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Abstract 

There is growing interest in the reuse of clinical data for research and clinical healthcare 

quality improvement. However, direct analysis of clinical data sets can yield misleading 

results. Data Cleaning is often employed as a means to detect and fix data issues during 

analysis but this approach lacks of systematicity. Data Quality (DQ) assessments are a 

more thorough way of spotting threats to the validity of analytical results stemming from 

data repurposing. This is because DQ assessments aim to evaluate ‘fitness for purpose’. 

However, there is currently no systematic method to assess DQ for the secondary analysis 

of clinical data. In this dissertation I present DataGauge, a framework to address this gap 

in the state of the art. 

 I begin by introducing the problem and its general significance to the field of biomedical 

and clinical informatics (Chapter 1). I then present a literature review that surveys current 

methods for the DQ assessment of repurposed clinical data and derive the features 

required to advance the state of the art (Chapter 2). In chapter 3 I present DataGauge, a 

model-driven framework for systematically assessing the quality of repurposed clinical 

data, which addresses current limitations in the state of the art. Chapter 4 describes the 

development of a guidance framework to ensure the systematicity of DQ assessment 

design. I then evaluate DataGauge’s ability to flag potential DQ issues in comparison to a 

systematic state of the art method. DataGauge was able to increase ten fold the number of 
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potential DQ issues found over the systematic state of the art method. It identified more 

specific issues that were a direct threat to fitness for purpose, but also provided broader 

coverage of the clinical data types and knowledge domains involved in secondary 

analyses.  

DataGauge sets the groundwork for systematic and purpose-specific DQ assessments that 

fully integrate with secondary analysis workflows. It also promotes a team-based 

approach and the explicit definition of DQ requirements to support communication and 

transparent reporting of DQ results. Overall, this work provides tools that pave the way to 

a deeper understanding of repurposed clinical dataset limitations before analysis. It is also 

a first step towards the automation of purpose-specific DQ assessments for the secondary 

use of clinical data. Future work will consist of further development of these methods and 

validating them with research teams making secondary use of clinical data.   
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Chapter 1: Introduction 

There is growing interest in the reuse of clinical data for research and clinical healthcare 

quality improvement. However, direct analysis of clinical data sets can yield misleading 

results (Hersh et al., 2013; C. Safran, 2014). Notably, van der Lei formulated the first law 

of informatics (Van Der Lei, 1991): “Data shall be used only for the purpose for which 

they were collected.” On the other hand, clinical data routinely serve multiple purposes 

including clinical, billing, administrative and legal. Data quality (DQ) flaws are often 

cited as one cause of these misleading results (Dentler et al., 2014; Dentler, ten Teije, de 

Keizer, & Cornet, 2013; Weiner & Embi, 2009). Thus, DQ assessment is generally 

recommended to prevent the hazards of data repurposing (Brown, Kahn, & Toh, 2013; 

Hersh, 2007; M. G. Kahn, Raebel, Glanz, Riedlinger, & Steiner, 2012).  

Once data are acquired it is difficult to change their quality (Hogan & Wagner, 1997; Van 

Der Lei, 1991). However, verifying their accuracy and ability to satisfy the needs of their 

intended secondary uses has the potential to increase confidence by unlocking a deeper 

understanding of the dataset's strengths, weaknesses, flaws and limitations. The results of 

secondary analyses can be then be interpreted in the light of this information as an 

indication of their validity. This idea is analogous to the concept of statistical confidence 

interval (Brookmeyer & Crowley, 1982), which has enabled the understanding of many 

complex phenomena with a well-defined degree of certainty.  
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There is currently no generalized method or approach to carry out such evaluation 

systematically for the secondary use of clinical data. However, quality is routinely 

evaluated for products taking into account their intended purpose. To ensure 

systematicity, these evaluations apply quality control standards and methodologies (Dale, 

2015; Evans & Lindsay, 1999; Juran, 1962; Taguchi, 1986; Walker & Gee, 2000) that 

require the explicit definition of quantitative requirements. Model-driven engineering 

(Schmidt, 2006) supports the definition and testing of these requirements for the 

systematic and purpose-driven evaluation of software products. 

In this thesis I propose and evaluate DataGauge, a framework to systematically assess the 

quality of repurposed clinical datasets based on these model-driven software quality 

assessment methods. I define a general process for the assessment of repurposed clinical 

datasets and provide guidance for the development of DQ requirements specifically for 

the secondary use of clinical data. Finally, I evaluate the ability of this framework to 

catch more potential DQ issues than the current state of the art methods of systematic DQ 

assessment for the secondary use of clinical data.  

1.1 - The Reuse of Clinical Data: Availability, Benefits and Limitations  

Unprecedented amounts of data are created every day though the recoding of clinical care 

information in patient records. As a result, clinical enterprises hold large amounts of data. 

For instance, it has been reported that healthcare data storage needs at Beth Israel 

Deaconess Medical Center have increased approximately six orders of magnitude (i.e., 

from gigabytes to petabytes) over the past three decades (C. Safran, 2014). The HITECH 
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act of 2009 has also been a driving force for growth by providing incentives for 

healthcare institutions that successfully adopted interoperability-capable Electronic 

Health Records (EHR) (Blumenthal, 2010). These efforts have been fueled by the 

understanding that health IT can help lower costs and increase the quality of care in 

medical institutions (Jha AK, 2010). The Institute of Medicine's report defining learning 

healthcare systems (Institute of Medicine (US) Roundtable on Evidence-Based Medicine, 

2007) has also stimulated the secondary use of clinical data for evidence-based medicine 

and healthcare quality improvement. 

Benefits from the reuse of this wealth of data have been noted for several decades (Fries 

& McShane, 1979; C. Safran, 1991; Starmer, Rosati, & Fred McNeer, 1974). Providing 

new ways to approach evidence-based medicine, surveillance, clinical research and 

clinical care quality assurance are often cited as the main benefits (Guyatt G, Cairns J, 

Churchill D, & et al, 1992; Hersh, 2007; Charles Safran et al., 2007). Other applications 

include cohort analyses to determine readmission risk (Phillips, Safran, Cleary, & 

Delbanco, 1987); description of patient populations (Hansell, Hollowell, Nichols, 

McNiece, & Strachan, 1999; Herrmann & Safran, 1992); infection control  and 

epidemiological monitoring (C, Kp, & W, 1994; Classen & Burke, 1995; Samore, 

Lichtenberg, Saubermann, Kawachi, & Carmeli, 1997); and discovery of pharmaco-

epidemiological relationships (Brownstein, Sordo, Kohane, & Mandl, 2007; Chalasani, 

Aljadhey, Kesterson, Murray, & Hall, 2004; Herzig SJ, Howell MD, Ngo LH, & 

Marcantonio ER, 2009). An additional benefit is that, like other forms of retrospective 

research, the reuse of clinical data has the potential to yield valuable insights at very low 
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cost and extremely short time. Because they do not require patient recruitment or data 

collection, the research is reduced to the time of data extraction plus analysis. 

However, repurposed clinical data have many limitations (Hersh et al., 2013). Issues such 

as inaccuracy (Hogan & Wagner, 1997), incompleteness (Nicole G. Weiskopf, Rusanov, 

& Weng, 2013), bias (George Hripcsak, Knirsch, Zhou, Wilcox, & Melton, 2011), coding 

standard inconsistencies (George Hripcsak, Knirsch, Zhou, Wilcox, & Melton, 2007), 

inaccessible data (e.g., clinical notes) (George Hripcsak et al., 1995), heterogeneity (De 

Lusignan et al., 2011) and clinical workflow influences on data recording (George 

Hripcsak, Albers, & Perotte, 2011) have been reported in the literature. Dentler et al. 

clearly showed the impact of these issues by attempting clinical quality indicators 

calculations directly from EHR data (Dentler et al., 2014). They found that only three out 

of eight quality indicators could be computed directly from repurposed clinical data due 

to an average record completeness of 50% and average correctness of 87%. These 

limitations have also been reported in the literature for decades. For example, a meta-

analysis of data accuracy assessments on EHR data published in 1997 revealed highly 

variable results (Hogan & Wagner, 1997) (e.g., accuracy measurements varying from 44 

to 100%). These results clearly reveal the limited reliability of repurposed EHR data and 

strongly caution against their direct reuse for purposes other than patient care. Such 

findings motivated van der Lei, in 1991, to formulate the first law of informatics (Van 

Der Lei, 1991): “Data shall be used only for the purpose for which they were collected.” 

By definition, secondary use violates this law, making it is necessary to assess whether 

clinical data are adequate for any intended purpose other than the original. 
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1.2 - Ensuring Analytical Validity Through Data Checking 

Current practices suggest the use of data cleaning methods to ensure reliable results 

(Broeck & Fadnes, 2013). The data cleaning process happens as the analysis is carried 

out and aims to detect faulty data. Data cleaning happens in three steps: (1) Screen for 

anomalous data, (2) Diagnose possible issues and (3) Address the issues found.  The 

screening step consists in detecting a lack or excess of data, screening for outliers, 

inconsistencies, "strange" patterns and suspect analytical results (Van den Broeck, 

Argeseanu Cunningham, Eeckels, & Herbst, 2005). The cleaning process is designed as a 

response to issues and discrepancies found during analysis rather than a preventative 

assessment procedure. Thorough checks are rarely done before the analysis in practice, 

which carries the risk of missing harmful issues. In this setup, only the issues detected by 

the analyst through dataset manipulation and analysis are addressed. This does not ensure 

that the assessment will cover all potential threats to the validity of analytical results in 

secondary use applications. For example, EHR-extracted clinical datasets may present 

issues such as missing and duplicate data appearing during the extraction process, which 

typically involves complex queries. Despite these potential problems, the data are rarely 

checked thoroughly for quality during the extraction process. Also, data cleaning is often 

driven by the purpose-independent application available testing tools (e.g., range 

checking, data validation and data format checking) rather than to detect potential threats 

to analytical results. This situation is much more alarming in the case of repurposed 

clinical data (Van Der Lei, 1991) because they are not specifically designed and recorded 

to satisfy secondary analytical needs. In such cases, issues may arise beyond the accuracy 
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and cleanliness of the data, such as not having the right variables to run the analysis or 

data that record implausible events. It is, therefore, imperative to conduct a systematic 

assessment of the data's suitability for a specific secondary use case prior to the 

secondary analysis (e.g., statistical analysis, exploratory visualization, etc.). Thus, data 

assessments of repurposed clinical data must cover a broad spectrum of potential issues 

rather than only those detected by the analyst.  

DQ assessment (Maydanchik, 2007a) is an alternate approach to data cleaning. Its goal is 

to help ensure valid analytical results through the evaluation of the dataset's ability to 

satisfy analytical needs (i.e., its fitness for purpose) (Holve, Kahn, Nahm, Ryan, & 

Weiskopf, 2013; Juran, 1962). This approach is usually carried out before performing the 

secondary analysis and the results serve as the basis to determine the dataset's strengths 

and weaknesses. It emphasizes the evaluation of the dataset for a specific application and 

is a more appropriate way of investigating a broader range of potential issues as 

compared to data cleaning. This approach is also very attractive for the secondary use of 

clinical data given that two purposes interact in such applications (Floridi, 2013): the 

primary purpose (i.e., recording the care of patients) and the secondary analytical purpose 

(e.g.,  prevalence estimation, clinical outcomes analysis, etc.). DQ assessments allow the 

user to evaluate whether the dataset will be good enough to provide reliable results for 

the secondary purpose, while still minding the primary purpose. 

Kahn et al. (M. G. Kahn et al., 2012) recently proposed a generalized framework to 

support a comprehensive and systematic approach to assess DQ for the purpose of 

building EHR-based Clinical Data Warehouse (CDW). However, there is a second stage 
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where systematic approaches for the assessment of DQ are currently unavailable.  These 

assessments aim to evaluate a subset of the CDW selected for a secondary analytical 

purpose (i.e., the analytical dataset). They typically focus on the independent and 

dependent variables directly related to the research question. A review of methods 

available for these secondary assessments (Nicole Gray Weiskopf & Weng, 2013) 

revealed that current methods are not generalizable, not systematic and fail to take the 

secondary analytical purpose into account. Moreover, it has been noted that one of the 

main barriers to the effective assessment and the transparent reporting of DQ results in 

secondary uses of clinical data are the ambiguity of DQ definitions (N. Weiskopf, 

Hripcsak, Swaminathan, & Weng, 2013) and the lack of a universally accepted set of DQ 

features to test for (M. Kahn et al., 2015). Making DQ requirements explicit would 

greatly support consistent DQ evaluations as well as clearer communication and reporting 

of DQ results. 

To address the current limitations in these methods I developed a framework with the 

following characteristics: 

• Supports purpose-specific DQ assessment 

• Provides a DQ assessment process that is:  

o Generalizable to a wide range of secondary use cases 

o Systematic (i.e., executed according to a fixed sequence of steps) 

• Makes DQ requirements explicit in order to: 

o Improve communication within the research team 

o Promote transparent reporting of DQ issues  
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1.3 - Dissertation Structure 

To create such framework I developed a purpose-specific DQ assessment process (i.e., 

DataGauge) that possesses the features stated above, along with a guidance framework 

for the development of comprehensive DQ assessments of repurposed clinical datasets. 

Then, I evaluated DataGauge’s ability to increase the number of DQ potential issues 

found before assessment. The dissertation is laid out in an analogous fashion. In Chapter 

2, I present a review of the current state of the science in DQ theory, DQ assessments at 

large and DQ assessments for the secondary use of clinical data to show current needs 

and gaps in the literature. In chapter 3, I describe the DataGauge process and its 

development. In chapter 4, I detail the development of the DQ assessment guidance for 

the definition of DQ requirements within DataGauge. In Chapter 5, I evaluate 

DataGauge's ability to identify more DQ issues than the current systematic standard 

method of DQ assessment for the secondary use of clinical data. The dissertation 

concludes by describing its significance and contributions to the field of clinical research 

informatics and clinical data reuse. 

1.4- Summary of Contributions 

My work lays the practical foundation for the systematic DQ assessment of repurposed 

clinical data as an evaluation of fitness for purpose (Holve et al., 2013). This contributes 

to supporting the reliable secondary use of clinical data (Charles Safran et al., 2007) 

which is a critical step towards building learning healthcare systems (Institute of 

Medicine (US) Roundtable on Evidence-Based Medicine, 2007). DataGauge provides a 
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stronger foundation for research aiming to learn from existing clinical data, generate 

novel yet data-driven research hypotheses and carry out cost-effective population-level 

analyses. It also provides guidance to support a thorough definition of DQ requirements 

for the secondary use of clinical data, which is currently missing in the literature. Lastly, 

it provides a method to explicitly define and encode DQ requirements. This is a first step 

towards supporting communication within the analytical team, because the process 

provides a tangible set of documents to help organize the team member's diverse 

backgrounds and expertise with respect to the secondary use case.  

This work innovates by breaking the current paradigm of data assessments for clinical 

data reuse, which is that ad-hoc, analyst-based, analysis-independent cleaning of data is 

sufficient to prevent misleading results in the reuse of clinical data. DataGauge proposes 

a new frame where repurposed datasets are to be assessed for their adequacy to answer a 

specific research question prior to analysis. DataGauge also stipulates that the 

assessments should be done by a team of experts in the domains of data science, statistics 

and medicine. This work supports cancer prevention by enabling a more trustworthy 

reuse of observational data from a broadly available yet still untapped data source: 

Electronic health records. EHRs are a very powerful source of knowledge that has the 

potential to enable the cost-effective analysis of population-level data. These databases 

will undoubtedly become an invaluable source of data for research fields such as cancer-

prevention in the near future due to the increasing number of recorded variables and 

imminent inclusion genomic data.  



 

 
 

10 

 

 

Chapter 2: Related Work 

Many tools are available for the secondary analysis of data but there are limited options 

to assess whether those data will yield valid results. To ensure that analytical valid 

results, one must ensure that the data accurately describe the observed objects and that 

they are likely to contain the necessary information (e.g., values, variables, sampling rate, 

etc.) to answer research question. Research shows that repurposed clinical data sources 

pose problems in both of these areas. These problems stem from measurement and 

recording processes (Aronsky & Haug, 2000) and inadequacies stemming from 

repurposing (Hersh et al., 2013). It is crucial to detect these issues before analysis in 

order to provide researchers with an understanding of data limitations and, in turn, the 

expected accuracy of analytical results. Such process is nothing more than the quality 

evaluation of a dataset, broadly known as a DQ assessment (Maydanchik, 2007a).  

2.1 - Data Quality Definitions, Frameworks and Assessment Tools  

DQ has been a subject of study for several decades in fields outside biomedical 

informatics (Dasu, 2013; Dentler et al., 2014, 2013; Madnick, Wang, Lee, & Zhu, 2009; 

Redman, 1998, 2013; Sadiq, 2013a; Trickey, 2012). Past research on DQ has produced 

definitions (Standardization, 1994), methods (Maydanchik, 2007a; Olson, 2003) and 

frameworks for DQ management (Fan, 2012; Sadiq, 2013b) and improvement (Batini & 

Scannapieca, 2006a, 2006c; Fan, Geerts, Ma, Tang, & Yu, 2013; Lee, Strong, Kahn, & 
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Wang, 2002; Redman, 2013; Wang & Strong, 1996).  This wealth of research provides a 

foundation for assessment during the data production cycle and is designed to support 

database administration work. In fact, most of this knowledge is geared towards 

supporting the maintenance of enterprise databases through DQ management (Redman, 

2013). This process entails the systematic assessment of whole databases according to 

user-defined rules (Maydanchik, 2007a) and flagging of common data issues such as 

duplicates and inconsistent input. Flagged data are then corrected using imputation 

methods or eliminated (Fan, 2012). The cycle is repeated to monitor and manage the 

quality of whole databases (Sadiq, 2013b). Though this research supports primary 

practical uses of data, it provides very little guidance for the assessment of repurposed 

clinical data.  

Quality is defined as the ability to satisfy needs (Standardization, 1994). Those needs are 

defined by an intended purpose. Thus, the most widely accepted definition of DQ is 

'fitness for purpose' (Holve et al., 2013; Juran, 1962). Three key features can be derived 

from this view of DQ. First, the quality of any dataset can only be measured with respect 

to a specific purpose. For example, a pre-Copernican, astronomical book would have 

very low DQ for its original purpose of understanding the laws governing the universe, 

but very high DQ for the secondary purpose of understanding the historical development 

of Ptolemaic astronomy (Floridi, 2013). Second, when repurposing data two purposes 

must be considered (Floridi, 2013): the original purpose for which the data were 

produced and the secondary purpose, which generally entails a secondary analysis to 

answer a specific research question. This means that the assessment for the secondary 
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purpose will necessarily have to take the initial purpose into account to define 

assumptions, expectations and evaluation parameters for the DQ assessment. Finally, 

systematically assessing quality in any industry or application requires a set of points of 

interest or DQ criteria. These criteria are represented by DQ requirements, which define 

specific conditions that the dataset must meet to be fit for purpose (Juran, 1962; 

Standardization, 1994). For example, the set of DQ requirements for assessing the quality 

of clinical data for treating individual diabetic patients is quite different from that needed 

when assessing the same data for the purpose of understanding the efficacy of a new 

diabetes treatment protocol. Routine clinical data from individual diabetic patients lacks 

randomization, controls, and systematic data collection.  Thus, DQ requirements should 

aim to define the ideal dataset for the intended purpose as a way to provide a standard to 

evaluate whether the data possesses the necessary features, such as an evenly sampled 

population, to obtain valid and acceptably reliable results. 

In practice, DQ assessments are carried out using a set of tools and techniques that aim to 

test for specific DQ issues. A large number of techniques are available in the literature to 

semi-automatically assess specific DQ issues (Borek, Woodall, Oberhofer, & Parlikad, 

2011; Maydanchik, 2007b). We will call these techniques DQ tests and define them as a 

tool, algorithm, approach or strategy employed to test the adherence of a dataset to a 

specific DQ requirement. They serve as a means to gather evidence of a dataset's fitness 

for purpose in light to a specific DQ criterion. Since these tests are geared towards 

identifying discrete problems, they are only capable of detecting issues at the data level 

such as typos, erroneous formatting or outliers. This output is useful to flag low-level 
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problems but rarely provide enough information on their own to decide whether a dataset 

is fit for purpose. This is why a DQ assessment can be defined as a judiciously selected 

combination of DQ tests based on DQ requirements to assess a dataset's fitness for a 

specific analytical purpose based on domain knowledge, data science, research design 

and analytical tools (e.g., statistical methods, machine learning algorithms, visualizations, 

etc.).  

Designing DQ assessments in an effective and reliable way is a challenging task because 

of the broadness of the question at hand: "Is this dataset good enough to yield valid 

results when analyzed to answer the research question?" To support this design process 

the literature provides frameworks that organize DQ knowledge and testing approaches 

(Batini & Scannapieca, 2006a, 2006b; M. G. Kahn et al., 2012; Lee et al., 2002; Madnick 

et al., 2009; Maydanchik, 2007a). One example is Wang & Strong's conceptual 

framework of DQ (Wang & Strong, 1996), which describe all aspects of DQ (i.e., DQ 

dimensions) that may be of interest to data consumers and classifies them into a 

taxonomy (see section 3.2.3 for full description). This work provides a list of aspects that 

should be considered to when evaluating DQ but the list is too abstract to be useful in 

domain-specific applications (Floridi, 2013; Nicole Gray Weiskopf & Weng, 2013). 

