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The use of patient safety reporting systems (PSRS) to collect and analyze patient 

safety reports has been a national priority since the IOM called for the establishment of 

nationwide reporting systems (Brennan et al., 1991; Erickson, Wolcott, Corrigan, 

Aspden, & others, 2003; Kohn et al., 2000). In 2005, a public law – the Patient Safety 

and Quality Improvement Act of 2015 – was enacted to establish voluntary reporting 

systems to encourage reporting and analysis of medical errors. The Joint Commission 

also requires hospitals to report medical errors. For the past decade, PSRS continued to 

evolve and mature, reflecting in the number of established systems and collected reports 

(Davis & Rake, 2005; Desikan et al., 2005; Flink et al., 2005; Harper & Helmreich, 2005; 

S. K. Martin, Etchegaray, Simmons, Belt, & Clark, 2005; Murff et al., 2005; Phillips, 

Dovey, Hickner, Graham, & Johnson, 2005; Rudman, Bailey, Hope, Garrett, & Brown, 

2005; Ulep & Moran, 2005).  

Nevertheless, a number of emerging problems have hindered the continuous 

augmentation of safety improvement led by patient safety reporting. These problems 

jointly obstacle the process of translating reported errors to clinical knowledge. One 

problem is the lack of aggregate report analysis. Existing reporting systems are primarily 

devoted to the submission of reports for individual case review (P. J. Pronovost et al., 

2008). Consequently, there is a little capability of aggregate data analysis, which limits 

the discovery of system vulnerabilities and the prioritization of intervention resources 

(Leape, Berwick, & Bates, 2002; P. Pronovost et al., 2006; P. J. Pronovost, Miller, & 

Wachter, 2006). The other problem is the poor quality of reports (Gong, 2011). This 

problem is based on the fact that a major portion of information is structured in text. 

Unlike many other clinical texts, patient safety reports are mostly represented in a story-
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telling fashion. Reports as such are easier to keep a record of clinically important 

elements during the course of care but create notable challenges for automated 

processing. In addition, these reports contain intricate domain knowledge and notable 

linguistic complexity, as they are produced by clinicians with diverse specialties and 

levels of experience (Liang & Gong, 2016).  

I seek to investigate informatics methods to facilitate the process of translating 

patient safety reports to actionable clinical knowledge. To this end, I systematically 

investigated the semantic representation and multi-labeled nature of patient safety reports 

as well as how they jointly promote patient safety reports. I described the work by 

introducing three specific aims. In the first aim, I investigated the semantic representation 

of patient safety reports, which is centered on semantics, their statistical regulations, and 

computational representation of patient safety reports. I described the effort to develop a 

patient safety ontology of reports. The ontology serves as a foundation for a number of 

computerized applications to process patient safety reports. In the second aim, I 

investigated the multi-labeled nature of patient safety reports and its role in the aggregate 

analysis. I developed multi-label text classification to categorize the reports. The 

automated classification holds promise to assist in conventional report analysis with 

largely improved efficiency. In the third aim, I developed a scheme that exploits semantic 

representation (i.e., semantic similarity) to improve multi-label classification 

performance through enriched domain knowledge. The empirically grounded findings 

hold promise to improve large-scale report classification. Consequently, multi-labeled 

reports should promote aggregate analysis and the disclosure of system vulnerabilities in 

the health care.  
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The dissertation is organized as follows. In Chapter 2, I provide a literature 

review where I discussed theoretical foundations and related studies of the present work. 

In Chapter 3, I provide an overview of the goal, hypotheses, specific aims, and 

approaches. In Chapter 4, I present specific aim 1 where I investigated different 

approaches to semantic representation on patient safety reports. As a demonstration, I 

described the technical details of developing a patient safety ontology. In Chapter 5, I 

present specific aim 2 where I investigated the multi-labeled nature of patient safety 

reports and the evaluation of multi-label text classification on patient safety reports. In 

Chapter 6, I present specific aim 3 where I demonstrated a range of methods of 

measuring semantic similarity based on the semantic representation approaches from 

Chapter 4. I also developed a scheme that incorporates semantic similarity and multi-

label classification algorithms to improve classification performance. In Chapter 7, I 

close the dissertation by summarizing the accomplishments, contributions, limitations, 

and future directions.   
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Chapter 2: Literature Review 

