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Abstract 

Extracting and encoding clinical information captured in unstructured clinical documents 

with standard medical terminologies is vital to enable secondary use of clinical data from 

practice. SNOMED CT is the most comprehensive medical ontology with broad types of 

concepts and detailed relationships and it has been widely used for many clinical 

applications. However, few studies have investigated the use of SNOMED CT in clinical 

information extraction. 

 

In this dissertation research, we developed a fine-grained information model based on the 

SNOMED CT and built novel information extraction systems to recognize clinical 

entities and identify their relations, as well as to encode them to SNOMED CT concepts. 

Our evaluation shows that such ontology-based information extraction systems using 

SNOMED CT could achieve state-of-the-art performance, indicating its potential in 

clinical natural language processing. 
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Chapter 1: Introduction 

 

Rapid growth in the adoption of electronic health records (EHRs) has led to an 

unprecedented expansion in the availability of large practice-based clinical datasets. 

Tremendous efforts have been devoted to the secondary use of EHRs, which greatly 

promotes genomic, clinical, and translational research. One critical challenge of the 

secondary use of EHRs is that much of the clinically important information in EHRs is 

provided in unstructured clinical narratives only. Therefore, Natural Language Processing 

(NLP) technologies, which can extract structured information from narrative documents, 

have received great attention in the medical domain and many successful stories of 

applying NLP to the clinical text have been reported widely [1–3]. 

 

1.1 NLP in the Medical Domain 

Clinical NLP has been an active research area of the Biomedical Informatics field for 

over 20 years. It is likely to become more important in the future because of the growth 

of healthcare and more advanced information technologies for electric data capture. NLP 

provides an efficient way to extract clinical information and encode them to concepts in 

standard terminologies, comparing to costly manual data extraction processes. Coded 

clinical concepts by NLP systems can be then used for downstream computational 
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applications, e.g., to improve the accuracy of information retrieval from a massive 

amount of EHR data [4]. 

 

1.1.1 NLP Tasks in the Medical Domain 

Current clinical NLP activities range from lower to higher level tasks in term of the use 

of different linguistics information [5,6]. Typical low-level NLP tasks include: 

 Sentence Boundary Detection (SBD) is the process of deciding where sentences begin 

and end. Most NLP tools require their input to be divided into sentences. It is 

challenging because punctuation marks are often ambiguous. For example, the 

periods in “m.g.” denote abbreviation and in “Dr.” denote title. 

 Tokenization is the process of identifying individual words and punctuation marks as 

tokens within a sentence. The resulting tokens are then passed on to some other 

processes. 

 Part-of-speech Tagging (POS Tagging) is the process of marking up a word in a text 

as corresponding to a particular part of speech. It is based on both the definition and 

context of the word. POS tagging is now done using algorithms in the context of 

computational linguistics. 

 Morphological Decomposition is the process of decomposing a compound word into 

its constituent morphemes. Stemming and lemmatization are used to reduce 

inflectional forms and sometimes derivationally related forms of a word to a common 

base form. For example, words “am”, “are”, and “is” all have the common base form 

“be”. 
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 Shallow Parsing (chunking) is the process of identifying phrases (noun groups, verb 

groups, etc.) from constituent part-of-speech tagged tokens. However, it does not 

specify their internal structure or their role in the sentence. 

 Problem-specific Segmentation is the process of segmenting text into meaningful 

groups. For example, the clinical text could include sections as Chief Complaint, Past 

Medical History, etc. 

 

Higher-level NLP tasks are usually built on low-level tasks and are often problem 

specific. They include: 

 Named Entity Recognition (NER) [7,8] is to locate and classify specific words or 

phrases in text into pre-defined categories such as persons, locations, diseases, genes, 

or medications. 

 Word Sense Disambiguation (WSD) [9,10] is to identify which sense or meaning of a 

word is used in a sentence, when the word has multiple meanings. 

 Relationship Extraction is to detect and classify relationships between entities or 

events. For example, to extract relations between temporal expressions and clinical 

events [11,12]. This information can be used to infer that something has occurred in 

the past or may occur in the future. 

 Modifier Identification [13–15] is to recognize the information modifying or 

completing the semantic indication of named entities or relations. For example, one 

important task is to infer whether a named entity is present or absent (negation) and to 

quantify the uncertainty of the inference. 
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 Encoding or Normalization [16–18] is to map named entities/relations to standard 

concepts/relations in a domain ontology. Assigning a code within a standardized 

coding system for a specific diagnosis or procedure provides a way of standardizing 

the recording of clinical information that can be subsequently used for a wide range 

of automated applications. Clinical coding is used for hospital billing, clinical audit, 

epidemiological studies, measuring treatment effectiveness, assessing health trends, 

cost analysis, health-care planning, and resource allocation [19]. 

 

1.1.2 NLP Applications in the Medical Domain 

NLP has a wide range of potential applications in the medical domain [20]. Some 

important applications of NLP are as follows: 

 

Information Extraction is the most common NLP application in biomedicine. It locates 

and structures specific information in the text. The structured information can be used for 

a number of different tasks. In biosurveillance, symptoms are extracted from the chief 

complaint field in the notes written for patients admitted to the emergency department of 

a hospital [21] or from ambulatory electronic health records [22] to help understand the 

prevalence and progression of a particular epidemic. In biology, biomolecular 

interactions extracted from different articles are used to construct biomolecular pathways 

[23]. In the clinical domain, pharmacovigilance systems use structured data obtained by 

NLP to discover adverse drug events [24]. 
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Text Summarization produces a single text that synthesizes the main points from several 

input documents. It identifies and presents the salient points in texts automatically. There 

are several steps in the text summarization process. Content selection is to identify salient 

pieces of information in the input documents, content organization is to identify 

redundancy and contradictions among the selected pieces of information and to order 

them so the resulting summary is coherent, and content re-generation is to produce 

natural language from the organized pieces of information. Text summarization has 

focused on the literature [25,26]. 

 

Question Answering (QA) is a process of recognizing natural language questions, 

extracting the meaning, and providing the answer. This type of application becomes 

increasingly important as health care consumers, health care professionals, and 

biomedical researchers frequently search the Web to obtain information about diseases, 

medications, or medical procedures. A QA system can be very useful for obtaining the 

answers to factual questions, like “In children with an acute febrile illness, what is the 

efficacy of single-medication therapy with acetaminophen or ibuprofen in reducing 

fever?” [27] 

 

1.1.3 Existing Clinical NLP Systems 

Many NLP systems have been developed for analyzing clinical text. Linguistic String 

Project – Medical Language Processor (LSP-MLP) by Sager [28,29] at the New York 

University in 1965 was a pioneering NLP system and has greatly influenced subsequent 
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systems. Medical Language Extraction and Encoding (MedLEE) by Friedman [30,31] at 

the Columbia University in 1994 was designed for processing radiology reports and later 

extended to other domains. SymText and MPLUS by Haug [32,33] at the University of 

Utah in 1994 were created for processing chest radiograph reports. MetaMap by Aronson 

[7,34] at the National Library of Medicine in 1994 was developed for mapping 

biomedical text to concepts in the Unified Medical Language System (UMLS) 

Metathesaurus. Health Information Text Extraction (HITEx) by researchers at the 

Brigham and Women's Hospital and Harvard Medical School is an open-source clinical 

NLP system. The clinical Text Analysis and Knowledge Extraction System (cTAKES) 

[35] originated from the Mayo Clinic is an NLP system for extraction of information 

from electronic medical record clinical free-text. Clinical Language Annotation, 

Modeling, and Processing (CLAMP) by Xu [36] at the University of Texas School of 

Biomedical Informatics (SBMI) is a newly developed clinical NLP toolkit that provides 

not only state-of-the-art NLP components, but also a user-friendly graphic user interface 

that can help users quickly build customized NLP pipelines for their individual 

applications. 

 

1.2 Ontology 

A body of formally represented knowledge is based on a conceptualization: the objects, 

concepts, and other entities that are assumed to exist in some area of interest and the 

relationships that hold among them. Every knowledge base or knowledge-based system is 

committed to some conceptualization, explicitly or implicitly. An ontology is an explicit 
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specification of a conceptualization [37]. It is a declarative model of a domain that 

defines and represents the concepts existing in that domain, their attributes and the 

relationships between them. Ontology gives the description of concepts and the relations 

that can exist between them. The concept is very important for data sharing and 

knowledge representation [38]. 

 

Ontology can be classified according to the level of detailed knowledge they provide: 

 Upper Ontologies provides very generic knowledge with low domain-specific 

knowledge. 

 General Ontologies represent knowledge detail at an intermediate level. They are 

independent of a specific task. 

 Domain Ontologies represent knowledge about a particular domain, such as medicine. 

 Application Ontologies are designed for specific tasks. 

 

1.2.1 Ontology in the Medical Domain 

Numerous ontologies have been developed in the medical domain to represent 

biomedical terminology in common vocabularies so that they can be shared and reused 

across various fields. The billing terminologies such as International Classifications of 

Diseases (ICD), Diagnosis-related groups (DRGs), and Current Procedural Terminology 

(CPT) are used by all healthcare organizations to support aspects of medical billing. ICD 

is a diagnosis code set. ICD-10 is the version currently being used for billing in the U.S. 

and is also used for morbidity and mortality reporting. DRGs are commonly used in the 
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inpatient setting for billing a patient’s hospital stay. CPT is used to code procedures for 

billing. Logical Observation Identifiers Names and Codes (LOINC) is used to encode lab 

observations and to represent clinical observations. The pharmacy terminologies are well-

represented with many commercially available solutions like First Databank, Multum, 

Micromedex, and Medi-Span. The open-source RxNorm is the recommended pharmacy 

terminology for interoperability. Health Level 7 (HL7) is a messaging standard but also a 

terminology standard. It contains the code sets that aren’t found in other standard 

terminologies, for example, the code sets for admission type and administrative gender. 

Generalised Architecture for Languages, Encyclopedia and Nomenclature in Medicine 

(GALEN) is a European project developed for reuse of terminology in clinical systems. It 

has been used to study nursing terminologies, decision support knowledge, surgical 

procedure, and anatomy. Foundational Model of Anatomy (FMA) structural represents 

knowledge about human anatomy. 

 

Among them, the Unified Medical Language System (UMLS) [39] and the Systematized 

Nomenclature of Medicine-Clinical Terms (SNOMED CT) [40] have probably the 

greatest impact on biomedical ontology work because of their long history, their early 

focus on knowledge representation and its free availability. 

 

1.2.2 The Unified Medical Language System (UMLS) 

The Unified Medical Language System (UMLS) was created in 1986 and is maintained 

by the National Library of Medicine. It is a compendium of more than 100 controlled 
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vocabularies in the biomedical sciences. The UMLS provides a mapping structure among 

many health and biomedical vocabularies and standards to enable interoperability 

between computer systems. It may also be considered as a comprehensive thesaurus and 

an ontology of biomedical concepts and their relations. 

 

The UMLS contains three knowledge sources: 

 

The Metathesaurus includes over one million biomedical concepts and five million 

concept names from over 100 source vocabularies and code sets. Terms from each source 

vocabulary are organized by meaning and assigned a concept unique identifier (CUI). 

There are many categories in the Metathesaurus and vocabularies may fall into more than 

one category. Major vocabularies and categories include: Logical Observation Identifier 

Names and Codes (LOINC) in category Diagnosis, Current Procedural Terminology 

(CPT) in category Procedures & Supplies, International Classification of Diseases (ICD) 

in category Diseases, and Systematized Nomenclature of Medicine-Clinical Terms 

(SNOMED CT) in category Comprehensive Vocabularies. 

 

The Semantic Network provides the categorization of all concepts in the Metathesaurus 

by grouping concepts according to semantic types. Currently there are 133 semantic types 

and major semantic types include organism, anatomical structure, biologic function, 

chemical, physical object, and idea or concept. The Semantic Network also defines 

semantic relationships between semantic types. For example, the semantic type “Disease” 
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has a relationship “associated_with” with the semantic type “Finding”. There are 54 

semantic relationships. Semantic types and semantic relationships create an information 

model that represents the biomedical domain. 

 

The SPECIALIST Lexicon contains syntactic (syntax), morphological (inflection, 

derivation, and composition), and orthographic (spelling) information for biomedical 

terms as well as commonly occurring English words [41]. Currently it has over 200,000 

terms and is used by the lexical tools for NLP tasks. 

 

1.2.3 SNOMED CT 

The Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) was the 

2002 merge result of the Systematized Nomenclature of Medicine (SNOMED) 

International originally developed by Dr. Roger Cote and the Clinical Terms Version 3 

(CTV3) originally developed by Dr. James Read. SNOMED CT is maintained by the 

International Health Terminology Standards Development Organisation (IHTSDO). It is 

the most comprehensive, multilingual clinical healthcare terminology in the world [42]. 

 

SNOMED CT content is represented using three types of components: 

 

Concepts representing clinical meanings are organized into hierarchies. Every concept 

has a unique numeric identifier called Concept ID. Within a hierarchy concepts range 

from the more general to the more detailed. This allows detailed clinical data to be 
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recorded and later accessed or aggregated at a more general level. For example, “Finding 

by site”, “Musculoskeletal finding”, “Joint finding”, “Arthropathy”, “Arthropathy of knee 

joint”, and “Arthritis of knee” are all concepts in “Clinical finding” hierarchy. But their 

granularities range from low to high. SNOMED CT currently contains more than 400,000 

medical concepts, divided into 37 hierarchies. 

 

Descriptions link appropriate human-readable terms to concepts. Every description has a 

unique numeric identifier called Description ID. A concept can have several associated 

descriptions, each description representing a synonym for the same concept. For example, 

“Weak heart”, “Cardiac failure”, and “Myocardial failure” are all descriptions of the 

concept “Heart failure (disorder)”. There are approximately 1,290,000 descriptions in 

SNOMED CT. 