 Another example is Borek et al.'s classification of DQ assessment methods (Borek et al., 

2011). This framework organizes DQ testing approaches according to target DQ 

problems and database mapping requirements (i.e., data model subsets) as a way to 

support systematic selection (see section 3.2.3 for full description). This framework is 

helpful in three ways. First, it gives a limited list of potentially testable DQ issues and 
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provides clear testing approaches. Second, it helps to break down the complexity of the 

dataset into more manageable pieces. Third, by linking DQ issues and data pieces to a 

finite number of testing methods, it limits the scope of the DQ assessment design. For 

example, if we were to do a single variable check we could only use range checking, data 

validation, lexical analysis or column analysis according to this classification (Borek et 

al., 2011). Based on this limited set of methods it is much easier to select the correct 

method. However, this framework does not interface with Wang & Strong's DQ 

dimensions and does not provide any domain-specific support. In general, the available 

guidance lumps domain-knowledge-specific DQ test definition into a 'business rule 

definition' task that provides no clear process to follow (Maydanchik, 2007a). This setup 

fails to support the systematic definition of DQ tests because it provides no specific 

structure execute the task, leaving domain experts are to handle this task ad hoc. Also, 

DQ testing approaches (i.e., DQ test tools classifications) that aim to evaluate purpose-

specific issues are usually represented under the umbrella terms 'Domain Analysis' and 

'Semantic Profiling' (Borek et al., 2011) but fail to define them in specific terms. This 

guidance ultimately does not ensure the systematic and thorough definition of DQ tests to 

support systematic and thorough definition of purpose-specific DQ assessments.  

Thus, current DQ frameworks are still difficult to use for DQ assessment design and 

execution for three major reasons. First, there are large conceptual gaps between DQ 

theory and practice (Floridi, 2013). Second, major discrepancies and incompatibilities 

between nomenclature and DQ frameworks have been reported (Floridi, 2013; Nicole 
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Gray Weiskopf & Weng, 2013). Finally, the guidance tends to be abstract in nature and 

lack domain-specificity (Floridi, 2013).   

2.2 - Data Quality Assessment for the Secondary Use of Clinical Data 

It is well known that EHRs often contain inaccurate data and that accuracy varies 

between sites (Hogan & Wagner, 1997).  It is also broadly accepted that clinical data are 

incomplete (N. Weiskopf et al., 2013). This has been partially attributed to variable 

execution in data entry workflows as well as limited integration between healthcare 

institutions (Finnell, Overhage, & Grannis, 2011; Parsons, McCullough, Wang, & Shih, 

2012), so EHR data may not tell the patient's whole story. Also, some data contained in 

the record may not be easily accessible (e.g., clinical notes) (George Hripcsak et al., 

1995). The data may not be recorded at regular intervals or at a satisfactory rate for the 

secondary analysis (N. Weiskopf et al., 2013). Since EHR data is not intended for 

research, coding may not be sufficiently complete or accurate for research purposes 

(Bernstam, Herskovic, Reeder, & Meric-Bernstam, 2010; George Hripcsak, Knirsch, et 

al., 2011). Ultimately, the root of the problem seems to be that clinical data are created as 

a byproduct of clinical practice and therefore, may not follow the same production quality 

standard as research staff would for a clinical research project (Hersh et al., 2013). All 

these issues are symptoms of poor DQ with respect to research. Therefore, it is crucial to 

carry out thorough assessments to detect DQ issues before analysis and to consider 

identified issues when interpreting the analysis results. 
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Current DQ assessment methods have several limitations in the field of biomedical 

informatics. A recent systematic literature review (Nicole Gray Weiskopf & Weng, 2013) 

found that they are not systematic or generalizable and fail to adopt the preferred 'fit-for-

purpose' approach (Holve et al., 2013). They also fail to support the transparent reporting 

of DQ assessments results (M. Kahn et al., 2015).  Even though general DQ testing 

approaches found in the literature can be applied to the secondary use of data (Borek et 

al., 2011; Maydanchik, 2007b), their disparate nature and data-level (as opposed to 

purpose-level) focus makes them inappropriate to support the evaluation of fitness for 

purpose (M. Kahn et al., 2015; M. G. Kahn et al., 2012; Wang & Strong, 1996; Nicole 

Gray Weiskopf & Weng, 2013). To address this limitation, Kahn et al. have developed a 

framework, based on existing strategies and DQ tests, (M. G. Kahn et al., 2012) that 

supports the assessment of DQ for repurposed clinical data. This framework provides a 

process to run evaluations paired to a list of DQ rule-types to be considered by database 

administrators and researchers to define DQ requirements combined into a standard to 

detect poor quality data. Quality is assessed in relationship to the defined DQ standard by 

flagging the data that infringes on the defined DQ requirements. This process and DQ 

requirement development guidance sets the foundation for a generalized DQ assessment 

for cross-site aggregation of clinical data. Though this initial framework increases the 

potential for systematization for clinical data reuse, it is heavily oriented towards the 

initial data production purpose (i.e., health record keeping) and does not consider an 

analytical reuse purpose (e.g., answering a research question). This means that this 

framework does not allow the user to assess fitness for purpose if the intended data use is 
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anything but data aggregation.  For these secondary purposes, there are immensely large 

numbers of possible research questions to be considered, which complicates the 

definition of a general framework and systematic process to assess DQ.  

In response to the incoherent definition of DQ testing approaches and discrepancies 

between frameworks, an ontology for the DQ assessment of repurposed clinical data has 

also been recently published (Johnson, Speedie, Simon, Kumar, & Westra, 2015). This 

work rigorously defines concepts to enable the automated computation of DQ measures 

(i.e., quantitative evidence of DQ requirement infringements within a given dataset for a 

specific purpose) through the application of DQ tests. It also defines relationships 

between DQ dimensions and 19 DQ measure types that aim to unambiguously define and 

catalog all possible DQ tests for the secondary use of clinical data. However, this work 

has several limitations in supporting the effective DQ assessment of repurposed clinical 

data. First, it does not provide a general process for the systematic execution and 

implementation of DQ assessments. Second, it fails to provide guidance as to how to 

develop DQ assessments that ensure a reliable evaluation of fitness for purpose. Third, it 

fails to bridge the gap between purpose, DQ theory and domain knowledge for the 

definition of the DQ requirements. This step is crucial to DQ assessments because it 

informs the calculation of the DQ measures through the selection and definition of 

specific DQ requirements that, in turn, define the DQ tests. Beyond DQ dimensions and 

theory, the definition of DQ requirements depends on two information sources: (1) 

purpose, which is difficult to model due to its great variability and (2) the domain 

knowledge held by the experts conducting the research, which is difficult to fully include 
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in an ontology. Though the ontology includes placeholders for these parameters, it fails to 

provide any guidance on how to integrate and use them in practice.  

2.3 - Requirements for the Definition of a DQ Assessment Framework for the 

Secondary Use of Clinical Data  

Effective DQ assessment depends on the purposeful combination of DQ tests (and, thus, 

the definition of DQ requirements) to assess fitness for purpose. In fields outside 

biomedical informatics, definition of DQ requirements has proven challenging and 

frameworks have been used to support the design of such assessments (Fan, 2012; Lee et 

al., 2002; Madnick et al., 2009; Stvilia, Gasser, Twidale, & Smith, 2007; Wang & Strong, 

1996). A framework is currently available to support DQ assessments for the 

consolidation of multi-site clinical data into CDWs (M. G. Kahn et al., 2012). However, 

there is no framework to support DQ assessments for secondary analyses of clinical data. 

Given the current state of the science, such frameworks should at least (1) provide a 

generalizable and systematic method for assessing DQ consistently across datasets and 

purposes (Nicole Gray Weiskopf & Weng, 2013) and (2) support the purpose-specific 

assessment of repurposed data (Holve et al., 2013). In other words, the framework should 

encourage the definition of requirements and tests that evaluate the appropriateness of 

datasets for the research question at hand. Moreover, the necessity of a systematic 

approach to these assessments requires a unified yet general way to define and implement 

DQ assessments. Therefore, the framework must provide an unambiguous process to 

define and execute DQ assessments.   
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One additional limitation of current clinical data reuse practices is the tendency not to 

include detailed DQ assessment results in publications (N. Weiskopf et al., 2013; Nicole 

Gray Weiskopf & Weng, 2013). To address this, DQ assessment result reporting 

guidelines have been published (M. Kahn et al., 2015). These aim to promote 

transparency in published analyses through explicit reporting of employed DQ 

assessment methods and DQ results. The ultimate goal is to ensure a deeper, more precise 

understanding of repurposed clinical data limitations and, in turn, the analytical results. 

Defining all parameters and assumptions of the DQ assessment explicitly would facilitate 

the transparent reporting of DQ results in three ways. First, it would promote the 

unambiguous definition of DQ features to test. Second, it would promote the organized 

development of the DQ test lists, which would then facilitate the conversion into a 

publishable format. Lastly, using explicit DQ assessment documents would structure 

communication within the research team.  

Thus, a framework that addresses the current limitations of DQ assessments for the 

secondary use of clinical data should have the following characteristics: 

• Supports purpose-specific DQ assessment 

• Provides a DQ assessment process that is:  

o Generalizable to a wide range of secondary use cases 

o Systematic (i.e., executed according to a fixed sequence of steps) 

• Makes DQ requirements explicit in order to: 

o Improve communication within the research team 

o Promote transparent reporting of DQ issues  
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Chapter 3: DataGauge - A Model-Driven Process for the Systematic Assessment of 

Repurposed Clinical Data 

In this chapter, I present DataGauge, a generalized and systematic procedure for the 

analysis-specific assessment of DQ for repurposed clinical data that addresses the 

limitations in the state of the science reviewed in Chapter 2. I also present an example 

showing its uses and advantages. Finally, I discuss DataGauge's strengths and limitations.   

DataGauge consists of three stages: (1) Scope definition, (2) DQ specifications 

development and (3) Data processing according to these DQ specifications. DataGauge 

provides specific steps that can be applied consistently across analyses to promote the 

systematic assessment of DQ. It supports the purpose-specific assessment of DQ by 

generating DQ requirements and documentation specific to a particular research question. 

DataGauge relies on explicit standards and documentation, which promotes collaborative 

analysis by providing tools to structure communication within the analytics team and in 

published results. It also allows an iterative approach where the analytical scope and DQ 

standards are improved as the research progresses. Finally, DataGauge facilitates linking 

of DQ requirements to available assessment methods.  
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3.1 - Adapting a Model Driven Quality Assessment Process to Clinical Data  

Quality assessment methods are widespread in many domains outside biomedical 

informatics and usually address one or more of the needs stated in Chapter 2. Basic 

quality assessments rely on qualitative evaluations (e.g., satisfaction surveys), that 

provide measures of perceived quality (Nelson & Niederberger, 1990). This type of 

assessment is generally purpose-driven and developed based on a generalized set of 

guidelines (Gómez, 2009) to ensure validity. However, such approaches have a tendency 

to produce ad-hoc evaluations rather than systematic assessments. To counteract this, 

standards organizations such as the ISO have defined quality control standards (Walker & 

Gee, 2000) and methodologies (Dale, 2015; Evans & Lindsay, 1999; Juran, 1962; 

Taguchi, 1986) that require the definition of quantitative requirements and a systematic 

approach to test them. These standards require explicit design documentation that defines 

quality requirements to be met by the evaluated product. One particularly interesting 

research field that resulted from the creation of these engineering standards is model-

driven engineering (Schmidt, 2006). This field focuses on developing methods to support 

the explicit definition of formal requirements and their automatic evaluation. These 

model-driven methods enable the systematic, generalizable and purpose-driven quality 

assessments of software products based on explicitly defined quality requirements. Thus, 

this approach addresses similar challenges to those described in Chapter 2 for the quality 

assessment of software products. However, it has not yet been adapted to assess the DQ 

of repurposed clinical data, nor evaluated.  
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Model-driven software development and quality assessment is a well-developed branch 

of software engineering (Boytsov & Zaslavsky, 2013; Jordi Cabot, 2012; France & 

Rumpe, 2007; González & Cabot, 2014; Mayrand & Coallier, 1996; Whittle, Hutchinson, 

& Rouncefield, 2014). These similarities offer a unique opportunity to adapt these 

methods to the DQ assessment of repurposed clinical data. Beyond addressing the 

limitations of the current state of the science, translating these methods is advantageous 

because model-driven quality assessment methods follow the standards for systematic 

product quality control (Evans & Lindsay, 1999; Juran, 1962; Taguchi, 1986), which has 

proven useful in other fields. The adaptation of these methods is likely to be viable for 

two reasons: (1) Wang has shown that data can be evaluated for quality just like any other 

product (Wang, 1998) and (2) experimental model-driven approaches to data validity 

checking have been reported as successful in the context of structured data using finite 

state models (Mezzanzanica, Boselli, Cesarini, & Mercorio, 2011).  

To define such a process I assessed the commonalities between model-driven software 

quality assessment methods. The methods shared three high levels stages: (1) Evaluation 

of needs and scope definition (France & Rumpe, 2007; Kan, 2002; Mayrand & Coallier, 

1996), followed by (2) Explicit modelling of product specifications (i.e., the quality 

requirements) based on the needs (France & Rumpe, 2007; Kan, 2002; Mayrand & 

Coallier, 1996; Mezzanzanica et al., 2011; Whittle et al., 2014) and, finally, (3) 

Evaluation of the product based on the previously-defined requirements (Boselli, 

Cesarini, Mercorio, & Mezzanzanica, 2013; France & Rumpe, 2007; Kan, 2002; 

Mayrand & Coallier, 1996; Mezzanzanica et al., 2011). These three steps can be easily 
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adapted to the secondary use of clinical data as the following stages: (1) A data needs 

assessment that serves as a definition of the data scope and should include the analysis of 

the research question and a definition of the resulting data needs, (2) The specification 

development, which would include the specification of the data needs in an explicit 

model as well as the definition of DQ requirements and, finally, (3) the evaluation, which 

would entail the assessment of the data according to the DQ requirements.  

At the heart of this process lies the definition of explicit models to represent DQ 

requirements. Multiple languages are used to describe such requirements in model-driven 

software quality assessment. For example, Universal Modelling Language (UML) and the 

Object Constraint Language (OCL) are routinely used to define software requirements. 

(J. Cabot, Clariso, & Riera, 2008; Jordi Cabot, 2012; Jordi Cabot & Gogolla, 2012; 

Demuth & Hussmann, 1999; Pinet et al., 2011; Selic, 2004; Zubcoff, Pardillo, & Trujillo, 

2009). UML is also routinely used to describe databases and data models in practice 

through its entity-relationship diagrams (Selic, 2004). OCL is designed to fully integrate 

with UML and provides an additional layer of constraints on data models (Jordi Cabot & 

Gogolla, 2012). The combination of these two languages is a viable way of encoding DQ 

requirements in a standardized, unambiguous way, resulting in a unified DQ assessment 

specification model-based document.  

To refine this initial process for the DQ assessment of repurposed clinical data I carried 

out three assessments of repurposed clinical data.  The end result was a generalized 

process for the systematic DQ assessments based on UML entity-relationship diagrams 
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and OCL constraints that I have named DataGauge. The process is presented in the next 

section. 

3.2 - The DataGauge Process 

3.2.1 - Method overview 

Figure 1 illustrates the three stages of the analysis-specific DQ assessment method called 

DataGauge. The stages are: (1) Data Need and Scope definition, (2) DQ specifications 

development, and (3) Data processing according to these specifications. These three 

stages are composed of five steps: (1) Define needs based on the research question and 

analytical study design, (2) Develop a data needs model (DNM) where we formalize the 

data needs, (3) Develop analysis-specific DQ requirements based on the analytical 

purpose, the DNM and the dimensions of DQ, (4) Extract data from the source dataset to 

fit the DNM, and (5) Evaluate the extract according to the DQ requirements where we 

flag all data that infringes on the DQ assessment standard.  

DataGauge is a guide for DQ assessments that applies to most secondary uses of clinical 

data. It is designed to be carried out collaboratively by a team of domain experts (e.g., 

clinicians), data users (e.g., researchers, clinical personnel, etc.), informaticians, 

statisticians, and database administrators (Barlow, 2013). Such a team ensures input from 

all relevant perspectives. The team is expected to iterate over these steps several times to 

refine the specifications as the research progresses.  
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Figure 1 – Iterative analysis-specific DQ assessment method for the secondary use of 

clinical data. This process defines the general stages and steps for analysis-specific DQ 

assessment using data models and an analysis-specific DQ standard.  

 

3.2.2 - Stage 1: Data Scope Definition 

The initial stage defines the scope of research in terms of data. This is done in two steps.  
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Step 1: Research Question Analysis 

First, the domain expert and statistician must define the research question and analytical 

design. This dictates the data needs. Objects of relevance to the analysis are identified 

(e.g., patients, prescriptions, diagnoses, etc.) along with independent and dependent 

variables based on the research question (Tabachnick & Fidell, 2001). I define data needs 

as all variables and metadata necessary to achieve the analytical goal (i.e., answering the 

research questions). For example, if we are studying the relationship between weight and 

age, the domain expert will define a person object that will contain the necessary patient 

demographic variables (i.e., weight measurements and age) plus all additional covariates 

to be selected based on their analytical needs and clinical domain knowledge.  

Step 2: Data Needs Model Development 

The second step is to build a Data Needs Model (DNM) that defines the ideal analytical 

dataset. We define the DNM as a fully-specified, explicit representation of all data needs 

for the analytical purpose, including the relationships between data elements. For 

example, if we are investigating relationships between weight and age, a simplistic DNM 

may be defined as a single table containing 'Subject ID', 'Weight' and 'Age' variables, 

where each line represents a weight observation. The model serves as a design 

specification document and an unambiguous means of communication among team 

members. This model defines the scope based on analytical requirements. This marks the 

end of stage 1 that ensures agreement on the scope of work, the necessary data and its 
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context for a specific analytical purpose. Step 2 continues into the first part of stage 2, 

described next. 

3.2.3 - Stage 2: Specification Development 

The second stage consists of iteratively refining the DNM along with DQ requirements 

that, if met, would ensure fitness for purpose. These two elements fully specify a DQ 

assessment for a clinical data source and a specific analytical purpose. Step 2 concludes 

when the analytics team has a fully defined and is satisfied with the DNM version. The 

qualities of a satisfactory DNM are difficult to define generically because they heavily 

depend on the purpose. The experts in the analytics team must, therefore, decide when 

the DNM is ready. It is important to note that it may be useful to run additional iterations 

of the DataGauge process after the initial evaluation. The DNM can then be revised and 

further refined.   

This step is crucial for several reasons. First, it clearly defines the assessment scope. 

Second, it defines the object(s) of analysis fully and explicitly. Third, the DNM defines 

the variables and their relationships, but also assigns clinical meaning to them by 

grouping them into objects that make clinical sense such as patient, prescription and 

measurements. This provides a link between the source data, the analytical purpose and 

clinical domain knowledge.  Revisiting the weight and age relationship example, the 

'Patient ID' would be an identifier with no specific clinical meaning, but 'Weight' would 

be tied to an observation that is associated with an office visit in the medical record. The 

additional clinical workflow information allows the analytics team to relate the weight 
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variable to clinical domain and workflow knowledge.  Defining the DNM also supports 

the generation of DQ requirements by outlining a finite DQ evaluation space. For 

example, if there are no numerical variables in the data model, the team will not have to 

set numerical thresholds for range checks. To ensure systematicity, the DNM design 

should also be in at least third normal form (Kent, 1983) or, equivalently, follow a tidy 

data format (Wickham, 2014).  Although equivalent, we prefer the tidy data standard, 

because it defines the data format in terms that are easier for analysts and researchers to 

understand. These forms specify the observational units (modeled as different tables), the 

variables within a unit (columns of a table), and the observations of each unit (rows of a 

table), that allow the clear definition of data needs.  An example of tidy-data-compliant 

DNM is provided in the next section. A clear specification of these three elements is 

required prior to beginning step 3.  

 Step 3: Analysis-specific DQ requirements Development 

Once the analytics team has fully defined the DNM, the third step is the definition of an 

analysis-specific DQ standard composed of DQ requirements. I define the DQ standard 

as a document containing the full set of individual DQ requirements that fully describe a 

fit-for-purpose dataset for a specific research question and DNM. This document allows 

the analytics team to explicitly develop and agree on DQ for a particular case. The 

development of DQ requirements is task is complex because it requires the integration of 

multiple information sources (e.g., the DNM, the research question, DQ theory). To tease 

out this complexity, I first lay out the theoretical basis for the DQ requirement 

development in the next paragraphs as follows: (1) define DQ requirements by 
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differentiating them from inclusion/exclusion criteria, (2) explain how developing tidy-

data-compliant models helps the analytics team to tease out the DNM's complexity and 

make the variables of interest more accessible, (3) I then explain how the levels of data 

granularity (Oliveira, Rodrigues, & Henriques, 2005) contribute to a thorough definition 

of DQ requirements and lastly (4) I explain the role of the DQ dimensions (Wang & 

Strong, 1996; Nicole Gray Weiskopf & Weng, 2013) and their integration into the DQ 

requirement generation task. The last paragraph of this section describes the DQ 

requirement development procedure.   