Despite diligent effort in the past decades, improvement in patient safety has 

progressed at a rate that is slower than anticipated (P. J. Pronovost et al., 2009). From 

research to clinical implementation, patient safety concerns more than patient harm; it 

also concerns systematic defects and risk factors that can cause a future harm. It engages 

more than clinicians; it also engages patient families, health care manufacturers, 

regulators, and researchers. It requires more than health care knowledge; it also requires 

domain knowledge from informatics, public health, and computer science. The 

advancement of patient safety should include a shift from a piecemeal reporting, analysis, 

and intervention to a systematic approach. This shift may pose significant challenges 

such as that the immense body and rapid growth of patient safety data exceed human 

capacity for manual analysis. In this chapter, I summarized theoretical foundations and 

related studies within the scope of the present dissertation. Accordingly, I assessed the 

gaps in the existing work where my work may make a contribution.  

2.1 Error Reporting 

Error reporting was by the first time recommended in the IOM’s report: To Err Is Human 

(Kohn et al., 2000). The purpose of error reporting is to identify errors and to learn from 

lessons by developing a nationwide reporting system where health care organizations and 

practitioners make participations.  
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2.1.1 What Is Reported  

Patient safety reports comprise events that come from a broad variety, which may or may 

not reach patients, and may or may not cause harm (J. Reason, 1990b). Reporting errors 

that do not have a direct contact with patients and/or do not cause harm may be as 

valuable as reporting ones that harm patients, as these errors help proactive error 

prevention (Barach & Small, 2000; Battles, Kaplan, Van der Schaaf, & Shea, 1998). This 

argument can be understood by exploring a metaphor of ‘Swiss cheese’, which is 

frequently referred to health care systems (J. Reason, 1990a, 1995, 2000, 2016; J. T. 

Reason, Carthey, & De Leval, 2001). In a complex system, i.e., health care system, 

system failures are prevented from a number of relatively independent components, i.e., 

each and every slide of cheese (see picture 1). A component may refer to clinical 

administration, treatments, uses of medical equipment, etc., while each one may produce 

unintended weaknesses. A system failure occurs when by chance a certain number of 

components produce errors. In a Swiss cheese model, this occurs when holes are open 

and aligned through all the slides. The metaphor of Swiss cheese is well understood by 

empirical studies in health care (Perneger, 2005).  

 

Figure 1. Swiss cheese model by James Reason published in 2000. 

2.1.2 Reporting Formats  
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To help clinicians uniformly report patient safety events, the Agency for Healthcare 

Research and Quality (AHRQ) developed the Common Definitions and Reporting 

Formats (a.k.a., the Common Formats) to collect data in a standardized manner (Clancy, 

2010). The Patient Safety Organizations (PSO) manage to collect events following the 

Patient Safety and Quality Improvement Act of 2005. The collected information will be 

published in the annual issues of the National Health Quality and Disparities Reports. 

Three types of events are reported: (1) Incidents: patient safety events that reached the 

patient, whether or not there was harm involved; (2) Near misses: patient safety events 

that did not reach the patient; (3) Unsafe conditions: circumstances that increase the 

probability of a patient safety event occurring. In recent studies, the use of the Common 

Formats has been recognized as necessary and effective in general health care (Gong, 

2011; Sheikhtaheri, Sadoughi, Ahmadi, & Moghaddasi, 2013), and in specific domains 

such as neonatal intensive care (Raju, Suresh, & Higgins, 2011), diagnostics (Graber, 

2013; Singh & Sittig, 2015), radiation oncology (Ford, de Los Santos, Pawlicki, Sutlief, 

& Dunscombe, 2012). Nonetheless, a number of limitations have been noticed concerned 

with the reliability of harm scales (Abbasi, Adornetto-Garcia, Johnston, Segovia, & 

Summers, 2015; Williams, Szekendi, Pavkovic, Clevenger, & Cerese, 2015), and the data 

efficiency for downstream data analysis (Liang & Gong, 2015). 

2.1.3 Reporting Systems  

It has been a long period of effort since the value of reporting systems came to out 

awareness. Early reporting systems used paper-based reports and verbal reports to collect 

and manage patient safety events. But they have limited capacity of capturing actual 
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errors (Cullen et al., 1995). Many of the later developed reporting systems are electronic-

based systems (Tuttle, Holloway, Baird, Sheehan, & Skelton, 2004). Electronic-based 

reporting systems are most efficient in terms of data entry, transformation, monitoring, 

and analysis (Shojania, Duncan, McDonald, Wachter, & Markowitz, 2001). Moreover, 

significant effort has been made to build organizational reporting systems, including 

nationwide mandatory reporting systems (Kohn et al., 2000) and voluntary reporting 

systems (Gohen, 2000). The voluntary reporting systems is recognized as it promotes 

error-reporting culture by creating an anonymous and safe environment (Fernald et al., 

2004; France et al., 2003; C. B. Harris et al., 2007; Mick, Wood, & Massey, 2007; 

Osmon et al., 2004; Rudman et al., 2005; Schuerer et al., 2006).  