 

Relationships link each concept to other related concepts. Every relationship has a unique 

numeric identifier called Relationship ID. The relationships provide formal definitions 

and other properties of the concepts. One type of relationship is the “is a” relationship 

which is used to relate a concept to more general concepts. Related concepts in the 

concept hierarchy are linked using the “is a” relationship. For example, the concept 

“Arthropathy” has an “is a” relationship to the concept “Joint finding”. Attribute 

relationships are used to connect concepts in different hierarchies. For example, the 

concept “Appendicitis” in “disorder” hierarchy has an “associated morphology” attribute 

relationship to the concept “Inflammation” in “morphologic abnormality” hierarchy. 
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There are other types of relationships for representing aspects of the meaning of a 

concept. For example, the concept “Viral pneumonia” has a “causative agent” 

relationship to the concept “Virus” and a “finding site” relationship to the concept 

“Lung”. There are approximately 1,580,000 relationships, 65 unique relationship types 

and 836 different relationships between concepts in SNOMED CT. 

 

1.3 Ontology-Based Information Extraction 

Ontology-Based Information Extraction (OBIE) is a subfield of information extraction. In 

OBIE, ontologies are used as the backbone in the information extraction process and the 

output is generally presented through an ontology. 

 

1.3.1 OBIE Definition 

An OBIE system is a system that processes unstructured or semi-structured natural 

language text through a mechanism guided by ontologies to extract certain types of 

information and presents the output using ontologies [43]. There are key characteristics 

of OBIE systems: 

 Process unstructured or semi-structured natural language text: OBIE system inputs 

can be either unstructured text files or semi-structured files using a particular 

template. 

 Present the output using ontologies: The use of a formal ontology as the target output 

is an important characteristic that distinguishes OBIE systems from other IE systems. 
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 Use an information extraction process guided by an ontology: In OBIE systems, the 

information extraction process is guided by the ontology to extract classes, properties, 

and instances. No new information extraction method is invented but an existing 

method is oriented to identify the components of an ontology. 

 

Figure 1-1 shows the general architecture of an OBIE system by Wimalasuriya and Dou 

[43]. 

 

Figure 1-1. OBIE system, by Wimalasuriya and Dou 
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1.3.2 OBIE Methods in the Medical Domain 

Many OBIE systems use linguistic rules to capture certain types of information. These 

rules are represented by regular expressions. For example, the expression (diagnosed 

with <NP>), where <NP> denotes a noun phrase, might capture the names of diseases 

in a set of documents. By specifying a set of rules like this, it is possible to extract a 

significant amount of information. In practice, the rules are combined with NLP tools 

such as part-of-speech (POS) taggers and noun phrase chunkers. The General 

Architecture for Text Engineering (GATE) [44], which is a widely used NLP framework, 

provides an easy-to-use platform to employ this technique. Textpresso [45] and NLP-

SNOMED [46] are examples of using this technique. 

It is a common practice to convert an information extraction task into a classification 

task. When using classification for OBIE, classifiers are trained to identify different 

components of an ontology such as concepts and attribute values. Different classification 

techniques such as support vector machines (SVM), Hidden Markov Models (HMM), 

Conditional Random Fields (CRF), maximum entropy models, and decision trees have 

been used. Linguistic features such as POS tags, capitalization information and individual 

words are typically used as input for classification. 

 

1.3.3 OBIE Systems in the Medical Domain 

Most clinical NLP systems have encoding component which uses clinical ontologies to 

code clinical information. These systems can be seen as OBIE systems as well. Table 1-1 
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shows the existing NLP systems and the clinical ontologies used for encoding. The table 

was originally by Doan et al. [2] and we extended it with more NLP systems. 

 

Table 1-1 

Existing NLP Systems 

System Creator Ontology Encoding 

MedLEE 
Columbia 

University 

Developed its own 

medical lexicons and 

terminologies 

UMLS’s CUI 

SPRUS/SymText/MPLUS 
University of 

Utah 
UMLS ICD-9 

MetaMap 
National Library 

of Medicine 
UMLS UMLS’s CUI 

HITEx 
Harvard 

University 
UMLS UMLS’s CUI 

cTAKES 
Mayo Clinic and 

IBM 

UMLS + Trained 

models 

UMLS’s CUI 

and RxNorm 

CLAMP 
University of 

Texas 
UMLS UMLS’s CUI 

 

Currently, the UMLS are used as the clinical ontology for most of the NLP systems. 

However, the UMLS is not a classification system by design. It is a translation tool 

primarily designed for information retrieval. It is not sufficiently complete nor organized 

in such a way to serve as a controlled terminology. The UMLS is much more 

dichotomous (a clean hit or a clean miss) than SNOMED with substantially less 

completeness due to its precoordinated paradigm. It publishes terms from both 



 

16 

 

compositional and precoordinated schemes that may overlap without a definition of a 

canonical or preferred concept. It remains focused on the content of the source 

vocabularies that it connects and that material is not chosen primarily for clinical 

descriptive purposes [47]. 

 

1.4 Motivation and Specific Aims 

NLP systems that can extract and encode clinical information captured in unstructured 

clinical narratives with concepts and relations in standard medical terminologies are vital 

to enable secondary use of clinical data. SNOMED CT is the most comprehensive 

medical terminology, covering broad types of concepts and well-defined semantic 

relationships. However, few studies have leveraged SNOMED CT for clinical NLP tasks. 

In this dissertation research, we propose to develop novel ontology-based information 

extraction approaches that leverage SNOMED CT for extracting important clinical 

concepts and relations in clinical text. Our hypothesis is that NLP systems guided by 

SNOMED CT can be built to effectively extract important clinical concepts and their 

relations with good performance. To achieve this goal, we propose the following specific 

aims: 

 

Specific Aim 1 – Develop a fine granular information model based on SNOMED CT and 

clinical corpora. The information model will cover core clinical concepts and relations in 

the SNOMED CT. Additional concepts and relations of clinical importance that are only 

presented in clinical corpora will also be incorporated. An annotation guideline will be 
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developed with the guidance of the information model. Then a corpus of clinical notes 

will be manually annotated, which will be used as the gold standard for clinical concept 

recognition and relation extraction. 

 

Specific Aim 2 – Recognize clinical entities defined in the information model using 

different NER approaches. This problem will be considered as a typical NER task. We 

will investigate three types of commonly used methods, the dictionary lookup based 

method, the conditional random field algorithm based on feature engineering, and deep 

learning based method using unsupervised features learned from the large-scale clinical 

dataset. 

 

Specific Aim 3 – Extract relations between clinical entities and their modifiers following 

the information model using different algorithms. Relation extraction is essentially a 

classification problem. We will systematically compare a feature-based approach, a 

dependency graph kernel-based approach, and a joint learning based approach for this 

task. 

 

Specific Aim 4 – Encode extracted clinical entities and modifiers into SNOMED 

concepts using different entity-linking algorithms. We will first manually assign 

SNOMED CT codes to extracted clinical entities organized in different granularities. The 

annotation will be used as the gold standard for training and evaluating our encoding 

methods. Next, we will propose novel encoding approaches using the Learning to Rank 
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framework with multiple features. In particular, a translation-based language model will 

be generated from synonym pairs in SNOMED CT, to capture the semantic 

correspondence of terms and alleviate the severe problem of string mismatch. We will 

compare the performance of our approaches with the encoding performances of existing 

clinical NLP systems such as MetaMap and cTAKES. 
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Chapter 2: SNOMED-based Information Model for Clinical NLP 

 

2.1 Introduction 

An information model is a representation of concepts and their relationships, properties 

and operations that can be performed on them, often created for a specific domain or a 

specific task. It provides the framework for organizing the information so that it can be 

delivered and reused. In many NLP tasks such as information extraction, an information 

model is often created based on semantic patterns in clinical documents and used to guide 

the annotation of clinical corpora [48]. Most of these information models are relatively 

simple, as they are often developed for a specific information extraction task, e.g., 

temporal information [49]. Few studies have investigated information models that cover 

broad types of clinical entities and relations. One important work is the information 

model used in the MedLEE system [50], which covers critical clinical concepts (e.g., 

problems, medications, and labs) and their allowable modifiers (e.g., negation and 

certainty). It is time-consuming to develop such comprehensive information models for 

clinical NLP as it often relies on the manual review of the targeted clinical documents. 

 

Medical ontologies are often developed through iterative review and discussion by 

domain experts, and can naturally serve as information models for specific medical 

domains. However, many existing medical terminologies contain relatively simple 
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semantic types and relations (e.g., ICD is focused on disease and provides parent-child 

relation only), which do not cover comprehensive patterns occurred in the clinical text; 

therefore not very useful for clinical NLP tasks. One exception is the SNOMED CT, 

which contains broad types of clinical concepts and comprehensive relations among 

concepts. For example, the current version of SNOMED CT (September 2016 US 

Edition) contains 37 types of concepts and 65 types of relations. Nevertheless, few 

studies have investigated the use of the SNOMED CT as an information model for 

clinical NLP systems, probably due to its complexity.  

 

In this chapter, we describe the first study of leveraging the SNOMED CT as an 

information model for developing clinical NLP systems. We assessed the actual 

occurrence of SNOMED CT concept types and relations in clinical text and refined them 

to build a practical information model for NLP, and then followed this information model 

to annotate a clinical corpus, which is used for following named entity recognition and 

relation extraction tasks. 

 

2.2 SNOMED-based Information Model Development 

SNOMED CT provides comprehensive types of clinical concepts and their relations. As 

the initial step, we focus on the several core clinical concepts such as clinical findings, 

procedure and medications. Besides, not all the concept and relation types are observed in 

clinical text. Therefore, one task here is to remove concept and relation types that are 

rarely seen in clinical documents. On the contrary, clinical documents may contain 
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additional important types of information that need to be captured, but are not represented 

in the SNOMED CT. Therefore, we need to add such additional concept and relation 

types into the information model for NLP. 

 

2.2.1 Details of SNOMED CT 

SNOMED CT is a core medical terminology that contains concepts with unique 

meanings and formal logic-based definitions, which are organized into hierarchies. 

Concepts are linked together into a semantic network in which different link types are 

used to express formal relationships. SNOMED CT content is represented using three 

types of component: 

 Concepts representing clinical meanings are organized into hierarchies. 

 Descriptions which link appropriate human-readable terms to concepts. 

 Relationships which link each concept to other related concepts. 

Figure 2-1 shows SNOMED CT components and how the concepts are organized in 

hierarchies [42]. 
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Figure 2-1. SNOMED CT Design, from SNOMED CT Starter Guide 

 

In this dissertation, we used the September 2016 US Edition of SNOMED CT. Table 2-1 

lists the SNOMED CT hierarchies with their semantic tags and total concept counts. 

 

Table 2-1 

SNOMED CT Hierarchies 

Hierarchy Semantic Tag Total Concepts 

Body structure body structure 27,700 

Body structure, altered from its 

original anatomical structure 

morphologic abnormality 5,572 

Cell structure cell structure 519 

Entire cell cell 646 
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Clinical finding finding 48,240 

Disease disorder 103,171 

Environment or geographical location environment / location  

Environment environment 1,385 

Geographical and/or political 

region of the world 

geographic location 620 

Event event 9,016 

Linkage concept linkage concept  

Attribute attribute 1,173 

Link assertion link assertion 8 

Observable entity observable entity 9,549 

Organism organism 37,946 

Pharmaceutical / biologic product product 25,285 

Physical force physical force 178 

Physical object physical object 15,890 

Procedure procedure 78,811 

Regimes and therapies regime/therapy 4,008 

Qualifier value qualifier value 10,886 

Record artifact record artifact 357 

Situation with explicit context situation 10,221 

Social context social concept 32 

Ethnic group ethnic group 374 

Life style life style 30 

Occupation occupation 6,497 
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Person person 692 

Racial group racial group 21 

Religion / philosophy religion/philosophy 228 

Special concept special concept 31 

Inactive concept inactive concept 8 

Namespace concept namespace concept 201 

Navigational concept navigational concept 733 

Specimen specimen 1,798 

Staging and scales staging scale 41 

Assessment scales assessment scale 1,270 

Tumor staging tumor staging 262 

Substance substance 28,604 

Note. Concepts with semantic tags “administrative concept”, “biological function”, 

“context-dependent category”, and “foundation metadata concept” are inactive concepts. 

They are not included in this table. 

 

As shown in Table 2-1, there are 37 hierarchies defined in SNOMED CT. Between these 

hierarchies, there are 65 unique relationship types and 836 different relationships. 

 

2.2.2 Information Model Construction 

2.2.2.1 Semantic Types for Clinical Concepts 

After careful review of SNOMED CT by domain experts and discussion with NLP 

experts, we have selected the most clinically relevant semantic types for the information 
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model for NLP, most of which are top-level domains in SNOMED CT. In order to better 

represent the qualifier values related to their semantic meanings, we separated qualifier 

value concepts based on attribute, course, degree, episodicity, intent, laterality, priority, 

severity, and site. 

 

In addition, following feedback from NLP experts, we added 3 new semantic types: 

 Certainty: It is used to define if a clinical concept or fact is true or not. 

 Demographics: It is used to define concepts related to a person’s age, gender, marital 

status, name, race, etc. This type is similar to the SNOMED CT “Social context” 

type. The SNOMED CT “Social context” type has 6 subtypes. We combine “Social 

context” and all its subtypes into one “Demographics” type.  

 Medication: It is used to define concepts related to the medications. SNOMED CT 

contains concepts for pharmaceutical products but it does not have medication brand 

names. For example, medication names such as Amoxicillin, Lipitor, etc. are not 

SNOMED CT concepts or descriptions. 

 

Table 2-2 lists all the semantic types in the proposed information model. Column 2 in the 

table shows the corresponding SNOMED CT semantic type. Column 3 shows the 

semantic tag used for annotation in our corpus. Column 4 shows the abbreviation for the 

semantic type. 

 

Table 2-2 



 

26 

 

Semantic Types in the Proposed Information Model 

Semantic Type 
SNOMED CT 

Semantic Type 
Semantic Tag Abbreviation 

Body structure Body structure body_structure BS 

Certainty  certainty CER 

Clinical finding 
Clinical finding, 

Disease 
clinical_finding CF 

Demographics 

Social context, 

Ethnic group, Life 

style, Occupation, 

Racial group, 

Religion / 

philosophy 

demographics DEM 

Device Physical object device DEV 

Laboratory 
Substance, 

Procedure 
laboratory LAB 

Medication 
Pharmaceutical / 

biologic product 
medication MED 

Observable entity Observable entity observable_entity OE 

Organism Organism organism ORG 

Person 
Social context -> 

Person 
person PER 

Procedure Procedure procedure PRO 

Qualifier value - 

attribute 
Qualifier value qualifier_value::attribute QV_AT 

Qualifier value - 

course 
Qualifier value qualifier_value::course QV_CO 

Qualifier value - 

degree 
Qualifier value qualifier_value::degree QV_DE 
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Qualifier value - 

episodicity 
Qualifier value qualifier_value::episodicity QV_EP 

Qualifier value - 

intent 
Qualifier value qualifier_value::intent QV_IN 

Qualifier value - 

laterality 
Qualifier value qualifier_value::laterality QV_LA 

Qualifier value - 

priority 
Qualifier value qualifier_value::priority QV_PR 

Qualifier value - 

severity 
Qualifier value qualifier_value::severity QV_SE 

Qualifier value - site Qualifier value qualifier_value::site QV_SI 

Substance Substance substance SUB 

 

2.2.2.2 Relationships for Clinical Concepts 

The main relationships between clinical concepts included in the information model are: 

Clinical finding 

 Has_location (Body structure): This relationship shows the location of a clinical 

finding. The location refers to a body structure. 