I differentiate DQ requirements from inclusion/exclusion criteria by the object they 

define and their goal. Inclusion/Exclusion criteria focus on the main object of interest to 

the research question (e.g., patients, encounters, visits, prescriptions, etc...). They aim to 

define the features that qualify or make these objects unacceptable for the study. These 

criteria aim to define a cohort or population. For example, if patients are the objects of 

study, inclusion/exclusion criteria will be based on demographic and clinical 

considerations. The object of analysis will usually be a patient for clinical research 

question but may also be encounters, visits, clinical notes, etc. for quality improvement 

and other projects. On the other hand, DQ requirements define the minimum expectations 

of data to ensure that a specific dataset is valid and useful for a specific analytical 

purpose. They aim to define a fit-for-purpose dataset. For example, "patient is at least 18 

years old" is an inclusion criterion whereas "patient date of birth is earlier than 

observation date" is a DQ requirement.  Each DQ requirement corresponds to a DQ test 

that will be carried out. For example, if our secondary analytical purpose included 
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assessment of weight change over time, a requirement might be 'patients must have at 

least two weight measurements'. To test this, I would check that there are enough patients 

with at least two weight measurements in the dataset for the secondary analysis (i.e., the 

dataset has an adequate sample size). If the condition is not met, the dataset is not fit for 

this particular analysis.  

DNMs often describe multiple aspects of a phenomenon, which can yield complex 

datasets. For example, a dataset for the secondary use of clinical data may contain cohort 

identification variables (i.e., variables that define patient characteristics and support their 

classification), outcome definition variables, exposure variables and relevant covariates 

(M. Kahn et al., 2015). To address this complexity we propose two strategies: the 

development of DNMs in the tidy data format (Wickham, 2014) and the decomposition 

of the DNM into levels of data granularity, described in the next paragraph (Oliveira et 

al., 2005). The requirements for a tidy dataset are "each variable reside in a column", 

"each observation is presented in a row" and "each type of observational unit is a table". 

In such form it is easy to isolate meaningful segments of the data model that correspond 

to variables and elements relevant to purpose. For example, let us build a DNM 

describing the necessary data to examine the relationship between patient demographics 

and patient weights over time. We may begin with a dataset that describes patients and 

their weight measurements and get the data in non-tidy-data-compliant formats; for 

instance, one line per weight measurements with all patient data attached to every line or 

one line per patient with multiple columns for weight measures. Neither of these forms is 

tidy-data-compliant because they combine two observational units in one table: patients 
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and weight measurements. Each observational unit must have a separate table. This 

means that we must necessarily have one table for patients and we must have a table for 

weight measurements. Also, each observation must be recorded as an individual row; 

this means that the database must contain one line per patient in the patient table and one 

line per weight measurement in the weights table. Finally, tidy-data standards require that 

each variable must be recorded in a distinct column. This means that the weights table 

must record the patient identifier, the weight value, the unit, a timestamp and any 

additional information as distinct columns. The same applies for the patient table where 

each column would correspond to a demographic variable. In the end we would have two 

tables: a patient table with all demographic variables (e.g., gender, date of birth, etc.) and 

a table with weight values and additional variables as described above. These two tables 

should be related to each other via a patient identifier, which plays the role of a primary 

key to the patient table and a foreign key to the measurements table. This data format 

makes patient demographics and weight measurement accessible for analysis and DQ 

assessment.  

A model with accessible variables also allows the team to view the DNM as a 

combination of data elements along a scale of data granularity (Oliveira et al., 2005). I 

define data granularity as the different data levels at which the objects of interest (i.e., 

patients, outcomes, drug exposures, etc.) can be encoded into the DNM. Some examples 

of these levels are: single value, multiple values, observation, observational unit and 

dataset. The benefits of providing a way to break down the DNM into simpler data 

elements are twofold. First, it reduces the complexity of the elements to assess. Second, it 
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allows the use of DQ test selection guidance. Borek et al. (Borek et al., 2011; Oliveira et 

al., 2005) have mapped these levels of data granularity to DQ test methods (i.e., ways to 

check the data based on DQ requirements). This mapping reduces the number of possible 

tests to be applied by giving the DQ assessment designer a limited number of testing 

approaches to choose from. In essence, this work maps usual DQ problems (e.g., missing 

values, inconsistent data formats, incorrect values, etc.) to DQ testing approaches (e.g., 

range checking, data validation, lexical analysis, etc.), classifying their usefulness by data 

granularity level (e.g., single value, multiple values, observation, etc.). This is a good 

starting point for a systematic DQ assessment design strategy because it tasks the 

analytics team with reviewing a finite number of data elements, for a finite number DQ 

testing strategies.  Its core weakness is that it does not map to DQ dimensions. 

To define an assessment that evaluates fitness for purpose, it is necessary to account for 

all dimensions of DQ (Wang & Strong, 1996; Nicole Gray Weiskopf & Weng, 2013). 

The theoretical dimensions have been formally defined by Wang & Strong in their 

conceptual framework of DQ (Wang & Strong, 1996) based on aspects that may be 

important to data consumers. They fall into four distinct categories: (1) Intrinsic DQ 

refers to the qualities that the data should have regardless of their purpose, (2) Contextual 

DQ focuses on the qualities that the data should have, based on the purpose for which 

they will be used, (3) Representational DQ includes data modeling and information 

display, and (4) Accessibility DQ focuses on having data that are readily available to be 

processed and yet accessible by authorized users. Intrinsic DQ encompasses accuracy, 

believability, objectivity and data source reputation (Wang & Strong, 1996). These 
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dimensions relate closely to the initial purpose for which the data were produced rather 

than the secondary analytical purpose. On the other hand, contextual DQ relates to the 

purpose for which the data are to be used. Dimensions of completeness, relevancy, 

timeliness, quantity of data and added value in the context of the intended purpose 

constitute contextual DQ. These dimensions are particularly useful when assessing the 

fitness of a specific dataset for secondary analysis. DQ requirements should be built 

around these dimensions keeping the analytical purpose in mind. In practice, the 

assessment should also include data checks to ensure the accuracy and believability of 

the repurposed dataset in case preliminary DQ assessments of primary purpose failed to 

catch errors that may adversely impact the analysis. When combined with the DNM at 

different levels of data granularity and the analytical purpose, these dimensions are the 

key to a comprehensive analysis-specific DQ assessment. This will be illustrated in the 

following section. 

Step 3 consists of reviewing the data model at all levels of data granularity to define the 

DQ requirements in terms of DQ dimensions and the analytical purpose. These 

requirements are assigned to specific DQ assessment methods (Borek et al., 2011) 

according to potential DQ issues and the level of data granularity (Oliveira et al., 2005). 

The team surveys the DNM in light of DQ dimensions to define the minimum standard of 

quality for a particular analysis. For example, if studying the relationship between patient 

weight and age, the domain expert should define criteria relating to the plausibility of the 

weight variable such as "weights are positive numbers", but also relating to the 

completeness of the dataset such as "each patient should have at least one weight 
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measurement" and so on. Each requirement will be mapped to a specific DQ checking 

method based on the assessed DQ dimension and data granularity level. We provide a 

table linking DQ dimensions, data granularity and DQ testing approaches to facilitate this 

(Table 1). We built this guidance table as a combination of Borek's et al.'s (Borek et al., 

2011) classification of DQ testing approaches and the DQ dimensions relevant to the 

secondary use of clinical data defined by Weiskopf et al. (Nicole Gray Weiskopf & 

Weng, 2013) (i.e., correctness, completeness, concordance, plausibility and timeliness). I 

included an additional 'representation' dimension to assess the issues of data 

transformations and fit of the available data to the DNM specifications.  This dimension 

accounts for database design considerations being respected in the dataset (e.g., primary 

and foreign key checks).  
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Table 1 - DQ requirement development guidance table. This table links DQ dimensions, 

levels of data granularity and DQ testing approaches as a way to provide an overview or 

'menu' of the testing strategies at the disposal of the research team.  

 

3.2.4 - Stage 3: Data Processing 

This last stage uses the DNM and analysis-specific DQ standards to extract, format and 

assess the data. 

 Step 4: Data Extraction and Fitting 

The fourth step uses the DNM to guide the data extraction from the original database and 

to fit the data into the format defined in the specifications. The database administrator 

creates a schema with tables matching the DNM then loads the source clinical data into 

the tables. This schema should have all database rules such as variable type definitions, 

primary key rules, table relationship rules and other data validation triggers built in. 

Using this predefined schema to load the extracted data ensures that the values match the 

 Data Quality Dimensions 

Data Granularity 
Levels 

Correctness and 
Plausibility Completeness Concordance Representation Timeliness 

Cell/Value Domain analysis,  
Data Validation, 
Lexical analysis 

Domain Analysis, 
Lexical Analysis 

Domain Analysis  Column Analysis,  
Lexical Analysis, 
Schema Matching 

Domain Analysis 

Column/Variable Column Analysis,  
Data Validation, 
Semantic Profiling  

Column Analysis, 
Domain Analysis 

Column Analysis,  
Data Validation 

Column Analysis, 
Schema Matching  

Column Analysis, 
Domain Analysis  

Line/Observation Domain Analysis, 
Semantic Profiling 

Domain Analysis, 
Semantic Profiling 

Domain Analysis, 
Semantic Profiling 

Domain Analysis, 
Schema Matching  

Domain Analysis, 
Semantic Profiling  

Table/Observational 
unit 

Domain Analysis Domain Analysis, 
Column Analysis 

Column Analysis, 
Semantic Profiling  

Schema Matching Semantic Profiling, 
Domain Analysis 

Multiple Tables/ 
Dataset 

Semantic Profiling,  
PK/FK analysis,  
Column Analysis  

Domain Analysis, 
Semantic Profiling 

Domain Analysis, 
PK/FK Analysis,  
Semantic Profiling 

Column analysis, 
PK/FK Analysis, 
Semantic Profiling, 
Schema Matching 

Semantic Profiling, 
Domain Analysis 

Multiple Databases/ 
Multiple Datasets 

Semantic Profiling,  
Domain Analysis,  
Column Analysis 

Domain Analysis, 
Semantic Profiling 

Semantic Profiling,  
Domain Analysis  

Column analysis, 
Schema Matching, 
Semantic Profiling  

Semantic Profiling, 
Domain Analysis 
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agreed upon data model, variable types and database relationships.  This step is an initial 

representational DQ test; if the data are not in the right format or variable types do not 

match, the database software should produce an error.  

Step 5: DQ Evaluation 

The fifth and last step consists of evaluating DQ based on the previously defined DQ 

requirements. Appropriate DQ test methods (Maydanchik, 2007b) are selected and 

implemented to test each DQ requirement. This process evaluates DQ standard 

compliance and flags discrepancies. These flags allow further analysis, data diagnosis 

and imputation (Van den Broeck et al., 2005). Several indicators (i.e., DQ measures) can 

be calculated from these flags as measures of DQ (e.g., compliance percentage for each 

variable or patients with no data flaws divided by the total number of patients). These 

results provide quantitative evidence of non-compliant data and can serve as a basis for 

experts to judge the fitness for purpose.  

 3.3 - Example 

We used DataGauge to assess DQ for a repurposed clinical dataset and address the 

challenges of analysis-specific DQ assessment. The analytical purpose was to determine 

whether prednisone, a commonly-prescribed corticosteroid, is associated with weight 

gain. We chose this association because weight gain is a known and clinically-significant 

side effect of prednisone (PredniSONE Tablets [Package Insert], 2012) that is likely to be 

detectable through retrospective review of clinical data. Our data source was a CDW 



 

 
 

37 

containing routinely recorded clinical data from six academic outpatient clinics in a large 

metropolitan area in the southern United States. 

We used a UML-based database modeling tool (MySQL workbench data modeler; Oracle 

Corp., Redwood Shores, CA) to develop the DNM. A team composed of a clinician, a 

statistician and an informatician (the author), who also played the role of database 

administrator, developed the final UML diagram for the research question (Figure 2c). A 

series of models were iteratively created and discussed according to their ability to satisfy 

the analytical purpose as well as data availability in the CDW. Note the changes that led 

to the final data model in Figure 2 and the variations in DQ requirements per iteration in 

Table 1. Figure 2 shows variables that were removed because they were unavailable in 

the CDW (e.g., no drug exposure variable was found or could be reliably calculated from 

our CDW data). Figure 2 shows the evolution of the DNM from (a) single-table format 

that is not tidy data-compliant into (b) a tidy data compliant model with four 

observational units (i.e., Patient, Visit, PrednisonePrescription and Weight). The final 

DNM (c) improves on the tidy-data compliant model by removing the Visit observational 

unit, which is not directly relevant to the research question, and adapted the model to the 

data available in the CDW (e.g., changes in the variables describing the prednisone 

prescription). Our final model conforms to the tidy data guidelines (Wickham, 2014) 

providing one observational type per table (i.e., patients are represented as a separate 

table from weights and prescriptions), each line represents an observation (i.e., each line 

on the patient table a different patient, and in the prescription table a different 

prescription) and each variable corresponds to a column (e.g., patientID, gender and DoB 
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are separate variables in the patient table); this data format also corresponds to the third 

normal form (Kent, 1983). The final DNM served as a data specification document to 

guide the data extraction. Database tables were created to match the DNM and the raw 

data were extracted from the source database into the DNM schema using standard SQL 

queries. DQ requirements were defined in the form of Boolean expressions and Object 

Constraint Language constraints (Jordi Cabot & Gogolla, 2012). We chose OCL due to 

its integration with the UML diagrams previously used for the data models (Demuth & 

Hussmann, 1999; J. Cabot, Clarisó, & Riera, 2014; Seiter, Wille, Soeken, & Drechsler, 

2013).  
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Figure 2 - Evolution of the data needs model for the purpose of assessing a relationship 

between prednisone and weight gain using repurposed clinical data. This data model 

defines the data needs for the evaluation of an association between prednisone and weight 

gain. a), b) and c) show the three versions of the DNM for the each iteration. 

a)#

b)#

c)#
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We generated DQ requirements iteratively and collaboratively. Each DQ dimension was 

surveyed at different levels of data granularity (e.g., single value, multiple values, 

observation, observational unit, dataset, etc. (Oliveira et al., 2005)) running through all 

variables of the DNM and using the overview provided in Table 1 to guide the process. 

For example, when we combined the accuracy dimension with the single value level for 

the final DNM we came up with requirements such as "Dose must be positive" or "Refills 

must be positive or 0"; both of these requirements were mapped to a range checking 

method. The concordance dimension at the observation level yielded criteria such as "the 

prescription date should be later than the patient's date of birth" which was mapped to the 

semantic profiling DQ check method. At the observational unit or table level we assessed 

the timeliness of the data with the "Patient has a second weight measurement within 4 

months of the first prescription" requirement. This requirement was also mapped to the 

semantic profiling check method. DQ requirements were generated until the analytics 

team was satisfied with the DQ standard. We used the DQ requirements to evaluate the 

quality of the extracted data based on the third version of the DQ standard. We covered 

analysis-specific DQ requirements as well as generic requirements to test accuracy and 

believability of the data. Of 52 requirements, 17 were analysis-specific. Analysis-specific 

requirements tended to be more complex and concern a larger number of variables. Table 

2 shows how the requirements evolved over iterations; note the increasing precision and 

analysis-specificity (e.g., "2 values per patientID" in iteration 2 followed by "50% 

patients with 2 weight measures within 4 months of first prescription"). Each new DNM 

represented a specific data model designed to satisfy the same analytical purpose; each 
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iteration for the DQ requirement created an increasingly complete, refined and analysis-

specific set of requirements. 

Table 2 - Data quality requirement examples. The table shows DQ requirement examples 

as they were generated. The requirements became more specific and analysis-specific as 

the development progressed.  

 

The DQ tests revealed several DQ flaws. We were able to identify specific DQ issues 

such as inaccuracies (e.g., 84 weight values were above 400kg), inconsistencies (e.g., 56 

instances where weight changed more than 20% over 2 days) and incompleteness (e.g., 

43,135 patients with less than two weight measurements within 3 months of the 

prescription). This showed the approach's effectiveness at catching DQ issues and 

screening data at the basic data level. We also excluded 14.1% of the patient records as 

Iteration	 DQ	Dimension	 Variable	
Granularity	

Variable(s)	 Analysis	
Specific?	

Requirement	 DQ	assessment	
method	

DQ	Result		
(%	compliance	
or	Pass/Fail)	

1	 Accuracy	 Value	 Gender	 No	 In	{'M','F','U'}	 Data	Validation	 99.99	
	
	
	
	
	
	

Accuracy	 Value	 WeightValue	 No	 >0	 Range	Checking	 92.65	
Believability	 Value	 WeightValue	 No	 <400	 Range	Checking	 99.95	
Accuracy	 Value	 Strength	 No	 >0	 Range	Checking	 97.37	
Believability	 Value	 Strength	 No	 <2*[Max	dose]	 Domain	Analysis	 100	
Accuracy	 Value	 Dose	 No	 >0	 Range	Checking	 51.68	
Believability	 Value	 Dose	 No	 <2*[Max	pills	at	min	strength]	 Domain	Analysis	 100	
Accuracy	 Value	 Refills	 No	 >=0	 Range	Checking	 100	

2	 Accuracy	 Value	 WeightTime	 No	 >[System	Installation	Date]	 Data	Validation	 100	
	 Accuracy	 Column	 PatientID	 No	 Unique	 Column	Analysis	 100	
	 Concordance	 Line	 WeightTime,	DoB	 No	 Timestamp>DoB	 Domain	Analysis	 100	
	 Concordance	 Line	 PrescDTTM,	DoB	 No	 PrescDTTM>DoB	 Domain	Analysis	 100	
	 Concordance	 Table	 PatientID,	

WeightTime,	
WeightValue	

Yes	 Patient	weights	on	prescription	date	are	less	
than	2%	apart	

Domain	Analysis	 92.45	

	 Completeness	 Table	 PatientID,	
WeightValue	

Yes	 2	weight	measurements	per	patient		 Domain	Analysis	 85.92	

	 Completeness	 Line	 PatientID,	
WeightTime	

Yes	 Patient	has	weight	measurement	on	
prescription	date	

Domain	Analysis	 97.54	

	 Timeliness	 Table	 PatientID,	
WeightTime	

Yes	 Patient	has	second	weight	measure	within	4	
months	of	prescription	

Domain	Analysis	 48.62	

3	 Amount	of	data	 Table	 Strength,	Dose,		
Days,	Refills	

Yes	 Can	calculate	total	milligrams	prescribed	for	
50%	of	prescriptions		

Domain	Analysis	 Failed	

	 Amount	of	data	 Table	 Patient,	PRN	 Yes	 Less	than	25%	PRN	prescriptions	 Domain	Analysis	 Passed	
	 Amount	of	data	 Dataset	 PatienID,	

WeightTime	
Yes	 50%	patients	2	weight	measures	within	4	

months	of	first	prescription	
Domain	Analysis	 Failed	

	 Completeness	 Dataset	 PatientID,		
WeightValue,	
WeightTime,	
PrescriptionTable	

Yes	 Patients	with	at	least	2	unflawed	weights	
after	an	unflawed	prescription	

Domain	Analysis	 13.1	

	 All	 Dataset	 All	Variables	 No	 Patient	records	with	no	general	DQ	flaw	 Domain	Analysis	 2.93	
	



 

 
 

42 

they contained a single weight measurement and weight gain can only be calculated with 

two or more. We flagged all data items that violated DQ criteria and then calculated the 

number of patients with no flagged data in their records, having at least two weight 

measurements after their first prednisone prescription. Thus, only 2,379 patients out of 

80,990 (13.1%) could be confidently used for analysis. The massive censoring of patient 

records is likely to bias in the final dataset used for analysis and potentially render 

subsequent analytical results unreliable. Also, in this particular case we are looking at a 

commonly prescribed drug and a broad population. However, large clinical datasets are 

often used to investigate features of rare diseases and specific cases for which few 

patients records may qualify. This high level of censoring could drastically reduce the 

sample size to levels inadequate for secondary statistical analyses.  

This example illustrates how DataGauge can advance current practices in DQ assessment 

for the secondary use of clinical data. First, DataGauge provides an analysis-specific DQ 

assessment method. We showed a way to define DQ requirements based on the DNM, 

which is dictated by the analytical purpose, but also to define them based on the intended 

purpose. For example, "2 values per patientID" is a DQ requirement that depends on the 

DNM, but also relevant to the analytical purpose because two weight measurements are 

necessary to detect change over time.  