The use of electric-based reporting exerted a positive influence on the quantity of 

reported events. Nevertheless, measurable safety improvement such as the quality of 

events and analysis has been questioned. In a recent study, five barriers were identified: 

poor processing of incident reports, inadequate physician engagement, insufficient visible 

subsequent action, inadequate funding and institutional support of incident reporting 

systems, and inadequate use of emerging health information technology (HIT) (Mitchell, 

Schuster, Smith, Pronovost, & Wu, 2016). Some other studies indicated the predicament 

of most existing systems, that is too many data are collected but little is analyzed 

(Macrae, 2016; P. J. Pronovost et al., 2008). Reporting systems should be improved to 

infer actionable knowledge from undressed data.  

2.2 Report Analysis 
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A patient safety report is of little value unless the data are analyzed. The primary function 

of a reporting system is to use the outcomes of data analysis to produce useful responses 

for system improvement.  

2.2.1 Data Structure  

The first and probably the most challenging step to analyze reports is to collect data from 

reporting systems, not only in a way that human can well understand but also computer 

understandable. Patient safety data are in a variety of forms but can be seen as either 

structured data or unstructured data.  

Structured data are easier for aggregate analysis, as they are conductive to 

computational processing. For example, pharmacy data and laboratory data are stored in 

electric information systems. They often indicate dosing errors and adverse drug events 

(Classen, Pestotnik, Evans, & Burke, 1991; Evans et al., 1991; Tse & Madura, 1988).  

Coded data, mostly in the form of ICD or CPT, are examples of structured data. For 

example, diagnoses and procedures can be coded to represent clinical status, progress, 

and complications of patients (L I Iezzoni et al., 1992; Strom et al., 1991). Unfortunately, 

these coding systems are barely used in patient safety studies. One reason is the lack of 

knowledge that is specific to patient safety. The other reasons include that many coding 

systems, e.g., CPT, are designed for reimbursement and legal purposes but are rarely used 

for medical errors (Honigman et al., 2001). Moreover, the coding systems are criticized 

for the lack of temporal information, as well as the inclusion of coding errors, and bias 

(Campbell & Payne, 1994; Lisa I Iezzoni, 1997).  
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A great portion of data from reporting systems is unstructured, which is free-text 

narratives and do not fit in with available coding systems. These narrative data contain 

clues or direct mentions of the clinical procedure, rationale, and clinician’s 

communications that are critical to identifying errors. However, the existing coding 

systems are rarely available for annotating medical error information. To solve the 

problem, many studies used keyword search to identify terms in the text that may be an 

indicator of errors (Giuse & Mickish, 1996; Goldman, Chu, Parker, Goldman, & others, 

1999; L I Iezzoni et al., 1992; Rind, Yeh, & Safran, 1995). This method is likely to work 

very well when there are explicit mentions of concepts. Even so, concepts need to be 

determined carefully, which may involve considerable human labor. A small number of 

studies have found that complications of care and medical errors can be identified from 

discharge summaries and claim data but advanced text processing techniques are required 

(Kossovsky, Sarasin, Bolla, Gaspoz, & Borst, 1999; Roos Jr, Cageorge, Austen, & Lohr, 

1985).  

2.2.2 Classification  

Classification is recognized as an initial step in data analysis, and the process of 

developing solutions (Leape & Abookire, 2005). However, this task presents apparent 

challenges. Firstly, patient safety reports encompass a significant portion of narrative 

data, in which low quality and loss of information are common. This will become a 

barrier when the volume of data continues to increase. Secondly, there are different 

candidates on the classification scheme forming a barrier to establishing generic 

informatics tools (Leape & Abookire, 2005). For example, established in 1987 and 
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expanded in 1993 and 2000, an early taxonomy is Australian Incident Monitoring System 

