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 The Accessory Gene Regulator (Agr) quorum sensing system is a cell-cell 

communication system that is involved in regulating various bacterial processes such as toxin 

production, antibiotic production, biofilm formation, and other biomolecules. Despite the 

importance of the Agr system to Clostridia, the similarity and diversity of the system have been 

overshadowed by phylum-wide investigations of individual Agr components. To determine the 

variability of the Agr system within and between Clostridium species, we compared the 

sequences of its components within and between species using bioinformatics and 

phylogenetic tools. Putative Agr operons were found in over 50 Clostridia species, including 

undescribed components in some of the species with known operons. The Agr components 

were mostly similar within species and in some cases, differed between other Clostridial 

species. Conserved residues of unknown function were also found. The prevalence of the Agr 

system and the identification of common motifs in its components opens up therapeutic targets 

to be harnessed for the development of non-antibiotic and anti-virulence therapies for 

pathogenic Clostridial infections. 
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INTRODUCTION 

The Clostridium Genus and its Relevance 

 With over 300 species, the Clostridium genus is one of the largest prokaryotic genera of 

the Firmicutes phylum. These ancient bacteria are Gram-positive obligate anaerobes that form 

endospores. They are rod-shaped, fermentative bacteria that do not produce catalase. As a result 

of fermentation, however, they produce valuable compounds such as butyric acid, acetic acid, 

butanol, acetone, and large amounts of CO2 and H2. Colonizing almost all organic-containing 

anaerobic habitats, this genus of bacteria is ubiquitous. They produce enzymes that catabolize large 

molecules, such as proteins, lipids, cellulose, and collagen into fermentation precursors and 

participate in processes of biodegradation and carbon cycling (Darkoh & Asiedu, 2014). 

Due to their catabolism potential, Clostridia are considered medically and 

biotechnologically relevant bacteria. Clostridium botulinum produces one of the deadliest toxins 

on earth (Darkoh & Asiedu, 2014) and is considered a biological warfare threat (Arnon et al., 

2001). C. difficile causes both primary and recurrent infections. In the United States, C. difficile 

recurs at a rate of 25% after antibiotic treatment (Darkoh, DuPont, Norris, & Kaplan, 2015), 

costing an estimated $2.8 billion in total healthcare costs (Rodrigues, Barber, & Ananthakrishnan, 

2017). Another emerging pathogen, Clostridium sordellii, causes myonecrosis, sepsis, and shock 

(Darkoh & Asiedu, 2014). In the United States, Clostridium perfringens was responsible for 10% 

of yearly food-related illnesses between 2000 and 2008 (Scallan, 2011), and ranked second among 

the most common foodborne diseases between 1998 and 2010 (Grass, Gould, & Mahon, 2013). 

There are also pathogens that could potentially affect agriculture by infecting livestock, such as 

Clostridium chauvoei (Darkoh & Asiedu, 2014) and C. perfringens (Yu et al., 2017).  
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Although the Clostridium genus segregates into these medical and non-medical areas of 

relevance, their phylogeny does not follow the same segregation. A Multi-locus sequencing 

analysis of four housekeeping genes in the Clostridium genus revealed that toxigenic and 

pathogenic bacteria are spread throughout the phylogenetic tree. Similarly, the genome sizes of 

these bacteria do not correlate with the two traits and vary from 2.55 Mb for C. novyi to 6.00 Mb 

for C. beijerinckii. Neither does the number of open reading frames, as some species have more 

than twice the number of proteins in their genomes compared to others (Udaondo, Duque, & 

Ramos, 2017). The variations in the genomes of Clostridia are evident, but do not correlate with 

the pathogenicity of the bacteria. On the other hand, there are reports that show an operon used for 

communication and cell regulation with similar structure and function within a few Clostridium 

species and other genuses. The genes of this operon are prominent in different gram-positive 

species and given the relevance of the Clostridium genus, are an interesting subject of comparison 

similar to the four housekeeping genes mentioned previously. . 

 

Quorum sensing and its presence in Clostridium bacteria 

Quorum signaling allows bacterial cells to communicate and regulate gene expression 

based on population density. Therefore, quorum-signaling systems allow bacteria to respond to 

their environment, making it an indispensable mechanism for bacterial virulence and physiology. 

Although there are different quorum sensing mechanisms, Gram-positive bacteria mediate their 

signaling process through a secreted peptide called autoinducing peptide (AIP). The three steps 

necessary for quorum sensing are production of the AIP, its recognition, and the response it ensues 

within the cell. The production of AIP happens through post-translational processing of the 

autoinducer pre-peptide by a peptidase, which processes the linear or cyclical AIP for secretion 
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extracellularly. At the extracellular membrane, a two-component sensor histidine kinase detects 

the AIP and autophosphorylates. The phosphoryl group is then transferred onto a response 

regulator within the cytoplasm that effects the regulation of the quorum signaling system. In some 

systems, the actual AIP is taken into the cell to interact with receptors and transcription factors. 

Some bacteria also have a positive feedback loop for the quorum sensing genes as the system 

regulates the expression of its own genes (Darkoh & Asiedu, 2014). 

Clostridia, specifically, have two different mechanisms of quorum sensing, the Accessory 

Gene Regulator (Agr) and the LuxS systems. The LuxS system, however, has a metabolic 

byproduct for a signal and, therefore, is not considered a real quorum sensing system. On the other 

hand, the Agr system has genes encoding all four components, including the pre-peptide, the pre-

peptide processing protein, the sensor histidine kinase, and the response regulator (Darkoh & 

Asiedu, 2014). As will be shown in the sections below, the Agr system is responsible for crucial 

processes within Clostridia and will be the focus of this investigation. 

 

The Accessory gene regulator 

The Agr system is a quorum signaling system widely found in Clostridia and responsible 

for vital functions within the bacteria. However, the system has not been as thoroughly explored 

in Clostridia, but it is well characterized in the Staphylococcus genus. In Staphylococcus aureus, 

for example, the Agr system regulates colonization and toxin production (Darkoh & DuPont, 2017) 

through its four genetic components: agrA, agrC, agrD, and agrB. The proteins AgrA and AgrC 

are the response regulator and sensor histidine kinase, respectively. They sense and translate the 

message of the cyclic-autoinducer (c-AIP), derived from the pre-peptide AgrD. S. aureus’ AgrB 

is the protein that processes AgrD into an intermediate between AgrD and the fully functional c-
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AIP (Darkoh & Asiedu, 2014) that will be further processed and excreted by the protein SpsB 

(Cisar, & Elizabeth, 2009). Once the c-AIP is sensed and the AgrA becomes phosphorylated, AgrA 

binds to the P2 promoter leading to expression of the Agr system proteins through positive 

feedback. Additionally, AgrA binds to the P3 promoter, which is responsible for the expression of 

genes involved in regulating toxin production and colonization (Darkoh & Asiedu, 2014). 

Interestingly, the Agr system in S. aureus has been categorized into four different groups 

containing variations of the Agr proteins that, nonetheless, regulate the same genes. Because of 

the variation within the Agr system, the individual components of S. aureus’ Agr system have been 

thoroughly characterized and provide a valuable homolog for comparison with Clostridia. 

The AgrA of S. aureus, like most response regulators, consists of two domains, a regulatory 

domain at its N-terminus and an effector domain at its C-terminus (Stock, Robinson, & Goudreau, 

2000). The former domain is a receiver (REC) domain that enables activation and dimerization of 

the AgrA component following phosphorylation. The phosphoryl group binds to a conserved Asp 

residue in the REC domain as the ATP molecule is stabilized by its interactions between Mg2+ 

ions and an Asp and a glutamine residue. Once activated, a Lys residue forms a salt bridge with 

the bound phosphoryl group (Gao & Stock, 2009). The same interactions occur at the ATP binding 

site in S. epidermidis, but with a second aspartate instead of the glutamate in S. aureus (Zhiqiang 

et al., 2004). The latter domain of S. aureus’ AgrA is the effector domain and is conserved 

throughout different response regulators of two-component systems, including VirR of C. 

perfringens (Nikolskaya & Galperin, 2002). The C-terminus domain, termed the LytTR domain, 

is structured as a 10-stranded elongated β-β-β fold. Out of the loops of an edge of the domain 

emerge the side chains of residues H169, N201, and R223 that bind to the DNA and activate 
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transcription (Sidote, Barbieri, Wu, & Stock, 2009). Interestingly, AgrA is the only component 

conserved throughout all four groups. 