 Belons_to (Person): This relationship specifies the person from which the clinical 

finding information is obtained. 

 Associated_with (Clinical finding | Procedure | Substance): This relationship 

represents a clinically relevant association between concepts. 

 Has_causative_agent (Organism | Medication | Substance): This relationship 

identifies the direct causative agent of a disease. The agent refers to an organism, 

medication, or substance. 
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 After (Procedure): This relationship represents a sequence of events where a clinical 

finding occurs after a procedure. 

 Has_finding_method (Procedure): This relationship specifies the means by which a 

clinical finding was determined. 

 Due_to (Clinical finding): This relationship relates a clinical finding directly to a 

cause such as another clinical finding. 

 Has_interpretation (Clinical finding): This relationship designates the judgment 

aspect being evaluated or interpreted for a concept when grouped with the attribute 

interprets. It may point to a finding value as a quantitative value; a qualitative value 

showing absence, degree increased; or a string value for normality, presence, etc. 

 Has_modifier (Certainty | Qualifier value): This relationship specifies the values that 

further explain the concept behavior or properties. 

 

Procedure 

 Has_procedure_site (Body structure): This relationship describes the body site acted 

on or affected by a procedure. 

 Has_focus (Clinical finding | Procedure): This relationship specifies the clinical 

finding or procedure which is the focus of a procedure. 

 Has_interpretation (Clinical finding): This relationship designates the judgment 

aspect being evaluated or interpreted for a concept when grouped with the attribute 

interprets. It may point to a finding value as a quantitative value; a qualitative value 

showing absence, degree increased; or a string value for normality, presence, etc. 
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 Procedure_device (Device): This relationship describes the devices associated with a 

procedure. 

 Using_substance (Substance): This relationship describes the substance used to 

execute the action of a procedure. It is not the substance on which the procedure’s 

method directly acts. 

 Has_location (Body structure): This relationship shows the location of a procedure. 

The location refers to a body structure. 

 Direct_substance (Medication): This relationship describes the substance or 

pharmaceutical / biologic product on which the procedure’s method directly acts. 

 Has_method (Body structure): This relationship represents the action being 

performed to accomplish the procedure. It does not include the surgical approach, 

equipment or physical forces. 

 Has_modifier (Certainty | Qualifier value): This relationship specifies the values that 

further explain the concept behavior or properties. 

 

Laboratory 

 Has_interpretation (Clinical finding | Organism): This relationship designates the 

judgment aspect being evaluated or interpreted for a concept when grouped with the 

attribute interprets. It may point to a finding value as a quantitative value; a 

qualitative value showing absence, degree increased; or a string value for normality, 

presence, etc. 
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 Has_intent (Clinical finding | Organism): This relationship specifies the intent of a 

laboratory test. 

 Has_modifier (Certainty | Qualifier value): This relationship specifies the values that 

further explain the concept behavior or properties. 

Observable entity 

 Has_location (Body structure): This relationship shows the location of an observable 

entity. The location refers to a body structure. 

 Has_interpretation (Clinical finding): This relationship designates the judgment 

aspect being evaluated or interpreted for a concept when grouped with the attribute 

interprets. It may point to a finding value as a quantitative value; a qualitative value 

showing absence, degree increased; or a string value for normality, presence, etc. 

 Has_modifier (Certainty | Qualifier value): This relationship specifies the values that 

further explain the concept behavior or properties. 

 

Medication 

 Has_indication (Clinical finding): This relationship shows the reason for the 

treatment. 

 Has_modifier (Certainty | Qualifier value): This relationship specifies the values that 

further explain the concept behavior or properties. 

 

Body structure 
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 Has_modifier (Certainty | Qualifier value): This relationship specifies the values that 

further explain the concept behavior or properties. 

 

Device 

 Has_modifier (Qualifier value): This relationship specifies the values that further 

explain the concept behavior or properties. 

 

Organism 

 Has_modifier (Certainty | Qualifier value): This relationship specifies the values that 

further explain the concept behavior or properties. 

 

Substance 

 Has_modifier (Qualifier value): This relationship specifies the values that further 

explain the concept behavior or properties. 

 

2.2.3 Annotation Guideline Development 

Based on the proposed information model, an annotation guideline is developed. It 

describes specific types of information that should be annotated, with examples found in 

the clinical texts. Some general considerations have been defined in the annotation 

guideline. It primarily covers the main concepts constructing a clinical encounter. These 

primary concepts are clinical findings, procedures, laboratory tests, and their values. 
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Supporting concepts like body structure, person, device, organism, are also required to be 

annotated to refer certain clinical information properly. 

 

The meaningful concept with the finest granularity is required to be annotated with 

individual labels to the main concept and each of its modifier. For example: 

She has acute chest pain this morning. 

In this sentence, “acute chest pain” should be annotated as three separated concepts 

“acute”, “chest”, and “pain”, each of which belongs to different semantic categories 

“modifier”, “body structure”, and “clinical finding” respectively. 

 

We limit the scope of relation annotation to the same sentence. If two related concepts are 

in different sentences, their relationships should be ignored and not annotated. 

 

2.3 Clinical Corpus Annotation Using the Information Model 

Medical Transcription Examples and Sample Reports (MTSamples) website [51] 

contains sample transcribed medical reports for many specialties and different work types. 

For this study, we have randomly selected 103 discharge summary notes from 

MTSamples and used them to create an annotated clinical corpus. 

 

Discharge summaries were given to two annotators for annotation based on the proposed 

information model and the annotation guideline. We used the annotation tool provided by 

the Clinical Language Annotation, Modelling and Processing Toolkit (CLAMP) in this 
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project. CLAMP leverages the BRAT annotation interface [52], as shown in Figure 2-2 

about a screenshot of the annotation interface [36]. 

 

 

Figure 2-2. Annotation Interface in CLAMP 

 

2.3.1 Inter-Annotator Agreement 

Fleiss' kappa is a statistical measure for assessing the reliability of agreement between a 

fixed number of raters when assigning categorical ratings to a number of items or 

classifying items [53]. The calculated kappa value k could be interpreted using table 2-3. 

 

Table 2-3 

Kappa Value Interpretation 



 

34 

 

k Interpretation 

< 0 Poor agreement 

0.01 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

0.81 – 1.00 Almost perfect agreement 

 

To calculate inter-annotator agreement for our corpus annotation, each annotator was 

given the same 33 discharge summary notes for annotation. A total of 5,244 clinical 

concepts was annotated for 44 semantic types and 2,783 relations for 25 relationship 

types. R package ‘irr’ was used for calculating inter-annotator agreement. As shown in 

table 2-4, both clinical concept and concept relation annotations reach the substantial 

agreement between annotators. But the clinical concept has a much higher agreement 

value than that of concept relation, indicating relation annotation is a more challenging 

task. 

 

Table 2-4 

Inter-Annotator Agreement Results 

 Concept Relation 

Annotated by both annotator, agree on the 

semantic type 

4,303 

(82.06%) 

1,841 

(66.15%) 

Annotated by both annotator, not agree on the 101 27 
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semantic type (1.93%) (0.97%) 

Annotated by annotator 1 only 412 

(7.86%) 

420 

(15.09%) 

Annotated by annotator 2 only 428 

(8.16%) 

495 

(17.79%) 

Total annotation 5,244 2,783 

Total semantic types 44 25 

Kappa value 0.803 0.612 

 

2.3.2 Annotation Guideline Refinement 

The annotation guideline was tuned and refined in several rounds of testing. Inter-

annotator agreement rate was assessed in each round and the annotators met to discuss 

any disagreements. The annotation guideline was then updated based on the resolution 

and used in the next round of testing. The final version of the guideline was used to 

annotate the corpus. 

 

2.3.3 Statistics of Annotated Corpus 

After evaluating 103 discharge summary notes annotated by the two annotators, we have 

removed a few notes which only contain a few short sentences and selected 100 notes as 

our final corpus. The corpus has a total of 5,133 sentences, 10,932 concept annotations 

with 22 different semantic types, and 4,289 relation annotations with 61 different relation 

types between concepts. These annotations are used as the gold standard for the concept 

recognition and relation extraction work in the next steps. Table 2-5 and table 2-6 show 

the detailed statistics of the annotated corpus with some examples. 
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Table 2-5 

Statistics of Annotated Corpus – By Entity Semantic Type 

Entity Semantic Type Total Examples 

clinical_finding 2,976 hypertension, obesity 

body_structure 1,262 heart, abdomen 

person 1,053 patient, sister 

medication 1,046 Aspirin, Zyvox 

procedure 1,028 biopsy, x-ray 

laboratory 679 glucose, hemoglobin 

qualifier_value::attribute 641 small, partial 

observable_entity 407  

certainty 371  

qualifier_value::laterality 362  

demographics 260  

qualifier_value::site 202  

qualifier_value::severity 190  

device 188  

qualifier_value::course 168  

organism 47  

substance 23  

qualifier_value::episodicity 14  

qualifier_value::degree 10  

qualifier_value::priority 2  

qualifier_value::intent 2  
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physical_object 1  

All 10,932  

 

Table 2-6 

Statistics of Annotated Corpus – By Relation Type 

Relation Type Entity From Entity To Total Examples 

has_location clinical_finding body_structure 871 (pain, chest) 

has_modifier clinical_finding certainty 471 (cancer, without) 

has_modifier clinical_finding qualifier_value::attribute 434 (effusion, small) 

belongs_to clinical_finding person 425 (nausea, patient) 

has_procedure_site procedure body_structure 298 (CT, brain) 

has_modifier body_structure qualifier_value::laterality 260 (kidney, left) 

has_modifier clinical_finding qualifier_value::severity 194 (nausea, less) 

has_modifier clinical_finding qualifier_value::course 165 (pain, chronic) 

has_modifier procedure qualifier_value::attribute 133 (surgeries, 

multiple) 

has_indication medication clinical_finding 119  

associated_with clinical_finding clinical_finding 108  

has_modifier body_structure qualifier_value::site 100  

has_focus procedure clinical_finding 96  

has_interpretation procedure clinical_finding 94  

has_modifier clinical_finding qualifier_value::laterality 62  

has_modifier clinical_finding qualifier_value::site 56  

procedure_device procedure device 52  

has_modifier procedure qualifier_value::site 42  
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has_modifier procedure qualifier_value::laterality 40  

has_modifier body_structure qualifier_value::attribute 36  

has_causative_agent clinical_finding organism 20  

has_modifier medication qualifier_value::attribute 19  

after clinical_finding procedure 17  

has_causative_agent clinical_finding medication 17  

has_location observable_entity body_structure 14  

has_modifier clinical_finding qualifier_value::episodicity 14  

has_modifier clinical_finding qualifier_value::degree 9  

has_modifier observable_entity qualifier_value::attribute 9  

has_interpretation laboratory clinical_finding 8  

has_finding_method clinical_finding procedure 7  

has_modifier device qualifier_value::attribute 7  

due_to clinical_finding clinical_finding 6  

has_intent laboratory clinical_finding 6  

has_modifier laboratory qualifier_value::attribute 6  

using_substance procedure substance 6  

has_modifier medication certainty 5  

has_causative_agent clinical_finding substance 4  

has_focus procedure procedure 4  

has_intent laboratory organism 4  

has_interpretation clinical_finding clinical_finding 4  

has_interpretation observable_entity clinical_finding 4  

has_modifier observable_entity qualifier_value::laterality 4  

has_modifier procedure certainty 4  
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direct_substance procedure medication 3  

has_interpretation laboratory organism 3  

has_location procedure body_structure 3  

has_modifier laboratory certainty 3  

has_modifier medication qualifier_value::course 3  

has_modifier organism certainty 3  

has_method procedure body_structure 2  

has_modifier body_structure certainty 2  

has_modifier body_structure qualifier_value::severity 2  

has_modifier laboratory qualifier_value::priority 2  

has_modifier procedure qualifier_value::intent 2  

associated_with clinical_finding procedure 1  

associated_with clinical_finding substance 1  

has_modifier laboratory qualifier_value::site 1  

has_modifier medication qualifier_value::site 1  

has_modifier observable_entity certainty 1  

has_modifier organism qualifier_value::attribute 1  

has_modifier substance qualifier_value::attribute 1  

All   4,289  

 

2.4 Discussion 

Table 2-7 shows the comparison between SNOMED CT ontology and our proposed 

information model. We reduced the number of entity semantic types from 37 to 22 by 

merging and removing some SNOMED CT semantic types. However, fewer semantic 

types does not lose the coverage of our information model for clinical text. We only 
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removed the less clinically relevant semantic types such as “Linkage concept”, “Special 

concept”, etc. We greatly decreased the number of unique relation types and the number 

of relations between entity types to reduce the complexity of our information model. One 

of the important SNOMED CT relation type is “116680003 | Is a (attribute)” and it 

defines 37.4% of total relationships in SNOMED CT. It is used to link the related 

concepts in the concept hierarchy. We decided not to include it in our information model 

since our focus is on the modifier type relations between the concepts with different 

semantic types, not on the linking type relations between the concepts with the same 

semantic type. 

 

Table 2-7 

Comparison between SNOMED CT and Proposed Information Model 

 SNOMED CT 
Proposed 

Information Model 

No. of Entity Semantic Types 37 22 

No. of Unique Relation Types 65 17 

No. of Relations Between Entity Types 836 61 

 

After analyzing our annotated corpus, we discovered that “clinical finding” is a core 

semantic type in the clinical summary notes. Not only it has the most entity annotations 

(2,976 out of 10,932), it is also the semantic type which has the most relation types (26 

out of 61) with other semantic types (16 out of 21). 
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2.5 Conclusion 

In this study, we developed a comprehensive information model to represent broad types 

of clinical concepts and their relationships, by leverage the SNOMED CT oncology. 