(Spigelman & Swan, 2005). Other well-known taxonomies or standards include JACHO 

patient safety event taxonomy (A. Chang, Schyve, Croteau, O’Leary, & Loeb, 2005), 

National Coordinating Council for Medication Error Reporting and Prevention (NCC 

MERP)’s taxonomy of medication errors (Brixey, Johnson, & Zhang, 2002), Neonatal 

Intensive Care system (NIC) (Suresh et al., 2004), Pediatric Patient Safety taxonomy 

(PED) (D. M. Woods et al., 2005), Preliminary Taxonomy of Medical Errors in Family 

Practice (PTFP) (Dovey et al., 2002), Taxonomy of Nursing Errors (TNE) (A. Woods & 

Doan-Johnson, 2002), and Adverse Event Reporting Ontology (AERO) (Courtot, 

Brinkman, & Ruttenberg, 2014). These taxonomies shed insights on a number of specific 

domains but can hardly communicate between one to another. Thirdly, the classification 

task in patient safety reports is a multi-label classification problem. The complexity of the 

classification scheme determines to what extent the downstream analysis is available. 

There have been a number of multi-label classification algorithms that are used in tasks 

such as image and music classification (Read, 2010; Tsoumakas & Katakis, 2006). An 

adaptation is needed in the use case of patient safety reports since the rich domain 

knowledge and low quality of clinical text in general (Cleophas, Zwinderman, & 

Cleophas-Allers, 2013). Despite that there has been much debate about how to define and 

classify patient safety reports (Bogner, 1994; KERR, 2000; J. Reason, 1990a, 2000), 

knowledge of how this process performs comes from a small number of studies (Astion, 

Shojania, Hamill, Kim, & Ng, 2003; Bonini, Plebani, Ceriotti, & Rubboli, 2002). 

2.3 Semantic Representation in Patient Safety Reports 
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Natural language, as one of many human cognitive capacities, can be understood by 

transforming human cognitive processes into computational problems (Anderson & 

Lebiere, 2014; Marr, 1982). For example, humans retrieve a list of concepts from 

memory when they are reading a sentence. The retrieved information is used to initiate a 

variety of cognitive processes of understanding the sentence, such as prediction of the 

ongoing terms in the sentence. Depending on how relevant the retrieved concepts are, this 

retrieval process may facilitate or hinder human’s understanding of the sentence. Please 

consider the following example (Pustejovsky, 1991): (a) ‘Mary walked along the bank of 

river.’; (b) ‘HarborBank is the richest bank in the city.’ If the word ‘bank’ appears in a 

sentence, one is more likely to predict ‘saving’, ‘rich’, ‘banker’, etc. also appearing in the 

sentence. However, if one knows that the word ‘river’ also appears in the sentence, the 

judgment will be that ‘bank’ refers to the side of a river and thus one is likely to predict 

‘lake’, ‘willow’, etc. Several well established methods exist for studying the 

representation and extraction of this semantic information (Collins & Loftus, 1975; 

Landauer & Dumais, 1997; Lund & Burgess, 1996).  

Semantic representation is one of the most intriguing and abstruse topics in 

cognitive psychology and linguistics. However, I am not intended to discuss complete 

theories of semantic representation in these realms but to provide only the essential 

background information to the research questions in this study. In specific, I focus on the 

extraction and use of semantic representation in the context of processing medical text, 

particularly in patient safety reports.  

2.3.1 Semantic Web Ontology  
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One example of understanding semantic knowledge is the study of the relations between 

concepts, resulting in an abstract conceptual structure. Conventionally, researchers 

emphasize mapping conceptual hierarchies to support propositional semantic reasoning 

(Keil, 1979). Concepts are made associated using subsumption relations (Collins & 

Quillian, 1969). For example, penicillin is antibiotics (is-a relation). Semantic 

representation of this type is commonly defined as an ontology in the fields of computer 

science and philosophy, which is ‘a formal specification of a shared conceptualization’ 

(Gruber, 1993). In this sense, ontologies are important in two aspects. Firstly, the 

semantic knowledge can be thought of an explicit structure of concepts and relations that 

encodes implicit semantic knowledge within a domain. Secondly, the semantic 

knowledge can be represented in the formal language (i.e., symbolic representation) so 

that it can be used for computerized processing.  