AgrA receives its activating phosphoryl group from AgrC. AgrC is part of the 10HPK 

family and contains a sensor domain connected to histidine kinase domain by an α-helical linker 

(Wang, Zhao, Novick, & Muir, 2014). The sensor domain is composed of transmembrane 

segments in the N-terminal domain. The first and second extracellular loops between the 

transmembrane segments are responsible for activation and specificity, respectively (Cisar, 

Geisinger, Muir, & Novick, 2009). The activation translates through physical changes in the 

protein to allow phosphorylation of the histidine kinase (HK) domain. The HK domain contains 

two subdomains that work together to autophosphorylate AgrC (Wang et al., 2017). The 

subdomains are the helical dimerization and histidine phosphorylation (DHp) subdomain, and the 

catalytic ATP-binding subdomain (Cisar & Elizabeth, 2009). The autophosphorylation happens at 

His239, which is located within the H-box motif of the HK domain. The domain also has important 

residues in the N-box and the G-box motifs, both of which delineate the ATP binding pocket 

(Stock, Robinson, & Goudreau, 2000). The Asn339 in the N-box was mutated to Asp and AgrC 

activity was  partially reduced, while the two glycine residues at positions 394 and 396 of the G-

box lead to complete inactivation of AgrC, when mutated to Ala (Cisar et al., 2009). 

Before AgrC can sense the c-AIP, AgrB has to cleave the pre-peptide. The peptidase is a 

unique protein, as it is not homologous to other proteins apart from AgrBs in Gram-positive 

bacteria (Thoendel & Horswill, 2013). Located in the membrane, the AgrB spans through to the 

extracellular milieu a few times, but there is a debate on the topology of the membrane (Zhang, 

Gray, Novick, & Ji 2002; Thoendel & Horswill, 2013). The catalytic residues of AgrB, His77 and 

Cys84 are more accessible to the cytoplasmic milieu and to AgrD (Qiu, Pei, Zhang, Lin, & Ji, 
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2005). The different AgrDs of S. aureus are recognized through different mechanisms as different 

parts of AgrB are involved in the processing of different AgrDs (George & Muir, 2007). 

Furthermore, the first 34 amino acids of AgrB, conserved throughout all groups, are essential for 

AgrD processing as mutations lead to undetectable levels of the c-AIP (Qiu et al., 2005). 

The last component of the Agr system is the AgrD. The pre-peptide has three segments, including 

the amphipathic N-terminus that is tethered to the cytoplasmic membrane, the residues that will 

become the AIP, and the predominantly charged C-terminus (Kavanaugh, Thoendel, & Horswill, 

2007). The segments have specific functions in the three steps that lead to the transformation of 

AgrD into c-AIP. The N-terminus tethers the pre-peptide close to the membrane-bound AgrB to 

facilitate the second cleavage step and increase the rate of AIP processing (Wang & Muir, 2016). 

In S. aureus, the amphipathic region also has the recognition site for the second cleavage, which 

is carried out by a more common peptidase called SpsB (Kavanaugh et al., 2007). The residues 

that become the AIP have a conserved Cys28, where the end of the AIP forms a thioester linkage. 

In some bacteria, the cAIP also has a tail composed of 1-4 residues. Both the tail and thioester 

linkage are necessary for activation of AgrC (Cisar & Elizabeth, 2009). Furthermore, the AIP 

residues also have a conserved motif of two or three hydrophobic residues that form a hydrophobic 

knob (Tal-Gan et al., 2013). The hydrophobic knob in addition to the thioester linkage are 

necessary for bioactivity of AIP (Cisar & Elizabeth, 2009). Lastly, the C-terminus segment is 

responsible for recognition and interactions that facilitate cleavage of the first transformational 

step (Cisar & Elizabeth, 2009).  
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The Agr system and its significance in Clostridia and other species 

Clostridial species utilizes the Agr system as a key player in their pathogenesis pathways. 

Clostridial Agr proteins are homologous to the Agr genes of S. aureus. Table 1 shows the 

arrangement and orientation of the Agr systems in Clostridia in relation to that of S. aureus. 

Evidently, there are similar Agr components between S. aureus and Clostridia, but within the 

Clostridium genus as well. Although there are some variations between the Agr components in 

Clostridia, the genes for agrB and agrD are present within all Clostridium species. Most 

importantly, there are similarities in function between the S. aureus Agr system and the Agr system 

of Clostridium species. However, some Clostridial strains encode two Agr systems in their 

genomes and these are designated Agr1 and Agr2. The Agr1 locus contains only the genes required 

for AIP synthesis (AgrD1 and AgrD2) whereas the Agr2 locus encodes genes required for both  

 

Clostridium 

Species 

Agr system components 

C. acetobutylicum agrB1D1, agrB2D2 (Darkoh & Asiedu, 2014) 

C. botulinum agrB1D1, agrB2D2 (Darkoh & Asiedu, 2014) 

C. difficile 

agrD1B1, agrA2C2D2B2 (Darkoh & Asiedu, 2014; Stabler et al., 2009), 

agrC3B3D3 (Hargreaves, Kropinski, & Clokie, 2014) 

C. perfringens agrB1D1 (Gray, Hall, & Gresham, 2013) 

C. sporogenes agrBDCA (Darkoh, Odo, & DuPont, 2016) 

S. aureus agrBDCA (Darkoh & Asiedu, 2014) 

Table 32: The Components and Arrangement of the Agr Systems in Clostridium 
Species.  
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AIP synthesis (AgrB2 and AgrD2) and response (AgrC2 and AgrA2). Recently, a third Agr locus 

was described in C. difficile containing agrC3B3D3 (Hargreaves, Kropinski, & Clokie, 2014). 

The Agr system in Clostridia, similar to S. aureus, regulates toxicity, colonization, and 

expression of similar target genes (Darkoh & Asiedu, 2014). Specifically, the C. botulinum 

agrB2D2 regulates its neurotoxin production. Such regulation was determined by knocking out 

agrD2, leading to a phenotype of decreased toxin production that could be restored by 

complementation (Cooksley et al., 2010). The production of C. difficile toxin A also decreased 

significantly once agrA2 was knocked out (Martin et al., 2013).  Furthermore, deletion of agrB1D1 

in C. difficile resulted in loss of toxin production (Kök, 2015). Another Clostridium species that 

has toxin production regulated by agrD1B1 is C. perfringens, as it only has one agr locus. The agr 

locus regulates toxin production in all strain types of C. perfringens (Chen & McClane, 2012; 

Darkoh & DuPont, 2017; Li, Chen, Vidal, & McClane, 2011; Ohtani et al., 2009; McClane et al., 

2012). Regarding colonization, knocking out agrA2 in C. difficile significantly reduced 

colonization of mice (Darkoh & Asiedu, 2014; Martin et al., 2013). Another similarity between C. 

perfringens and S. aureus is how the Agr system regulates the expression of a regulatory RNA 

(rRNA) molecule. Similar to S. aureus, different toxinotypes of C. perfringens also express two 

proteins (VirR and VirS) that respond to the quorum signal. The VirR and VirS of C. perfringens 

are analogous to the S. aureus AgrA and AgrC, respectively. Furthermore, the S. aureus RNAIII, 

regulated by AgrA and AgrC, corresponds to the VR-RNA regulatory molecule in C. perfringens. 

Similarly, VirR and VirS also regulate VR-RNA, which is also involved in toxicity. Therefore, S. 

aureus and C. perfringens show functional similarities in their Agr systems (Ohtani, 2016) and 

can be considered homologous. 
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Apart from toxicity and mice colonization, the Agr system within Clostridia also modulates 

motility and sporulation. C. difficile moves by using flagella, which are hair like structures that 

propel the bacterium. Flagellar synthesis and its regulation were severely affected in C. difficile 

with a mutant agrA2 (Martin et al., 2013). C difficile is the only Clostridium species proven to 

regulate motility through the Agr system. On the other hand, many Clostridia regulate sporulation 

through the Agr system. C. acetobutylicum’s spore formation significantly decreases after 

knocking out agrA and agrC. These mutants, including that of agrB, also exhibit a decrease in 

granulose and endospores formation, both direct consequences of sporulation (Steiner et al., 2012; 

Jabbari et al., 2013). In contrast, C. botulinum’s agrB1D1 is involved in sporulation because an 

agrD1 mutant could not produce spores effectively. On the other hand, C. sporogenes spore 

production depends on both agrB1D1 and agrB2D2 genes (Cooksley et al., 2010). A C. 

perfringens type A mutant with an inactive agr locus had sporulation efficiency of less than one 

percent. Furthermore, various gene products necessary for sporulation were mostly or completely 

absent in the mutant. These genes included Spo0A transcripts involved in sporulation initiation; 

enterotoxin production during sporulation; and sporulation sigma factors that initiate transcription 

of sporulation regulators (McClane et al., 2015). In contrast, there is no primary data in the 

literature proving a relationship between the C. difficile Agr system and sporulation. There is data, 

however, that shows an increase in agrD expression of 2.5 concurrent with expression of 

sporulation sigma factors (Saujet et al., 2011). Additionally, like C. perfringens type A, C. difficile 

expresses the Spo0A protein involved in sporulation regulation (Underwood et al., 2009). 