Using the information model, we created an annotation guideline and annotated a corpus 

of 100 discharge summary notes. Our evaluation shows that annotators can follow the 

information model and the guideline to annotate discharge summaries with a good inter-

annotator agreement. The annotated corpus is served for the concept recognition and 

relation extraction work in the next steps. 
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Chapter 3: Clinical Named Entity Recognition 

 

3.1 Introduction 

Recognition of clinically relevant entities such as diseases, drugs, and labs from the 

narrative text is the first step of the semantic interpretation of the clinical text. It is a 

typical Named Entity Recognition (NER) task, which is to locate and classify words and 

phrases into predefined semantic categories such as clinical findings and test results. Both 

rule-based methods and machine learning-based methods have been extensively studied 

for NER tasks. 

 

Early clinical NLP systems often implement rule-based methods that use existing 

biomedical ontologies and knowledge engineering approaches to generate dictionaries for 

each semantic type and then perform dictionary lookup to identify clinical entities in the 

text [7,30,54]. For example, MedLEE [30] maintains large lexical files for different 

semantic types by leveraging existing medical terminologies and manually collecting 

terms from clinical corpora. One limitation of leveraging existing ontologies for semantic 

lexicons is that they may not cover all the terms occurred in the clinical text (i.e., lexical 

variants). Therefore, approaches have been developed to improve recognition of lexical 

variants, i.e., MetaMap [7] uses a variant generation tool from the UMLS’s SPECIALIST 

lexicon [41]. 
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Recently, machine learning-based NER approaches have shown superior performance in 

various clinical NER tasks. Machine learning-based approaches treat NER as a sequence 

labeling task and develop machine learning models to predict word labels using annotated 

corpora. As promoted by shared NLP tasks in the medical domain (i.e., i2b2 challenges 

[55]), extensively studies have been conducted to assess different aspects for improving 

machine learning-based NER, including different machine learning algorithms and 

diverse types of features. Conditional Random Fields (CRF) [56] and Structured Support 

Vector Machines (SVM) [57] are two widely used machine learning algorithms in NER. 

Features used in clinical NER also range broadly, including bag-of-word, part-of-speech 

tags, dictionaries etc., each of which more or less contributes to the performance 

improvements for different tasks [58]. 

 

More recently, deep learning-based methods are growing in popularity as approaches to 

NER. Deep learning-based methods do not need time-consuming and labor-intensive 

feature engineering [59,60]. Instead, word embeddings pre-trained from large-scale 

unlabelled corpora are usually used as features [61]. As the currently most widely-used 

distributional semantic representation (i.e., vector representation) of words, neural word 

embeddings (such as those produced by the word2vec software package [62]) are 

assumed to capture the latent syntactic/semantic information of a word, because the 

resulting vector representations for words will be similar if these words occur in similar 

local contexts [62]. A recent study by Habibi et al. demonstrated that using deep learning-
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based methods outperformed state-of-the-art entity-specific NER tools and an entity-

agnostic CRF implementation by a large margin [59]. 

 

The NER task here is to recognize entities defined in our information model derived from 

SNOMED CT, which contains broad types of entities (22 in total), thus making it 

different from previous tasks (i.e., i2b2 challenges) that are often limited to several types 

of entities [55]. We systematically assess all three types of approaches that are widely 

used in clinical NER for the proposed task: rule-based approaches leveraging existing 

ontologies, traditional machine learning-based NER using CRF, and deep learning-based 

approaches using LSTM. 

 

3.2 Dataset 

The annotated 100 discharge summaries were divided into two parts: a training set of 50 

notes and a test set of 50 notes. The training set was used to generate the baseline 

semantic lexicon list for dictionary lookup and to train the machine learning-based NER 

models. The NER system was then evaluated using the test set. Table 3-1 lists the counts 

of each semantic type of clinical entities in the training and test datasets based on the gold 

standard annotation. The semantic types for numerical values are removed from the gold 

standard since they are relatively easy to recognize. 

 

Table 3-1 

Statistics of the Training and Test Datasets 
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Semantic Type Training set Test set Total 

clinical_finding 1,511 1,465 2,976 

body_structure 670 592 1,262 

person 570 483 1,053 

medication 515 531 1,046 

procedure 567 461 1,028 

laboratory 241 438 679 

qualifier_value::attribute 336 305 641 

observable_entity 215 192 407 

certainty 190 181 371 

qualifier_value::laterality 243 119 362 

demographics 118 142 260 

qualifier_value::site 114 88 202 

qualifier_value::severity 100 90 190 

device 105 83 188 

qualifier_value::course 81 87 168 

organism 17 30 47 

substance 16 7 23 

qualifier_value::episodicity 9 5 14 

qualifier_value::degree 7 3 10 

qualifier_value::intent 2 0 2 

qualifier_value::priority 0 2 2 

physical_object 1 0 1 
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All 5,628 5,304 10,932 

 

3.3 Rule-based Approach for Clinical Entity Recognition 

Our rule-based method follows four steps: (a) generating a semantic lexicon list; (b) pre-

processing discharge summary notes (i.e., sentence detection and tokenization); (c) 

locating clinical entities in the sentences by looking the lexicons; and (d) post-processing 

the matching results using heuristic rules. 

 

3.3.1 Semantic Lexicon Generation 

First, we created corpus-specific lexicons by using the gold standard annotation from the 

training set. The corpus-specific list contains 2,024 terms. Then we created another 

lexicon file by using SNOMED CT concepts and descriptions. The SNOMED lexicon 

file contains 707,772 terms. 

 

As mentioned earlier, lexical variants are common in natural language. The variations 

may be morphological or simply orthographic [41]. Morphological variations generate 

different forms of the same lexical item through inflection or derivation. Orthographic 

variations generate different spellings of the same lexical item. Some words have several 

inflected forms which could be considered instances of the same word. For example, the 

verb “treat” has three inflectional variants: “treats” is the third person singular present 

tense form, “treated” is the past and past participle form, and “treating” is the present 

participle form. 
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The UMLS SPECIALIST Lexicon has been developed to provide the lexical information 

needed by NLP systems [63]. It includes both commonly occurring English words and 

the biomedical vocabulary. The syntactic, morphological, and orthographic information is 

recorded for each word or term. Therefore, we further extended our corpus-specific 

lexicons and the SNOMED CT lexicons by including the lexical variations specified in 

the UMLS SPECIALIST Lexicon. After that, the extended corpus-specific list contains 

3,916 terms and the extended SNOMED CT list contains 760,218 terms. 

 

3.3.2 Pre-Processing Discharge Summary Notes 

We use the CLAMP toolkit [36] for pre-processing the discharge summary notes. 

CLAMP provides the components for common NLP tasks such as sentence boundary 

detection, tokenization, part-of-speech tagging, and section header identification. Using 

these components, we divide a discharge summary note into sections, sentences, and 

tokens with POS tags. 

 

3.3.3 Dictionary Lookup Methods 

Pattern-based regular expression [64] match and dictionary lookup were implemented to 

locate clinical entities of interest. Based on our observation, certain patterns were defined 

using the regular expression. For example, pattern “(\b)(\d+year-old)(\b)” is used to 

locate lexicons which describe the age with the semantic type “demographics” such as 

“37-year-old”; pattern “(\b)(Dr\. [A-Z][a-zA-Z]*)(\b)” is used to locate lexicons which 

describe the doctor names with the semantic type “person” such as “Dr. XYZ”. 
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For dictionary lookup, each term in the generated semantic lexicon file was used to 

search the sentence. SNOMED CT has recommended a list of stop words and excluded 

words [65], which were removed from the lexicon list to increase the success of finding 

lexical matches. Our matching algorithm returns the exact matches. 

 

3.3.4 Post-Processing the Matching Results 

There are instances whereby multiple lexicon matches are found for the same 

word/phrase. For example, in “chest x-ray”, there are three matching lexicons: “Chest 

(body structure)”, “X-ray (procedure)”, and “Chest X-ray (procedure)”. Our rule is to 

select individual lexicons to the main concept and each of its modifier, which is the most 

granular description of the clinical concept. In the example above, “Chest (body 

structure)” and “X-ray (procedure)” will be the final results. 

 

3.3.5 Experiments and Evaluation 

To evaluate the effect of different lexicon lists, we started with the SNOMED CT 

lexicons as the baseline, and then combined corpus specific lexicons with it. We further 

compared the performance of extended lexicons using the UMLS SPECIALIST for both 

SNOMED CT lexicons, SNOMED CT + corpus-specific lexicons. 

 

To report the performance of NER, we counted True Positives, True Negatives, False 

Positives, and False Negatives by comparing systems’ results with the gold standard. We 
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then calculated standard metrics including Precision, Recall, and F1-score to report the 

performance of the NER systems: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝐹𝑃)
 

𝐹 𝑆𝑐𝑜𝑟𝑒(𝐹) =  
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

3.3.6 Results 

Table 3-2 showed the results of our NER system when different lexicon files were used. 

The combined list of corpus-specific lexicons and SNOMED CT lexicons achieved the 

best F1-score of 0.506. It also achieved the best precision value of 0.381. Compared to 

SNOMED CT lexicons only, the combined lexicon list increased the precision/recall/F-

score by 0.048/0.182/0.086 respectively. Extending the lexicon lists with UMLS 

SPECIALIST did not improve the performance. Although extended combination list 

achieved the best recall value of 0.759, its F-score decreased by 0.036 due to the 0.04 

decrease of precision. 

 

Table 3-2 

Results of clinical entity recognition when different lexicon files were used 

Lexicon List 
No. of 

Lexicons 

No. of Entities Performance 

Correct 

(TP) 

Predict 

(TP+FP) 

Gold 

(TP+FN) 
Precision Recall F 
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SNOMED CT 707,772 3,384 10,165 5,933 0.333 0.570 0.420 

Corpus Specific + 

SNOMED CT 
709,792 4,460 11,698 5,933 0.381 0.752 0.506 

Extended SNOMED CT 

(SPECIALIST) 
760,218 3,611 11,893 5,933 0.304 0.609 0.405 

Extended Corpus Specific 

+ SNOMED CT 

(SPECIALIST) 

764,130 4,504 13,219 5,933 0.341 0.759 0.470 

 

Table 3-3 shows the detailed results of different semantic types for the best-performing 

system (Corpus-specific lexicons + SNOMED CT lexicons). The dictionary lookup-

based approach achieved varied performance for different types of entities. Some 

semantic types achieved high performance even for this simple approach, e.g., 

precision/recall/F-score were 0.906/0.961/0.933 respectively for the semantic type of 

“person”. Some types of entities had a very low frequency in the dataset, thus producing 

an extremely low performance. 

 

Table 3-3 

Results of clinical entity recognition by semantic type 

Semantic Type Precision Recall F 

clinical_finding 0.603 0.762 0.673 

body_structure 0.567 0.730 0.638 

procedure 0.552 0.753 0.637 

medication 0.698 0.687 0.692 
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person 0.906 0.961 0.933 

laboratory 0.872 0.742 0.802 

qualifier_value::attribute 0.240 0.598 0.343 

observable_entity 0.313 0.608 0.413 

certainty 0.185 0.735 0.296 

qualifier_value::laterality 0.865 0.919 0.891 

demographics 0.739 0.944 0.829 

qualifier_value::site 0.597 0.527 0.560 

device 0.455 0.670 0.542 

qualifier_value::course 0.905 0.731 0.809 

qualifier_value::severity 0.485 0.810 0.607 

organism 0.682 0.649 0.665 

substance 0.211 0.778 0.332 

qualifier_value::episodicity 0.148 1.000 0.258 

qualifier_value::degree 0.730 1.000 0.844 

qualifier_value::intent 0.000 0.000 0.000 

qualifier_value::priority 0.036 1.000 0.069 

physical_object 0.000 0.000 0.000 

Overall 0.381 0.752 0.506 
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3.4 Machine Learning-based Approach for Clinical Entity Recognition 

Here we present our work on developing machine learning-based NER system for the 22 

types of clinical entities, using the CRF algorithm, as well as a set of comprehensive 

features. 

 

3.4.1 Conditional Random Fields 

Conditional Random Fields [66] are undirected graphical models, used to calculate the 

conditional probability of values on designated output nodes, given values to other 

designated input nodes. A CRF is a type of discriminative probabilistic model used for 

labeling sequential data such as natural language text. When applying CRF to the NER 

problem, the observation sequence is the tokens of a sentence and the state sequence is its 

corresponding label sequence. 

 

CRFs make first-order Markov assumption. They can be viewed as conditionally trained 

probabilistic finite automata (FSMs). The conditional probability 𝑃(𝑆 𝑂⁄ )  of a state 

sequence s=<s1,s2….sT> given an observation sequence o=<o1,o2…..oT> is 

𝑃(𝑆 𝑂⁄ ) =  
1

𝑍0
𝑒𝑥𝑝 ∑ ∑ 𝛾𝑘𝑓𝑘(𝑆𝑙−1, 𝑆1, 𝑂, 𝑡)

𝑘

𝑇

𝑡=1

 

where 𝑓𝑘(𝑆𝑙−1, 𝑆1, 𝑂, 𝑡) is a feature function. Its weight 𝛾𝑘 is to be learned via learning. 

CRFs define the conditional probability 𝑃(𝑙 𝑂⁄ ) of a label sequence l based on total 

probability over the state sequences, 

𝑃(𝑙 𝑂⁄ ) =  ∑ 𝑃(𝑆 𝑂⁄ )

𝑠:𝑙(𝑠)=1
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where l(s) is the sequence of labels corresponding to the labels of the states in sequences. 

Zo is a normalization factor over all state sequences. To make all conditional probabilities 

sum up to 1, we must calculate the normalization factor 

𝑍0 =  ∑ 𝑒𝑥𝑝 ∑ ∑ 𝛾𝑘𝑓𝑘(𝑆𝑙−1, 𝑆1, 𝑂, 𝑡)

𝑘

𝑇

𝑡=1𝑆

 

The feature functions could ask arbitrary questions about two consecutive states, any part 

of the observation sequence and the current position. For example a feature function may 

be defined to have a value 0 in most cases and have value 1 when St-1, St are certain states 

and the observation has certain properties. 