Ontologies have a variety of applications in biomedical research (Bodenreider, 

2008). In the biomedical domain, ontologies can be categorized into two types by their 

functions (Rubin, Shah, & Noy, 2008): (1) information models, which provide organized 

information that represents structures of a given domain. One example is the information 

model for International Classification for Patient Safety (ICPS) (Sherman et al., 2009; 

Souvignet, Bousquet, Lewalle, Trombert-Paviot, & Rodrigues, 2011); (2) controlled 

vocabularies, which define hierarchies of concepts and a list of lexical terms 

corresponding to each concept. The Gene Ontology is one of the widely used ontologies 

of this type (Ashburner et al., 2000). 

Knowledge management. Biomedical language is complex because it contains a 

great number of acronyms, synonyms, abbreviations, and mistyped terms (i.e., clinical 
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notes). Ontologies ensure that terms in different forms but share same meanings can be 

identified by a unique concept. The Medical Subject Headings (MeSH) are a good 

example. MeSH defines topics of biomedical literature in which each topic contains a list 

of terms comprised of different expressions and presentations (Lowe & Barnett, 1994).  

Information exchange. Since ontologies express information in a specified 

formal language, it is feasible to exchange and/or integrate information among domains. 

Many biomedical ontologies are published in Open Biomedical Ontologies (OBO) (Smith 

et al., 2007) or Web Ontology Language (OWL) (McGuinness, Van Harmelen, & others, 

2004). A number of Semantic Web tools are available for mapping data within and 

between the two languages (Bodenreider, 2004; Golbreich, Horridge, Horrocks, Motik, & 

Shearer, 2007; Lindberg, Humphreys, & McCray, 1993; Noy et al., 2009).  

Text mining. One advantage of ontologies in light of text mining is the reasoning 

function driven by description logics (Baader, Horrocks, & Sattler, 2005; Bechhofer, 

2009). In addition, ontologies provide domain knowledge in a variety of natural language 

processing (NLP) tasks including named entity recognition, relation extraction, question 

answering, etc. (Bodenreider, 2008).  

2.3.2 Semantic Space  

The idea of semantic space emphasizes the structure of associative relations of terms, by 

which terms and their meanings (i.e., concepts or topics) can be captured in a spatial 

representation (Deese, 1959; Fillenbaum, 1971). Studies derived from behavioral 

experiments have demonstrated this idea by two groups of models (Griffiths, Steyvers, & 

Tenenbaum, 2007): (1) Connectionist models that represent a term as multiple nodes in a 
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connectionist space of human memory (Kawamoto, 1993; Plaut, 1997; Rodd, Gaskell, & 

Marslen-Wilson, 2004). (2) Models that represent each term as a single node in the space 

(Landauer & Dumais, 1997; Lund & Burgess, 1996). The later one also denotes 

distributional semantics.  

Motivated by distributional semantics, a number of methods have emerged to 

measure the semantic similarity between terms. Hyperspace Analogue to Language 

(HAL) (Lund & Burgess, 1996), Word Space (Schulze, 1993), and Latent Semantic 

Analysis (LSA) (Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998) are 

prominent in the cognitive science literature, as they provide simple procedures for 

representing terms as vectors in a high-dimensional space. These methods primarily 

differ in the selection of context, where a context can be each document in a corpus (e.g., 

LSA), a range of terms surrounding the target term (e.g., HAL), or a range of n-grams 

appearing frequently in the document (e.g., Word Space). A common drawback of these 

methods is the high dimensionality of the vector space that demands significant 

computational resources. Fortunately, progress has been made to mitigate the influence. 

For example, Singular Value Decomposition (SVD) is widely used in conjunction with 

LSA models to find the best approximation to the original space (D. I. Martin & Berry, 

2007). Recently, Random Indexing (RI) has emerged as a robust and scalable method for 

reducing dimensionality (Kanerva, Kristofersson, & Holst, 2000).  

Distributional semantics is raising increasing research interest in biomedical NLP 

(T. Cohen & Widdows, 2009). The theory of science sublanguages states that expressions 

within a specialized domain are more constrained (e.g., particular term classes and 

relations between terms) compared to general language (Z. S. Harris, 2002). Therefore, 
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there may be unique research opportunities for distributional semantics since the 

biomedical text is idiosyncrasies as it contains domain-specific content and structure. 