Interestingly, experiments by Verbeke et al. (2017) suggested that the Agr system of C. 

thermocellum does not function as a quorum signaling system and regulates bacterial growth in 

specific conditions. AgrD1 seems to be upregulated by a factor of 2.3 in the presence of the sugar 
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xylose in C. thermocellum. Furthermore, the bacterium’s agrD1 also inhibited growth in the 

absence of the xylose sugar. Nevertheless, the specific mechanism of growth inhibition is still 

unknown (Verbeke et al., 2017). 

 Despite the significance of the Agr system in Clostridia, our understanding of the system 

is limited. The Clostridium genus gets little mention in comparisons of the Agr proteins throughout 

the Firmicute phylum (Wuster & Babu, 2008; Peter, 2014). Although increasingly focused 

comparisons exist, they are limited to single components within and between specific classes of 

Firmicutes (Canovas et al., 2016; Darkoh et al., 2015; Ohtani et al., 2009). Unfortunately, these 

comparisons do not include Clostridia as a genus and analyses do not include all of the components 

of the Agr system. To better understand the similarity and diversity of the Agr system within 

Clostridia, we compared the sequences of Agr components of over 50 species through multiple 

sequence alignments, motif and structure-specific bioinformatics tools, and phylogenetics. This 

thesis addresses the differences within and between the Agr components of Clostridium species 

and provides potential paths of investigation on the potential of targeting the components for 

therapy. 

 

Rationale for project 

Although a comprehensive comparison of the Agr systems among Clostridia has not been 

conducted, data about the mechanisms and functions of its components between and within 

Clostridia suggest structural similarity. However, a similarity in structure does not rule out 

differences in residues, motifs, and even secondary structures. While the Agr system has similar 

functions between and within Clostridia, the systems’ functions also vary, ranging from toxin 

production to sporulation. Given its different functions, understanding the Agr system will provide 
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different paths for pathogen treatment development. Furthermore, therapies targeting the Agr 

components could be more effective than current therapies such as antibiotics, as resistance is less 

likely to develop given that the system does not directly affect growth (Darkoh & DuPont, 2017).  

The potential for targeted manipulation and modulation of the Agr system in the medical 

field relies on the understanding of the similarity and diversity of the Agr system. This 

understanding will come from a detailed analysis of the residue-specific similarities and 

differences between the Agr components within and between Clostridium species. The analysis 

compares the sequences for each Agr component throughout all species with comprehensive 

alignments. Thus, the analysis will orient research efforts towards amino acid motifs and domains 

with a robust potential of functional significance and plausible malleability. Furthermore, 

phylogenetic trees will show the ancestral relationship between the sequences based on the 

alignments. These trees will also uncover if the Agr sequences relate to a species’ toxicity, a 

relationship that has not been explored yet. Therefore, this research expands our understanding of 

the function of the Agr system within Clostridia and demonstrates that the Agr system may be a 

good target for therapies. 
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SPECIFIC AIMS 

The Agr system is responsible for regulating virulence and other cellular mechanisms in 

many Gram-positive pathogens that cause life threatening infections. In this study, the sequences 

of the Agr system components were compared to determine similarities and differences among 

them.  These specific aims were: 

Aim 1: To conduct a comprehensive comparative analysis of the similarities and 

differences between the components of the Agr system in Clostridia. 

Aim 2: To use bioinformatics tools to predict structural features of the Agr 

components within and between Clostridial species. 

Aim 3: To generate a phylogenetic tree to determine the evolutionary relationship 

between the components of the Agr system in the different Clostridia.  
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METHODS 

Materials 

The amino acid sequences of the four different Agr components, AgrA, AgrB, AgrC, and 

AgrD were analyzed. A list of the bacteria analyzed in this study are shown in Appendix I. The 

sequences of the Agr proteins of the listed Clostridium species were downloaded from the website 

of the National Center for Biotechnology Information (NCBI). Within the NCBI website is the 

BLASTP 2.7.1+ program (Altschul 1991), which was used to search for and downloaded the Agr 

protein sequences. The downloaded Agr protein sequences were also compiled with the BioEdit 

program (Hall, 1999). SignalP (Nielsen, 2017), Predisi (Hiller et al., 2004), and Phobius (Käll et 

al., 2004; Käll et al., 2007) were used to predict the quorum sensing signaling peptide cleavage 

sites and HeliQuest (Gautier, Douguet, Antonny, & Drin, 2008) was used to predict the helical 

composition for AgrDs. Furthermore, PSIPRED was used to predict secondary structure of the 

AgrB and AgrC sequences. All sequences were aligned using the MUSCLE (Edgar, 2004a) 

program. Based on the MUSCLE aligned sequences, the MEGA X (Kumar et al., 2018) program 

was used to estimate statistically supported maximum likelihood phylogenetic trees. 

 

Methods 

The AgrD amino acid sequence of Clostridium difficile 630 strain (Accession or 

identification number: CAJ69637.1) was used as the starting sequence and searched with the 

BLASTP program of NCBI. The BLASTP search parameters were set to default, except the Max 

Target Sequence parameter, which was set to output 20,000 sequences. The Database parameters 

were set to Non-redundant protein sequences (nr) to search through the most extensive protein 

sequence databases (GenBank CDS translations, RefSeq, PDB, SwissProt, PIR, PRF, excluding 
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those in PAT, TSA, and env_nr). The parameter for Organism was left blank, as there are different 

names for the same organism. The Exclude parameter was left blank to avoid excluding low value 

sequences and nothing was indicated in the EntreZ Query parameter, which aims at limiting the 

search to certain protein types, sequence lengths or organisms. The parameter for Program 

Selection was left as the default blastp (protein-protein BLAST) as it is the most general of the 

protein to protein search programs from BLASTP. The Max Target Sequences parameter, which 

determines the “maximum number of aligned sequences to display” (Altschul 1991), was set to 

20,000. Likewise, the Expect threshold, which determines the cutoff E-value for the search, was 

left at the default value of ten. The E-value determines the statistical significance of the match of 

a sequence to the query sequence (lower E-values are more significant).  The Short Queries 

parameter was set to default, which “automatically adjusts parameters for short input sequences” 

(Altschul 1991). The parameter Word Size does not make a significant difference for BLASTP 

programs as incomplete words are also matched to assess a possible alignment during the search. 

Therefore, Word Size was set to the default value of six. The Maximum Matches in a Query Range 

parameter limits the search to output a certain number of results per region of the protein. Given 

that the sequences of all Agr proteins only have one functional region, the Maximum Matches in a 

Query Range parameter was set to the default value of zero. The Matrix parameter provides options 

for different substitution matrices. Substitution matrices score the quality of the alignment based 

on alignment of pairs of residues (Altschul, 1993; Altschul, 1991; Cooksley et al., 2010; Edgar, 

2004b). So, the scores of the pairs determine the composite alignment score. BLOSUM-62 was 

the scoring matrix chosen for the Matrix parameter, as it is the best scoring matrix available (Arnon 

et al., 2001). The parameter for Gap Costs determines the penalties that gap introduction has on 

the alignment score. The higher the gap cost, the least gaps introduced (Altschul 1991). As there 
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was not a high expectation for gaps, the default value Existence: 11 Extension: 1 was used. The 

parameter Compositional Adjustments accounts for the amino acid composition of the sequences 

aligned. The Compositional Score Matrix Adjustment was present as default and the chosen option 

for Compositional Adjustments was used throughout the entire investigation, although the 

Composition-based Statistics was suggested for general use (Altschul 1991). Because the 

parameter Compositional Adjustments was used, the parameters Filter, which filters results that 

match due to uninteresting regions, and Mask, which masks the query sequence according to the 

Filter parameter (Altschul 1991), were not necessary.  

The sequences were screened and those with the best match were downloaded. Statistically, 

the best sequences were the ones with highest alignment score or lowest E-value (Altschul 1991). 