DataGauge is general because it can be applied across cases by generating new analysis-

specific DNMs and DQ standards. Second, DataGauge provides guidance for DQ 

standards and tool selection by allowing a DNM to be decomposed into multiple pieces. 

Paired to potential DQ issues, these pieces can be mapped to specific DQ test tools and 
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standards (Borek et al., 2011; M. Kahn et al., 2015). In surveying the DNM at multiple 

levels of granularity we were able to identify the DQ requirements. The levels of data 

granularity informed method selection by explicitly listing and reducing number DQ tests 

that could be applied. For example, if we were to do a single variable check we could 

only select from range checking, data validation, lexical analysis or column analysis 

(Borek et al., 2011). Based on this limited set of methods and the actual requirement it is 

much easier to select the correct method.  

The DNM in the tidy data format allows the research team to clearly identify variable 

types (e.g., cohort definition, exposure, covariates, etc.) to organize their requirements 

and results to match current DQ reporting standards (M. Kahn et al., 2015). Finally, the 

application of DataGauge provides explicit documentation (i.e., a DNM and a DQ 

standard) that can structure the communication among team members. These documents 

can be evaluated, discussed and improved as the work progresses. The team can focus on 

analytical needs and research goals to develop a model that is then refined by the 

constraints of data availability.  

3.4 - Conclusion 

I have presented DataGauge, an iterative team-based method to carry out analysis-

specific DQ assessments for the secondary use of clinical data. DataGauge requires five 

steps: (1) Define needs based on the research question and analytical study design, (2) 

Develop a DNM where we formalize the data needs, (3) Develop analysis-specific DQ 

assessment requirements based on the analytical purpose, the DNM and the dimensions 
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of DQ, (4) Extract data from the source dataset to fit the DNM, and finally (5) Evaluate 

the extract according to the DQ requirements. DataGauge addresses limitations in the 

state of the science of analysis-specific DQ assessment for the secondary use of clinical 

data by providing a systematic and analysis-specific approach. DataGauge is designed to 

be a general DQ assessment process, as its steps can be applied to any dataset and 

analytical purpose. It is purpose-specific because the first two stages are dedicated to 

capturing the complexities of the research question at hand and developing assessment 

documents to fully specify a purpose-specific DQ assessment. These documents describe 

the assessment's assumptions and parameters explicitly. Finally, DataGauge supports 

systematicity because it allows the consistent definition and implementation of DQ 

assessments. Variables of interest and DNMs are defined in a systematic way; however, a 

systematic definition of DQ requirements would require further support due to the its 

complexity (i.e., combining research question, DMN, DQ theory and domain knowledge 

to define requirements).   

We have provided preliminary guidance for the development of a well-defined DNM and 

analysis-specific DQ requirements. This guidance combines knowledge from the 

literature about the link between DQ dimensions relevant to the secondary use of clinical 

data, levels of data granularity and DQ testing approaches. It provides an overview of the 

general DQ dimensions to consider, data granularity levels that support the 

decomposition of the DNM into more manageable pieces and provides DQ testing 

approaches for each DQ dimension-data granularity level combination. This guidance is 

useful because it provides a finite set of aspects to consider when developing DQ 
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requirements for a specific purpose and maps them to specific testing approaches.  

However, it was difficult to determine whether the definition of DQ requirements had 

covered all relevant aspects. Ensuring this is critical because the efficacy of the DQ 

assessment at catching DQ issues is dependent on the comprehensiveness of the DQ 

standard. We have provided four preliminary guides to support the development and 

testing of DQ requirements based on previous work: 1) a tidy data format organize data 

models in such a way to make variables accessible (Wickham, 2014), 2) a scale in levels 

of data granularity to break down the DNM's complexity (Oliveira et al., 2005), 3) a 

mapping between levels of granularity and available DQ check methods (Borek et al., 

2011) and 4) the dimensions of DQ that dictate the aspects to consider when testing 

fitness for purpose (Wang & Strong, 1996). DataGauge integrates prior work into a single 

procedure that guides the user to explicitly define their data needs and DQ requirements. 

However, there are still challenges in defining DQ requirements comprehensively. We 

attribute this to three reasons: (1) The DNM, the data granularity levels and the DQ 

dimensions don't fully define the problem space to define all DQ requirements, (2) the 

DQ dimensions are vague (e.g., there are multiple definitions of completeness (N. 

Weiskopf et al., 2013)) and (3) the DQ dimensions are too far removed from clinical 

domain to be useful in secondary use applications. Thus, further work is needed to 

develop domain-specific guidance for the definition of analysis-specific DQ standards. 

Such work would ensure a thorough and systematic development of DQ requirements 

and, in turn, more reliable DQ assessments. In the next chapter, we describe the 

development of such guidance. 
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Chapter 4: A Guidance Framework for the Development of DQ Requirements 

DataGauge is designed to enable systematic, purpose-specific DQ assessments by 

providing a general process to implement DQ evaluations across repurposed datasets and 

research questions. However, the systematicity of a DQ assessment can only be fully 

ensured if the analytics team is provided with a way to generate the DQ requirements 

comprehensively and consistently. In fact, DQ assessments can be defined as a 

judiciously selected combination of DQ tests based on DQ requirements. This means that 

the definition of DQ requirements is the key component of the assessment's design. 

Generating such requirements can be a daunting task because it requires integrating 

multiple information sources: the research question, the DNM, DQ theory and the domain 

knowledge necessary to interpret the other three elements. Though the current version of 

DataGauge provides some support to address this (e.g., DQ dimensions (Wang & Strong, 

1996) and a classification of DQ test approaches (Borek et al., 2011)), the generation of 

DQ requirements remains a complex task. This complexity threatens the systematic 

definition of DQ requirements. Thus, further guidance to support this task is needed. 

There is very little literature available to guide the development of purpose-specific 

requirements and the available guidance presents three key limitations: (1) the DQ 

requirement generation process is not described in detail (Maydanchik, 2007a), (2) the 

guidance provides no specific structure to address the task systematically, implying that 
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experts should execute this task ad hoc (Borek et al., 2011; Lee et al., 2002; Wang, 1998) 

and (3) purpose-specific DQ testing approaches are usually lumped under the umbrella 

terms 'Domain Analysis' and 'Semantic Profiling' (Borek et al., 2011), which ultimately 

don't provide transparent guidance.  

A similar situation exists in biomedical informatics, where very little guidance exists to 

support fitness-for-purpose assessments (Holve et al., 2013). The literature provides three 

pieces of guidance. First, DQ dimensions have been adapted to the secondary use of 

clinical data that provide some support (Nicole Gray Weiskopf & Weng, 2013) but 

remain vague, ambiguous and removed from the clinical domain (N. Weiskopf et al., 

2013). Second, an assessment framework that provides guidance as to what types of 

general checks can be performed on clinical data has been published (M. G. Kahn et al., 

2012). This guidance fails to include considerations about the purpose or the domains of 

expertise that come into play when making secondary use of clinical data (Barlow, 2013). 

Finally, the DQ ontology for the secondary use of clinical data (Johnson et al., 2015) 

provides some insight as to which types of tests that can be used to assess fitness for 

purpose. Even though, providing such list of possibilities is useful, the interplay of 

complex information sources (i.e., dataset and domain knowledge) as well as the inherent 

vagueness of the research purpose and DQ dimensions still make this work unlikely to 

support the systematic generation of DQ requirements for a specific research question 

and a specific dataset.  

Three key challenges result from this state of the science; they are also relevant the 

current guidance provided by DataGauge. First, the original guidance posed problems 
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because it is abstract and too far removed from the knowledge domain of application. In 

other words, the DQ dimensions (Wang & Strong, 1996; Nicole Gray Weiskopf & Weng, 

2013), data granularity types (Borek et al., 2011) and DQ testing approaches 

(Maydanchik, 2007a) do not provide any guidance about the kinds of threats that affect 

data based on clinical domain or EHR data knowledge. For example, if we were assessing 

concordance in weight values within a day, and detected a 30% increase, this would 

clearly be a problem based on clinical knowledge (i.e., patient weights don't fluctuate that 

much over the course of a day) whereas this would not be a problem if we were assessing 

the systolic blood pressure measurement values; systolic blood pressure varies 

considerably over a day. Current literature provides no guidance on this type of 

distinction and lacks explicit structure to facilitate the detection of such issues through 

the integration of expert knowledge. Second, the current guidance does not provide a 

clear overview or list the aspects to be reviewed to ensure a comprehensive and 

systematic generation of DQ requirements. Though DataGauge provides a limited list of 

items to assess when combined with the DNM, it fails to include important dimensions 

such as the expertise involved in defining DQ requirements. An overview would help the 

analytics team track the coverage of DQ assessment aspects and potential DQ threats to 

be considered. Though the list of DQ criteria, data types, variables in the DNM and DQ 

testing approaches provided a finite list to review, it does not identify specific DQ threats 

in repurposed clinical data. Finally, the DQ dimensions that aim to guide the requirement 

generation are vague. For example, completeness could be interpreted in multiple ways 

(N. Weiskopf et al., 2013). If completeness was thought of as overall completeness (i.e., 
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the overall number of recorded observations), DQ requirements such as "patients must 

have at least X measurements" could be defined. In contrast, completeness is sometimes 

thought of in statistical terms, a corresponding requirement could be defined as "the 

dataset must contain enough observations to provide adequate statistical power".  

Based on these limitations, this framework should possess three features.  First, it should 

provide a finite list of potential aspects to consider while developing DQ requirements for 

a specific dataset and research question. This list should serve as an overview to the DQ 

requirement generation process. Second, it should provide a way to bridge domain 

knowledge and the DQ requirement generation task. Third, it should list issues and 

threats that the requirements should check for in a specific way.  

To develop such guidance, I did a preliminary review to define the most frequent analysis 

types and clinical data types employed in clinical data reuse projects. I based my work on 

a literature review article and a set of clinical data request tickets. I then asked a clinical 

expert to define research questions based on their secondary use activities. These served 

as use cases. The six final use cases covered 90% of the most common analyses and 

clinical data types revealed by the literature review and clinical data request tickets. I 

then applied DataGauge to these six use cases in order to answer the following question: 

What criteria should be considered when assessing DQ for repurposed clinical data? The 

resulting DQ requirements represented a broad range of issues to test for when making 

secondary use of clinical data. Based on the generated DQ requirements, I defined an 

overview to guide DQ requirement generation in the form of a checklist. This overview 

partitions the problem space by knowledge domains and aspects of clinical data to bridge 
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the gap between task and domain knowledge. I also provide a list of specific questions to 

guide the generation of DQ requirements within each task of the overview checklist. The 

questions provide requirement-level guidance to ensure the coverage of specific DQ 

issues that may threaten fitness for purpose.  

In this chapter I describe the methodology and results of my DQ requirement 

development guidance efforts. First, I describe the process used to define six use cases 

that cover most applications and data types used in clinical data reuse projects. Then I 

describe the methodology that I used to develop the guidance framework based on the 

application of DataGauge to these use cases; a presentation of the results follows. I then 

describe the general guidance framework and I give an example of its use. Finally, I 

discuss the contributions, strengths and limitations of this work as well as future 

development directions.  

4.1 - Defining Secondary Use Coverage 

Clinical data are routinely repurposed for a vast number of applications, so to address our 

research question I defined a specific scope. Because covering all possible secondary 

uses of clinical data is a monumental endeavor, I limited our scope to uses where clinical 

data are reused to answer a specific research question. The set of all possible research 

questions that can be answered reusing clinical data is extremely large; therefore, it is 

necessary to sample the most representative cases.  I chose to cover the most common 

analysis types and clinical data types. This will ensure the coverage of the most common 

modalities of research and the most frequently used sections of repurposed EHR data 
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(i.e., the clinical data types).  The research question was: "What are the most common 

analyses and clinical data types used for secondary use of clinical data?" 

4.1.1 - Methods 

I used two data sources to establish a distribution of secondary analysis types and clinical 

data types used in clinical data reuse research. First, a systematic review by Song et al. 

(Song, Liu, Abromitis, & Schleyer, 2013) that summarized the secondary uses of dental 

care data in the literature. Dental EHR records present much overlap with general EHR 

so I was able to use these results as a starting point. Variables relevant to the dental 

healthcare were not included (e.g., caries activity and periodontics procedure data). I 

classified analyses by type and clinical variables used to describe the distribution. The 

article defined the clinical variable types. The analysis type categories were defined using 

a qualitative grounded theory approach. They were derived from the research questions 

reported for every analysis in the literature review. The resulting categories were 

outcomes and distribution descriptions, association detection, prevalence estimation, 

effect size (e.g., treatment effectiveness) and other. This gave me a preliminary idea of 

the most frequently used data and their intended use. Second, I reviewed data requests 

submitted to a CDW team. The requests were recoded as service tickets in a tracking 

system database for the informatics core of a major healthcare research institution and 

served to bridge the gap between dental data and EHR. I reviewed each request and 

extracted the required clinical data types as well as the intended secondary analysis type, 

when available. I used the same clinical data type categories as for the previous dataset 

adding clinical notes, which were often used in this dataset but missing in the review 
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article. The considered analysis types were prevalence estimation, distribution, method 

validation and other. A large portion of the requests dealt with electronic patient 

recruitment (i.e., search of patients corresponding to a specific profile in the EHR 

database for potential enrolment in a randomized controlled trial enrolment or clinical 

chart review). This category was added as a secondary use type. The frequency of each 

analysis and data type was then computed. To confirm the validity of the secondary 

analysis categories, a second biomedical informatician independently classified the dental 

data analyses from the systematic review and the data request tickets. I used this second 

classification to calculate an unweighted Cohen's Kappa measure of inter-observer 

reliability.  

4.1.2 - Results 

The review of secondary uses of dental data (Song et al., 2013) presented 60 publications. 

All were included in this review. Then, I reviewed 238 clinical data request tickets 

spanning 5 years. 106 requests were excluded because they were misclassified technical 

requests (68 items), lacked information on requested variables (22 items), were requests 

of data other than clinical data (13 items) or were duplicate requests (3 items).   

The distribution of analysis types was similar for both data sources (Figures 3 and 4). We 

found that Association studies, Distribution & Outcomes, Prevalence Estimation and 

Electronic Patient Recruitment analysis types covered 91.67% of the dental data research 

and 96.69% of ticket cases. The inter-observer reliability (i.e. Cohen's Kappa) for the 

purpose classification was respectively 0.869 and 0.968 for the dental secondary analyses 
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and the data request tickets respectively, which denotes a high level of agreement 

between observers and, in turn, a reliable classification. In terms of clinical data types, I 

also found similar proportions between the review paper and the data requests (Figures 5 

and 6). I found that Demographics, Diagnoses, Appointments, Medications, Labs, Vitals 

covered 90.14% of the dental secondary analyses and 96.18% of the clinical data requests 

tickets.  
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Figure 3 - Distribution of analysis types for dental data reuse analyses. Over 90% of the 

analyses are Distribution/Outcome, Association or Prevalence estimation analyses. 
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Figure 4 - Distribution of analysis types for clinical data request tickets. Over 90% of the 

analyses are Electronic Patient Recruitment, Prevalence Estimation or Distribution 

analyses. 
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Figure 5 - Distribution of clinical data types for dental data reuse analyses. Over 90% of 

the analyses use Demographics, Diagnoses, Appointments, Medications, Vitals and Labs. 
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Figure 6 - Distribution of clinical data types for clinical data request tickets. Over 90% of 

the analyses use Demographics, Diagnoses, Appointment, Medication, Labs and Vitals 

data.   
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4.1.3 - Discussion  

I was able to define a limited number of analysis types and clinical data types that would 

cover over 90% of secondary analyses of clinical data. However, this approach has three 

main limitations. First, I reviewed only two data sources. The first one was a literature 

review on dental EHRs. I was able to use this review as a viable initial analysis because 

dental EHRs have similar data structures to clinical EHRs. The second data source was a 

group of unstructured data requests that required qualitative analysis but provided a 

broader overview of the types of analyses done for a CDW beyond published analyses. 

Thus, the combination of these two data sources provides a reasonable basis to define the 

main categories of analysis types and clinical data types used in secondary uses of EHR 

data. Second, I did not cover all possible features that define secondary use application. 

However, clinical data types and analysis types are two critical aspects that define 

secondary use projects and can be generalized across applications. Third, the analysis 

types were generated using qualitative grounded theory methods from reviewing research 

questions. These categories may not be exhaustive but the data shows that they cover 

most cases, leaving only 3% of the analyses in the 'Other' category.  

4.1.4 Use-Case Development 

After identifying analysis and clinical data types that cover over 90% of secondary use 

cases, I developed a set of specific secondary use cases to cover all combinations of these 

types. I asked a clinical expert to define research questions serially as they came up in his 

research activities. I then developed those research questions into full-fledged use cases 
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by including all additional information on assumptions and research design. A short list 

of these research questions is presented below; a full description of the use cases can be 

found in appendix C. Tables 3 and 4 show the coverage of these use cases across 

secondary analysis types and clinical data types. 

1. Is the second BP measure statistically lower than the first BP measure taken within a 

visit? 

2. Are dual BP measurements provider-dependent? 

3. How do patient weight measurements vary  over time? 

4. Is prednisone exposure correlated with weight gain?  

5. Are HbA1C lab values correlated with BMI? 

6. Can we find patients with BMI>25 and age>21? 
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Table 3 - Secondary analysis type coverage by case. Columns show each case and their 

relevant analysis types.   

 

Table 4 - Clinical data type coverage by case. Columns show each case and their relevant 

clinical data types.  

 

1	 2	 3	 4	 5	 6	

Demographics		 �	 �	 �	 �	 �	 �	

Diagnoses	 �	 		
�	 		 		 		

Appointments	 �	 �	 		
�	 		 		

Meds	 		 		 �	 �	 		 		

Labs	 		 �	 		 �	 		

Vitals	 �	 �	 �	 �	 �	�	
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4.2 - Method 

A data analytics team conducted DQ assessments using DataGauge for the six previously 

described use cases. We developed the DQ requirements using the preliminary guidance 

(see Table 1) that took into account the DQ dimensions, data granularity levels and DQ 

testing approaches. The team was composed of three domain experts: a clinician, a 

statistician and a data scientist who also served as a database administrator. We first 

generated a data needs model iteratively for each case. The model was discussed 

collectively. At least two iterations were carried out for every case. Once the DNM was 

established for every research question, we led one-hour interviews with the clinician and 

statistician; the team’s data scientist led the interviews. The requirements were encoded 

from notes taken during each interview sessions. An approximate total of 20 hours was 

spent with each expert to generate the final list of requirements. The final DQ standards 

contained a list of DQ requirements for each case. The six final standards represented the 

list of minimum requirements for each dataset to be fit for purpose. 

Once all requirements were available for each case, I selected dimensions to define an 

overview. These dimensions were selected based on their ability to cover the DQ 

requirement generation problem space (i.e. the DQ theory, domain knowledge, assessed 

data, etc.). This overview would serve as a checklist to ensure that the team generating 

the DQ requirements would cover all relevant aspects. The dimensions were chosen to 

improve  DataGauge's current guidance (see section 3.2.3 for details) by (1) providing an 

overview of aspects to cover, (2) bridging the gap between the guidance and clinical 
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domain knowledge, while (3) supplying the analytics team with concrete questions to 

develop all relevant DQ requirements. 

For each sub-section of this overview we listed all relevant requirements and we 

generated questions to guide the generation of DQ requirements. These questions aim to 

help users to consider all potential flaws relevant to that specific section of the overview. 

Providing concrete issues to consider aims to support the generation of DQ requirements 

by focusing the expert's attention to known potential threats to fitness for purpose. 

Phrasing the guidance in the form of questions forces the analytics team to respond to 

specific queries and structure their search around specific interest points rather than 

searching a vast problem space. The overview helps the team have a clear idea of the 

extent to which potential issues have been covered. An example of the guidance is 

described in section 4.4, a full version of the guidance framework (i.e., overview 

checklist and question lists) is available in Appendix B.  

4.3 - Results 

4.3.1 - DQ Requirements Dataset Overview and Descriptive Statistics 

Our experts generated 389 requirements across the six cases. Figure 7 shows the 

distribution number of requirements by case. These requirements describe features a 

dataset must have to be fit for purpose.  
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Figure 7 - Distribution of DQ requirements by use case number. 

4.3.2 - Guidance Dimensions 

The final guidance included four dimensions (Table 5).  The two dimensions from the 

original DataGauge guidance were preserved. (1) The DQ dimensions as described in 

chapter 3 (i.e., correctness, plausibility, completeness, concordance, representation and 

timeliness) remained the link to DQ theory.  (2) The levels of data granularity (Borek et 

al., 2011) (i.e., single value, multiple values, observation, observational unit and dataset) 
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remained the primary link in the DNM and reduce complexity. I used these two initial 

dimensions to develop the DQ requirements for the six cases. Two new dimensions were 

added as the result of the team-based development work. (3) To address the lack of 

integration with domain knowledge, I defined a list of knowledge domains. These 

directly represent the different areas of expertise necessary to run a secondary use 

analysis project and could be mapped to the three expert roles by Barlow (Barlow, 2013). 