Thus far, a number of biomedical informatics studies have incorporated distributional 

semantics. For example, literature-based knowledge discovery is proposed to be a 

suitable use case of distributional semantics in that meaningful associations may be 

extracted from a corpus of MEDLINE abstract (T. Cohen, 2008; T. Cohen, Schvaneveldt, 

& Rindflesch, 2009; T. Cohen, Schvaneveldt, & Widdows, 2010; Gordon & Dumais, 

1998; Shang, Xu, Rindflesch, & Cohen, 2014). One benefit of using biomedical literature 

is that they contain plenty of meaningful terms with minimum nonstandard expression. 

Some other applications include similarity measure, which has been used to derive 

similarities between biomedical sequence entities (e.g., genes and proteins) 

(Ganapathiraju, Klein-Seetharaman, Balakrishnan, & Reddy, 2004; Klein-Seetharaman & 

Mellon, 2007; Stuart & Berry, 2003, 2004).  
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Chapter 3: Research Design 

3.1 Overarching Goal 

My goal is to facilitate the process of interpreting patient safety reports by developing a 

scheme of automated multi-label text classification where semantic representation is 

employed to enhance the classification performance.  

3.2 Specific Aims  

Towards this goal, I developed three specific aims: 

3.2.1 Aim 1 

Aim 1: Develop a patient safety ontology to enhance semantic representation of patient 

safety reports. 

Challenge. To dissect and transform intricate knowledge structure, terms, and 

relations residing in the patient safety reports to a formal ontological representation.  

Approach. I reused the existing ontological information and lexicon from 

International Classification for Patient Safety (ICPS) and the Common Definitions and 

Reporting Formats (a.k.a., Common Formats) to build a concept ontology. Manual 

annotation was used to populate the concept ontology with instances from patient safety 

reports.  

Impact. The patient safety ontology will lead to a machine-understandable 

representation underpinning a number of analytical tasks for patient safety reports. 
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3.2.2 Aim 2 

Aim 2: Evaluate multi-label text classification algorithms using patient safety reports. 

Challenge. To balance between feasibility and computational complexity of 

multi-label text classification.  

Approach. Firstly, I employed problem transformation algorithms to translate 

multi-label classification problems into a number of single-label classification problems. 

Secondly, within each multi-label algorithm, I selected a number of single-label 

algorithms to build a synthetic multi-label classifier. Training and testing were performed 

using patient safety reports.  

Impact. The automated classification holds promise to improve the efficiency of 

classifying patient safety reports within an acceptable level of accuracy and reliability.  

3.2.3 Aim 3 

Aim 3: Develop semantic-kernel based multi-label text classification to categorize patient 

safety reports. 

Challenge. To balance between effectiveness and time efficiency of measuring 

semantic similarity. To embed similarity information into multi-label text classification 

without introducing unaffordable computational complexity.  

Approach. I hypothesized that kernel functions embedded with semantic 

similarity information can contribute to the performance of multi-label classification on 

patient safety reports. Different approaches were used to measuring semantic similarity. 

The similarity information was embedded in kernel functions that can be used for 
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selected classification algorithms. The evaluation was performed based on multi-label 

classification performance using patient safety reports. 

Impact. Kernel-based multi-label classification will demonstrate the value of 

semantic similarity in patient safety reports. It will further suggest the benefits of 

enriching multi-label text classification with semantic similarity.  

Table 1 demonstrates detailed approaches to jointly achieve the three aims 

respectively.  

Table 1. Workflow chart of tasks, methods, and outcomes for each specific aim. 

Aim Task Method Outcome 

Aim 1 

• Constructing 
concept ontology 

• Top-down ontology 
engineering 

• A concept ontology with class 
hierarchy 

• Evaluation • Survey and expert 
review 

• Qualitative indicators of concept 
ontology 

• Ontology 
population 

• Manual annotation 
• Cross Evaluation  

• An ontology bridging concepts 
and text  

Aim 2 

• Classifier 
implementation  

• ‘Problem 
transformation’ multi-
label algorithms 

• Binary classification 
algorithms 

• Predicted categories of the 
reports 

• Comparison between 
classification algorithms 

• Evaluation • 5×2 Cross validation  • Quantitative indicators of 
classification performance 

Aim 3 

• Ontology-based 
semantic similarity 

• Least Common 
Subsumer calculation 

• Information Content 
calculation 

• Resnik similarity 
• Lin similarity 
• Jiang similarity  

• Distributional 
semantic similarity 

• Latent Semantic 
Analysis (LSA) 

• Random Indexing (RI) 
• Sliding Window  

• LSA – based similarity 
• RI – based similarity 
• RI+window – based similarity 

• Semantic kernel • Kernel function 
calculation  • Semantic kernel 

• Evaluation 
• Support Vector 

Machine 
• 5×2 Cross validation  

• Quantitative indicators of 
classification performance 
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Chapter 4: Patient Safety Ontology 

One strategy to improve patient safety involves building a knowledge base in which the 

semantics in the reports corresponds to machine understandable annotations. These 

annotations must be organized in a hierarchical structure in which the structure reflects 

the realistic entities and relations in patient safety reports. This type of ontology-like 

semantic representation specifies a vocabulary of concepts and relations in the patient 

safety domain.  