This criterion was disregarded only when the graphical representations of the sequences at the top 

of the search results page showed a shorter bar. As the graphical bar indicates coverage of the 

query by the aligned sequence (Altschul 1991), a shorter bar indicates less coverage. Less coverage 

could mean an incompletely sequenced protein and would skew the data. The sequences along 

with their accession numbers were copied into a Bioedit alignment file. To confirm the sequence 

selected was actually part of the Agr system, all of the sequences were also located within the 

organism’s genome sequence. The presence of the Agr system components and arrangement or 

orientation were noted. For instance, if AgrD or AgrB were not flanked by each other, they did not 

meet this inclusion criterion. If AgrD and AgrB were flanked only by AgrA or AgrC, then the Agr 

A or AgrC was indicated as an orphan protein. Furthermore, at least one known conserved domain 

(Marchler-Bauer et al., 2017; Marchler-Bauer et al., 2015; Marchler-Bauer et al., 2011; Marchler-

Bauer & Bryant, 2004) had to be present in one of the protein sequences of the operon for inclusion. 

Sequences that met these criteria were included in the alignment. Another method used for finding 
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sequences was researching for Clostridia that had the conserved domains of the Agr proteins. The 

Conserved Domain Architecture Retrieval Tool (Marchler-Bauer et al., 2015) provided the 

sequences containing the domains. The sequences were filtered through the search and retrieval 

system of NCBI, Entrez (Ostell, 2014), until the Agr protein sequence within the species of interest 

was found. Once the sequence was found, the same inclusion criteria were applied for inclusion in 

the alignment. 

Sequences were grouped into alignments files (ALs) according to protein type and species. 

One set of alignment file contained the protein sequences of each Agr protein within each species 

(AL1: C. difficile AgrA2; AL2: C. difficile AgrB2; AL3: C. difficile AgrC2; and AL4: C. difficile 

AgrD2; AL5: C. difficile AgrB1; AL6: C. difficile AgrD1; AL7: C. botulinum AgrB1; AL8: C. 

botulinum AgrD1; etc.). The other set of ALs contained the consensus sequences of each Agr 

component within each species (AL1: C. difficile AgrA_consensus, C. botulinum 

AgrA_consensus, C. perfringens AgrA_consensus; AL2: C. difficile AgrB_consensus, C. 

botulinum AgrB_consensus, C. perfringens AgrB_consensus; etc.). Specifically, the ALs 

containing the consensus sequences were also split into two sets. One set contained the consensus 

sequences of Agr components with empirical quorum-sensing function and the other set contained 

all of the Agr components.  

A consensus sequence contains the most prominent amino acids in each position given the 

sequences aligned. The consensus sequences were created in Bioedit (Hall, 1999). The consensus 

sequence function in Bioedit was set to ignore gaps, as the individual Agr protein sequences within 

species were highly similar and a full sequence was warranted for further analysis. Another option 

for the consensus sequence function allows setting a threshold frequency for inclusion of amino 

acids in consensus sequences. The threshold value assigned was found through testing values by 
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trial and error at 10% intervals down from 100% until the consensus sequence had all positions 

filled with an amino acid. All consensus sequences were produced based on alignments processed 

by the MUSCLE alignment program. 

The MUSCLE program is one of the most widely used programs for rendering multiple 

sequence alignments. The program is highly rated and performs at higher speed and accuracy 

compared to other alignment programs (Baum & Smith, 2013). Creating alignments with 

MUSCLE is simple with the single code provided. The program aligns sequences in the FASTA 

format of sequence representation. 

Once the alignments were ready, the identity between sequences was established. Identity 

analysis entailed rendering identity matrices demonstrating the percentage of amino acid similarity 

between the sequences. The lowest percentage of identity within an alignment was used as a 

measure of conservation. The lowest identity percentages were presented in reference to the 35 

percent (Rost, 1999) homology cutoff for a given alignment. 

Identity was also visually assessed in the alignments based on the decision of how similar 

the aligned residues were within a specific region of an Agr component. This decision was largely 

guided by Betts’ and Russell’s chapter on Amino Acid Properties and Consequences of 

Substitutions (Betts & Russell, 2003). Additionally, the BLOSUM62 amino acid similarity index 

(S. Henikoff & J. G. Henikoff, 1992) aided in finding similar and conserved residues within the 

alignments. The assessment entailed a comparison between the sequences of Agr components in 

Clostridium species in reference to that of Staphylococcus aureus. S. aureus was included in the 

alignments because its Agr system is well characterized. Some specific regions relevant to S. 

aureus were identified in the alignment to target these domains as potentially relevant. Thus, the 

ability to discern relevant differences and similarities was more focused. Some domains were 



23 

 

identified through NCBI (Marchler-Bauer et al., 2015) and some by simply aligning S. aureus’ 

domains.  

An even more focused assessment was used for the components with empirically proven 

quorum-sensing function by predicting secondary structures. The secondary structures of amino 

acid sequences can be conveniently and effectively predicted through PSIPRED, which offers a 

simple web user interface that does not depend on any parameters (Jones, 1999). Deeper 

assessments of similarity were also used to determine AgrD’s similarity. The presence of an 

amphipathic helix in the AgrDs of S. aureus was used to identify similar properties in the AgrDs 

of Clostridia using HeliQuest (Gautier, Douguet, Antonny, & Drin, 2008). The HeliQuest program 

draws wheels as a top down overview of the residues in a helix, in this case an alpha helix. The 

residues that are close to each other are predicted to be on the same side of the helix potentially 

creating a face containing similar properties and a specific function. In addition, the quorum-

sensing signaling peptide cleavage sites were predicted through SignalP (Nielsen, 2017), Predisi 

(Hiller et al., 2004), and Phobius (Käll et al., 2004; Käll et al., 2007). In general, the alignments 

allowed us to find similarities and differences within the sequences of Clostridia and infer probable 

functional regions of interest to target. Following identity analysis, MEGA X (Kumar et al., 2018) 

was used to render the maximum likelihood phylogenetic trees. 

Maximum likelihood (ML) phylogenetic trees provide a phylogenetic or evolutionary 

history based on evolutionary distance. Evolutionary distance reflects the average number of 

differences in each position of a sequence. ML is the best method for calculating evolutionary 

distance between sequences due to its statistical power and foundation on proven mathematical 

models. Once evolutionary distances are established through ML, the tree with highest probability 

of reflecting these distances is rendered (Altschul et al., 1997). 
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The MEGA X (GUI) program used the comprehensive alignments of the quorum-sensing 

Agr components to conduct the evolutionary analysis. The evolutionary history was inferred by 

using the MLmethod and Jones-Taylor-Thornton (JTT) matrix-based model (Jones, Taylor, & 

Thornton, 1992). The bootstrap consensus tree inferred from 300 replicates was taken to represent 

the evolutionary history of the taxa analyzed (Felsenstein, 1985). Branches corresponding to 

partitions reproduced in less than 50% of bootstrap replicates were collapsed. The percentage of 

replicate trees in which the associated taxa clustered together in the bootstrap test (300 replicates) 

are shown next to the branches (Felsenstein, 1985). Initial tree(s) for the heuristic search were 

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise 

distances estimated using a JTT model (Jones, Taylor, & Thornton, 1992), and then selecting the 

topology with superior log likelihood value. 

  



25 

 

 

RESULTS AND DISCUSSION 

Apart from the Agr systems of the five Clostridial species that have proven quorum-sensing 

function, additional putative Agr components were found within the five Clostridial species. 

Furthermore, other Clostridia without previously reported Agr components also were found to 

have homologs to the Agr components of S. aureus and the five aforementioned Clostridia. The 

presence of the Agr system in several Clostridium species suggest the importance of this regulatory 

system in their biology and pathogenesis. 

 The results showed that the Agr components of Clostridial species are mostly similar 

between the strains of a particular species. The degree of similarity is directly proportional to the 

percent identity in the alignments of each component within each species and thus, the lowest 

percent identity indicates high dissimilarity and variability. Figures 1-4 show the percent identities 

of the Agr components within Clostridial species that have more than one sequence for an Agr 

component. Overall, most of the alignments show identity proportions above the 35 percent cutoff 

for homology (shown on the figures as red lines). Some of the Agr components were found to vary 

significantly, including C. botulinum’s AgrD3, which is a newly found autoinducing peptide, and 

C. sordellii’s AgrB2, D2, D3 and A3. The sequences of different components have the same degree 

of variation within the same loci in C. sordellii, C. difficile, C. botulinum, C. butyricum, C. 

pasteurianum, C. sphenoides, C. beijerinckii, and C. kluyveri. The Agr components of C. 

beijerinckii, and C. kluyveri, however, have different degrees of variation within the same locus. 