The clinical expert held knowledge about the clinical/medical science domain and the 

clinical workflow. The statistician held the knowledge about the analytical tools and the 

research design. The data scientist held the knowledge about data representation and 

data manipulation. I also defined an additional research goal knowledge domain 

common to all three experts that represents the research question and purpose-specific 

considerations. These knowledge domains and their limitations surfaced continuously 

during the expert interviews, revealing knowledge gaps between experts as well as the 

need for integrated expertise and teamwork. The knowledge domains dimension is useful 

to separate out the types of background knowledge to be thought of individually when 

generating DQ requirements and allowing to communicate with experts. This also 

grounds the DQ generation task by providing some structure. The knowledge domains 

dimension contributes to the separation of concerns (Painter, 2006) and contributes to a 

more orderly development of DQ requirements. (4) To further ground the guidance to 

make it less abstract, while bridging the gap between the evaluated datasets and the 

clinical knowledge domain, I defined the clinical data types dimension. I used the same 
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clinical data types from those defined in section 4.1 (i.e., demographics, appointments, 

diagnoses, prescriptions, lab results and vitals). 
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Table 5 - Overview of the four dimensions of our framework for DQ requirement 

guidance.  

 DQ 
Dimensions 

Levels of Data 
Granularity 

Knowledge 
Domains 

Clinical Data 
Types 

Aspects of 
DQ 
Assessments 
Represented 

DQ theory  DNM 
integration and 
dissection 

Overarching 
expertise needs, 
Domain 
knowledge, 
Multi-
disciplinary 
approach  

Data model of 
origin, Data 
production 
considerations, 
Clinical domain 
knowledge 

Elements Correctness, 
Plausibility, 
Completeness, 
Concordance, 
Representation, 
Timeliness 

Single value, 
Variable, 
Observation, 
Observational 
Unit,  
Multiple 
Observational 
Units,  
Dataset 

Analytical Tool,  
Clinical, 
Data 
Manipulation, 
Representation,  
Research Design, 
Research Goal,  
Workflow 

Demographics, 
Appointments, 
Diagnoses,  
Vitals, 
Prescriptions,  
Lab results 
 

Guidance 
Need 
Addressed 

-Connection to 
DQ theory 
 

-Provides a way 
to break down 
the complexity 
of datasets 
-Provides a way 
to examine the 
dataset as a 
series of 
subsets 

-Provides an 
overview of 
relevant areas of 
expertise 
-Creates a link to 
domain 
knowledge  
-Separates 
concerns (Painter, 
2006) when 
developing DQ 
requirements 

-Reduces 
vagueness and 
abstraction  
-Provides a link 
to the assessed 
data and the 
clinical domain 
knowledge 

Source Work DQ Dimensions 
(Wang & 
Strong, 1996) 
adapted the 
secondary use 
(Nicole Gray 
Weiskopf & 
Weng, 2013), 
modified in 
Chapter 3 

Classification 
of DQ testing 
approaches 
(Borek et al., 
2011; Oliveira 
et al., 2005), 
adapted in 
Chapter 3 

Expert interviews 
(see Section 4.2) 
as an extension of 
the areas 
expertise needed 
to carry out 
secondary 
analyses of data 
(Barlow, 2013) 

Clinical data 
reuse case 
definition (see 
Section 4.1), 
partially based on 
(Song et al., 
2013) 
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4.3.3 - Overview Dimensions and DQ Requirement Generation Contexts 

Providing an overview of DQ requirement generation activities is one goals of this new 

guidance framework. The utility of an overview is to provide the research team with a list 

of aspects to consider when generating the DQ requirements. The knowledge domain 

dimension is most fit to serve as a base to build the the framework for four reasons: (1) It 

represents the expertise held by the team as a whole, (2) It can be used to allocate 

responsibility and separate concerns during the DQ requirement generation (Painter, 

2006), (3) Domain knowledge is necessary to carry out every step of the DQ assessment 

process and (4) It is the most encompassing and comprehensive dimension.  

To identify another dimension that could be included in the overview, I checked whether 

the knowledge domain dimension could be paired with any of the other three dimensions. 

The goal was to identify a combination that would create separation of concerns (Painter, 

2006), while giving a comprehensive overview of the problem space. Ideally, the 

combined dimensions would allow DQ requirement generation for every dimension 

element combinations (e.g., clinical knowledge and the completeness DQ dimension). I 

examined this by creating heat maps the number of DQ requirements generated from the 

six use cases for combinations of the knowledge domains and other three dimensions 

(Figures 8-9). I found that the generated DQ requirements fully covered the combination 

of Knowledge Domains and Clinical Data Types (Figure 9). This means that for every 

combination of knowledge domain and clinical data type elements it is possible to 
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generate DQ requirements. I refer to the combination of a knowledge domain element 

(e.g., clinical domain) and a clinical data type (e.g., vitals) as a DQ requirement 

generation context. To emphasize the need to cover each DQ requirement generation 

context I converted Figure 9 into a checklist (Table 6). This checklist gives the analytics 

team a clear list of all possible DQ generation contexts; each context corresponds to a 

checkbox. This overview should help the analytics team to clearly keep track of the 

contexts covered during the design of the DQ assessment.  

 

Figure 8 - Distribution of DQ requirements by DQ dimensions and knowledge domain. 

The generated requirements fail to cover all sub-sections of this two-dimensional space.  
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Figure 9 - Distribution of DQ requirements by data granularity levels and knowledge 

domain. The generated requirements fail to cover all sub-sections of this two-dimensional 

space.  

 

Figure 10 - Distribution of DQ requirements by clinical data type and knowledge 

domain. The generated requirements cover each sub-section of this two-dimensional 

space. This makes these two dimensions useful to define a comprehensive problem-

space.  
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Table 6 - Overview guidance checklist for DQ requirement development. This checklist 

partitions the problem-space of DQ requirement development into sub-sections or DQ 

generation contexts defined by the knowledge domain (left column) and the clinical data 

type (top row). This partitioning provides the analytics team with a clear idea of the 

aspects to cover and breaks the complexity of DQ requirement generation into 

manageable sub-tasks. 

	 Vitals	 Demographics	 Meds	 Appointment	 Labs	 Diagnoses	

Clinical	 þ	 ☐	 ☐	 ☐	 ☐	 ☐	
Analytical	Tool	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Data	Manipulation	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Representation	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Research	Design	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Research	Goal	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Workflow	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
 

4.3.4 - Contextual DQ Requirement Generation  

The two remaining dimensions (i.e., DQ dimensions and levels of data granularity) were 

allocated to provide guidance within each DQ requirement generation context (i.e., the 

combination of a knowledge domain and a clinical data type). I provide two sources of 

guidance: (1) the original guidance that combines the DQ dimensions and levels of data 

granularity as well as (2) a series of context-specific questions generated from the DQ 

requirements available from the six use cases. The original guidance provided by the 

DataGauge framework (see section 3.2.3) is used to break down the DNM into simpler 

data structure at every data granularity level.  



 

 
 

71 

To provide more specific and domain-appropriate guidance, I formulated guidance 

questions from the DQ requirements generated for the six use cases for each specific DQ 

requirement development context. The role of these questions is to direct the analytics 

team's attention to specific threats to fitness for purpose. I classified the questions 

according to the evaluated DQ dimensions. Table 7 shows a sample of these of questions 

for the clinical knowledge domain and the “Vitals” clinical data type. All levels of 

granularity are relevant to all questions if they are represented in the DNM. The data 

granularity levels are involved in the process by aiding the DNM decomposition into a 

list of pieces for which the domain expert will answer the questions. In the next section I 

present an example of the use of this guidance for the development of DQ requirements.  

Table 7 - Sample of DQ requirement development guidance questions. These questions 

aim to guide the analytics team to address general DQ issues that may be a threat to 

fitness for purpose. The team will define DQ requirements based on these questions 

taking into account the assessed data and the research question. The resulting 

requirements define the features of a dataset that would be fit for purpose. An example of 

their use is shown in the following section.  

DQ	Dimension	 Guidance	Question	
Completeness	 Are	there	enough	values	to	carry	out	the	analysis?	
Completeness	 Are	all	expected	vital	values	present?		
Completeness	 Are	there	any	missing	values	for	each	vital	record?		
Correctness	 Are	the	values	within	the	clinically	expected	range?	
Plausibility	 Are	all	measurements	taken	after	the	patient's	

date	of	birth?		
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4.4 - DQ Requirement Definition Guidance Example 

Within DataGauge, DQ requirements are generated after the research question and the 

DNM are defined (see Chapter 3). The DNM defines the relevant clinical data types; all 

knowledge domains should be considered for every research question. For this example, I 

use the same research question used in Chapter 3: " Is prednisone, a commonly-

prescribed corticosteroid, associated with weight gain?"  The associated DNM model is 

shown in Figure 11. The relevant data types for this specific DNM are Demographics, 

represented by the Patient table, Medications, represented by the PrednisonePrescription 

table and Vitals, represented by the Weights table. As stated earlier, all knowledge 

domains are relevant. The relevant guidance checklist and overview is shown in Table 8. 

 

Figure 11 - Data Needs Model for the research question " Is prednisone, a commonly-

prescribed corticosteroid, is associated with weight gain?"   
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Table 8 - Overview guidance checklist for the research question " Is prednisone, a 

commonly-prescribed corticosteroid, is associated with weight gain?"  Clinical data types 

are eliminated based on their relevance. In this case, Appointments, Labs and Diagnoses 

were not relevant.  

	 Vitals	 Demographics	 Meds	
Clinical	 ☐	 ☐	 ☐	
Analytical	Tool	 ☐	 ☐	 ☐	
Data	Manipulation	 ☐	 ☐	 ☐	
Representation	 ☐	 ☐	 ☐	
Research	Design	 ☐	 ☐	 ☐	
Research	Goal	 ☐	 ☐	 ☐	
Workflow	 ☐	 ☐	 ☐	
 

For a relevant data type, the research team selects a specific knowledge domain and the 

questions relevant to that context (i.e., the combination of a clinical data type and 

knowledge domain) are retrieved. For our example, we first select the Vitals clinical data 

type and the clinical knowledge domain (i.e., the top left checkbox on Table 8). The team 

then selects portions of the DNM relevant to the assessed clinical data type. For our 

example, the relevant data elements are: the values within the Timestamp, Value and 

PatientID variables, these three variables themselves, each observation containing a 

combination of Value, Timestamp and PatientID, the Weight table, the combination of 

the patient and Weight tables and the whole dataset containing information about vitals, 

patients and prescriptions. With this information available, we can then proceed to 
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answer the contextual guidance questions for each element of this list. The list of relevant 

questions for this requirement generation context is shown on Table 9.  

 

Table 9 - Contextual guidance questions relevant to the clinical domain knowledge and 

the Vitals clinical data type. This is the full list of questions available for this context 

(i.e., top left check box on Table 7). The full list of questions for the other contexts is 

available in Appendix B.  

DQ Dimension 
Addressed 

DQ Generation Guidance Question 

Completeness Are all expected vital values present? 
Completeness Are there any missing values for each vital record? 
Completeness Do related values have a match? (e.g., systolic + diastolic 

blood pressure) 
Completeness Is the numeric distribution of values and value frequencies 

as expected? 
Correctness Are all values within plausible limits for the population? 
Completeness Are there an adequate number of measurements within the 

desired observation window? 
Correctness Are the measurements taken after the patient's date of 

birth? 
Completeness Are there sufficient values over time for the analysis? 
Completeness Is the number of vital measurements as expected? (e.g., at 

least one weight measurement per visit) 
Correctness Is the difference in consecutive values in an encounter 

within acceptable range? 
Correctness Is the difference between variable values between two time 

points in acceptable proportion? 
Plausibility Are time stamps in the expected order? (e.g., order before 

admin) 
Plausibility Are time stamps within the expected time frame? (e.g., 

BPs measured within the encounter window vs. outside). 
Timeliness Is the time between events of the expected range? 
Concordance Are there any sudden changes over time? Are they valid? 
Concordance Are the values coherent or vary as expected within a visit? 
Concordance Is the overall vital measure variability as expected? 
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The combination of a question and the data granularity level DNM pieces (e.g., a weight 

value, the weight variable or a weight observation which combines a weight value, a 

timestamp and patient ID) may generate one or multiple DQ requirements. For each 

question, the expert must consider the research question to inform the definition of 

requirements for a fit-for-purpose dataset. For example, when the clinical expert 

considers the question "Are all expected vital values present?", which addresses the 

completeness DQ dimension, and we are evaluating the weight values, which is a 

considered part of the “Vitals” data type, the team may generate requirements such as 

"There are adult patients with weights between 50 and 100kg". This is purpose-specific 

because the research question (i.e., "Is prednisone, a commonly-prescribed corticosteroid, 

is associated with weight gain?") is likely to be answered using adult patient data, given 

that children weights increase over time and the prednisone effect may be masked. At the 

observation level (i.e., the combination of a weight value, a timestamp and a patientID), 

the expert may come up with "All weight values have a timestamp value", which is 

necessary to calculate the rate of weight gain to answer the research question.  

When considering the guidance question "Are there sufficient values over time for the 

analysis?” which addresses the DQ dimension of timeliness, for the timestamp variable 

within this same context, the expert may come up with requirements such as "Patients 

have at least one weight per encounter" to ensure there is no censoring, "Patients have at 

least two weights overall" to be able to calculate the rate of weight change, "Patient has at 

least one weight per year between the first and last visit" to ensure reasonable temporal 

resolution. When considering the whole dataset, the expert may come up with a 
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requirement such as "Patient has at least two measurements within a year of the first 

prednisone prescription" to ensure that there is enough data in the timeframe where the 

effect is expected.  

When considering the question "Are there any sudden changes over time?", which 

considers the dimension of concordance, the experts may come up with requirements 

such as "Weight within a day should not vary more than X%", "Weights may not vary 

more than X% per month" and "Weights may not vary more than X% overall", which 

would reveal potentially inaccurate values that may distort relationship value found in the 

analysis.  

The team will run through the whole list of questions for that specific checkbox and then 

move on to the next knowledge domain. When all knowledge domains are covered, the 

team moves on to the next relevant clinical data type and repeats the procedure. Once all 

clinical data types are reviewed, all checkboxes should be marked. All generated 

requirements are aggregated into the DQ standard, which is specific to the research 

question and the DNM in question. These requirements define the DQ tests that will yield 

the DQ measures to evaluate fitness for purpose within the DataGauge framework.  

4.4 - Conclusion 

In this chapter, I presented a framework to support the development of DQ requirements 

for a specific research question and DNM within DataGauge. The framework addresses 

the shortcomings of current guidance available in the literature and the DataGauge 

process to enable the systematic generation of DQ requirements. The framework provides 
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(1) A clear overview of the issues to be considered while developing DQ requirements 

for a specific dataset and research question, (2) A bridge between domain knowledge and 

the DQ requirement generation task and (3) A list of specific issues and threats to be 

considered in the form of questions.   

This framework provides support to the user by providing an overview of the main points 

to be considered when assessing DQ. This provides an overarching frame to pose 

questions about the appropriateness of a given dataset for a specific purpose. Because of 

its dimensions, it supports the separation of concerns (Painter, 2006), which is likely to 

provide a more organized and thorough DQ requirement generation. This framework also 

addresses the gap between the evaluated data, the domain knowledge and the DQ theory 

stated in the literature (Floridi, 2013) and provides an overarching map to ensure 

systematic coverage of all concerns. Finally, this framework supports the systematic 

definition of DQ requirements. This step is critical because a DQ assessment is the 

combination of DQ tests that are directly defined by the DQ requirements. Thus, the 

thoroughness of the DQ assessment is directly dependent on the thorough definition of 

DQ requirements.  

This framework provides an unambiguous checklist and overview to check for issues as a 

way to ensure coverage and systematicity. It also provides specific questions as a way to 

focus the generation of DQ requirements on specific threats to fitness for purpose. 

However, this is an initial framework that does not cover all possible clinical data types 

and was developed based on a limited number of cases. Nevertheless, our cases cover the 

most broadly used data types and secondary use applications (see section 4.2). A single 
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analytics team was involved in the framework's development because we aimed to 

develop this initial framework that will be further expanded as other research groups 

adopt DataGauge.  The guidance checklist provides a development base that is applicable 

to other projects as a launching point for future development. Finally, the current version 

of the guidance questions may not be phrased in the ideal way. Thus, validation and 

further refinement is still necessary and will be part of our future research. This work will 

be carried out after the initial DataGauge evaluation described in the following chapter.  
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Chapter 5: Evaluation of DataGauge 

This chapter presents an evaluation of DataGauge's ability to improve upon the current 

state of the art methods of systematic DQ assessment. My hypothesis is that DataGauge 

will increase the number of DQ issues flagged for a specific secondary use of clinical 

data over the current systematic state of the art method. This evaluation will test 

DataGauge's potential usefulness, inform future research directions and identify further 

development routes. One particularly interesting aspect in this evaluation is that 

DataGauge is one of the first systematic DQ assessment methods to allow a systematic, 

fitness-for-purpose approach to the assessment of repurposed clinical data. This sort of 

approach has been advocated as the preferred method for DQ assessment in the field of 

clinical informatics (Holve et al., 2013), yet a viable candidate is still missing.  

Comparing the performance of DataGauge against a general DQ assessment method 

would also provide evidence to evaluate the advantage, if any, of a fit for purpose 

approach versus a generic one.  

In this chapter I describe the process carried out to evaluate DataGauge against a state of 

the art DQ assessment method (i.e., the evaluation standard). First, I describe the methods 

used for the evaluation, including the rationale for the evaluation standard selection. Then 

I present and compare the performance results for DataGauge and the evaluation standard 
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over the six cases defined in section 4.2. Finally, I discuss these results and their 

implications. 

5.1 - Methods 

5.1.1 - Defining a DQ Assessment Standard 

To evaluate the performance of our assessment method it is necessary to select a control 

or baseline method. In most analyses carried out for research purposes some kind of data 

cleaning procedure (Broeck & Fadnes, 2013) is carried out by the analyst. This consists 

of detecting, diagnosing and rectifying anomalies in the dataset as the analysis 

progresses. The main pitfall of this approach is that, being analyst-dependent; there is a 

risk of missing errors that threaten the assessment's thoroughness. This is especially 

problematic when the data in question are repurposed because an additional set of 

complex issues come into play (Hersh et al., 2013; Van Der Lei, 1991). In fact, data 

cleaning is geared towards cleaning datasets produced and used for the same purpose 

such as randomized controlled trial datasets (Van den Broeck et al., 2005) rather than 

repurposed data. An additional pitfall is that, because cleaning happens in parallel to the 

analysis, the analyst may find "satisfactory" results from flawed data on first approach 

and never question their accuracy. Thus, data cleaning is unlikely to be a reliable 

comparison standard.  

Though many individual tools are available to test discrete aspects of DQ (Borek et al., 

2011), very few tools are available to carry out whole DQ assessments. However, an 

automated tool to assess the DQ in the initial phase of integrating EHR data into a CDW 
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is currently available. The Automated Characterization of Health Information at Large-

scale Longitudinal Evidence Systems (ACHILLES) (G Hripcsak et al., 2015) is a 

platform, which enables the characterization, quality assessment and visualization of 

observational health databases. ACHILLES was released by the Observational Health 

Data Sciences and Informatics (OHDSI) collaborative and provides a module called 

ACHILLES Heel (G Hripcsak et al., 2015) that allows the user to automatically detect 

database integrity issues and DQ flaws in clinical datasets modelled using the OMOP 

common data model (Overhage, Ryan, Reich, Hartzema, & Stang, 2012; Reisinger et al., 

2010). ACHILLES is a state-of-the-art tool to automatically assess DQ in CDWs. It is 

capable of detecting issues such as predefined value compliance, limited numeric value 

range checks, temporal inconsistencies and data model integrity checks (e.g., primary key 

and foreign key check).  

Because ACHILLES is an automated, code-based tool, it is capable of consistently 

testing all relevant DQ aspects that an expert user with knowledge of the database would 

run. This sort of consistency is desirable for a comparison standard or baseline because 

the end output would be the same no matter how many tests are run as long as the tested 

database remains unchanged.  Another virtue of ACHILLES is that, by design, it does not 

consider the research question or analytical purpose. One of the limitations of 

ACHILLES is that, in its current version, it does not check for statistical outliers. 

Statisticians and data analysts routinely use the following rule for outlier detection: 

values outside three standard deviations to each side of the mean are considered probable 

outliers in normally-distributed data; the range grows to five standard deviations for any 
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other kind of distribution (Amidan, Ferryman, & Cooley, 2005; Rahbar et al., 2013). To 

address this shortcoming, I supplemented ACHILLES with this outlier detection function. 

The final standard of comparison selected for evaluation was the ACHILLES module 

supplemented by the statistical outlier detection rule described above. 

5.1.2 - Testing Protocol 

My test dataset consisted of a teaching outpatient clinic's EHR's database from a major 

metropolitan area. This dataset contained 10 years of data for 954,891 patients. The EHR 

database was restructured to comply with the Observational Medical Outcomes 

Partnership (OMOP) Common Data Model (CDM) Version 5 (G Hripcsak et al., 2015; 

Overhage et al., 2012). This enabled me to run the ACHILLES module automatically.  