Biomedical knowledge is complex in content and large in size but arduous to 

process. The World Health Organization (WHO) has reported initial efforts to achieve 

better integration and interoperability of patient safety information by constructing the 

International Classification for Patient Safety (ICPS) (Larizgoitia, Bouesseau, & Kelley, 

2013; Runciman et al., 2009; Sherman et al., 2009). Some other follow-up studies 

focused on ontology approaches (Rodrigues, Kumar, Bousquet, & Trombert, 2007; 

Souvignet et al., 2011; Souvignet & Rodrigues, 2014). These studies have informed us in 

our effort of building a patient safety ontology. 

In this chapter, I described our efforts to design and implement a patient safety 

ontology that is stemmed from ICPS for US hospitals. This ontology primary serves as an 

information model of the ICPS, in which the ontology is in line with the concept 

definitions and semantic relations in ICPS but preserves those only necessary for machine 

learning applications (see Chapter 6 for details). In our view, ontologies have several 
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advantages. Firstly, serving as a tool of terminology management, ontologies provide a 

clear representation and communication of complex semantic relations. Secondly, they 

support information exchange between biomedical information systems, which 

correspond to the rapid increase of biomedical information (Alexander, 2006; Kumar et 

al., 2006). Thirdly, ontologies facilitate knowledge discovery and reuse (Andronis, 

Sharma, Virvilis, Deftereos, & Persidis, 2011; Bodenreider, 2008; Gottgtroy, Kasabov, & 

MacDonell, 2004; Mukherjea, 2005; Smith et al., 2007).  

4.1 Designing a Concept Ontology  

I started the ontology construction by defining classes and class hierarchies, which form a 

concept ontology. The classes are comprised of the most generic concepts and those 

across specific sub-domains in patient safety. These classes are organized in taxonomies 

to determine a hierarchy.  

4.1.1 Knowledge Acquisition  

I reused existing patient safety taxonomies and lexical information to construct the 

ontology. ICPS and the Common Definitions and Reporting Formats (a.k.a., the Common 

Formats) served as the two data sources. ICPS is a conceptual framework developed by 

the WHO in 2009, representing concepts and preferred terminologies used in patient 

safety domain (Sherman et al., 2009). The Common Formats, developed by the Agency 

for Healthcare Research Quality (AHRQ), are a set of guidelines and paper-based formats 

for specifying and collecting safety event information in the US hospitals, which range 

from general concerns to frequently occurring and serious types of events.  



 

 22 

4.1.2 Ontology Implementation  

Formal language is required to standardize and normalize the expression of classes and 

their relations. I used Web Ontology Language (OWL) since it represents rich and 

complex semantic information (Baader, 2003; McGuinness et al., 2004). The 

implementation is performed in Protégé 4.3.0. I employed an iterative process to 

construct the ontology, described in the following three steps:  

Data transformation. A data transformation is employed to integrate the 

concepts in ICPS and the Common Formats where I discovered ambiguities and 

synonyms. Three domain experts, who have background knowledge in both patient safety 

and ontology engineering, performed the transformation by reviewing the concepts in 

ICPS and the Common Formats. A final decision is made only if a consensus is reached 

among the three experts.  

Adjustment of hierarchical structure. In many cases, a unique concept may be 

categorized in different classes or even shown in different phrases. Since the ICPS has 

been recognized as an adequate classification for representing patient safety knowledge 

hierarchy (Sherman et al., 2009; Souvignet et al., 2011), I adopted ICPS’s hierarchical 

structure and made minor adjustments with exceptions when a creation of new classes is 

necessary. Such adjustments include merging duplicate subclasses and concepts. Parent-

child relations are defined by taxonomic subsumption,‘isA’ (e.g., A is a subclass of B). 