Another noteworthy trend of conservation within the Agr loci is the tendency of the Agr operon to 

have greater conservation if the species only has a single Agr locus in its genome, as opposed to 

multiple Agr loci. Thus, there is no apparent sequence variation of the Agr proteins in species with 
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a single locus of AgrBDCA and AgrBD. The majority of the Agr components are homologous in 

their respective operons within their species, as they considerably surpass the homology cutoff 

devised by Rost (1999). The high degree of similarity supports the notion that the Agr system is 

important to Clostridia. 

Although, the amino acid sequences of the Agr components of the same species are similar, 

the components might not necessarily be the same proteins. Using multiple sequence alignment, 

the sequences of the Agr components of the same operon in different strains of the five species 

were compared. The alignments allowed for assessment of identity and significant differences 

based on the comparability of the residues. However, some components were mostly identical 

within their alignments and were not included in the results. The components with significantly 

similar sequences and minimal differences were C. acetobutylicum’s AgrD, B, C, and A; C. 

difficile’s AgrD1 and B1; and C. perfringens’ AgrD and B. On the other hand, the alignments of 

the other components contained significant differences and can be found in Figures 5-16. 

 Although the purpose of Figures 5-16 is to show the Agr components’ similarities within 

the Clostridial species, the S. aureus sequences were also included to demonstrate similar features 

between the Clostridial Agr components and confirm the presence of motifs. 
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Figure 33: Percent sequence identity of all the homologs of AgrD proteins in Clostridial 
species. 
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Figure 34: Percent sequence identity of all the homologs of AgrB proteins in Clostridial 

species. 
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Figure 35: Percent sequence identity of all the homologs of AgrC proteins in Clostridial 

species. 
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Figure 36: Percent sequence identity of all the homologs of AgrA proteins in Clostridial 

species. 
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The Sequence Identity of the Agr Components in C. botulinum 

Figure 5A shows the alignment of C. botulinum’s AgrD1, including the sequences of the 

S. aureus AgrDs that confirms the presence of domains and motifs commonly found in AgrD. The 

domains and motifs present in both species include the Cysteine at position 28, where cyclization 

happens, the AIP, and a hypothetical amphipathic helix. Additionally, both species have a C-

terminus with a significant number of charged residues. However, the C-terminus of C. 

botulinum’s AgrD1 has a Tyr33 instead of an Asp33, which is presumed to be the recognition site 

for AgrB. The different recognition site possibly indicates a different mechanism for C. 

botulinum’s AgrB. Furthermore, Glu40 and Leu41 are not conserved in C. botulinum’s AgrD1, 

even though they are necessary for AIP production in S. aureus, adding to the evidence of a 

different AgrB mechanism. Another point of contention for C. botulinum’s AgrD1 is the possible 

absence of an amphipathic helix. Although there is a hydrophobic face that could tether the helix 

  

Figure 37: (A) Comparative analysis of the S. aureus AgrDI-IV and AgrD1 
sequences of C. botulinum strains. Relevant differences within C. botulinum are 
highlighted in yellow. (B) Wheel diagram mimicking the putative amphipathic helix of C. 
botulinum AgrD1. Color code for residues: yellow, hydrophobic; purple, serine and 
threonine; blue, basic; pink, asparagine; grey, alanine. The arrow in the helical wheel 
shows the direction of the hydrophobic moment. 
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to the membrane as shown in Figure 5B, AMPHIPASEEK does not recognize an amphipathic 

helix within the sequence. The domains within the C. botulinum AgrD1 are nearly identical 

between all strains. Despite the similarity throughout the signal peptide, strains AM533 and B2 

450 did have significant differences within the AIP compared to the other strains. These 

differences might not seem crucial, however, S. aureus’ AgrDI and IV are different AIPs that are 

distinguished by one amino acid difference. Considering the case of S. aureus’ AgrDI and IV, 

categorizing C. botulinum AM533 and B2 450’s AgrD1 sequences as a different protein is 

reasonable. Therefore, the sequences of C. botulinum’s AgrD1 could be different between different 

strains. 

Similarly, C. botulinum’s AgrB1 sequences are mostly identical apart from a few 

significant differences (Figure 6). Although they are few, these significant differences are present 

in regions of C. botulinum’s AgrB1 sequences that align with functionally-relevant regions of the 

S. aureus AgrB sequences. These functional regions are shown within boxes or in alignment with 

the coils represented by ‘C’ at the bottom of the alignments in Figure 6A. The coils represent the 

predicted secondary structure of the C. botulinum ATCC 3502 AgrB1. Since the secondary 

structure of S. aureus’ AgrB1 is correlated with the location of some functional residues, the coils 

are a prediction of functional regions of C. botulinum AgrB1. There are several differences (shown 

in red) between C. botulinum’s AgrB1 and S. aureus’ AgrB sequences within the functional 

regions, but none of the functional residues required for AgrB catalytic activity are different. The 

differences between the species are expected, as they are merely homologs. On the other hand, 

significant differences within the C. botulinum sequences are not expected. Out of the six positions 

with significant differences, two of them are within the boxed regions and are within strains 

AM533 and B2 450. Two other positions outside of a functional region has significant differences 
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within the same strains, and two others within different strains. Similar to AgrD1, there is a 

possibility that the AgrD and AgrB of strains AM533 and B2 450 are different enough to interact 

exclusively and be considered different proteins from other sequences in their respective 

alignments. 
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S. aureus_AgrB_II              MNYFDNKIDQFATYLQKRNNLDHIQFLQVRLGMQIIVGNFFKILVTYSISIFLSVFLFTLVTHLSYMLIRYNAHGAHAKSSILCYIQSILT---FVFVPY  

S. aureus_AgrB_III             MNYFDNKIDQFATYLQKRNNLDHIQFLQVRLGMQVLAKNIGKLIVMYTIAYILNIFIFTLITNISFYLIRRYAHGAHAPSSFWCYIESITL---FIVLPL  

S. aureus_AgrB_I               MNYFDNKIDQFATYLQKRNNLDHIQFLQVRLGMQVLAKNIGKLIVMYTIAYILNIFLFTLITNLTFYLIRRHAHGAHAPSSFWCYVESIIL---FILLPL  

S. aureus_AgrB_IV              MNYFDNKIDQFATYLQKRNNLDHIQFLQVRLGMQVLAVNIGKLIVMYTIAYILNIFLFTLITNLTFYLIRRHAHGAHAPSSFWCYVESIFL---FTLLPL  
 

WP_043031080.1|AM553           MINAETISNNVATKIASELNLDNDKKEVIAYGTFAFFQTIFCIFLIIMLGYLFDVQIEALLISFTISILRKFSGGVHATSPNNCAIIGTIICVGFAIIVV  

KIS25319.1|B2 450              MINAETISNNVATKIASELNLDNDKKEVIAYGTFAFFQTIFCIFLIIMLGYLFDVQIEALLISFTISILRKFSGGVHATSPNNCAIIGTIICVGFAIIVV  

EDT84089.1|Bf                  MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKPSGGVHATSPNNCAIIGTIICVGFAIIVV  

ACQ53189.1|Ba4 str. 657        MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKPSGGVHATSPNNCAIIGTIICVGFAIIVV  

AJD27757.1|CDC_297             MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKPSGGVHATSPNNCAIIGTIICVGFAIIVV  

WP_012343459.1                 MINTETISNNIAKKIALELNLDNDKKEVIAYGTFAFFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTTICVGFAIIVV  

ACA55486.1|A3 str. Loch Maree  MINTETISNNIAKKIALELNLDNDKKEVIAYGTFAFFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTTICVGFAIIVV  

WP_004451319.1                 MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

ABS42166.1|F str. Langeland    MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

ACA44101.1|B1 str. Okra        MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

ABS34739.1|A str. ATCC 19397   MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

ABS35918.1|A str. Hall         MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

WP_012704412.1                 MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

ACO84786.1|A2 str. Kyoto       MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

WP_003356053.1                 MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

CAL81884.1|A str. ATCC 3502    MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

EDT82536.1|NCTC 2916           MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

KOM96422.1|ATCC 7949           MINTETISNNIAKKIASELNLDNDKKEVIAYGTFALFQTIFSIFLIIIFGYLFNVQIEALMISFTISILRKSSGGVHATSPNNCAIIGTIICVGFAIIVV  

                                                                          AgrB                                                    .     