 

The annotated notes are transformed into the BIO (begin-in-out) annotation format, in 

which each word is assigned into a label: B represents the beginning of an entity, I 

represents inside of an entity, and O represents outside of an entity. For example, the 

sentence “His midline incision is clean” will be labeled as “His/O midline/B incision/I 

is/O clean/O”, if “midline incision” is annotated as an entity. The NER task then becomes 

a classification task. It is to assign one of the three labels (B, I, or O) to each word based 

on the characteristics and its context. For each type of entity, we define different B 

classes and I classes. For example, for “clinical finding” type, the B class is defined as 

“B-ClinicalFinding” and I class is defined as “I-ClinicalFinding”. There is only one O 

class for all the entity types. 
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3.4.2 Feature Sets 

CRFs can easily include a large number of arbitrary independent features. The expressive 

power of models increases when adding new features that are conjunctions to the original 

features. 

 

The feature sets used in our CRF approach are: 

 N-Gram: These are sequences of words of length N. 

 Prefix and Suffix: Many diseases and treatments share same prefix or suffix, like 

Adrenalectomy, Sclerotomy, and Osteotomy all shares a common suffix “-tomy”. 

Word suffix and prefix are used as features. 

 Word Shape: There can be many variants of the same medical entity in the clinical 

text, like hypertension and hypertensive, tachycardia and tachycardic. 

 Words Regular Expression: These are regular expression patterns used for matching. 

 Dictionary Lookup: A binary unigram feature was used to check whether the word is 

present in a dictionary of specific types of entities (e.g., diseases, drugs, and labs) or 

not. 

 Sentence Pattern: These are information of the sentence, like sentence length, the 

start pattern, etc. 

 Section Headers: A clinical note is often divided into relevant segments called 

Section Headers, like History of Present Illness, Current Medicines, and Lab Data. 

These section headers provide very useful information at the discourse level. 
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 Random Indexing: Very high dimensional Vector Space Model (VSM) 

implementations are impractical. Random indexing is an incremental method for 

constructing a vector space model with reduced dimensionality. 

 Word Embedding: Words and phrases from the notes are mapped to vectors of real 

numbers. It involves a mathematical embedding from a space with one dimension per 

word to a continuous vector space with much lower dimension. 

 Brown Clustering: It groups words into clusters that are semantically related by 

virtue of their having been embedded in similar contexts. 

 

3.4.3 Experiments and Evaluation 

CLAMP Toolkit has a machine learning-based NER component that uses the CRF 

algorithm. We used CLAMP with a unique set of features for recognizing clinical entities. 

We started the experiment with the basic word features plus the unigram feature. We then 

incrementally added other features such as bigram, sentence pattern, word embedding, etc. 

Same standard metrics described in section 3.3.5 were used for evaluation. After 

comparing the best performance achieved in each feature combination, we decided which 

features to keep and which features to remove. Figure 3-1 shows the feature sets used in 

CLAMP. 
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Figure 3-1. Feature Sets used for CRF-based NER in CLAMP 

 

3.4.4 Results 

The results in Table 3-4 were evaluated using both exact matching, which requires that 

the starting and ending offsets of a concept have to be exactly same as those in the gold 

standard, and inexact matching, which refers to cases where their offsets are not exactly 

same as those in gold standard, but they overlap with each other. The overall precision 

value is 0.813, recall value is 0.769, and F score is 0.790 for exact matching. The overall 

precision value is 0.876, recall value is 0.821, and F score is 0.848 for inexact matching. 

 

Among 22 semantic types, two had F-scores higher than 0.90 and five had F-scores 

higher than 0.80 for exact matching. When inexact matching was used, five semantic 

types had F-scores higher than 0.90 and three had F-scores higher than 0.80. For semantic 

types which had low performance (F score < 0.50), all of them had very small sample 

sizes (size < 50). In general, the performance increases when the sample sizes increases. 

 

Table 3-4 
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Results of clinical entity recognition (CRF)  

Semantic Type Exact matching Inexact matching 

Precision Recall F Precision Recall F 

clinical_finding 0.831 0.828 0.829 0.901 0.894 0.898 

body_structure 0.756 0.802 0.778 0.837 0.857 0.847 

person 0.933 0.914 0.923 0.950 0.929 0.939 

medication 0.850 0.833 0.841 0.932 0.905 0.919 

procedure 0.751 0.664 0.705 0.851 0.748 0.796 

laboratory 0.841 0.797 0.818 0.911 0.854 0.881 

qualifier_value::attribute 0.656 0.580 0.616 0.673 0.590 0.628 

observable_entity 0.757 0.619 0.681 0.832 0.681 0.749 

certainty 0.761 0.617 0.682 0.804 0.652 0.720 

qualifier_value::laterality 0.928 0.928 0.928 0.931 0.931 0.931 

demographics 0.912 0.873 0.892 0.980 0.935 0.957 

qualifier_value::site 0.619 0.490 0.547 0.662 0.515 0.579 

qualifier_value::severity 0.697 0.568 0.626 0.727 0.589 0.651 

device 0.774 0.473 0.587 0.870 0.532 0.660 

qualifier_value::course 0.924 0.863 0.892 0.942 0.875 0.907 

organism 0.714 0.213 0.328 1.000 0.277 0.433 

substance 0.500 0.087 0.148 0.500 0.087 0.148 

qualifier_value::episodicity 0.333 0.071 0.118 0.333 0.071 0.118 

qualifier_value::degree 0.000 0.000 0.000 0.000 0.000 0.000 

qualifier_value::priority 0.000 0.000 0.000 0.000 0.000 0.000 
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qualifier_value::intent 0.000 0.000 0.000 0.000 0.000 0.000 

physical_object 0.000 0.000 0.000 0.000 0.000 0.000 

Overall 0.813 0.769 0.790 0.876 0.821 0.848 

 

3.5 Deep Learning-based Approach for Clinical Entity Recognition 

Here we present our work on developing deep learning-based NER system for the clinical 

entities, using the LSTM-CRF model. 

 

3.5.1 LSTM-CRF Model 

Recurrent neural networks (RNNs) are a family of neural networks that operate on the 

sequential data. They take input as a sequence of vectors (x1, x2, …, xn) and they return 

another sequence (h1, h2, …, hn) that represents some information about the sequence at 

every step in the input. Though, RNNs can learn long-distance dependencies in theory, 

they fail to do so in practice due to the gradient vanishing and tend to be biased towards 

their most recent inputs in the sequence [67]. Long Short-term Memory Networks 

(LSTMs) have been designed to solve this gradient vanishing issue. They incorporate a 

memory-cell and have been shown to capture long-distance dependencies [68]. The 

following implementation is used: 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖𝑋𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝐶𝑡−1 + 𝑏𝑖) 

𝐶𝑡 = (1 − 𝑖𝑡)⨀𝐶𝑡−1 + 𝑖𝑡⨀tanh (𝑊𝑥𝑐𝑋𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑂𝑡 = 𝜎(𝑊𝑥𝑜𝑋𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝐶𝑡 + 𝑏𝑜) 

ℎ𝑡 = 𝑂𝑡⨀tanh (𝐶𝑡) 

where 𝜎 is the element-wise sigmoid function, and ⨀ is the element-wise product. 
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For a given sentence (x1, x2, …, xn) containing n words, each represented as a d-

dimensional vector, an LSTM computes a representation of the left context of the 

sentence at every word. A second LSTM reads the same sequence in reverse. The former 

is referred to as the forward LSTM and the latter as the backward LSTM. These are two 

distinct networks with different parameters. This forward and backward LSTM pair is 

referred to as a bidirectional LSTM [69]. 

 

The representation of a word in this model is obtained by concatenating the left and right 

context representations of the word. These representations effectively include the 

representation of a word in context. Despite this model’s success in simple problems like 

POS tagging, its independent classification decisions are limiting when there are strong 

dependencies across output labels in NER task. 

 

Therefore, instead of modeling tagging decisions independently, we model them jointly 

using a conditional random field [56]. Figure 3-2 shows the neural network architecture 

of the Bi-LSTM algorithm. 
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 Figure 3-2. Neural Network Architecture of the Bi-LSTM Algorithm 

 

3.5.2 Experiments and Evaluation 

Our architecture is similar to the ones presented by Lample et al. [61]. Same standard 

metrics described in section 3.3.5 were used for evaluation. 

 

3.5.3 Results 

Table 3-5 shows the detailed results of different semantic types. Among 22 semantic 

types, three had F-scores higher than 0.90 and four had F-scores higher than 0.80. Similar 

to the previous machine learning-based CRF approach, for semantic types which had low 

performance (F score < 0.50), all of them had very small sample sizes (size < 50). In 

general, the performance increases when the sample sizes increases. 
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Table 3-5 

Results of clinical entity recognition (LSTM-CRF) 

Semantic Type Precision Recall F 

clinical_finding 0.811 0.799 0.805 

body_structure 0.714 0.758 0.736 

procedure 0.703 0.647 0.674 

medication 0.811 0.831 0.821 

person 0.948 0.908 0.927 

laboratory 0.823 0.864 0.843 

qualifier_value::attribute 0.604 0.516 0.557 

observable_entity 0.705 0.680 0.692 

certainty 0.741 0.671 0.704 

qualifier_value::laterality 0.899 0.924 0.911 

demographics 0.924 0.925 0.924 

qualifier_value::site 0.611 0.478 0.536 

device 0.764 0.553 0.641 

qualifier_value::course 0.794 0.869 0.830 

qualifier_value::severity 0.737 0.660 0.697 

organism 0.475 0.385 0.425 

substance 0.333 0.167 0.222 

qualifier_value::episodicity 0.000 0.000 0.000 

qualifier_value::degree 0.000 0.000 0.000 



 

62 

 

qualifier_value::priority 0.000 0.000 0.000 

qualifier_value::intent 0.000 0.000 0.000 

physical_object 0.000 0.000 0.000 

 

3.6 Discussion 

In this study, we applied the rule-based method, CRF-based method, and LSTM-based 

method to recognize broad types of clinical entities in discharge summaries. 

 

For dictionary lookup approaches, semantic lexicon files are the key. Simply using 

lexicons from the SNOMED CT along did not achieve good performance. Combining 

corpus-specific lexicons with the SNOMED CT lexicons increased recall by 0.182 and F 

score by 0.086, indicating the importance of extracting terms from corpora of the target 

domain. Error analysis shows that medication names such as Amoxicillin, Lipitor, etc. are 

not included in SNOMED CT concepts or descriptions, thus often missed by the baseline 

method. The recall value increased from 0.357 to 0.687 for “medication” semantic type 

when medication terms from the training corpus were used. However, it is time-

consuming and less practical to generate corpus-specific lexicons, as it requires manual 

annotation of a large number of clinical documents. 

 

It is a bit surprising that expanding lexicons using the UMLS SPECIALIST Lexicon 

decreased the overall performance. We did observe an increased recall when more lexical 

variants were added and used for lookup. However, precision decreased more than the 

increase of recall, thus making the F-score lower. The decrease of precision is mainly due 
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to more false positives that were generated by the expanded lexicons. For example, we 

found the SNOMED CT concept “419652001 | Take - dosing instruction imperative 

(qualifier value)” when we searched the word “take”. After more lexical variants were 

added, the words “takes”, “taken”, and “taking” were also mapped to the same SNOMED 

CT concept and increased false positives. 

 

When compared to the rule-based method, both CRF and LSTM-based approaches 

achieved much better performance, indicating the potential of machine learning in 

clinical NER. 

 

3.7 Conclusion 

NER for broad types of clinical entities is still challenging. Our study shows that 

dictionary lookup with heuristic rules is not sufficient to achieve high performance for 

NER of SNOMED concepts. Machine learning and deep learning-based approaches 

could significantly improve the performance of the proposed NER task. However, issues 

such as annotation cost and overfitting should still be considered when developing 

statistical NER approaches. 
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Chapter 4: Relation Extraction 

 

4.1 Introduction 

Semantic relations between clinical entities such as the treatment relationship between 

drugs and diseases are critically important information embedded in the clinical text. 

Therefore, extracting semantic relations between entities from the clinical text is an 

essential task of clinical information extraction. 

 

Early work of relation extraction (RE) focused on limited linguistic context and relied on 

word co-occurrences and pattern matching [70–72]. Later, machine learning-based 

supervised approaches were widely employed. Relation classification models were 

trained on annotated data. The most important information to be considered for model 

training is the syntactic or semantic structures of the context surrounding named entities. 

Generally, the frameworks of supervised learning based relation extraction techniques 

can be classified into several major categories [73]: 

 

(1) Feature-based methods where a set of features is generated for each relation instance 

in the labeled data, and a classifier is then trained to classify new relation instances 

[74]. 
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(2) Tree kernel-based methods where syntactic tree kernel functions are designed to 

compute similarities between representations of two relation instances. Support 

Vector Machine (SVM) is usually employed for relation classification with its 

accommodation of various kernels [73]. 

 

(3) Deep learning-based methods where distributional representations (embeddings) of 

words and dependency-based syntactic structures are used as input features to the 

algorithms of convolutional neural networks (CNNs) [75] or RNNs [76] for relation 

classification. 

 

(4) Joint learning of entities and relations. Traditionally, the relation extraction task is 

completed using a pipeline of two separated tasks: NER and RE. Once entities and 

their types are identified, then RE techniques can be applied. Such a pipeline method 

is prone to the propagation of errors from the first phase (extracting entities) to the 

second phase (extracting relations). To avoid this propagation of errors, joint 

modeling of entity and relation has become increasingly popular because of their high 

performance since relations depend highly on entity information [77]. 

 

Several clinical NLP challenges have been organized for clinical relation extraction, such 

as the temporal relation extraction task in SemEval 2016 [78], relations between 

modifiers and diseases in SemEval 2015 [79], and assertions of diseases, medications and 

lab tests in the i2b2 2010 [55]. Besides, existing clinical NLP tools also contain relation 
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recognition modules. For example, CLAMP can recognize assertions, modifiers of 

diseases and medications [36]. cTAKES can also recognize the negation of named 

entities [35], as well as temporal modifiers of entities. Machine learning based methods 

are the current state-of-the-art methods in clinical NLP challenges, especially deep 

learning based methods [79]. However, most of the information models designed for 

relation extraction works are relatively simple, focusing on several specific clinical 

concepts and relation types. 