For each test case, I created a new database containing only the data relevant to the 

research question. This allowed a complete, yet focused ACHILLES assessment of the 

whole database where only issues relevant to the appropriate data would be flagged. 

ACHILLES ran automatically on the filtered datasets.  To run DataGauge, I coded SQL-

based query tests for each requirement generated by experts in the previous experiment 

(see Section 4.2 for detailed methods). Each query, I counted the number of violations in 

the dataset for the requirement it tested. Each violation flag represented a potential DQ 

issue. These counts are the DQ assessment results or DQ measures that quantify the 

dataset's adherence to the DQ requirements defined using DataGauge.  

Both methods flag requirement violations that could ultimately be a threat to the validity 

of analytical results. On one hand, the comparison standard focuses on identifying 
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general integrity issues in the dataset. The issues found can be of two kinds: (1) they 

could affect the intended use and become a significant data problem or (2) they may not 

threaten the purpose directly. These indirect threats are issues that do not jeopardize 

answering the research question but may distort the answer if they are too prevalent. On 

the other hand, the requirements generated by experts using DataGauge requirements 

describe a fit-for-purpose dataset. Therefore, each violation is a potential threat to the 

secondary analysis because they represent a shortcoming of the assessed dataset in 

relation to the ideal dataset. However, not all requirements represent the same level of 

threat to fitness for purpose. To quantify the level of threat, we asked the analytics team 

generating the requirements to assign a value to the issue in one of two categories: (1) 

Discarding Requirements, which reveal a direct threats to fitness for purpose (e.g., Patient 

records that infringe on the requirement "Patient has at least two weight measurements" 

for the calculation of weight change over time); (2) Review Requirements, which indicate 

a potential flaw that may be rectified via imputation methods or are not a direct threat to 

the dataset's fitness for secondary use (e.g., Breaches of "Weight values don't change 

more than 2% within a day" should be reviewed and may be potentially corrected using 

imputation methods if there are enough values to provide a stable baseline). Each DQ test 

from DataGauge had such value assigned during the initial generation. The same 

classification process was done for the evaluation standard results for each case.  

5.1.3 - Major Differences in DQ Assessment Methods 

There are three major differences between the DQ assessment tools that must be taken 

into account when interpreting the results. First, the knowledge available when 
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generating the test code for each method is different. The evaluation standard (i.e., 

ACHILLES + Outlier detection) is an automated method designed to be broadly 

applicable and only taps into knowledge about the data structure. On the other hand, this 

standard is easier to use, requiring minimal human effort and involvement because it is 

based on executable code. This makes its results reproducible, as they are not based on 

human expertise.  In contrast, DataGauge benefits from a team of experts and their 

knowledge about the data source, the purpose and domain knowledge. This means that 

the DQ tests performed by DataGauge should be much more specific and purposeful than 

those done by ACHILLES. Second, DataGauge is designed to be purpose-specific, 

whereas the standard does not take the purpose into account by design. Therefore, the 

issues flagged by the standard may not be a threat to the purpose. To address this, the 

issues found by both methods were assigned a level of threat value: discarding 

requirements (i.e., direct threats to fitness for purpose) or review requirements (i.e., 

potential flaws that may be rectified via imputation methods or are not a direct threat to 

fitness for secondary use). Finally, it is important to note that our comparison standard is 

static executable code, whereas DataGauge is based on a set of requirements generated by 

a team of experts. This means that the issues flagged by DataGauge are extremely likely 

to be relevant threats to the fitness for purpose of the dataset by design (given that each 

assessment is tailored to each research question and dataset's needs), whereas the 

comparison standard flags issues that are likely to be data flaws without taking the 

purpose into account. Therefore, it is necessary to review the issues found by the standard 

to confirm their relevancy to assessing fitness for purpose. 
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5.2 - Results 

I compared the results in three ways. First, I compared the number of issues found by 

each method. I show overall performance in flagging potential DQ issues for each 

method, followed by a breakdown by DQ requirement severity based on the 

requirement's level of threat to fitness for purpose (i.e., discarding vs. review 

requirement). I then reviewed the most common DQ issues flagged by both methods to 

confirm that the issues found were true DQ issues. Second, I compared the coverage of 

each method based on the previously-defined overview dimensions (i.e., clinical data 

types and the knowledge domains -see section 4.1) derived from EHR database design 

features and types of expertise required for a data reuse project (Barlow, 2013). This 

shows the comprehensiveness of each method. Finally, I built a regression model to 

predict the number of flags found by each method. I counted the total number of tests 

carried out by each method and the total number of tests flagged as positive. I used these 

two variables for each method to build a negative binomial to predict the number of 

issues found based on the selected methods and the number of test instances. Each case 

was considered a separate experiment. All analyses were conducted using R Version 

3.2.2 (R Core Team, 2013) assuming statistical significance at p<0·05.  

5.2.1 - Number of Flags  

Data Gauge flagged roughly ten times more issues than the comparison standard. These 

issues represent individual data elements that infringed on a DQ requirement. Overall, the 

standard returned 1.4 million flags whereas DataGauge returned 19 million (Figure 12). 
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Review flag counts were 1 million flags from the comparison standard versus 9.3 million 

for DataGauge (Figure 13). Discarding flag counts showed, 0.4 million for the standard 

versus 9.6 million for DataGauge (Figure 13).  
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Figure 12 - Number of flags returned by both methods. DataGauge returned close to ten 

times more flags than the comparison standard.  
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Figure 13 - Number of discarding and review flags returned by both methods. 

DataGauge returned close to ten times more review flags than the comparison standard 

(left) and close to twenty times more discarding flags (right). 
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Reviewing the most common flags revealed multiple overlaps, yet DataGauge included 

all flags found by the standard plus more specific issues. Dataset integrity issues were 

found by both methods. For example, the control method flagged person, provider and 

care site IDs with no correspondence in the table that contained the variables that defined 

them (e.g., the demographics table for patients); DataGauge identified the same issues as 

primary key-foreign key relationship breaches. Data values were checked by both 

methods but DataGauge did this in a more purposeful way. More specifically, the control 

method checked for statistical outliers, which provides a knowledge-independent and 

broadly applicable way of screening for outliers. These outliers are extremely likely to be 

true outliers but the results provide no insight to determine the nature of the DQ issues. 

On the other hand, DataGauge flagged values for specific reasons such as vital values out 

of range (e.g., Weight measurements over 400kg that are possible but not likely), abrupt 

changes over time (e.g., weight changes larger than 10% in the same day) and impossible 

timelines (e.g., measurement taken before the patient's date of birth). Beyond these two 

categories, DataGauge identified issues that were specific threats to the fitness for 

purpose that the control method was unable to flag. For example, patients with 

overlapping or co-occurring prescriptions for a research question dealing with drug 

exposure and weight variation; the threat to the secondary analysis is that we are unable 

to confidently calculate the effective drug exposure because the uncertainty in the drug 

exposure timeframe.  
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Examining the most common issues for review and discarding requirements confirmed 

the drastic difference in test specificity. This confirmed the value of purpose-specific 

tests in providing data to evaluate fitness for purpose; review flags clearly showed this 

difference. For example, the control method found unidentifiable providers and care sites, 

which were marginally threatening to the purpose in most cases, whereas DataGauge 

found direct threats to the purpose such as missing covariate data and unexpectedly high 

value changes over time. Discarding requirements showed the same differences. The 

control method flagged statistical outliers and person IDs that could not be mapped to the 

demographics table rendering the record in question unusable. In contrast, DataGauge 

found patients without the necessary data to conduct the primary analysis (excluding 

covariates), data outside the plausible timeframe, prescriptions with missing values that 

prevented the calculation of an effective dose, amongst other issues.  

5.2.2 - Coverage of Clinical Data Types and Knowledge Domains 

Dimension coverage revealed great differences between methods. DataGauge found 

issues in all Clinical Data Types (Figure 14) and Knowledge domains (Figure 15). On the 

other hand, the comparison standard failed to identify any issues in two out of six clinical 

data types and three out of six knowledge domains. The overview also shows a larger 

number of flags on the DataGauge side for every category where both methods returned 

flags. 
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Figure 14 - Coverage of clinical data types by the control method and DataGauge. 

DataGauge covers all clinical data types, whereas the comparison standard fails to flag 

any issues for diagnoses and labs. DataGauge also flags more issues for in all data types 

covered by both methods. 

 

Figure 15 - Coverage of knowledge domains by the comparison standard and 

DataGauge. DataGauge covers all knowledge domains, whereas the comparison fails to 
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flag any issues in three domains. DataGauge also flags more issues in all domains 

covered by both methods. 

 

5.2.3 - Statistical Comparison 

Statistical comparison of both methods revealed a statistically significant difference 

between the two methods when comparing values for only six cases. I compare the 

number of issues flagged between DataGauge and the evaluation standard using negative 

binomial regression model that accounts for the over-dispersed count data, using the total 

number of tests done by each method as an offset variable (Table 10). To account for 

potential confounding effects, I compare matched DQ assessment results for a series of 

cases (i.e., six matching research question and dataset pairs), where only the applied 

method varies. I also explored covariates such as data granularity, analytical unit and DQ 

dimension but none of them  significantly impacted the estimates of interest . The 

expected number of flags returned by DataGauge was significantly higher than the 

number returned by standard (Rate Ratio=7.00; 95% CI=[3.22,15.2]; p<0.0001).   
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Table 10 – Comparison of the number of flags returned by each method based on 

multivariable Negative Binomial regression model . The expected number of flags 

returned by DataGauge is almost seven times greater than the number returned by the 

control method. 

 

Rate Ratio (95% 

Confidence Interval) 
p-value 

Method 7.00 (3.22,15.2) <0.0001 

 

5.3 Discussion 

DataGauge was able to flag more potential issues than the state of the art method. It 

identified more direct threats to the analytical purpose, but also more DQ issues that 

could be potentially corrected via review or imputation. This difference was confirmed to 

be statistically significant. The issues identified by DataGauge were also more specific, 

which allowed for a deeper understanding the dataset's limitations. Finally, DataGauge 

showed broader coverage of Knowledge Domains and Clinical Data Types. 

This analysis provides evidence of DataGauge's contribution to the current state of the art 

but has three main limitations. First, we only used a single clinical database containing 

outpatient data. Though this is only one type of clinical data, but is one of the most 

broadly available for secondary use. Second, we only assessed DQ for six use cases. 

However, we justified their coverage of secondary uses and clinical data types in Chapter 
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4. Moreover, these six cases provided adequate statistical power to uncover a statistically 

significant difference between DataGauge and the comparison standard. Third, only one 

research team was employed in this evaluation, thus the results may not generalize.  

Based on these results, I can conclude that DataGauge improves the current state of the 

art by improving the detection of DQ issues in two ways. First, DataGauge increases the 

number of opportunities to detect DQ issues by providing a broader coverage of the 

assessed data and relevant knowledge domains. Second, DataGauge focuses the detection 

of specific issues that are directly relevant to the intended secondary use. DataGauge is 

the first systematic method to assess DQ in truly fitness-for-purpose-oriented way (Holve 

et al., 2013; Juran, 1962). Even though the method is human intensive, the great threats 

posed by data repurposing (Hersh et al., 2013; Van Der Lei, 1991) demand such thorough 

evaluation. Also, it is currently very difficult to truly assess fitness for purpose in an 

automated way given that it requires so much domain knowledge that is not readily 

structured. Nevertheless, DataGauge provides an initial systematic process that can 

support future automation efforts.  Also, when applied thoroughly by a team of experts, 

DataGauge is more likely that the current systematic methods to provide a useful body of 

evidence to justify or reject the use of a data source for a specific secondary use. 

This evaluation provides evidence to confirm that DataGauge improves the current state 

of the art. DataGauge builds upon Kahn's framework for pragmatic DQ assessment 

framework (M. G. Kahn et al., 2012). It provides practical implementation support for a 

previously unavailable fitness for purpose DQ assessment of repurposed clinical datasets 

(Holve et al., 2013). It also provides methodological grounding for the implementation of 
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the recently published the ontology for the secondary use of clinical data (Johnson et al., 

2015).  

These results also encourage the use of fitness for purpose approaches for DQ assessment 

of repurposed clinical datasets (Holve et al., 2013) because of their ability to find specific 

issues that will encourage or discourage the use of a dataset for a specific purpose. 

Though these results are encouraging, a deeper evaluation of the method's usefulness and 

utility to real analytics teams is necessary. In this preliminary evaluation I employed 

automated methods as a starting point of comparison. However, research teams making 

secondary use of data usually carry out additional ad hoc tests and custom data cleaning. 

This limitation will be addressed in a future work.  
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Chapter 6: Conclusions, Limitations and Contributions 

In this dissertation, I have described and evaluated DataGauge, the first systematic yet 

purpose-specific procedure for the DQ assessment of repurposed clinical data. 

DataGauge addresses current limitations in the state of the art of DQ assessments. It 

provides a generalized and systematic way of assessing repurposed clinical data taking 

into account the research question for the secondary analysis. Additionally, it makes DQ 

assessment parameters explicit, supporting communication within the analytics team and 

the transparent reporting of clinical data. I also presented a framework for the 

development of DQ requirements within DataGauge, which lists the major concerns to be 

checked when repurposing clinical data to promote thorough assessments. This 

framework aims to promote comprehensiveness and separation of concerns (Painter, 

2006) when designing DQ assessments, which contributes to a thorough and orderly 

development of DQ requirements when applying DataGauge. Finally, I evaluated the 

DataGauge process comparing it to a current state of the art systematic DQ assessment 

method. DataGauge flagged more issues than the evaluation standard, uncovering bigger 

threats to fitness for purpose and covering more aspects of the assessed data and 

knowledge domains. 

DataGauge improves the state of the art by supporting the systematic design and 

implementation of DQ assessments taking into account the secondary use purpose or 
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research question. Previous DQ assessment methods for the reuse of clinical data have 

focused on the application of multiple DQ tools to uncover discrete problems (e.g., typos, 

missing values, outliers) (Batini & Scannapieca, 2006b; Maydanchik, 2007a) and have 

failed to take the analytical purpose into account. Faulconer and de Lusignan (Faulconer 

& de Lusignan, 2004), for example, proposed a statistical procedure to identify DQ 

problems generically using mathematical tools rather than assessing potential threats to 

achieving the analytical purpose. Hogan and Wagner (Hogan & Wagner, 1997) also 

suggested statistical probes to identify specific data issues, but only addressed correctness 

and completeness. Kahn et al. (M. G. Kahn et al., 2012) proposed a purpose-based DQ 

assessment framework for the reuse of clinical data. However, this framework focuses on 

detecting DQ flaws based the data's primary clinical purpose rather than taking analysis-

specific considerations into account. Johnson et al. (Johnson et al., 2015) have proposed 

an ontology to make DQ measure calculations systematic, but do not provide a way to 

select these measures systematically to assess fitness for purpose. Thus, DataGauge is the 

first method to address the problem of analysis-specific DQ assessments.  

DataGauge is designed to be general enough to support a team of experts to 

systematically design and carry out their DQ assessment for any data source and 

analytical purpose. However, the development of DQ requirements across analytics teams 

is a potential source of inconsistencies.  To address this limitation, we have provided a 

framework to support the systematic development of DQ standards. We achieve this by 

providing a list of potential DQ issues to consider when repurposing clinical data. This 

guidance framework is a first step towards supporting the systematic definition of DQ 
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requirements. Further development and testing of this framework will be part of my 

future work.  

The definition of this method and evaluation results have multiple implications. For 

clinicians and researchers making secondary use of clinical data, DataGauge 

assessments allows for a more trustworthy repurposing of clinical data, by supporting 

thorough and purpose-specific assessments before the secondary analysis takes place. 

DataGauge also supports the reporting of DQ results by making the DQ assessment 

assumptions explicit, and therefore easier to report. DataGauge also promotes a more 

thorough assessment of repurposed clinical data because it accounts for the research 

question (i.e., the use purpose). This should lead to a better understanding of the 

limitations of repurposed clinical data and, in turn, the analytical results. Informaticians 

will benefit from this work by having a systematic way of assessing the quality of clinical 

data that is fully integrated with the data extraction process. DataGauge offers a 

streamlined way of integrating multiple workflows into a single process. This means that 

the work of the analytics team making secondary use of clinical data, the CDW team 

running the data extraction and the DQ assessment work are harmonized into a single 

workflow. The process is also supported by a set of documents that make assumptions 

explicit and may improve communication within and beyond the analytics team. 

DataGauge may also support the development of design tools and interfaces for 

secondary use and data extraction. Such tools are currently available but provide little to 

no support for DQ assessment.  

 



 

 
 

99 

6.1 - Limitations 

While DataGauge was shown to flag more potential DQ issues than the current state of 

the art method, there are a number of limitations to this work. The DataGauge process 

presents four main limitations. First, we do not provide guidance in terms of the number 

of iterations to reach satisfactory specifications as this depends on multiple factors such 

as analysis type, data needs and research goals. This must, therefore, be left to expert 

judgment. Second, DataGauge is tailored to support analysis-specific DQ assessments 

and therefore, assumes that the input dataset has been a pre-cleaned to meet the DQ 

standards expected from a CDW. Third, DataGauge is human-intensive because the 

exhaustive definition of DQ requirements and their testing require considerable effort. 

Also, in its current state, DataGauge requires custom coding for the testing of every DQ 

requirement, which is much more time consuming than the fully automated evaluation 

standard. However, the great threats that arise from data repurposing (Hersh et al., 2013; 

Van Der Lei, 1991) demand thorough evaluations that are often not detectable using 

automated data checks. Finally, DataGauge only focuses on assessing defined by the 

DNM and data contained in the analytical dataset rather than all potentially relevant data 

in the CDW.  Nevertheless, there are currently no other ways of defining analysis-

specific data needs and quality requirements in a consistent way, which makes 

DataGauge a valuable tool for the clinical research informatics community. 

The guidance framework to support DataGauge presents four main limitations. First, it 

may not include all relevant dimensions. Generating all relevant DQ requirements 

depends on many aspects of the data, their intended use and their meaning, yet the 
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dimensions included are the ones found to be most significant from our research 

experience. Second, the comprehensive nature of the framework may lead to the 

generation of redundant DQ requirements. Third, the framework, in its current state, may 

tax users with a large number of questions for DQ requirement generation. Therefore, it 

may not be practical for day-to-day DQ assessment projects. Refinement and testing of 

this guidance framework will be done in future work. Finally, though it interfaces with 

other DQ frameworks (Johnson et al., 2015; M. Kahn et al., 2015; M. G. Kahn et al., 

2012) , it may be useful to integrate them in future work as well.  

The evaluation of DataGauge presents four limitations. First, the evaluation was based on 

a single clinical database containing outpatient data. Though this is only one type of 

clinical data it is one of the most broadly available for secondary use and one database is 

a reasonable starting point for an initial evaluation. Second, a limited number of cases 

were used for the development of the guidance framework and evaluation. Still, these 

cases were justified to cover over 90% of secondary uses and clinical data types. Third, 

only two experts were interviewed to develop the DQ requirements that served as the 

basis to develop the guidance framework the evaluation. This is acceptable because the 

method is still in its early stages of development and this evaluation was preliminary in 

nature. Finally, the ideal comparison standard for the evaluation of DataGauge would 

have been a naive research team using their habitual cleaning methods. However, this 

option was impractical in our current setting for three reasons: (1) finding research teams 

willing to adopt a new, untested technique can be challenging, (2) including a human 

element in the evaluation process would introduce much variability in the results and 
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would, therefore, require a much larger sample size and (3) the funding needed to run 

such study was not currently available. DataGauge is in its early stages of its 

development and, thus, a proof of concept evaluation against the current state of the art 

tools is prudent and will inform future research. Thus, we chose to use a standardized 

baseline method that would minimize the involvement of humans and maximize the 

feasibility and repeatability of the evaluation.  