                               CCCHHHHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHH 

 

                                       110       120       130       140       150       160       170       180       190       200          

                               ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

                                                                              AgrB                                                .         

S. aureus_AgrB_II              FLINIDINFTYLLALSIIGLI----SVVIYAPAATKKQPIP----IKLVKRKKYLSIIMYLLVLILSLIIHPF--------YAQFMLLGILVESITL---  

S. aureus_AgrB_III             LVLHFHINETLMMFLALISVG----VVIKYAPAATKKKPIP----ARLVKQKRYFSIIISTILFIITLFVKEP--------YTQFIQLGIIIQAITL---  

S. aureus_AgrB_I               VIVNFHINFLIMIILTVISLG----VISVYAPAATKKKPIP----VRLIKRKKYYAIIVSLTLFIITLIIKEP--------FAQFIQLGIIIEAITL---  

S. aureus_AgrB_IV              ILVNYHINFLIMTIMTVIAIG----MIIRYAPAATKKKPIP----VRLIKRKRNYAIIVSLIFFIITLIIKEP--------FAQFMQLGIIIEAITL---  
 

WP_043031080.1|AM553           FLTSSLVNLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIKKSKKIKRLKKSSIITLSVYLVIILINFVLYYKMGNKKFIIYSLCVYSGILWQTFTLTQY  

KIS25319.1|B2 450              FLTSSLVNLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIKKSKKIKRLKKSSIITLSVYLVIILINFVLYYKMGNKKFIIYSLCVYSGILWQTFTLTQY  

EDT84089.1|Bf                  FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIEKSKKVKKLKKSSIITLSAYSVIILINFVLYYKMMNKKYIIYSLCVYSGIVWQTFTLTQY  

ACQ53189.1|Ba4 str. 657        FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIEKSKKVKKLKKSSIITLSAYSVIILINFVLYYKMMNKKYIIYSLCVYSGIVWQTFTLTQY  

AJD27757.1|CDC_297             FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIEKSKKVKKLKKSSIITLSAYSVIILINFVLYYKMMNKKYIIYSLCVYSGIVWQTFTLTQY  

WP_012343459.1                 FLASSLINLNILLFLGAIIFVWSYYIIYKLAPVDSKAKPIEKSKRVKKLKKSSIITLSVYLVIILINFVLYYKMMNKKYIIYSLCVYSGIVWQTFTLTQY  

ACA55486.1|A3 str. Loch Maree  FLASSLINLNILLFLGAIIFVWSYYIIYKLAPVDSKAKPIEKSKRVKKLKKSSIITLSVYLVIILINFVLYYKMMNKKYIIYSLCVYSGIVWQTFTLTQY  

WP_004451319.1                 FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYTLCVYSGIVWQTFTLTRY  

ABS42166.1|F str. Langeland    FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYTLCVYSGIVWQTFTLTRY  

ACA44101.1|B1 str. Okra        FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYTLCVYSGIVWQTFTLTRY  

ABS34739.1|A str. ATCC 19397   FLTSSLINLNIILFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYSLCVYSGIVWQTFTLTRY  

ABS35918.1|A str. Hall         FLTSSLINLNIILFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYSLCVYSGIVWQTFTLTRY  

WP_012704412.1                 FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLRKSSIITLSVYLVIILINFILYYKMMNKKYIIYSLCVYSGIVWQTFTLTRY  

ACO84786.1|A2 str. Kyoto       FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLRKSSIITLSVYLVIILINFILYYKMMNKKYIIYSLCVYSGIVWQTFTLTRY  

WP_003356053.1                 FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYSLCVYSGIVWQTFTLTRY  

CAL81884.1|A str. ATCC 3502    FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYSLCVYSGIVWQTFTLTRY  

EDT82536.1|NCTC 2916           FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYSLCVYSGIVWQTFTLTRY  

KOM96422.1|ATCC 7949           FLTSSLINLNILLFLGVIIFVWSYYIIYKLAPVDSKAKPIQKSKRVKKLKKSSIITLSVYLVIILINFILYYKMMNKKYIIYSLCVYSGIVWQTFTLTRY  

                                                                              AgrB                                            .     

                               HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCHH 

                                       210       220        

                               ....|....|....|....|....|.... 

                                                           . 

S. aureus_AgrB_II              -------LPIFF-----------PKED--  

S. aureus_AgrB_III             -------LPIYY-----------SKED--  

S. aureus_AgrB_I               -------LPIFF-----------IKEDLK  

S. aureus_AgrB_IV              -------LPIFF-----------VRRT— 
 

WP_043031080.1|AM553           GHLVVKKLDDFLNYIIDTTKGDKNHEKIK  

KIS25319.1|B2 450              GHLVVKKLDDFLNYIIDTTKGDKNHEKIK  

EDT84089.1|Bf                  GHLVVNKLDDFLNYMVDIKKGDKSHEKIK  

ACQ53189.1|Ba4 str. 657        GHLVVNKLDDFLNYMVDIKKGDKSHEKIK  

AJD27757.1|CDC_297             GHLVVNKLDDFLNYMVDIKKGDKSHEKIK  

WP_012343459.1                 GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

ACA55486.1|A3 str. Loch Maree  GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

WP_004451319.1                 GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

ABS42166.1|F str. Langeland    GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

ACA44101.1|B1 str. Okra        GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

ABS34739.1|A str. ATCC 19397   GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

ABS35918.1|A str. Hall         GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

WP_012704412.1                 GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

ACO84786.1|A2 str. Kyoto       GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

WP_003356053.1                 GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

CAL81884.1|A str. ATCC 3502    GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

EDT82536.1|NCTC 2916           GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

KOM96422.1|ATCC 7949           GHLVVKKLDDFLNYMVDIKKGDKSHEKIK  

 

                               HHHHHHHHHHHHHHHHHHHCCCCCCCCCC 

  
 

 
 

 

Figure 38: Comparative analysis of the sequences of S. aureus AgrBI-IV and AgrB1 
sequences of strains of C. botulinum. Differences between S. aureus and C. botulinum 

are shown in red, whereas differences within C. botulinum are highlighted in yellow. Solid 
boxes highlight functional domains. 
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In C. botulinum’s AgrD2 (Figure 7), the cyclization at the cysteine residue, AIP, and 

charged C-terminal are all present. There is also a hydrophobic patch on the helix (Figure 7B), 

but an amphipathic helix is not likely to occur according to the AMPHIPASEEK prediction. 

Furthermore, residues Asp34 and Glu41 at the C-terminus of the AgrD of S. aureus are also absent 

in C. botulinum’s AgrD2, but Leu42 is present. Contrasting with C. botulinum’s Agr1 sequences, 

yellow highlights and underscores in Figure 7A indicate various significant differences between 

C. botulinum’s AgrD2 sequences, noticeable in every position except the conserved Cysteine.  

 

 

 

  

Figure 39: (A) Comparative analysis of the amino acid sequences of S. aureus 
AgrDI-IV and AgrD2 of C. botulinum strains. The conserved cysteine-28 is shown in 
green and the differences between S. aureus and C. botulinum are shown in red. (B) 
Wheel diagram mimicking the putative amphipathic helix of C. botulinum AgrD. 
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Therefore, the C. botulinum AgrD2 sequences are different between the different strains of 

the species, even more so than in their AgrD1. 

C. botulinum AgrB2 proteins also have higher probability of being different. As shown in 

the alignment of Fig. 8, C. botulinum’s AgrB2 sequences are different from S. aureus’ AgrBs, but 

still have the same functional residues for peptidase activity. As with AgrD2, C. botulinum’s 

AgrB2s have a larger number of significant differences around the hypothetical functional regions. 

However, most of these differences are not present in the strains that have variations in C. 

botulinum’s AgrD2. Despite the lack of uniformity between the differences in the sequences of 

AgrD2 and AgrB2, there are strains that consistently have differences at the same positions. 

Examples of groups of strains that are different in the positions include AM533 and B2 450; 

Langeland, Okra, Bf, 657, and CDC_297; ATCC 3502 and ATCC 7949; and Kyoto, Hall, ATCC 

19397, and NCTC 2916. Thus, there is a chance that the differences are not completely random 

and could lead to different categorization from the other sequences. 

Due to the significant differences appearing consistently within the same strains in the 

sequences of both Agr components, it is plausible that the proteins are not the same within C. 

botulinum. C. botulinum’s Agr1 sequences do have positions with significant differences within 

the same strains in both Agr components, creating a stronger argument for the different proteins. 