 

Guided by the information model based on SNOMED CT designed in Chapter 2, this 

study takes the initiative to build relation extraction systems for a comprehensive set of 

core clinical concepts and relations. In total, relation extraction systems are built for 19 

relations. We investigate the common frameworks of supervised relation extraction, 

including feature-based, tree-kernel based and joint learning of entities and relations 

using deep learning based methods for the task here. 

 

4.2 Methods 

We have used a feature-based supervised learning approach, a kernel-based supervised 

learning approach, and a deep learning approach to joint extract entities and relations for 

our relation extraction task. The feature-based approach was used to set the performance 

baseline for the state-of-the-art kernel-based approach and deep learning-based joint 

extraction approach. 

 



 

67 

 

4.2.1 Feature-based Approach 

SVM is a supervised machine learning technique motivated by the statistical learning 

theory [80]. SVM seeks an optimal separating hyperplane based on the structural risk 

minimization. It divides the training examples into two classes and selects the only 

effective instances in the training set based on support vectors. 

 

SVMs are used to build binary classifiers. Therefore, we must adapt SVMs for multi-

class classification. We applied the one vs. others strategy, which builds K classifiers to 

separate one class from all others. The class that has the maximal SVM output will 

determine the final decision of an instance in the multiple binary classifications. 

 

A semantic relation is determined between two entities. We define the argument order of 

the two entity mentions, M1 for the first mention and M2 for the second mention: 

Relation(M1, M2). An example of relation with ordered arguments is 

Has_location(“head”, “injury”). 

 

Our feature selection follows the work by Zhou et al. [74]. According to their positions, 

four categories of words are used as features: 

1) The words of both M1 and M2 

2) The words between M1 and M2 

3) The words before M1 

4) The words after M2 
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The headword is generally much more important. For the words of both mentions, we 

differentiate the headword of a mention from other words. The words between the two 

mentions can be classified into three bins: the first word in between, the last word in 

between and other words in between. Both the words before M1 and after M2 can be 

classified into two bins: the first word next to the mention and the second word next to 

the mention. The entity type of both mentions and combination of mention entity types 

are also used as features. 

 

4.2.2 Graph Kernel-based Approach 

The overall performance of feature-based methods largely depends on the effectiveness 

of the designed features. The main advantage of kernel-based methods is that such 

explicit feature engineering is avoided. In kernel-based methods, kernel functions are 

designed to compute similarities between representations of two relation instances and 

SVM is employed for classification. 

 

Our method follows the all-paths graph kernel proposed by Airola et al. [81–83]. A graph 

kernel calculates the similarity between two input graphs by comparing the relations 

between common vertices. The weights of the relations are calculated using all possible 

paths between each pair of vertices. The kernel represents the target pair using graph 

matrices based on two sub-graphs. The first sub-graph is built from the dependency 

analysis and represents the structure of a sentence. It is a directed graph which includes 
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two types of vertices. One type is a word vertex contains its lemma and part-of-speech 

tags (POS). Another type is a dependency vertex contains the dependency relation 

between words. Both types of vertices contain their positions. Their positions 

differentiate them from other vertices. Figure 4-1 illustrates the dependency graph. Since 

the words connecting the candidate entities in a syntactic representation are particularly 

likely to carry information regarding their relationship [84], the labels of the vertexes on 

the shortest undirected paths connecting word1 and word2 are differentiated from the 

labels outside the paths using a special tag “IP”. Further, the edges are assigned weights; 

all edges on the shortest paths receive a weight of 0.9 and other edges receive a weight of 

0.3 as in [81]. Thus, the shortest path is emphasized while also considering the other 

words outside the path as potentially relevant. Furthermore, semantic classes, 

representing the sentence content at a fine-grained semantic level, can be integrated into 

the dependency graph kernel by replacing the word vertices with semantic class vertices. 

 

Figure 4-1. Dependency Graph 

 

The second sub-graph is built from the linear structure of the sentence and represents the 

word sequence in the sentence. Each of its word vertices contains its lemma, its relative 
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position to the target pair and its POS. All edges are given the weight 0.9 as in [81]. 

Figure 4-2 illustrates the linear order graph. 

 

Figure 4-2. Linear Order Graph 

 

Assuming V represents the set of vertices in the graph, the calculation of the similarity 

between two graphs uses two types of matrices which are edge adjacent matrix A and 

label matrix L. The graph is represented with the adjacent matrix A ∈ R|V| × |V| whose rows 

and columns are indexed by the vertices, and [A]i,j contains the weight of the edge 

connecting vi ∈ V and vj ∈ V if such an edge exists, and 0 otherwise. In addition, the 

labels are presented as a label allocation matrix L ∈ R|I| × |V|, so that Li,j = 1 if the j-th 

vertex has the i-th label, and Li,j = 0 otherwise. Using the Neumann Series, a graph matrix 

G is calculated as: 

𝐺 =  𝐿𝑇 ∑ 𝐴𝑛𝐿 =  𝐿𝑇((𝐼 − 𝐴)−1 − 𝐼)𝐿
∞

𝑛=0
 

This matrix sums up the weights of all the paths between any pair of vertices. Each entry 

represents the strength of the relation between a pair of vertices. Given two instances of 

graph matrices G′ and G″, the graph kernel K(G', G″) is defined as follows: 

𝐾(𝐺′, 𝐺′′) =  ∑ ∑ 𝐺𝑖𝑗
′ 𝐺𝑖𝑗

′′
|𝐿|

𝑗=1

|𝐿|

𝑖=1
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4.2.3 Deep learning-based Joint Learning Approach 

Our method follows the end-to-end relation extraction method proposed by Miwa et al. 

[85]. The recurrent neural network based model captures both word sequence and 

dependency tree substructure information by stacking bidirectional tree-structured 

LSTM-RNNs on bidirectional sequential LSTM-RNNs. This allows the model to jointly 

represent both entities and relations with shared parameters in a single model. 

 

 

Figure 4-3. End-to-end Relation Extraction Model 

 

Figure 4-3 shows the overview of the model. The model mainly consists of three 

representation layers: a word embeddings layer (embedding layer), a word sequence 

based LSTM-RNN layer (sequence layer), and finally a dependency subtree based 

LSTM-RNN layer (dependency layer). The embedding layer handles embedding 

representations of words, part-of-speech (POS) tags, dependency types, and entity labels. 

The sequence layer represents words in a linear sequence using the representations from 
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the embedding layer. This layer represents sentential context information and maintains 

entities. The entity detection is treated as a sequence labeling task. The dependency layer 

represents a relation between a pair of two target words in the dependency tree. It is 

corresponding to a relation candidate in relation classification. 

 

The left-to-right entity detection is built on the sequence layer and relation classification 

is realized on the dependency layers, where each subtree based LSTM-RNN corresponds 

to a relation candidate between two detected entities. The parameters are simultaneously 

updated via backpropagation through time (BPTT) [86]. The dependency layers are 

stacked on the sequence layer, so the embedding and sequence layers are shared by both 

entity detection and relation classification, and the shared parameters are affected by both 

entity and relation labels. 

 

4.3 Experiments and Evaluation 

In our annotated discharge summary corpus, there are 4,289 relation instances for 61 

unique relationships. Many relationships have only a few instances. We selected 19 

relationships that have more than 40 instances and applied all three approaches including 

feature-based approach, graph kernel-based approach, and joint learning based approach. 

Parameters for each algorithm were optimized using the training set via a 10-fold cross-

validation method. POS-tags and dependency trees of the datasets were generated using 

the Stanford parser [87]. 
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For each approach, we evaluated the relation recognition performance for both using 

gold-standard entities and using the entities recognized from the last chapter (an end-to-

end system). We used the standard measures (Precision, Recall, and F-measure) to 

evaluate the performance of each approach. 

 

The feature-based SVM approach was used to set our performance baseline. The study 

showed that using only a set of basic features could already achieve reasonable 

performance and adding more complex features may not improve the performance much 

[88]. Therefore, we used some basic word and entity type features for the SVM classifier 

in our experiments. 

 

The package of the graph kernel-based algorithm provided in [81] was employed in our 

experiments. This package is built on the lease squares SVM and provides configuration 

options for some SVM parameters, as well as graph kernel related parameters. For graph 

kernels, all edges on the shortest paths received a weight of 0.9, the other edges received 

a weight of 0.3. For the word sequence based kernel, all edges received a weight of 0.9. 

 

The package of the deep learning-based joint learning algorithm provided in [85] was 

employed in our experiments. The package is implemented using the Dynamic Neural 

Network Toolkit (DyNet) [89]. Sentences were parsed using the Stanford neural 

dependency parser [90] with the original Stanford Dependencies. 
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4.4 Results 

Table 4-1 shows the performance of relation extraction using annotated gold standard 

clinical entities. Table 4-2 shows the end-to-end performance by recognizing the clinical 

entities first and then extracting the relations among recognized entities. 

Relation(ConceptType1, ConceptType2) defines that Concept Type 1 has a Relation with 

Concept Type 2. We use the abbreviations (defined in Chapter 2 Table 2-2) for clinical 

concept semantic types. For example, Has_location(CF, BS) defines that the concept type 

Clinical Finding (CF) has a relation Has_location with the concept type Body Structure 

(BS). 

 

We highlighted the best F-measure for each relation in the result tables. When using gold 

standard entities for relation extraction, joint learning based approach achieved best F-

measures for 10 relations, feature-based approach had best F-measures for 9 relations, 

and graph kernel-based approach did not have any best F-measures. The best F-measure 

performance was 0.894 for relation Has_modifier(CF, CER) using the feature-based 

approach. In the end-to-end relation extraction, joint learning based approach had best F-

measures for 11 relations, graph kernel-based approach had best F-measures for 7 

relations, and feature-based approach only had best F-measures in 1 relation. The best F-

measure performance was 0.718 for relation Has_modifier(BS, QV_LA) using joint 

learning based approach. 

 

Table 4-1 
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Relation Extraction Performance (Gold Standard Entities) 

Relation 

(ConceptType1, 

ConceptType2) 

No. of 

Instances 

SVM Graph Kernel Joint 

P R F P R F P R F 

Has_location 

(CF, BS) 
871 0.691 0.775 0.731 0.781 0.919 0.844 0.821 0.935 0.874 

Has_modifier 

(CF, CER) 
471 0.857 0.934 0.894 0.761 0.919 0.833 0.754 0.942 0.838 

Has_modifier 

(CF, QV_AT) 
434 0.734 0.853 0.789 0.845 0.898 0.871 0.866 0.910 0.887 

Belongs_to 

(CF, PER) 
425 0.685 0.821 0.747 0.519 0.739 0.610 0.540 0.752 0.629 

Has_procedure_site 

(PRO, BS) 
298 0.661 0.681 0.671 0.727 0.877 0.795 0.743 0.891 0.810 

Has_modifier 

(BS, QV_LA) 
260 0.684 0.826 0.748 0.724 0.822 0.770 0.750 0.853 0.798 

Has_modifier 

(CF, QV_SE) 
194 0.671 0.892 0.765 0.639 0.879 0.740 0.640 0.881 0.741 

Has_modifier 

(CF, QV_CO) 
165 0.719 0.885 0.793 0.741 0.945 0.830 0.745 0.957 0.838 

Has_modifier 

(PRO, QV_AT) 
133 0.587 0.835 0.689 0.523 0.852 0.648 0.531 0.865 0.658 

Has_indication 

(MED, CF) 
119 0.655 0.622 0.638 0.275 0.909 0.423 0.294 0.930 0.447 

Associated_with 

(CF, CF) 
108 0.333 0.009 0.018 0.181 0.704 0.288 0.201 0.738 0.316 

Has_modifier 

(BS, QV_SI) 
100 0.705 0.91 0.795 0.596 0.831 0.694 0.600 0.841 0.700 

Has_focus 

(PRO, CF) 
96 0.429 0.031 0.058 0.000 0.000 0.000 0.000 0.000 0.000 
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Has_interpretation 

(PRO, CF) 
94 0.286 0.021 0.040 0.034 0.600 0.065 0.355 0.620 0.451 

Has_modifier 

(CF, QV_LA) 
62 0.000 0.000 0.000 0.016 1.000 0.032 0.633 0.724 0.675 

Has_modifier 

(CF, QV_SI) 
56 0.533 0.143 0.225 0.018 1.000 0.036 0.407 0.210 0.277 

Procedure_device 

(PRO, DEV) 
52 0.640 0.615 0.627 0.314 0.727 0.438 0.322 0.756 0.452 

Has_modifier 

(PRO, QV_SI) 
42 0.667 0.571 0.615 0.357 0.577 0.441 0.376 0.602 0.463 

Has_modifier 

(PRO, QV_LA) 
40 0.429  0.075  0.128 0.300 0.632 0.407 0.318 0.650 0.427 

 

Table 4-2 

Relation Extraction Performance (End-to-End) 

Relation 

(ConceptType1, 

ConceptType2) 

No. of 

Instances 

SVM Graph Kernel Joint 

P R F P R F P R F 

Has_location 

(CF, BS) 
871 0.487 0.554 0.519 0.570 0.682 0.621 0.665 0.698 0.681 

Has_modifier 

(CF, CER) 
471 0.642 0.535 0.584 0.559 0.680 0.613 0.720 0.600 0.655 

Has_modifier 

(CF, QV_AT) 
434 0.466 0.535 0.498 0.624 0.623 0.623 0.580 0.650 0.613 

Belongs_to 

(CF, PER) 
425 0.564 0.653 0.605 0.371 0.347 0.359 0.605 0.630 0.617 

Has_procedure_site 

(PRO, BS) 
298 0.513 0.523 0.518 0.536 0.571 0.553 0.650 0.660 0.655 

Has_modifier 260 0.577 0.741 0.649 0.508 0.465 0.485 0.680 0.760 0.718 
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(BS, QV_LA) 

Has_modifier 

(CF, QV_SE) 
194 0.433 0.469 0.450 0.479 0.578 0.524 0.610 0.570 0.589 

Has_modifier 

(CF, QV_CO) 
165 0.582 0.648 0.613 0.545 0.763 0.636 0.670 0.705 0.687 

Has_modifier 

(PRO, QV_AT) 
133 0.371 0.421 0.394 0.389 0.519 0.445 0.480 0.520 0.499 

Has_indication 

(MED, CF) 
119 0.536 0.496 0.515 0.189 0.652 0.293 0.680 0.590 0.632 

Associated_with 

(CF, CF) 
108 0.000 0.000 0.000 0.132 0.308 0.185 0.000 0.000 0.000 

Has_modifier 

(BS, QV_SI) 
100 0.393 0.590 0.472 0.443 0.480 0.460 0.540 0.690 0.606 

Has_focus 

(PRO, CF) 
96 0.375 0.031 0.058 0.000 0.000 0.000 0.000 0.000 0.000 

Has_interpretation 

(PRO, CF) 
94 0.167 0.011 0.020 0.024 0.220 0.043 0.020 0.100 0.020 

Has_modifier 

(CF, QV_LA) 
62 0.000 0.000 0.000 0.012 1.000 0.024 0.000 0.000 0.000 

Has_modifier 

(CF, QV_SI) 
56 0.043 0.018 0.025 0.013 1.000 0.026 0.365 0.123 0.184 

Procedure_device 

(PRO, DEV) 
52 0.400 0.192 0.260 0.231 0.333 0.273 0.192 0.400 0.259 

Has_modifier 

(PRO, QV_SI) 
42 0.048 0.024 0.032 0.268 0.204 0.231 0.030 0.100 0.046 

Has_modifier 

(PRO, QV_LA) 
40 0.375 0.075 0.125 0.225 0.243 0.234 0.045 0.345 0.080 
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4.5 Discussion 

Even we used some basic word and entity type features only for SVM classifier in our 

experiments, the results showed that feature-based approach had the best performance in 

extracting almost half of the relation types than more sophistic graph kernel-based and 

joint learning based approaches when using gold standard entities. Our graph kernel-

based and joint learning based approaches achieved similar performances even though 

joint learning based approach achieved slightly better performance when using gold 

standard entities for predicting relations. 