Alias relations are defined by ‘EquivalentTo’ (e.g., A is equivalent to B) (Allemang & 

Hendler, 2011). I also defined other relations such as ‘hasParticipant’, ‘hasOutcome’, 

‘involvesActivity’, etc.  
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Merging. I built the ontology in Protégé to merge structures and concepts from 

ICPS and the Common Formats with adequate properties created.  

4.1.3 Exploration of Class Hierarchy 

With minor adjustments, I retained to the largest extent the top-level classes in the ICPS, 

which are incident type, patient characteristics, incident characteristics, detection, 

mitigating factors, patient outcomes, organizational outcomes, ameliorating actions, 

actions taken to reduce risk, and contributing factors/hazards. ‘Process’, which used to 

be under ‘Incident type’ – ‘Clinical administration’, is defined as a top-level class since it 

does not fit in any place under any top-level classes. A number of classes were broken 

down into several newly defined subclasses to better fit in the ontology. For example, 

‘Detection’ was replaced by several new classes (i.e., ‘People’, ‘Assessment’, etc.) to 

accurately describe how the error is detected. Some other changes include the relocation 

of ‘Fall’, ‘Pressure ulcer’, and ‘Venous thromboembolism’ since they are not explicitly 

documented in ICPS but are significant in clinical cases. Adjustments were also made to 

the classes extracted from the Common Formats. For example, ‘Surgery’ and ‘Anesthesia’ 

were defined as top-level classes in the Common Formats. In the patient safety ontology, 

they were defined as subclasses of the ‘Process’. Adjustments as such help retain both 

the original information and a clear ontological structure. Figure 2 provides a close view 

of these adjustments by showing the ontology structure in Protégé screenshots.  
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Figure 2. Protégé screenshots of partial ontology hierarchies. (a) Overall ontology 
structure. (b) Ontology structure of the classes associated with ‘fall’ incidents. (c) 

Ontology structure of the classes associated with ‘equipment and device’ incidents. 

The current version of ontology has 71 classes, in which 24 classes have 

equivalent classes from selected existing ontologies from BioPortal. All these ontologies 

are in the fields of medical adverse events or patient safety incidents. In these ontologies, 

the ICPS ontology is derived from WHO’s conceptual model of ICPS. The Adverse 

Event Ontology (AEO) encodes terminologies and representations in the scope of adverse 

events and medical interventions (He, Xiang, Sarntivijai, Toldo, & Ceusters, 2011). The 

use of existing ontological terms can reduce repetitive work on future ontology expansion 

within similar domains. Table 3 shows a summary of the classes in these ontologies. 

Table 2. Ontology specific classes and imported classes. 

Ontology Names Classes Object Properties Total 
Patient Safety Ontology 47 3 50 
International Classification for Patient Safety (ICPS) 22 0 22 
Adverse Event Ontology (AEO) 2 2 4 
Total 71 5 76 

 

(a) (b) (c) 
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4.1.4 Evaluation  

The ontology was firstly tested by machine-based evaluation using HermiT 1.3.8 

(Shearer, Motik, & Horrocks, 2008). This procedure validates the ontology from a 

machine-based perspective. As a result, the ontology passed the consistency checking 

through HermiT 1.3.8. Secondly, I employed human evaluation by using survey 

instruments and statistical analysis. The human evaluation procedure consists of two 

phases.  

Phase one. I designed a survey instrument for assessing the ontology in the 

context of reviewing real-world patient safety reports. Questions in the survey instrument 

were adapted to cover eight dimensions for evaluating an ontology (Brank, Grobelnik, & 

Mladenić, 2005; Burton-Jones, Storey, Sugumaran, & Ahluwalia, 2005). To ensure the 

survey at a sufficient confidence level of reliability and validity, I performed a pre-

assessment to measure its content validity and inter-rater reliability. Content Validity 

Index was employed to measure to what extent the designed questions subjectively reflect 

the tasks they purpose to measure (Lynn, 1986; Polit & Beck, 2006). Fleiss’ Kappa was 

employed to measure the degree of agreement among multiple raters (Fleiss & Cohen, 

1973). Six domain experts participated in the pre-assessment using de-identified patient 

safety events from Morbidity and Mortality Rounds on the Web (WebM&M). The survey 

instrument is valid for use only if no major revision is needed. WebM&M is an online 

platform that publishes anonymous patient safety events and expert commentaries 

(Wachter, Shojania, Minichiello, Flanders, & Hartman, 2005). Table 3 demonstrates the 

sample questions in the pre-assessment and survey instrument. 


