Personal, 2013). Another method is to have users 

provide feedback or rate items to generate a profile. An example of this approach is the 
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Netflix movie recommendation engine, which relies, in part, upon user feedback when 

making personalized movie recommendations (Bennet & Lanning, 2007). A drawback to 

methods that require humans to either manually create a profile or provide explicit 

feedback is that users are reluctant to invest the time, which severely limits the accuracy of 

these methods (Bennet & Lanning, 2007). Given the reluctance of users to provide 

feedback, researchers have focused on automatically constructing user profiles based on 

implicit feedback (Dou, Song, & Wen, 2007; Matthijs & Radlinski, 2011; Shen, Tan, & 

Zhai, 2005). In this proposed model, I would automatically construct the user profile based 

on the past accesses of the user.  

The proposed personal information scent model, like the standard information scent model, 

computes the likelihood of a document access based, in part, on the terms in the query and 

the terms in the title. In addition, the personal scent model includes evidence from the past 

document accesses of the user. That is, when the user issues the query, the documents with 

information scent values above a fixed threshold9 are selected and used to smooth the 

likelihood score from the original information scent score that is based on the document 

title and query. Figure 7.2 presents an overview of the processing involved in the personal 

scent model. 

 

                                                 
9 Proper threshold will have to be determined experimentally. 
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Figure 7.2. Personal information scent model 

 

 

The remainder of this section will describe the mathematical framework of the personal 

information scent model, which is based on the general optimization framework for 

smoothing language models presented in (Mei, et al., 2008). For reader convenience, 

Equation 7.7 repeats the information scent model discussed in-depth in Chapter 5 and 

Chapter 6. Equation 7.7 calculates the information scent based on the terms in the query 

and the terms in the title of the document. 

  

𝑃(𝑤|𝐷) = (1 − 𝜆)�̇�(𝑤|𝐷) + 𝜆∑
𝑤(𝑤, 𝑣)

𝐷𝑒𝑔(𝑣)
𝑃(𝑣|𝐷)

𝑣𝜖𝑉

 
(7.7) 
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After applying Equation 7.7, the score is then smoothed using the past access of the users. 

Additionally, Equation 7.7 is applied to the past accesses of the user and the documents 

above a set threshold are selected for smoothing. The intended effect of smoothing (within 

the framework of language models) in this case is to essentially re-rank the documents 

based on the past accesses of a given user. I propose using Equation 7.8 for smoothing the 

likelihood score from Equation 7.7 based on the evidence from past accesses. In Equation 

7.8, the likelihood score from Equation 7.7 is represented as �̅�(𝑞|𝑑𝑢). The past documents 

accessed by the user that are similar to the query are represented by 𝑉 and the likelihood 

score is represented by 𝑃(𝑞|𝑑𝑣). The relatedness between a document in the result set (𝑢) 

and a document that a user has previously accessed (𝑣) is represented as 𝑤(𝑢, 𝑣). The 

semantic relatedness score 𝑤(𝑢, 𝑣) can an be computed using a variety of methods such as 

LDA (Blei & Lafferty, 2007). Equation 7.9 presents the degree centrality metric used in 

this work, which is equivalent to the generalized measure for computing degree centrality 

in weighted networks (Barrat, et al., 2004). 

 

 

 

 

𝑠(𝑞, 𝑑𝑢) = (1 − 𝜆)�̅�(𝑞|𝑑𝑢) + 𝜆∑
𝑤(𝑢, 𝑣)

𝐷𝑒𝑔(𝑢)
𝑃(𝑞|𝑑𝑣)

𝑣𝜖𝑉

 
(7.8) 

𝐷𝑒𝑔(𝑣) = ∑𝑤(𝑢, 𝑣)

𝑢∈𝑉

 
(7.9) 
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7.2.3 Desirability at multiple levels of granularity 

In this work, I modeled desirability using aggregate document accesses from multiple 

institutions. However, from this dataset alone, it is possible to model desirability at multiple 

levels of granularity with supplementation from institutional records. Figure 7.3 presents 

an example of potential levels where desirability could be modeled. The motivation behind 

modeling desirability at multiple levels of granularity is that it could theoretically provide 

prior probability estimates that are in higher agreement with the user. For example, interest 

in electronic health records could vary between the medical school and an informatics 

school. That is, the informatics school may be more interested in research in the latest 

scientific advancements in electronic health records whereas the medical school may be 

more interested in case studies that discuss the outcome of installing electronic health 

records in hospitals. The evidence from these multiple desirability scores could be 

combined using linear integration as shown in Equation 7.10. 
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Figure 7.3. Potential levels for modeling desirability 

 

𝐵𝑖 = 𝜆1𝐵𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝜆2𝐵𝑆𝑐ℎ𝑜𝑜𝑙 + 𝜆3𝐵𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 + 𝜆4𝐵𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑔𝑟𝑜𝑢𝑝 (7.10) 

 

An obvious weakness of this approach is that modeling desirability at finer levels of 

granularity will result in a data sparsity problem. At the university level, desirability is 

computed using document accesses from thousands of individuals. At the research group 

level, there is generally less than one hundred people and frequently fewer than a dozen 

people. Overcoming this limitation would require supplementation from multiple 

institutions whereby similar research groups and similar departments are used in 

calculating desirability. 

 

University

Schools
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