 

It is not surprising that the corpus size plays an important role for performance. When the 

number of instances for a relation type is greater than 150, most of the relation types 

achieved high F score (F > 0.7). When the number of instances for a relation type is less 

than 100, the performance greatly decreased (F < 0.5). This finding suggests that we 

should annotate more clinical documents, in order to achieve optimal performance for 

machine learning-based relation extraction tasks. 

 

In the end-to-end extraction of both entities and relations, all three approaches suffered 

big performance loss. Joint learning based approach reported better results than the other 

two approaches. The highest F score for feature-based approach decreased from 0.894 to 

0.584; the highest F score for graph kernel-based approach decreased from 0.871 to 0.623; 

the highest F score for joint learning based approach decreased from 0.887 to 0.613. 
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These findings indicate it is still challenging to build NLP systems that can extract both 

entities and relations with high accuracy. 

 

4.6 Conclusion 

We used a feature-based SVM approach, a graph kernel-based approach, and a joint 

learning-based approach to extract a comprehensive set of relation types. All three 

approaches achieved good performance when the number of instances used for training 

the algorithms was large enough. Joint learning based approach achieved better 

performance for the end-to-end system that extracts both entities and relations. 
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Chapter 5: SNOMED CT Encoding 

 

5.1 Introduction 

Entities and relations extracted in previous Chapters have to be encoded into standard 

concepts in ontologies, in order to be used for other computerized applications [91]. An 

automated encoding system has to be developed to map entities (often in various surface 

forms) and relations in clinical documents into standardized representations in an 

ontology. Standardized clinical codes are then used for hospital billing, clinical audit, 

epidemiological studies, measuring treatment effectiveness, assessing health trends, cost 

analysis, health-care planning, and resource allocation [19]. 

 

An encoder that maps extracted mentions of entities to concepts in ontologies is also 

known as the entity linking task in NLP. The entity linking task has been extensively 

studied in Computer Science including shared tasks such as TAC KBP [92]. Diverse 

heuristic and machine learning based methods have been proposed for a framework of 

entity liking that includes candidate generation, candidate ranking, and un-linkable 

mention prediction but few of them have been investigated in the medical domain. Those 

widely used NLP systems such as cTAKES and MetaMap are mainly based on dictionary 

lookup approaches for concept mapping at this time. 

 



 

81 

 

Furthermore, as previously illustrated in Table 1-1, most existing NLP systems are 

mapping entities to the UMLS concepts. Although the UMLS contains comprehensive 

medical vocabularies, its noisiness and inconsistency also make it less desirable for 

reliable inference based on hierarchy [47]. Therefore, encoding clinical entities to a 

single, comprehensive medical ontology that has consistent hierarchy is more appealing, 

and SNOMED CT is such a good candidate ontology. The study indicates that about 80% 

of itemized entries for the summary level information in EHRs can be encoded with 

SMOMED CT normalized phrases (pre-coordinated concepts) [93]. It also allows 

compositional encoding of clinical concepts with semantic relations between them, so 

that multiple concepts can be combined to form a more detailed representation of the 

clinical information (post-coordinated concepts). Compositional expressions allow more 

complex descriptions and therefore provide a complete representation of medical 

concepts. 

 

Despite growing interests to incorporate SNOMED CT as a reference terminology into 

the clinical information systems, there are few detailed encoding instructions and 

examples available [17]. The existing methodologies for mapping clinical text in EHR to 

SNOMED CT concepts range from manual to semi-automatic and automatic methods 

[17,94,95]. In a manual encoding method, the majority of the effort was spent on data 

cleaning and generating the data items to be encoded. The exact matching algorithm was 

used for the batch process and the matching results were manually verified. Data items 

that cannot be encoded using the batch process were searched for manually using a 
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SNOMED CT browser [17]. The general approach for automated clinical coding is to 

transform code descriptions and narrative text into an internal representation. Text is 

matched to codes based on the similarity between the text’s and the code’s internal 

representation. Internal representations normalize raw forms and generally capture 

linguistic information used in matching and scoring. Barrett et al. developed a token-

based approach that codes narrative tokens and manipulates token-level encodings by 

mapping linguistic structures to topological operations [94]. Most of these methods 

convert text to pre-coordinated SNOMED CT concepts. Studies that have used post-

coordination was completed manually [17] or did not include the detailed description of 

the approach [96]. 

 

In this study, we mainly focus on the encoding of “clinical findings” and their relations 

with modifiers (e.g., body location, negation) in SNOMED CT. Considering that 

SNOMED CT may not have a full coverage of clinical concepts in practical clinical 

settings, the encoding is carried out at three levels of granularities: (1) the mentions of the 

clinical findings; (2) binary relations: the phrase containing a clinical finding concept and 

one of its modifier; (3) multiple relations: the phrase containing a clinical finding concept 

and all of its modifiers. To obtain the optimal encoding performance, we propose a novel 

learning-to-rank based method that incorporates multiple features to capture the similarity 

between concept mentions and standard terms from different linguistic aspects. 

Particularly, a translational language model is generated based on synonyms in 
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SNOMED CT to alleviate the severe problem of surface text discrepancy of clinical 

expressions. 

 

5.2 Method 

As illustrated in Figure 5-1, the encoding process contains three steps: (1) Candidate 

generation and ranking: Firstly, a search engine is built, in which the terms inside the 

description file of SNOMED CT are trimmed and indexed. The description file contains 

all the synonyms of the same semantic concept in SNOMED CT. Given a mention of 

clinical finding, or a combination of a modifier and the clinical finding as of the query, its 

top 10 candidate terms are retrieved from the index using the common information 

retrieval model of BM25 [97]. (2) Candidate re-ranking: After that, the initial set of 

candidate terms is re-ranked using the learning to ranking [98–101] method; (3) 

Candidate determination: Finally, the corresponding SNOMED CT concept code of the 

top-ranked SNOMED CT term is assigned. 

 

Ranking
(BM25)

SNOMED CT
Database

Re-ranking
(Learning to Rank)

EncodingClinical Concept
Retrieved

SNOMED CT
descriptions

SNOMED CT
concepts

Ranked
SNOMED CT
descriptions

Encoded
Clinical Concept

SNOMED CT
descriptions

 

Figure 5-1. System Architecture for Encoding 
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5.2.1 Gold Standard Annotation for Encoding Evaluation 

Gold standard encoding of clinical concepts and relations were created and used for 

development and evaluations. Our focus is clinical finding related concepts and their 

relations. There are totally 5,531 concept mentions in our annotation corpus of discharge 

summaries; 2,916 concept mentions are annotated with the semantic types of “finding” or 

“disorder”, both of which were included in this study as “clinical finding” type. 

 

For relation encoding, first we coded binary relations, which are the relations between 

one clinical finding and one of its modifier. Next, we coded complex relations, which are 

the most granular SNOMED CT concept codes for combining the clinical finding and all 

of its modifiers. For example in Figure 5-2, clinical finding “injury” has two binary 

relations: a “Has location” relation with body structure “head” and a “Has modifier” 

relation with qualifier value “closed”. Our final results will have three sets of SNOMED 

CT codes: 

 Clinical concepts: “417746004 | Traumatic injury (disorder)”, “29179001 | Closed 

(qualifier value)”, “69536005 | Head structure (body structure)” 

 Concepts contain binary relation: “264513002 | Closed injury (qualifier value)”, 

“82271004 | Injury of head (disorder)” 

 Concepts contain complex relations: “451000119106 | Closed injury of head 

(disorder)” 

 



 

85 

 

 

Figure 5-2. Concepts and relations encoding 

 

The annotation of gold standard concepts for encoding is a semi-automatic process: First, 

we applied a pooling process to find the candidate list of SNOMED CT terms by 

combining the candidates from five different sources: firstly, the BM25 algorithm was 

used as an information retrieval model to match and rank SNOMED CT terms based on 

lexicon similarity and distribution; in addition, the encoding modules in three clinical 

NLP software, CLAMP, cTAKES and MetaMap were used to map a clinical concept to 

UMLS CUI. The UMLS CUI is then mapped to a SNOMED CT concept using UMLS’s 

mapping file MRCONSO.RRF. Furthermore, the UMLS API [102] was also applied to 

retrieve UMLS CUIs which are mapped to SNOMED CT concepts. 

 

Next, a physician manually reviewed the candidate concepts in the pool and assigned the 

correct SNOMED CT codes. On average, each clinical concept mention had 14.18 

candidates after pooling. Using automatically identified candidates greatly reduced the 

amount of work for manually searching SNOMED CT and assigning codes. Correct 
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candidates were selected and labeled as the gold standard. If none of the candidates were 

correct, the SNOMED CT codes would be manually searched and assigned. Some 

concepts and relations cannot be located in SNOMED CT codes and we assigned “Nil” as 

the code. Table 5-1 shows the number of SNOMED CT codes in the gold standard data. 

In our data set, there are 2,916 clinical concepts with clinical finding semantic type, 3,501 

binary relations and 2,916 complex relations for these concepts. Table 5-2 shows some 

examples of the gold standard data. 

 

Table 5-1 

Gold Standard Data for Encoding 

 
Has SNOMED 

CT code 

No SNOMED 

CT code 
Total 

Clinical concept 
2,746 

(94.17%) 

170 

(5.83%) 
2,916 

Concept contain binary relation 
1,344 

(38.39%) 

2,157 

(61.61%) 
3,501 

Concept contain complex relation 
786 

(26.95%) 

2,130 

(73.05%) 
2,916 

 

Table 5-2 

Gold Standard Data Examples 

Mention Concept Type 
SNOMED CT 

Code 

SNOMED CT 

Concept 

cancer Clinical concept 363346000 Malignant 

neoplastic disease 
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(disorder) 

diarrhea Clinical concept 62315008 Diarrhea (finding) 

mild diarrhea 
Concept contain binary 

relation 
Nil  

abnormalities Clinical concept Nil  

congenital 

abnormalities 

Concept contain binary 

relation 
276654001 

Congenital 

malformation 

(disorder) 

congenital 

genitourinary 

abnormalities 

Concept contain complex 

relation 
287085006 

Genitourinary 

congenital 

anomalies 

(disorder) 

fevers Clinical concept 386661006 Fever (finding) 

persistent fevers 
Concept contain binary 

relation 
271751000 

Continuous fever 

(finding) 

persistent high 

fevers 

Concept contain complex 

relation 
Nil  

 

5.2.2 Models of Learning to Rank 

Training Dataset 

The training dataset for the learning to rank model was constructed from the top 10 

BM25 matching results that we generated from the previous pooling process. 

 

Algorithm 

We used linear Ranking SVM [103], a state-of-art method of learning to rank, to train the 

ranking model. 
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The Ranking SVM algorithm is a learning retrieval function that employs pair-wise 

ranking methods to adaptively sort results based on how relevant they are for a specific 

query. From the gold standard data, we derive pairwise preference data (m, c) such that 

score(m, c+) > score(m, c-), where m is the clinical concept mention and c is the 

SNOMED CT term candidate. Specifically, (m, c+) are selected from the instances c 

labeled as positive with respect to m, while (m, c-) are selected from the instances labeled 

as negative. 

 

The Ranking SVM function uses a mapping function to describe the match between a 

clinical concept mention and the features of each of the possible SNOMED CT term 

candidates. This mapping function projects each mention and candidate data pair onto a 

feature space 𝜑. These features of the labeled data are then used to train an automatic 

ranking system. As illustrated in the following equation, the final score 𝑠𝑐𝑜𝑟𝑒(𝑚, 𝑐) of 

each pair (𝑚, 𝑐) are a linear interpolation of the feature functions 𝜑(𝑚, 𝑐), multiplied by 

their weights 𝑤𝑖. 