C. botulinum’s Agr2 sequences also have locations with significant differences within the same 

strains. However, they do not vary within the same strains in both AgrD2 and B2 components. 

Due to the inconsistency in the strains’ differences across Agr2 proteins, one might argue that 

Agr1 is more likely to have different proteins. However, C. botulinum’s Agr2 components have 

more significant differences than Agr1. 



37 

 

  

   

  

                                    10        20        30        40        50        60        70        80        90       100                   

                           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

                                                                      AgrB                                                    .     

S. aureus_AgrB_II          MNYFDNKIDQFATYLQKRNNLDHIQFLQVRLGMQIIVGNFFKILVTYSISIFLSVFLFTLVTHLSYMLIRYNAHGAHAKSSILCYIQSILTFVFVPYFLI  

S. aureus_AgrB_III         MNYFDNKIDQFATYLQKRNNLDHIQFLQVRLGMQVLAKNIGKLIVMYTIAYILNIFIFTLITNISFYLIRRYAHGAHAPSSFWCYIESITLFIVLPLLVL  

S. aureus_AgrB_I           MNYFDNKIDQFATYLQKRNNLDHIQFLQVRLGMQVLAKNIGKLIVMYTIAYILNIFLFTLITNLTFYLIRRHAHGAHAPSSFWCYVESIILFILLPLVIV  

S. aureus_AgrB_IV          MNYFDNKIDQFATYLQKRNNLDHIQFLQVRLGMQVLAVNIGKLIVMYTIAYILNIFLFTLITNLTFYLIRRHAHGAHAPSSFWCYVESIFLFTLLPLILV  
 

WP_043031090.1|AM553       MFLIEQISNKIGSKISSNLNLDKDTEEIIAYGAFSVLQTIWAFLCVVILGYICNVLIESVIIALTSVIYRKYSGGIHANTPNKCAILGAIVFVGFALIVK  

KIS25325.1|450             MFLIEQISNKIGSKISSNLNLDKDTEEIIAYGAFSVLQTIWAFLCVVILGYICNVLIESVIIALTSVIYRKYSGGIHANTPNKCAILGAIVFVGFALIVK  

WP_011948122.1             MFLIERLSNKIGNKIANNLELDKDTEEIIAYGAFSVLQTIWALLCVVILGAMCNVLVESVIIALTAAAYRKYSGGIHANTPNKCAFLGAIIFVGFAFIVK  

CAL81891.1|ATCC 3502       MFLIERLSNKIGNKIANNLELDKDTEEIIAYGAFSVLQTIWALLCVVILGAMCNVLVESVIIALTAAAYRKYSGGIHANTPNKCAFLGAIIFVGFAFIVK  

KOM96415.1|ATCC 7949       MFLIERLSNKIGNKIANNLELDKDTEEIIAYGAFSVLQTIWALLCVVILGAMCNVLVESVIIALTAAAYRKYSGGIHANTPNKCAFLGAIIFVGFAFIVK  

WP_012343726.1|Loch Maree  MFLIEQLSNKIGNKIANNLELDRDTEEIITYGAFSVLQAIWALSCVVILGAICNVLIESVIIALTAATYRKYSGGLHANTPNKCAILGAIVFVGFALIVK  

ACO84233.1|Kyoto           MFLIEQLSNKIGNKIANNLELDKDTEEIITYGAFSVLQAIWALSCVVILGAICNVLIESVIIALTAATYRKYSGGMHANTPNKCAILGAIVFVGFALIVK  

WP_011986087.1             MFLIEQLSNKIGNKIANNLELDKDTEEIITYGAFSVLQAIWALSCVVILGAICNVLIESVIIALTAATYRKYSGGMHANTPNKCAILGAIVFVGFALIVK  

ABS36795.1|Hall            MFLIEQLSNKIGNKIANNLELDKDTEEIITYGAFSVLQAIWALSCVVILGAICNVLIESVIIALTAATYRKYSGGMHANTPNKCAILGAIVFVGFALIVK  

ABS34290.1|ATCC 19397      MFLIEQLSNKIGNKIANNLELDKDTEEIITYGAFSVLQAIWALSCVVILGAICNVLIESVIIALTAATYRKYSGGMHANTPNKCAILGAIVFVGFALIVK  

EDT82567.1|NCTC 2916       MFLIEQLSNKIGNKIANNLELDKDTEEIITYGAFSVLQAIWALSCVVILGAICNVLIESVIIALTAATYRKYSGGMHANTPNKCAILGAIVFVGFALIVK  

WP_004451331.1             MFFIEEASNKIGNKISSNLNLDKDAEEIIAYGAFAVLQTLWSFLCVIILGFIFNVLMESMIIVLTIAIFRKYSGGIHANSPNKCAIFGAVICIIMALVVK  

ABS41208.1|Langeland       MFFIEEASNKIGNKISSNLNLDKDAEEIIAYGAFAVLQTLWSFLCVIILGFIFNVLMESMIIVLTIAIFRKYSGGIHANSPNKCAIFGAVICIIMALVVK  

ACA45443.1|Okra            MFFIEEASNKIGNKISSNLNLDKDAEEIIAYGAFAVLQTLWSFLCVIILGFIFNVLMESMIIVLTIAIFRKYSGGIHANSPNKCAIFGAVICIIMALVVK  

EDT84081.1|Bf              MFFIEQISNKIGSKISSNLNLDKDTQEIITYGAFAVLQILWSFLCVVILGYICNVLLESIIISLVIAVFRKYSGGIHANSPNKCAIFGAIICVGFALIVK  

WP_012720666.1             MFFIEQISNKIGSKISSNLNLDKDTQEIITYGAFAVLQILWSFLCVVILGYICNVLLESIIISLVIAVFRKYSGGIHANSPNKCAIFGAIICAGFALIVK  

ACQ52469.1|657             MFFIEQISNKIGSKISSNLNLDKDTQEIITYGAFAVLQILWSFLCVVILGYICNVLLESIIISLVIAVFRKYSGGIHANSPNKCAIFGAIICAGFALIVK  

AJD28730.1|CDC_297         MFFIEQISNKIGSKISSNLNLDKDTQEIITYGAFAVLQILWSFLCVVILGYICNVLLESIIISLVIAVFRKYSGGIHANSPNKCAIFGAIICAGFALIVK  

                                                                      AgrB                                                    .     

         CCCHHHHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCHHHHHHHHHHHHHHHHHH 

 

                                   110       120       130       140       150       160       170       180       190       200          

                           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

                                                                      AgrB                                                    .     

S. aureus_AgrB_II          NIDINFTYLLALSIIGLISVVIYA-----PAATKKQPIP--IKLVKRKKYLSIIMYLLVLILSLII----------HPFYAQFMLLGILVESITLLPI--  

S. aureus_AgrB_III         HFHINETLMMFLALISVGVVIKYA-----PAATKKKPIP--ARLVKQKRYFSIIISTILFIITLFV----------KEPYTQFIQLGIIIQAITLLPI--  

S. aureus_AgrB_I           NFHINFLIMIILTVISLGVISVYA-----PAATKKKPIP--VRLIKRKKYYAIIVSLTLFIITLII----------KEPFAQFIQLGIIIEAITLLPI--  

S. aureus_AgrB_IV          NYHINFLIMTIMTVIAIGMIIRYA-----PAATKKKPIP--VRLIKRKRNYAIIVSLIFFIITLII----------KEPFAQFMQLGIIIEAITLLPI— 
 

WP_043031090.1|AM553       NINIGLNLFFPVICILIFIYSYYAIYKFVPVDTKTKPIENEDEILKLRRYSFFIISILFFIEALLLLIYFQYKNEMLIYYAKCIIAGVLWQSFTLTPLAK  

KIS25325.1|450             NINIGLNLFFPVICILIFIYSYYAIYKFVPVDTKTKPIENEDEILKLRRYSFFIISILFFIEALLLLIYFQYKNEMLIYYAKCIIAGVLWQSFTLTPLAK  

WP_011948122.1             NINISVNLFFVLIGILTFIYSYYAIYKFVPVDTKAKPIENEDEILKLRRYSFFIISILFFIEALLLLFYFKYKNEMLIYYGKCIIAGVLWQSFTLTPLAK  

CAL81891.1|ATCC 3502       NINISVNLFFVLIGILTFIYSYYAIYKFVPVDTKAKPIENEDEILKLRRYSFFIISILFFIEALLLLFYFKYKNEMLIYYGKCIIAGVLWQSFTLTPLAK  