6.2 - Contributions  

DataGauge contributes to the current state of the science in three ways. First, it advances 

applications by supporting more through checks of repurposed clinical data and enabling 

their systematic yet purpose-specific DQ assessment. Such checks are necessary because 

repurposed clinical data may not be appropriate for their intended secondary purpose 

(Van Der Lei, 1991). This work lays the practical foundation for the systematic DQ 

assessment of repurposed clinical data as an evaluation of fitness for purpose (Holve et 

al., 2013). This contributes to support the reliable secondary use of clinical data (Charles 

Safran et al., 2007), which is a critical step towards building learning healthcare systems 

(Institute of Medicine (US) Roundtable on Evidence-Based Medicine, 2007). Second, 

DataGauge has been shown to improve upon the current state-of-the-art systematic DQ 

assessment method by providing a systematic yet purpose-specific approach.  This new 

assessment methodology flags more potential issues than an alternative automated 

approach. It also improves current methods and practices by promoting the explicit 

definition of DQ assessment requirements (M. Kahn et al., 2015; M. G. Kahn et al., 2012) 

and data extraction parameters. These explicit definitions also show promise in enabling 
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a smoother data extraction process through the definition of explicit requirements. In our 

experience, data extraction is the source of much inefficiency and 'back and forth' 

between the analytics teams and database administrators this is partly due to the 

ambiguity of requests, usually submitted as plain text descriptions. Providing a standard 

for the explicit definition of data extraction requirements, such as the DNM, can 

eliminate much inefficiency by improving communication. The explicit definition of DQ 

requirements is also a contribution to current practices given that transparent reporting of 

DQ results is a current route of development in the field (M. Kahn et al., 2015), yet no 

applied methodological support to such practices is found in the literature. Also, explicit 

DQ requirements have the potential to set the groundwork for automated DQ assessment 

in the future.  Lastly, my work contributes to the field of biomedical informatics by 

providing a preliminary inventory of concerns and potential issues to be checked while 

making secondary use of clinical data. The guidance framework provides a list of 

knowledge domains that ensure all expertise needed for the secondary use of data is 

accounted for. The guidance framework and, more specifically, the overview checklist 

supports the separation of concerns (Painter, 2006) in DQ requirement generation tasks. 

The principle of separation of concerns is responsible the orderly and modular design of 

current computer programs. I anticipate that this framework and overview based on this 

principle will be a first step towards an orderly and modular generation of DQ 

requirements. This is particularly important because of the complexity involved in the 

generation of DQ requirements, which stems from the multiple sources of information to 

be taken into account for a specific dataset and research question. This guidance also 
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promotes a team-based (Barlow, 2013) definition of requirements that is desirable, yet 

poorly supported by current practices (Broeck & Fadnes, 2013).  

6.3 - Future Work 

Future work will consist of further testing and development of the DataGauge and the 

guidance framework. DataGauge will be tested with analytics teams making secondary 

use of clinical data. An evaluation where a control group uses their native methods to 

clean their datasets and an experimental group applies the DataGauge procedure will be 

carried out. The DQ results for each group will be compared.  Also, I will further expand 

the guidance framework by exploring more secondary use cases. Finally, the DataGauge 

process will be iteratively improved and streamlined based on end-user feedback. 

Because DataGauge is intentionally designed to require considerable human input, I plan 

to develop and evaluate tools to support analytical teams as they work through the 

process, much as software engineers and programmers now use a number of different 

tools to capture requirements, track changes, and track issues. 
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Appendix A: Definitions 

Data: "A datum is a putative fact regarding some difference or lack of uniformity within 
some context." (The Philosophy of Information, 2013) In other words, data are discrete, 
atomic answers to specific questions about an object of interest.  
 
Clinical Data: Discrete, atomic answers to specific questions about a patient's health 
status and healthcare procedures. In this dissertation, I refer to clinical data as all data 
recorded in an electronic health record. 
 
Quality: "The totality of features and characteristics of a product or service that bear on 
its ability to satisfy stated or implied needs" (Standardization, 1994) 
 
Data Quality: A dataset's ability of satisfying the needs for a specific purpose (Holve et 
al., 2013) (i.e., fitness for purpose (Juran, 1962)) 
 
Purpose:  "Something set up as an object or end to be attained" (The Merriam-Webster 
Dictionary, n.d.). We refer to purpose in this dissertation as the use of data to answer a 
specific research question. 
 
Initial purpose: The purpose for which the data are first produced; also known as the 
production purpose (Floridi, 2012, 2013). 
 
Data Repurposing: Using data for any purpose other than for which they were 
produced(de Lusignan & Mimnagh, 2006; Van Der Lei, 1991). 
 
Secondary Purpose or Secondary use: Any use of data other than the use for which 
they were collected; also known as the analytical or secondary purpose(Botsis, 
Hartvigsen, Chen, & Weng, 2010; Floridi, 2012, 2013; C. Safran, 2014). 
 
Criterion: "A standard on which a judgment or decision may be based or a 
characterizing mark or trait" (The Merriam-Webster Dictionary, n.d.). For this 
dissertation, I define a criterion is a axis of interest upon which a value of adequacy can 
be assigned, an evaluation can be carried out or a decision can be made. 
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DQ criterion: A point of interest upon which a dataset's fitness for a specific use can be 
evaluated. The evaluation will provide a degree of adequacy for the use in relation to a 
specific criterion. Each criterion defines a sub-feature of the overall fitness for purpose.  
 
DQ requirement: A condition describing a specific feature that must be respected by a 
dataset in order to be fit for a specific use or purpose. Each requirement defines a specific 
sub-feature of the overall fitness for purpose. Requirements describe the desirable aspect 
for a dataset in the light of a criterion, which is defined by the intended use. DQ 
requirements define the minimum expectation on data values to ensure that a specific 
dataset is valid and useful for a specific analytical purpose. They aim to define a "fit-for-
purpose" dataset in a specific case.  
 
DQ Standard: In this dissertation, I refer to DQ standard as the combination of all DQ 
requirements for a specific dataset and intended use. DQ standards are not 
interchangeable and must be generated in the light of domain knowledge, the available 
data and the intended purpose or research task. 
 
Inclusion/Exclusion Criteria: We differentiate DQ requirements from 
Inclusion/Exclusion criteria by the object they define and their goal. Inclusion/Exclusion 
criteria define the subjects that qualify for the study based on demographic and clinical 
considerations; they aim to define a patient population. For example, "patient is at least 
18 years old" is an inclusion criterion whereas "patient date of birth is earlier than 
observation date" is a DQ requirement. 
 
DQ rule: "Data quality rules are constraints that validate data relationships and can be 
checked using computer programs" (Maydanchik, 2007a). In this dissertation I refer to 
DQ rules as an explicit, unambiguous limits that are easily encoded into machine-
executable code to automatically flag infringing data within the assessed datasets. We 
differentiate them from DQ requirements by their unambiguous and formal (Morton, 
1999) nature.  
 
DQ test: A practical tool, algorithm, approach or strategy employed to test the adherence 
of a dataset to a specific DQ requirement or the breach of a DQ rule. They serve as a 
means to gather evidence of a dataset's fitness for purpose for a specific DQ criterion.  
 
DQ Assessment: A judiciously selected combination of DQ tests based on DQ 
requirements to assess a dataset's fitness for a specific analytical purpose based on 
clinical, data science and analytical tool knowledge.  
DQ assessments vs. DQ tests: A DQ assessment is a combination of DQ tests designed to 
evaluate whether a dataset is fit for a specific purpose. DQ requirements and DQ rules 
define the parameters necessary to run the DQ tests.  
 
Data Needs Model:  An explicit, unambiguous external representation of the minimal 
data needed to achieve a specific research task or goal. In this dissertation, data needs 
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model refers to a tidy-data-compliant (Wickham, 2014) UML model (Demuth & 
Hussmann, 1999) of the minimal clinical data required to answer a specific research 
question.  
 
Research Question Analysis: To define all objects of interest in light of a specific 
research question. In this dissertation, I refer to research question analysis as the steps 
taken to determine the clinical objects (e.g., patients, prescriptions, labs, etc.), which must 
necessarily be known to answer the research questions. From these objects are derived 
the variables that are likely to contain the necessary information to answer the research 
question via secondary analysis. For example, if our research question is "Is Prednisone 
exposure related to weight gain?" we will need information about the patients, their 
prednisone prescription history and their weight measurement values. Within these three 
objects we will then define the variables to describe then. For example, a patient may be 
described by a patient identifier, a date of birth and a gender variable. 
 
Data extraction:  Selection of all data that may be relevant to a specific research 
question that is transformed to fit a specific data needs model and subsequently used for 
DQ evaluation and analysis.  
 
DQ evaluation: The implementation of all DQ tests (based on the DQ standard) into 
machine-executable code to detect violations of the predefined DQ requirements. Their 
goal is to provide evidence to support the analytics team's decision on the dataset's fitness 
for purpose. Each DQ evaluation is specific to a research question, a data needs model, a 
DQ standard and an extracted dataset.   
 
DQ results: They are the quantitative evidence of infringement of DQ requirements 
within a given dataset for a specific purpose. They usually take the form of counts, 
percentages or true/false flags and serve to support the expert's decision about a dataset 
being fit or unfit for a specific purpose. They can be assimilated to DQ measures as 
described by Johnson et al. (Johnson et al., 2015). In this dissertation, I represented all 
DQ results as infringement counts or flag counts. 
 
Separation of concerns: "The ability to identify, encapsulate and manipulate only those 
parts of software that are relevant to a particular concept, goal, or purpose” (Ossher & 
Tarr, 2001). In other words, it is the ability of teasing out the different pieces of the 
puzzle interacting in a task. In the task of generating DQ requirement, multiple sources of 
information are at play as well as multiple sources of knowledge (i.e., domain experts). In 
this case, the separation of concerns is the definition of an information structure or 
framework that delineates the role and interactions of each information and knowledge 
source. The guidance framework described in Chapter 4 provides such structure.  
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Appendix B: DQ Requirement Development Guidance  

In this Appendix I present the details of the guidance framework introduced in Chapter 4. 
The framework is composed of two parts: (1) the Data-Knowledge checklist and (2) the 
guidance questionnaires. The Data-Knowledge checklist serves as an overview of all 
possible contexts (i.e., the combination of a clinical data type and a knowledge domain) 
that must be assessed to ensure a thorough DQ assessment design. For each DQ 
requirement generation context (i.e., the combination of a knowledge domain and a 
clinical data type instance), the framework assigns a guidance questionnaire that presents 
all relevant concerns in the form of questions to assess DQ dimension. Each question is 
used as a focus to generate DQ requirements around that specific point of interest taking 
as inputs a specific Data Needs Model piece at a specific data granularity level (e.g., a 
value, an observation, a variable, etc.) and a specific Research Question. The DQ 
requirements should aim to define the ideal dataset for the Research Question or 
Research Goal. Once the analytics team has addressed all pertinent questionnaires and the 
checklist is full, it can be assumed that there is reasonable coverage of potential DQ 
issues in repurposed clinical data.  
 
Data-Knowledge Requirements Development Checklist 
The Data-Knowledge checklist serves as an overview of the different contexts to be 
covered for a thorough DQ assessment design (see table below). Two dimensions define 
it: (1) the Clinical Data Types, which are sub-sections of the electronic medical record 
and (2) the Knowledge Domain, which represent the different types of knowledge 
necessary to carry out a secondary analysis of clinical data.  Thus, we can refer to 
contexts as the combination of specific elements from these to dimensions. For example, 
Appointment data type and Analytical Tool would be the first context in the table below. 
Addressing all combinations between all elements between these two dimensions ensure 
systematicity through thorough coverage of all relevant issues. It is recommended that 
research teams work in groups with all experts present in the room. The Research 
Question and the Data Needs Model should be visible to all and consulted as part of the 
process. It is suggested that the team work their way through the checklist by breaking 
the Data Needs Model down for a Clinical Data Type at all relevant Data Granularity 
Levels, then running thought the questionnaires each knowledge domain and finally 
move on to the next Clinical Data Type. This will facilitate cross-domain thought and 
dialog between the experts, while keeping the evaluated target (i.e., the DNM pieces) 
stable during DQ requirement generation. 
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	 	Clinical	Data	
Types:	

Appointmen
t	

Demographic
s	

Diagnose
s	

Lab
s	

Med
s	

Vital
s	

Kn
ow

le
dg
e	
Do

m
ai
n	

Analytical	Tool	 þ	 ☐	 ☐	 ☐	 ☐	 ☐	
Clinical	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Data	
Manipulation	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	

Representation	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Research	Design	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Research	Goal	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	
Workflow	 ☐	 ☐	 ☐	 ☐	 ☐	 ☐	

 
Question-Driven DQ Requirement Definition 
The guidance questionnaires correspond to specific contexts; that is, a specific 
combination of Knowledge Domain and Clinical Data Type (e.g., Analytical Tool and 
Appointment). For each context, the analytics team will identify the relevant subset of the 
Data Needs Model and break them down in as many possible pieces for every Data 
Granularity Level (i.e., value, variable, observation, observational unit, multiple 
observational units and dataset). They will then address each question for a specific DNM 
piece in the frame of a specific Knowledge Domain. These features are the DQ 
requirements.  Once the team has answered every question, they may move on to the next 
context and answer its questionnaire. It is important that the team keep in mind the 
research question throughout this work in order to generate requirements that define a fit 
for purpose dataset. A full example of the use of this guidance is described in section 4.4. 
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Contextual Questionnaires In Alphabetical Order 
1. Appointment 

1.1. Analytical Tool 
DQ 
Dimension 

Question 

Tool 
Limitations 

Are all statistical assumptions met by the data? 

Tool 
Limitations 

Can you assume independence between observations? 

Completeness Are there enough observations within the timeframe of interest to run 
the analysis? 

Completeness Are there enough patients with all relevant variables within the 
timeframe of interest to run the analysis? 

Completeness Are there enough observations to provide appropriate statistical power? 
Completeness Is the censorship rate acceptable? 
Completeness Are the measurements recorded at reasonably regular intervals? 
Completeness Are there gaps in recording within the timeframe of interest? 
Correctness Are there duplicate observations? 
Completeness Are there enough data points by appointments? 
Completeness Are there enough data points by patient and/or care provider? 
 

1.2. Clinical 
DQ Dimension Guidance Question 
Plausibility Is the appointment date within a plausible timeframe? 
Timeliness Is the time between appointments in the expected range? 
 

1.3. Data Manipulation 
This Knowledge Domain is beyond DQ dimensions and requirements. Good data 
management practices should prevent any DQ issues in this context, yet it is 
recommended to verify that no issues arose from extraction. At this stage, the data 
scientist designs tests and fail-safes to avoid corrupting the dataset during the data 
manipulations and extract-transform-load (ETL) procedures and/or identify them once 
the data has been extracted. One example such issues is the creation of duplicates when 
using joins. To avoid such issues, the data base administrator should verify the counts 
after every join to ensure no duplication has taken place. These checks are usually done 
before the dataset is extracted and assessed for DQ. DQ requirements are not necessary 
beyond the tests defined by the data scientist but could still be defined for thoroughness 
purposes.  
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1.4. Representation 
DQ Dimension Guidance Question 
Representation Are all Primary Keys unique? 
Representation Do all foreign keys correspond to one primary key? 
Representation Are all values formatted appropriately or as expected? 
Representation Are all values of the right sort (e.g., character, numeric, etc.)? 
Representation Are all predefined values (i.e., concepts) found in the 

dictionary? (e.g., ICD-9) 
Representation Are all defined concepts of interest found in the dataset? (e.g., 

if the concept 'male' is defined to be used in the gender variable, 
the variable should contain 'male' values) 

 
1.5. Research Design 

DQ Dimension Guidance Question 
Completeness Are any of variables needed for the analysis missing? 
Completeness Are there missing values? 
Completeness Are there values missing not at random? 
Completeness Are there enough values within the desired time range? 
Completeness Is the analytical observational unit (i.e., the main outcome 

variable, dependent variable and covariates in one table line) 
complete?  

Completeness Is the censorship level for each variable of the observational 
unit acceptable? 

Correctness Does the observational unit follow the ideal timeline of 
collection? (e.g., vitals are recorded on visit days) 

Completeness Is the rate of censorship acceptable? Are there enough 
encounters per patient for the designated research design? 

Completeness Are the missing values spread randomly over time? 
Correctness Does the distribution of demographics correspond to 

population estimates at large? (i.e., is the sampling random?) 
Completeness Are the data accessible for analysis? (e.g., are the data not 

locked in the clinical notes) 
Completeness Is the ratio of censorship acceptable (i.e., # missing data/# 

available data)? 
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1.6. Research Goal 
DQ Dimension Guidance Question 
Completeness Are the appointment records complete? 
Plausibility Is the age of patient plausible at the appointment time? 
Correctness Does the appointment record map to a single patient? 
Correctness Is there at least one appointment per patient? 
 

1.7. Workflow 
DQ Dimension Guidance Question 
Concordance Are all providers found and defined in the providers table? 
Concordance Are all locations found and defined in the care sites table? 
Concordance Are all provider occupations as expected? (e.g., no medical 

assistants prescribing drugs) 
Correctness Are time stamps in the expected order? (e.g., order before 

admin). 
Timeliness Are time stamps within the expected time frame? (e.g., BPs 

measured within the encounter window vs. outside) 
Correctness Is the time between events of the expected range? 
 
2. Demographics 

2.1. Analytical Tool 
DQ Dimension Guidance Question 
Tool Limitations Are all statistical assumptions met by the data? 
Tool Limitations Can you assume independence between observations? 
Completeness Are there enough observations within the timeframe of interest? 
Completeness Are there enough patients with all relevant variables within the 

timeframe of interest? 
Completeness Are there enough observations to provide appropriate statistical power? 
Completeness Is censorship at an acceptable rate? 
Completeness Are the measurements recorded at reasonably regular intervals? 
Completeness Are there gaps in recording within the timeframe of interest? 
Concordance Are there duplicate observations? 
Completeness Are there enough data points by encounter? 
Completeness Are there enough data points by patient and/or care provider? 
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2.2. Clinical 
 
DQ Dimension Guidance Question 
Correctness Is gender Male, Female or Unknown? 
Completeness Does race contain all expected values? In the 

expected proportions? 
Correctness Are ages within inclusion criteria, non-negative 

and below 130? 
Plausibility Are all dates of birth later than Jan 1st 1900? 
 
 

2.3. Data Manipulation 
This Knowledge Domain is beyond DQ dimensions and requirements. Good data 
management practices should prevent any DQ issues in this context, yet it is 
recommended to verify that no issues arose from extraction. At this stage, the data 
scientist designs tests and fail-safes to avoid corrupting the dataset during the data 
manipulations and extract-transform-load (ETL) procedures and/or identify them once 
the data has been extracted. One example such issues is the creation of duplicates when 
using joins. To avoid such issues, the data base administrator should verify the counts 
after every join to ensure no duplication has taken place. These checks are usually done 
before the dataset is extracted and assessed for DQ. DQ requirements are not necessary 
beyond the tests defined by the data scientist but could still be defined for thoroughness 
purposes.  
 

2.4. Representation 
DQ Dimension Guidance Question 
Representation Are all Primary Keys unique? 
Representation Do all foreign keys correspond to one primary key? 
Representation Are all values formatted appropriately or as expected? 
Representation Are all values of the right sort (e.g., character, numeric, etc.)? 
Representation Are all predefined values (i.e., concepts) found in the 

dictionary? (e.g., ICD-9) 
Representation Are all defined concepts of interest found in the dataset? (e.g., 

if the concept 'male' is defined to be used in the gender variable, 
the variable should contain 'male' values) 
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2.5. Research Design 
DQ Dimension Guidance Question 
Completeness Are there missing variables? 
Completeness Are there missing values? 
Completeness Are the values missing not at random? 
Completeness Are there enough values within the desired time range? 
Completeness Is the observational unit defined for the analysis complete? (i.e., are all 

necessary variables present)  
Completeness Is the censorship level for the analytical unit observational unit 

acceptable? (i.e., are there enough values for the analysis overall) 
Correctness Does the observational unit follow the ideal timeline of collection? 
Completeness Are the missing values spread randomly over time? 
Correctness Does the distribution of demographics correspond to population estimates 

at large? (i.e., is the sampling random?) 
Completeness Are the data accessible for analysis? (e.g., the data are not locked in 

clinical notes) 
Completeness Is the ratio of censorship acceptable (i.e., # missing data/# available 

data)? 
 

2.6. Research Goal 
DQ Dimension Guidance Question 
Completeness Are the demographics records complete? (e.g., patients have gender, date 

of birth and race values) 
Completeness Does the demographic data have null values? 
Plausibility Is the age of the patient plausible? (e.g., not over 150 years and not 

negative) 
Correctness Do values map to a single patient? 
Concordance Are the patient demographics coherent with issue of interest? (e.g., no 

pregnant males) 
 

2.7. Workflow 
DQ Dimension Guidance Question 
Completeness Are the demographics records entered within the expected observation 

timeframe? (e.g., data entered during a visit) 
Completeness Are there missing values in the demographics data of interest? 
Plausibility Is the age of the patient plausible? 
Completeness Does the patient have the minimum data available to fully describe each 

visit? (e.g., weight and BP must be taken for every visit as good practice) 
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3. Diagnoses 
3.1. Analytical Tool 

DQ Dimension Guidance Question 
Tool 
Limitations 

Are all statistical assumptions met by the data? 

Tool 
Limitations 

Can you assume independence between observations? 

Completeness Are there enough observations within the timeframe of interest? 
Completeness Are there enough patients with all relevant variables within the 

timeframe of interest? 
Completeness Are there enough observations to provide appropriate statistical power? 
Completeness Is censorship at an acceptable rate? 
Completeness Are the measurements recorded at reasonably regular intervals? 
Completeness Are there recording gaps within the timeframe of interest? 
Correctness Are there duplicate observations? 
Completeness Are there enough data points by encounter? 
Completeness Are there enough data points by patient and/or care provider? 
 