𝑠𝑐𝑜𝑟𝑒(𝑚, 𝑐) =  ∑ 𝑤𝑖𝜑𝑖(𝑚, 𝑐) 

 

Ranking Features 

Three basic matching models are first implemented as the baseline features. Then, a 

translation-based language model (TransLM) is included for alleviating the lexical gap 

problem. 
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BM25 Score 

Given a concept mention M, containing words m1, …, mn, the BM25 score of a 

SNOMED CT term T is: 

𝑠𝑐𝑜𝑟𝑒(𝑇, 𝑀) =  ∑ 𝐼𝐷𝐹(𝑚𝑖)  × 
𝑓(𝑚𝑖, 𝑇) × (𝑘1 + 1)

𝑓(𝑚𝑖, 𝑇) +  𝑘1  × (1 − 𝑏 + 𝑏 ×  
|𝑇|

𝑎𝑣𝑔𝑡𝑙

𝑛

𝑖=1

 

where 𝑓(𝑚𝑖, 𝑇) is 𝑚𝑖‘s term frequency in the term T, |T| is the length of the term T in 

words, and avgtl is the average term length of all SNOMED CT terms. 𝑘1 and b are free 

parameters, usually chosen, in the absence of an advanced optimization, as 𝑘1 ∈

[1.2, 2.0] and b = 0.75. 𝐼𝐷𝐹(𝑚𝑖) is the IDF (inverse document frequency) weight of the 

mention word 𝑚𝑖: 

𝐼𝐷𝐹(𝑚𝑖) = 𝑙𝑜𝑔
𝑁 − 𝑛(𝑚𝑖) + 0.5

𝑛(𝑚𝑖) + 0.5
 

where N is the total number of SNOMED CT terms, and 𝑛(𝑚𝑖)  is the number of 

SNOMED CT terms containing 𝑚𝑖. 

 

Exact Match 

From the pairwise data (m, c) in the ranking algorithm, where m is the clinical concept 

mention and c is the SNOMED CT term candidate, we built a feature set based on 

whether m and c are exact matches. We also built a feature set based on whether 

normalized m and normalized c are exact matches. The normalization process involves 

changing the term to lower case, removing punctuation and prefixes, as well as stemming. 

 

Jaccard Similarity Score 
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The Jaccard similarity score measures string similarity between a concept mention M and 

a SNOMED CT term T, and is defined as the size of the intersection words in M and T 

divided by the size of the union words in M and T: 

𝐽(𝑀, 𝑇) =  
|𝑀 ∩ 𝑇|

|𝑀 ∪ 𝑇|
=  

|𝑀 ∩ 𝑇|

|𝑀| + |𝑇| −  |𝑀 ∩ 𝑇|
 

For example, the Jaccard similarity score for a mention “closed head injury” and a 

SNOMED CT term “closed injury of head” is 

𝐽(𝑀, 𝑇) =  
|𝑀 ∩ 𝑇|

|𝑀 ∪ 𝑇|
=  

|{closed", "head", "injury"}|

|{closed", "head", "injury", "of"}|
=  

3

4
= 0.75 

 

The lexical mismatch is common in the usage of natural languages. It occurs when 

different people name the same thing or concept differently. The lexical mismatch 

between clinical concept mentions and SNOMED CT terms causes the mismatch 

problem in our encoding process. For example, the correct SNOMED CT code for the 

mention “cancer” is “363346000 | Malignant neoplastic disease (disorder)”, while the 

word “cancer” is not a part of the fully specified concept name “Malignant neoplastic 

disease” in SNOMED CT. 

 

Translation-based Language Model 

To alleviate the word mismatch problem, we employ the state-of-art translation-based 

language model (TransLM) [104]. Given a query (mention) q and a document (concept) d, 

the ranking function based on TransLM is written as 

𝑃(𝑞|𝑑) ∝  ∑ 𝑐(𝑤, 𝑞)𝑙𝑜𝑔

𝑤∈𝑉

𝑃(𝑤|𝑑) 
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𝑃(𝑤|𝑑) = (1 − 𝛼) ∑ 𝑃(𝑤|𝑡)𝑃(𝑡|𝑑) +  𝛼𝑃(𝑤|𝐶)

𝑡𝜖𝑑

 

where 𝑃(𝑤|𝑑) and 𝑃(𝑤|𝐶) are the unigram language models (LM), which are estimated 

with the maximum likelihood for the concept d and the whole collection C, respectively. 

𝑃(𝑤|𝑡) is the probability of translating a word t in concept d into a word w in mention q. 

It bridges the gap between different words. 

 

The performance of the translation-based language model relies on the quality of the 

word-to-word translation probabilities. We followed the method of Xue et al. [104] and 

used GIZA++ toolkit [105,106] to learn the word translation probabilities. To train the 

translation-based language model, two types of data were used to construct the parallel 

corpus: 

(1) The synonyms from SNOMED CT descriptions. For example, “Cancer” has five 

synonyms “CA - Cancer”, “Malignant neoplasm”, “Malignant neoplastic disease”, 

“Malignant tumor”, and “Malignant tumour”. We pair these synonyms to get the 

collection (“Cancer”, “CA - Cancer”), (“Cancer”, “Malignant neoplasm”), …, 

(“Malignant tumour”, “Malignant neoplastic disease”), (“Malignant tumour”, 

“Malignant tumor”). 

(2) The gold standard in the training data. For example, mention “cancer” is mapped to 

SNOMED CT concept id “363346000” in the gold standard. We pair the mention 

“cancer” with all the SNOMED CT terms which have concept id “363346000” to get 

the collection (“cancer”, “Cancer”), (“cancer”, “CA - Cancer”), …, (“cancer”, 

“Malignant tumor”), (“cancer”, “Malignant tumour”). 
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5.3 Experiments and Evaluation 

Baselines for Encoding 

We evaluated the baseline performance from the pooling results of the five different 

approaches in the last section. The top candidate of each approach was used in the 

evaluation. 

 

Evaluation Criteria 

We measured the performance of different retrieval methods using the following metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶) =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃) + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

where the terms True Positives, True Negatives, False Positives, and False Negatives are 

used to compare the results of the encoding system under test with trusted gold standard 

data. The terms positive and negative refer to the encoding system’s prediction result, and 

the terms true and false refer to whether that prediction corresponds to the trusted gold 

standard data. 

 

5.4 Results 

Table 5-3 shows the performance of each baseline encoding approach: BM25, CLAMP, 

cTakes, MetaMap, and UMLS API. Our proposed approaches: Learning to Rank and 

Learning to Rank with translation-based language model (TransLM) were also reported. 
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The best baseline performance was achieved by BM25 and its accuracy value for 

encoding clinical concepts, binary relations, and complex relations were, 75.0%, 60.0%, 

and 67.3% respectively. Our Learning to Rank approach improved the accuracy in all 

three categories by 6.1%, 6.2%, and 6.2% respectively. After applied the translation-

based language model (TransLM), the accuracy was further improved by 1.3%, 4.4%, 

and 3.9% respectively. Learning to Rank with translation-based language model 

(TransLM) achieved the best accuracy value in all three categories: 82.4% for encoding 

the clinical concepts, 70.6% for encoding the concepts which contain the binary relations, 

and 77.4% for encoding the concepts which contain complex relations. 

 

Table 5-3 

SNOMED CT Encoding Performance (Accuracy) 

 
Clinical Concept 

(%) 

Concept contain 

binary relation (%) 

Concept contain 

complex relation 

(%) 

Learning to Rank 81.1 66.2 73.5 

Learning to Rank 

(TransLM) 
82.4 70.6 77.4 

BM25 75.0 60.0 67.3 

CLAMP 52.3 47.0 49.4 

cTakes 40.6 33.1 35.9 

MetaMap 50.0 44.7 46.5 

UMLS API 43.1 34.4 37.5 
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5.5 Discussion 

In the five baseline encoding approach, BM25 reached the best performance in all three 

encoding categories. CLAMP also uses the BM25 algorithm. However, similar to other 

clinical NLP systems (cTAKES, MeataMap, and the UMLS API), it did not perform well, 

probably because all these systems’ search space is bigger (the entire UMLS rather than 

the SNOMED CT terms only). This finding indicates the importance of candidate 

generation by limiting the search space. 

 

Our Learning to Rank approach added features other than the BM25 score. Experiments 

show that we were able to achieve much better accuracy value by taking other similarity 

measures into account. The performance gain from applying the translation-based 

language model was not trivial as well, indicating the potential of this approach. 

 

Previous automated encoding studies [34,107–109] focus on mapping narrative phrases 

to terminological descriptions. These methods make little or no use of the additional 

semantic information available through ontology. Our approach exploited additional 

semantic information available in SNOMED CT and encoded clinical concepts as well as 

their relations. 

 

It is possible to represent the same information in multiple ways while using standard 

terminologies and information models. The same information can be represented using 

one or several concepts. In other words, the coding of concepts can be achieved by using 
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pre-coordination or post-coordination [110]. These methodologies have both advantages 

and disadvantages [111]. Studies have concluded that pre-coordination is easier and 

ensures consistency [110]. For post-coordination, rules must exist for the consistent use 

of SNOMED CT. Moreover, transforming SNOMED CT concepts into normal forms can 

achieve consistency and support selective retrieval [111]. The SNOMED CT 

implementation guide is limited. It suggests that each hierarchy has a particular purpose 

[112]. However, the study found overlaps between ‘‘clinical finding” and ‘‘morphologic 

abnormality” hierarchies [17]. As a result, the encoding by using post-coordination has 

many problems. There is no complete and uniform methodology for achieving it. 

SNOMED CT pre-coordination has been proved sufficient for coding clinical data, and 

local concepts can extend its coverage [113]. Therefore, our study only used pre-

coordination for encoding. 

 

5.6 Conclusion 

We annotated clinical concepts, binary relations, and complex relations by manually 

assigning the corresponding SNOMED CT codes. Using the annotated data, we 

developed new SNOMED CT encoding approaches using Learning to Rank with 

traditional BM25 model and translation-based language model. We compared the 

performance of our approaches with other clinical NLP systems and demonstrated the 

superior performance of our approach on encoding clinical concepts as well as their 

relations into SNOMED CT concepts. 
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Chapter 6: Conclusions 

 

6.1 Summary of Key Findings 

Extracting important clinical entities and relations embedded in unstructured clinical 

narratives and encoding them with standard medical ontologies is vital to enable the 

secondary use of EHRs. In this study, we developed a fine granular information model 

based on the SNOMED CT ontology. Based on this information model, we developed 

state-of-the-art approaches to recognize the clinical entities and relations, which were 

then mapped to SNOMED CT concepts. 

 

The work of our study in each chapter are summarized as follows: 

 

In Chapter 1, we did a survey of current applications, common tasks, tools and systems of 

clinical NLP, which indicate the importance of information extraction and encoding in 

the medical domain. Although medical knowledge is available in comprehensive 

ontologies such as SNOMED CT, they have not been leveraged to guide the development 

of clinical information extraction and encoding systems. Therefore, we proposed to 

design an information model based on the SNOMED CT, and build clinical NLP systems 

following the SNOMED-based information model. 
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In Chapter 2, we designed a fine granular information model based on SNOMED CT, for 

flexible encoding of clinical concepts with different granularities. The most important 

clinical concepts in SNOMED CT such as clinical findings and procedures and their 

relations were included in the information model. Following an annotation guideline, a 

corpus of discharge summaries was annotated using the information model, which serves 

as the basis for developing ontology information extraction systems using SNOMED CT. 

 

In Chapter 3, we investigated dictionary-based, conventional machine learning-based, 

and deep learning based methods for clinical entity recognition. In the dictionary lookup 

method, both SNOMED CT lexicons and corpus specific lexicons were used for 

comparing the performance. Our machine learning-based CRF method and LSTM-CRF 

method achieved better performance than the dictionary-based method. The evaluation 

demonstrated that the performances of recognizing important clinical entities are 

promising for practical applications. 

 

In Chapter 4, we investigated a feature-based approach, a graph kernel-based approach, 

and a joint learning based approach for the task of clinical relation extraction. The 

performances were evaluated by using the gold-standard entity mentions as well as 

automatically recognized entity mentions (i.e., the end-to-end system). Experimental 

results demonstrated that the joint learning based method outperformed the other two 

methods on the end-to-end performance, indicating that this method can reduce the errors 

propagated from the entity recognition step. 
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In Chapter 5, we first built a gold-standard corpus for SNOMED CT encoding, by 

annotating clinical finding concepts with different granularities. Next, we investigated 

Learning to Rank based algorithms for automatic encoding, with traditional IR model of 

BM25 and translation-based language model. We compared the performance of our 

approaches with five other encoding systems such as MetaMap and cTAKES. 

Experimental results demonstrated that our proposed new methods were able to achieve 

higher performance on encoding clinical concepts as well as their relations. 

 

6.2 Innovations and Contributions 

To the best of our knowledge, this is one of the first studies to recognize a comprehensive 

set of clinical concepts and their relations guided by the SNOMED CT ontology.  

 

In this study, we designed a fine granular information model based on the SNOMED CT 

ontology, and built an annotation corpus of discharge summary notes with clinical 

concepts, relations and encoding based on the information model. The information model 

and gold-standard corpus can be reused in other related clinical applications. 

 

We systematically implemented and compared different approaches for clinical entity 

recognition and relation extraction, ranging from basic dictionary-based methods to more 

cutting-edge deep learning based methods. Moreover, a novel Learning to Rank based 

approach was proposed with multiple features for encoding clinical finding entities to 
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SNOMED concepts. With the feature obtained from a translation-based language model 

of synonym pairs, our approach significantly outperformed other existing encoding 

systems, demonstrating the novelty of this approach. 

 

Overall, we built a state-of-the-art NLP system, guided by the SNOMED CT ontology, to 

process the clinical text and map them to standard concepts in SNOMED CT. The output 

information includes a comprehensive set of important clinical entities, relations and 

standard concept codes mapped to SNOMED CT. 

 

6.3 Future Work 

Due to the rich set of clinical entities and relations in the information model, it is very 

time consuming and labor intensive to annotate a clinical dataset with a high inter-

annotator agreement. Currently, our domain experts successfully annotated 100 discharge 

summary notes. Some less frequent concepts especially modifiers do not have instances 

sufficient enough for the NLP system to recognize automatically. We will annotate more 

clinical notes and explore semi-automatic methods such as pre-annotation to enhance the 

annotation efficiency in the next step. 

 

The fine granular information model could be further refined and expanded. It needs to 

be adapted to different clinical settings. The NLP pipeline system also needs to be tested 

using real clinical data from different domains or institutions. Moreover, in addition to 

learn clinical entities and their relations jointly, we could further investigate the system 
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performance by jointly learning all the three tasks, entity recognition, relation extraction 

and the encoding in a single framework. 

 

6.4 Conclusion 

In this dissertation research, we took the initiative to develop a fine granular information 

model based on the SNOMED CT ontology and used it to guide our information 

extraction process for clinical entities and their relations. We built an NLP system that 

can recognize a comprehensive set of clinical entities and relations, and finally map them 

to standardized SNOMED CT codes, which would benefit many clinical applications that 

rely on the SNOMED CT ontology. 
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