3.2. Clinical 
DQ Dimension Guidance Question 
Completeness Diagnoses of interest appear at least once? 
Plausibility Are all diagnoses recorded after the patient's date of birth? 
Timeliness Are the diagnoses recorded during a visit that falls within the expected 

observation timeframe or before the first visit (i.e., medical history)? 
Completeness Are diagnoses recorded at regular intervals in the timeframe of 

interest? 
 

3.3. Data Manipulation 
This Knowledge Domain is beyond DQ dimensions and requirements. Good data 
management practices should prevent any DQ issues in this context, yet it is 
recommended to verify that no issues arose from extraction. At this stage, the data 
scientist designs tests and fail-safes to avoid corrupting the dataset during the data 
manipulations and extract-transform-load (ETL) procedures and/or identify them once 
the data has been extracted. One example such issues is the creation of duplicates when 
using joins. To avoid such issues, the data base administrator should verify the counts 
after every join to ensure no duplication has taken place. These checks are usually done 
before the dataset is extracted and assessed for DQ. DQ requirements are not necessary 
beyond the tests defined by the data scientist but could still be defined for thoroughness 
purposes.  
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3.4. Representation 
DQ Dimension Guidance Question 
Representation Are all Primary Keys unique? 
Representation Do all foreign keys correspond to one primary key? 
Representation Are all values formatted appropriately or as expected? 
Representation Are all values of the right sort (e.g., character, numeric, etc.)? 
Representation Are all predefined values (i.e., concepts) found in the 

dictionary? (e.g., ICD-9) 
Representation Are all defined concepts of interest found in the dataset? (e.g., 

if the concept 'male' is defined to be used in the gender variable, 
the variable should contain 'male' values) 

 
3.5. Research Design 

DQ Dimension Guidance Question 
Completeness Are there missing variables? 
Completeness Are there missing values? 
Completeness Are the values missing not at random? 
Completeness Are there enough values within the timeframe of interest? 
Completeness Is the analytical observational unit complete?  
Completeness Is the censorship level for the analytical observational unit acceptable? 
Correctness Does the observational unit follow the ideal timeline of collection? 
Plausibility Is the censorship rate acceptable? 
Correctness Are missing values spread randomly over time? 
Correctness Does the distribution of demographics correspond to population estimates 

at large (i.e., is the sampling random)? 
Completeness Are the data accessible for analysis? (i.e., are the data not locked in 

clinical notes?) 
 
3.6. Research Goal 

DQ Dimension Guidance Question 
Concordance Are there diagnoses that conflict or interact with the 

phenomenon in questions? 
Timeliness Are there comorbidities at the time of the visit of interest?  
Completeness Are the diagnoses of interest present?  
Concordance Do the diagnoses evolve as expected?  
Completeness Is the ratio of censorship acceptable (i.e., # missing data/# 

available data)? 
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3.7. Workflow 
DQ Dimension Guidance Question 
Timeliness Are there conflicting diagnoses overlapping in time? 
Concordance Are there duplicate diagnoses? 
Plausibility Are all diagnoses recorded after patient's data of birth? 
Correctness Are the diagnoses within the expected observational 

timeframe? 
Completeness Are there diagnoses of interest within the desired timeframe? 
 
4. Labs 

4.1. Analytical Tool 
DQ Dimension Guidance Question 
Tool 
Limitations 

Are all statistical assumptions met by the data? 

Tool 
Limitations 

Can you assume independence between observations? 

Completeness Are there enough observations within the timeframe of interest? 
Completeness Are there enough patients with all relevant variables within the 

timeframe of interest? 
Completeness Are there enough observations to provide appropriate statistical power? 
Completeness Is censorship at an acceptable rate? 
Completeness Are the measurements recorded at reasonably regular intervals? 
Completeness Are there recording gaps within the timeframe of interest? 
Correctness Are there duplicate observations? 
Completeness Are there enough data points by encounter? 
Completeness Are there enough data points by patient and/or care provider? 
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4.2. Clinical 
DQ Dimension Guidance Question 
Completeness Are all expected lab values present? 
Completeness Are there any missing values for each lab record? (e.g., value 

with timestamp) 
Completeness Do matching values have a match? (e.g., lipid panel) 
Completeness Is the distribution of values distribution as expected? 
Completeness 
 

Are the values within limits for the population? 

Completeness Are there enough measurements within the expected observation 
window? 

Plausibility Are the labs dated after the patient's date of birth? 
Completeness Are there sufficient values over time for the analysis? 
Correctness Is the frequency of lab values as expected? 
Plausibility Is the difference in consecutive measurements in an encounter 

within acceptable range? 
Plausibility Is the difference in consecutive measurements within an 

acceptable range of than the average difference for the 
individual? 

Plausibility Is the difference between variable values between two time 
points in acceptable proportion? 

Plausibility Are there any sudden changes over time? Are they valid? 
Concordance Are the values coherent or vary as expected within a visit? 
Concordance Is the overall vital measure variability as expected? 
Concordance Are there statistical outliers? 
Completeness Are there timestamps at regular intervals within expected 

observation timeframe? 
Completeness Lab results contain positive, negative and numeric values? 
Correctness Is the temporal frequency of labs as expected for a patient?  
Completness Is the temporal density as expected for the population?  
 

4.3. Data Manipulation 
This Knowledge Domain is beyond DQ dimensions and requirements. Good data 
management practices should prevent any DQ issues in this context, yet it is 
recommended to verify that no issues arose from extraction. At this stage, the data 
scientist designs tests and fail-safes to avoid corrupting the dataset during the data 
manipulations and extract-transform-load (ETL) procedures and/or identify them once 
the data has been extracted. One example such issues is the creation of duplicates when 
using joins. To avoid such issues, the data base administrator should verify the counts 
after every join to ensure no duplication has taken place. These checks are usually done 
before the dataset is extracted and assessed for DQ. DQ requirements are not necessary 
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beyond the tests defined by the data scientist but could still be defined for thoroughness 
purposes.  

 
4.4. Representation 

DQ Dimension Guidance Question 
Representation Are all Primary Keys unique? 
Representation Do all foreign keys correspond to one primary key? 
Representation Are all values formatted appropriately or as expected? 
Representation Are all values of the right sort (e.g., character, numeric, etc.)? 
Representation Are all predefined values (i.e., concepts) found in the 

dictionary? (e.g., ICD-9) 
Representation Are all defined concepts of interest found in the dataset? (e.g., 

if the concept 'male' is defined to be used in the gender variable, 
the variable should contain 'male' values) 

 
4.5. Research Design 

DQ Dimension Guidance Question 
Completeness Are there missing variables? 
Completeness Are there missing values? 
Completeness Are the values missing not at random? 
Completeness Are there enough values within the timeframe of interest? 
Completeness Is the analytical observational unit complete?  
Completeness Is the censorship level for the observational unit acceptable? 
Correctness Does the observational unit follow the ideal timeline of collection? 
Correctness Are missing values spread randomly over time? 
Correctness Does the distribution of demographics correspond to population estimates 

at large? (Is the sampling random? 
Completeness Are the data accessible for analysis? (e.g., are the data not locked in 

clinical notes?) 
Completeness Is the ratio of censorship acceptable (i.e., # missing data/# available 

data)? 
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4.6. Research Goal 
DQ Dimension Guidance Question 
Completeness Are the lab results complete and with adequately recorded 

values? 
Completeness Does the lab result contain all expected values? 
Correctness Are the lab values in the expected format and unit? 
Completeness Does the data have null values? 
Correctness Is the age of patients plausible at the time of the lab? 
Correctness Do labs correspond to a single patient? 
Timeliness Are there enough values within the desired timeframe? 
Completeness Does the patient have enough data once non-compliant 

values have been eliminated? 
Concordance Are there sudden changes in values over time? 
Concordance Are the values of interest coherent with the patient's history? 

Is it a potential outlier? 
 

4.7. Workflow 
DQ Dimension Guidance Question 
Concordance Are there overlapping labs? Do they present disparate values? 
Concordance Are there duplicate labs? 
Plausibility Are the labs recorded after patient's date of birth? 
Completeness Are there enough labs within the desired timeframe? 
 
5. Meds 

5.1. Analytical Tool 
DQ Dimensions Guidance Question 
Tool Limitations Are all statistical assumptions met by the data? 
Tool Limitations Can you assume independence between observations? 
Completeness Are there enough observations within the timeframe of interest? 
Completeness Are there enough patients with all relevant variables within the 

timeframe of interest? 
Completeness Are there enough observations to provide appropriate statistical power? 
Completeness Is censorship at an acceptable rate? 
Completeness Are the measurements recorded at reasonably regular intervals? 
Completeness Are there gaps in recording within the timeframe of interest? 
Correctness Are there duplicate observations? 
Completeness Are there enough data points by encounter? 
Completeness Are there enough data points by patient and/or care provider? 
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5.2. Clinical 
DQ Dimension Guidance Question 
Completeness Does the dataset contain prescriptions of the drug of interest? 
Completeness Are numeric values within the expected range? 
Completeness Is the sig complete for all prescriptions? 
Concordance Are there overlaps between prescriptions?  
Concordance Are there multiple prescriptions of the same drug at the same 

time? 
Completeness Is a drug exposure variable calculable from the available data 

for every prescription? 
Correctness Is the dose of medications prescribed in multiples of the 

commercially available strength? 
Correctness Is the daily dose within an acceptable range? 
Plausibility Is the number of refills within an acceptable range? 
Plausibility Does the total quantity dispensed match the duration and 

dose prescribed? 
Correctness Is the total quantity dispensed within an acceptable dose 

range for the medication? 
Correctness Is the number of days prescribed within an acceptable range? 
Correctness  Is days>0 and <200? 
Correctness  Are all strength values>0 and <[max commercial strength]? 
Correctness  Are doses>0 and <2*[max daily dose]? 
Correctness  Are refills>=0 and <10? 
Plausibility Is total quality=days*dose? 
Plausibility Is total quantity>0 and <600? 
 

5.3. Data Manipulation 
This Knowledge Domain is beyond DQ dimensions and requirements. Good data 
management practices should prevent any DQ issues in this context, yet it is 
recommended to verify that no issues arose from extraction. At this stage, the data 
scientist designs tests and fail-safes to avoid corrupting the dataset during the data 
manipulations and extract-transform-load (ETL) procedures and/or identify them once 
the data has been extracted. One example such issues is the creation of duplicates when 
using joins. To avoid such issues, the data base administrator should verify the counts 
after every join to ensure no duplication has taken place. These checks are usually done 
before the dataset is extracted and assessed for DQ. DQ requirements are not necessary 
beyond the tests defined by the data scientist but could still be defined for thoroughness 
purposes.  
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5.4. Representation 
DQ Dimension Guidance Question 
Representation Are all Primary Keys unique? 
Representation Do all foreign keys correspond to one primary key? 
Representation Are all values formatted appropriately or as expected? 
Representation Are all values of the right sort (e.g., character, numeric, etc.)? 
Representation Are all predefined values (i.e., concepts) found in the 

dictionary? (e.g., ICD-9) 
Representation Are all defined concepts of interest found in the dataset? (e.g., 

if the concept 'male' is defined to be used in the gender variable, 
the variable should contain 'male' values) 

 
5.5. Research Design 

DQ Dimension Guidance Question 
Completeness Are there missing variables? 
Completeness Are there missing values? 
Completeness Are the values missing not at random? 
Completeness Are there enough values within the timeframe of interest? 
Completeness Is the analytical observational unit complete?  
Completeness Is the censorship level for the observational unit acceptable? 
Correctness Does the observational unit follow the ideal timeline of collection? 
Plausibility Is the censorship rate acceptable? 
Correctness Are the missing values spread randomly over time? 
Correctness Does the distribution of demographics correspond to population estimates 

at large? (i.e., is the sampling random) 
Completeness Are the data accessible for analysis? (e.g., are the data locked in the 

notes)? 
Completeness Is the ratio of censorship acceptable (i.e., # missing data/# available 

data)? 
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5.6. Research Goal 
DQ Dimensions Guidance Question 
Completeness Does the prescription contain the medication of interest? 
Correctness Does the prescription correspond to a patient? 
Concordance Are there medications that interact with the drug of interest? 
Concordance Are there simultaneous prescriptions? Of the same drug?  
Concordance Are there overlapping prescriptions? 
Concordance Are there prescriptions that interact with the phenomenon of 

interest? 
Completeness Is it possible to calculate an effective dose? 
Concordance Are the prescriptions renewed? Stopped? 
Concordance Are the prescriptions coherent with the diagnoses? 
Completeness Are there diagnoses, vitals or other clinical data available at the time 

of prescription? 
Completeness Is the sig complete? 
Timeliness Are there enough patients with prescriptions in the timeframe of 

interest? 
 

5.7. Workflow 
DQ Dimension  Guidance Question 
Concordance Are there overlapping prescriptions? 
Completeness Are the prescriptions renewed? 
Plausibility Are the prescriptions recorded after patient's date of birth? 
Timeliness Are the prescriptions within the expected observational time? 
Completeness Are there prescriptions within the desired timeframe? 
Concordance Are the prescriptions  recorded during a visit or encounter? 
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6. Vitals 
6.1. Analytical Tool 

DQ 
Dimension 

Guidance Question 

Tool 
Limitations 

Are all statistical assumptions met by the data? 

Tool 
Limitations 

Can you assume independence between observations? 

Completeness Are there enough observations within the timeframe of interest? 
Completeness Are there enough patients with all relevant variables within the 

timeframe of interest? 
Completeness Are there enough observations to provide appropriate statistical power? 
Completeness Is censorship at an acceptable rate? 
Completeness Are the measurements recorded at reasonably regular intervals? 
Completeness Are there gaps in recording within the timeframe of interest? 
Correctness Are there duplicate observations? 
Completeness Are there enough data points by encounter? 
Completeness Are there enough data points by patient and/or care provider? 
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6.2. Clinical 
 
DQ Dimension  Guidance Question  
Completeness/ 
Correctness 

Is the numeric distribution of values and value frequencies as 
expected?  

Completeness/ 
Correctness 

Is the number of vital measurements as expected? (e.g., at least 
one weight measurement per visit)   

Completeness/ 
Correctness Do related values have a match? (e.g., systolic + Diastolic)   

Completeness/ 
Correctness Are there any missing values for each vital record?   

Completeness/ 
Correctness 

Are there an adequate number of measurements within the 
desired observation window?  

Concordance Is the overall vital measure variability as expected? 
Concordance Are there any sudden changes over time? Are they valid? 
Concordance Are the values coherent or vary as expected within a visit? 

Correctness Is the difference in consecutive values in an encounter within 
acceptable range? 

Correctness Is the difference between variable values between two time points 
in acceptable proportion?  	

Correctness Are the measurements taken after the patient's date of birth? 
Correctness Are all values within plausible limits for the population? 
Completeness Is the time between events of the expected range? 

Correctness Are time stamps within the expected time frame (e.g., BPs 
measured within the encounter window vs. outside). 

Timeliness Are time stamps in the expected order? (e.g., order before admin). 
Timeliness Are there sufficient values over time for the analysis? 
 
 

6.3. Data Manipulation 
This Knowledge Domain is beyond DQ dimensions and requirements. Good data 
management practices should prevent any DQ issues in this context, yet it is 
recommended to verify that no issues arose from extraction. At this stage, the data 
scientist designs tests and fail-safes to avoid corrupting the dataset during the data 
manipulations and extract-transform-load (ETL) procedures and/or identify them once 
the data has been extracted. One example such issues is the creation of duplicates when 
using joins. To avoid such issues, the data base administrator should verify the counts 
after every join to ensure no duplication has taken place. These checks are usually done 
before the dataset is extracted and assessed for DQ. DQ requirements are not necessary 
beyond the tests defined by the data scientist but could still be defined for thoroughness 
purposes.  
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6.4. Representation 
DQ Dimension Guidance Question 
Representation Are all Primary Keys unique? 
Representation Do all foreign keys correspond to one primary key? 
Representation Are all values formatted appropriately or as expected? 
Representation Are all values of the right sort (e.g., character, numeric, etc.)? 
Representation Are all predefined values (i.e., concepts) found in the 

dictionary? (e.g., ICD-9) 
Representation Are all defined concepts of interest found in the dataset? (e.g., 

if the concept 'male' is defined to be used in the gender variable, 
the variable should contain 'male' values) 

 
6.5. Research Design 

DQ Dimensions Guidance Question 
Completeness Are there missing variables? 
Completeness Are there missing values? 
Completeness Are the values missing not at random? 
Completeness Are there enough values within the desired time range? 
Completeness Is the observational unit defined for the analysis complete?  
Completeness Is the censorship level for the observational unit acceptable? 
Correctness Does the observational unit follow the ideal collection timeline? 
Completeness Is the ratio of censorship acceptable (i.e., # missing data/# available 

data)? 
Completeness Are the missing values spread randomly over time? 
Correctness Does the distribution of demographics correspond to population estimates 

at large? (i.e., is the sampling random?) 
Completeness Are the data accessible for analysis? (e.g., is the data locked in clinical 

notes) 
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6.6. Research Goal 
DQ Dimensions Guidance Question 
Completeness Are the vital records complete? 
Completeness Does each observation contain all specific measurements required 

for analysis? 
Completeness Does the data set have null values for ideal analytical observation 

unit? 
Plausibility Is the age of patient plausible at the time of measurement? 
Correctness Do vital observations map to a single patient? 
Timeliness Are there enough values within the desired timeframe? 
Completeness Does the patient have enough data once the record is cleaned? 
Concordance Are there sudden changes in values over time? 
Concordance Is the value of interest coherent with the patient's history? Is it a 

potential outlier? 
 
 

6.7. Workflow 
 

DQ Dimension Guidance Question 
Completeness Are there vitals for every observation year? 
Plausibility Are all measures after the patient's date of birth? 
Correctness Are the measures within the expected observation range? 

Plausibility Are all expected vital measures within each encounter? (e.g., 
routinely recorded values such as weight, BP, etc.) 

Concordance Is the provider the same for all measures within the encounter? 

Concordance Are all readings for the same visit entered within an hour of each 
other for outpatient data? 

Completeness Is the measurement rate as expected for repeated measures? 

Concordance Do matched measurements have the same caregiver? (e.g., systolic 
and diastolic) 

Correctness Do patients have more measurements than expected? 
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Appendix C: Use Case Definitions 

Case 1- Duplicate BP measurements  
Goal: Use of a CDW to assess whether there is a difference between blood pressure (BP) 
measurements when a repeated measures protocol is in place.  
 
Research Question: Is the second BP measure statistically lower than the first BP 
measure taken within a visit? 
 
Hypothesis: Subsequent BP measurements (second, third, etc.) are lower than the first BP 
measurement taken during that visit. 
  
Possible Analyses:  
Linear Regression model- Predict 2nd BP value based on 1 BP value (used for validation) 
Linear Regression model 2- Outcome Variable = Difference between BP measurements 
GEE or mixed effect model (repeated measures)- for multiple data points  
 
Final Data Needs Model: 
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Case 2- Caregiver relationship to BP measurements 
Goal: Describe the number of blood pressure recordings by caregivers along visit units to 
assess the relationship, if any, between the caregiver and the implementation of the 
double measurement blood pressure protocol. 
 
Research Question: Are dual BP measurements provider-dependent? 
 
Hypothesis: There is a relationship between the number of BP measurements recorded 
and the caregiver's background, training and occupation.  
 
Analysis:  
Logistic GEE or mixed model - Accounts for patient-level correlation and covariates. 
Main outcome variable= 2 BP measurements per visit? Binary Variable (yes/no)   
 
Final Data Needs Model:  
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Case 3- Observational study of weight trends in population  
Goal: Identify and describe the types trends in the weight changes of patients from the 
point of view of an outpatient clinic.  
 
Research Question: What are the modes of variation of weight values over time? 
 
Hypothesis: There are district patterns of weight evolution over time that depend on the 
patient's demographic and health information. 
 
Possible Analyses:  
Sparkline, trend line and line plot visualization techniques. 
Linear regression for adjusted mean weight. 
 
Final Data Needs Model: 
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Case 4- Relationship between drug intake and side effect  
Goal: Identify the relationship between prednisone and weight gain in clinical care data.  
Research Question: 4. Is prednisone exposure correlated with weight gain? 
Hypothesis: There is a positive relationship between prednisone exposure and weight 
change over time.   
Possible Analysis:  
GEE regression model predicting weight change over time after first prescription based 
on prednisone exposure levels.   
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Case 5-Relationship between BMI and HbA1c lab values  
Goal: Identify and describe the relationship between BMI and HbA1C and glucose lab 
test results.   
Research Question: Are HbA1C lab values correlated with BMI? 
Hypothesis: Patients with higher BMI have higher glucose and HbA1C readings  
Analysis:  
Linear Regression predicting HbA1c values based on BMI values 
Final Data Needs Model: 
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Case 6-Recruiting patients with BMI>25 and age>21 
Goal: Identify patients with the following characteristics: BMI>25 and age>21 
 
Research Question: Can we find patients BMI>25 and age>21? 
 
Hypothesis: N.A.   
 
Analysis: N.A.   
 
Final Data Needs Model: 
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