KOM96415.1|ATCC 7949       NINISVNLFFVLIGILTFIYSYYAIYKFVPVDTKAKPIENEDEILKLRRYSFFIISILFFIEALLLLFYFKYKNEMLIYYGKCIIAGVLWQSFTLTPLAK  

WP_012343726.1|Loch Maree  NINIGVNLFLPVICIFTFIYSYYAIYKFAPVDTKAKPIENESEILKLRRYSFFIISILFFIEVLLLLFYFKYKNEVLIYYGKCIIAGVLWQSFTLTPLAK  

ACO84233.1|Kyoto           NINIGVNLFLPVICIFTFIYSYYAIYKFVPVDTKAKPIENESEILKLRRYSFFIISILILIEVLLLLLYFEYKNEMLIYYAKCIIAGILWQSFTLTPLAK  

WP_011986087.1             NINIGVNLFLPVICIFTFIYSYYAIYKFVPVDTKAKPIENESEILKLRRYSFFIISILILIEVLLLLFYFKYKNEMLIYYAKCIIAGVLWQSFTLTPLAK  

ABS36795.1|Hall            NINIGVNLFLPVICIFTFIYSYYAIYKFVPVDTKAKPIENESEILKLRRYSFFIISILILIEVLLLLFYFKYKNEMLIYYAKCIIAGVLWQSFTLTPLAK  

ABS34290.1|ATCC 19397      NINIGVNLFLPVICIFTFIYSYYAIYKFVPVDTKAKPIENESEILKLRRYSFFIISILILIEVLLLLFYFKYKNEMLIYYAKCIIAGVLWQSFTLTPLAK  

EDT82567.1|NCTC 2916       NINIGVNLFLPVICIFTFIYSYYAIYKFVPVDTKAKPIENESEILKLRRYSFFIISILILIEVLLLLFYFKYKNEMLIYYAKCIIAGVLWQSFTLTPLAK  

WP_004451331.1             NININLNLTFILMFILVFIYSYYAIFKFAPVDTKSKPIDNIEEKLRLKKCSFLVISILFLMEVLLVLLYLKYKHIALIYYGSCVVMGILWQSFTLTPTAK  

ABS41208.1|Langeland       NININLNLTFILMFILVFIYSYYAIFKFAPVDTKSKPIDNIEEKLRLKKCSFLVISILFLMEVLLVLLYLKYKHIALIYYGSCVVMGILWQSFTLTPTAK  

ACA45443.1|Okra            NININLNLTFILMFILVFIYSYYAIFKFAPVDTKSKPIDNIEEKLRLKKCSFLVISILFLMEVLLVLLYLKYKHIALIYYGSCVVMGILWQSFTLTPTAK  

EDT84081.1|Bf              NININLNLIFILIFILVFIYSYYAIFKFVPVDTKSKPIDNIDEKLRLKKCSFLVISILFLIEILFVLLYLKYKYIALIYYGSCVLMGVLWQSFTLTPISK  

WP_012720666.1             NININLNLIFILIFILVFIYSYYAIFKFVPVDTKSKPIDNIDEKLRLKKCSFLVISILFLIEILFVLLYLKYKYIALIYYGSCVLMGVLWQSFTLTPISK  

ACQ52469.1|657             NININLNLIFILIFILVFIYSYYAIFKFVPVDTKSKPIDNIDEKLRLKKCSFLVISILFLIEILFVLLYLKYKYIALIYYGSCVLMGVLWQSFTLTPISK  

AJD28730.1|CDC_297         NININLNLIFILIFILVFIYSYYAIFKFVPVDTKSKPIDNIDEKLRLKKCSFLVISILFLIEILFVLLYLKYKYIALIYYGSCVLMGVLWQSFTLTPISK  

                                                                      AgrB                                              .     

                           HHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 

                                  

                           ....|.... 

                                   . 

S. aureus_AgrB_II          -FFPKED--  

S. aureus_AgrB_III         -YYSKED--  

S. aureus_AgrB_I           -FFIKEDLK  

S. aureus_AgrB_IV          -FFVRRT— 
 

WP_043031090.1|AM553       RVFANIAME  

KIS25325.1|450             RVFANIAME  

WP_011948122.1             RVFANIAME  

CAL81891.1|ATCC 3502       RVFANIAME  

KOM96415.1|ATCC 7949       RVFANIAME  

WP_012343726.1|Loch Maree  RVFANIAME  

ACO84233.1|Kyoto           RVFANIAME  

WP_011986087.1             RVFANIAME  

ABS36795.1|Hall            RVFANIAME  

ABS34290.1|ATCC 19397      RVFANIAME  

EDT82567.1|NCTC 2916       RVFGNIAME  

WP_004451331.1             KIFYNVAME  

ABS41208.1|Langeland       KIFYNVAME  

ACA45443.1|Okra            KIFYNVAME  

EDT84081.1|Bf              KMFANVVME  

WP_012720666.1             KMFANVVME  

ACQ52469.1|657             KMFANVVME  

AJD28730.1|CDC_297         KMFANVVME  

 

                           HHHHHHHCC 

 

 

Figure 40: Comparative analysis of the amino acid sequences of S. aureus AgrBI-
IV and AgrB2 of C. botulinum strains. Differences between S. aureus and C. botulinum 
are shown in red while differences within C. botulinum are highlighted in yellow. Solid 
boxes highlight functionally-relevant regions in S. aureus, including extracellular portions 
of AgrB-I (residues 1-45, and 132-148), and an intracellular loop (67-81). Dashed boxes 
show an extended region containing residues important for function in S. aureus’ AgrB-I. 
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Sequence Identity in the Agr Components of C. difficile 

The alignment of the AgrD2 of C. difficile is shown in Figure 9A in comparison to the 

AgrD alleles of S. aureus. The domains and motifs present in both species include the hypothetical 

amphipathic helix, confirmed by both AMPHIPASEEK (not shown) and the helix wheel in Figure 

9B, and the charged C-terminal. However, the C-terminal of the C. difficile AgrD2 has a His33 

instead of an Asp33, changing the presumed recognition site for AgrB2 and possibly indicating a 

different mechanism from that of S. aureus and C. botulinum. Furthermore, Glu40 is not conserved 

in C. difficile’s AgrD2, while Leu41 is conserved. This difference indicates an alternative 

mechanism for AIP production in C. difficile AgrB2. Other factors that distinguishes C. difficile 

AgrD2 are the short tailless AIPs predicted by the bioinformatics tools and the lack of the Cysteine. 

The cysteine is replaced by a serine, which is found in other AIPs of different species (Thoendel 

& Horswill, 2009). 

 

 

 

Figure 41: (A) Comparative analysis of the amino acid sequences of S. aureus 
AgrDI-IV and AgrD2 of C. difficile strains. Relevant differences between S. aureus and 

C. difficile are in red font. (B) Wheel diagram mimicking the putative amphipathic helix of 
C. difficile AgrD. 
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The C. difficile AgrD2 sequences are identical between all strains apart from strains 

CD175, M68, and E13. The significant differences within these strains are present in the same 

positions of the hypothetical amphipathic helix and the AIP. The Arg21 in the amphipathic helix 

might not affect the function of the signal peptide but might affect the interaction with the second 

peptidase that releases the AIP from the membrane, as seen in S. aureus. Additionally, the Val31 

substitution for Ile31 might not have a great effect on the interaction between AgrD2 and AgrC2, 

as they are both hydrophobic and favored substitutes for each other. However, the recognition 

interaction with AgrC is sensitive, and the difference in bulkiness from valine to isoleucine might 

be enough to alter structure and function. 

Due to the few significant differences in the C. difficile AgrD2, the AgrB2 is not expected 

to be different among the strains, yet, the level of differences between them was found to be high 

as shown in Figure 10. Even more interesting is that all but one of the different positions vary 

similarly among the same three strains (CD175, M68, and E13). The majority of these differences 

occur outside of the boxed areas, possibly reducing the functional significance of these differences. 

Nevertheless, the level of variation is significant and suggests the existent of a different Agr operon 

than the more prevalent version of C. difficile Agr2. 

Further evidence for the hypothesis of another variant of the Agr2 operon is the differences 

within the C. difficile AgrC2 alleles. All the differences occur at the same position in strains M68 

and E13, two of the strains that were consistently different in AgrD2 and agrB2. The boxes and 

coils represent hypothetical functional regions, specifically the extracellular loops of AgrC in the 

transmembrane sensor domain. In S. aureus, the first loop harbors residues involved in activation 

of AgrC, and the second and third loops have residues responsible for specificity to AgrD. All 

three loops show congruent differences only within the C. difficile M68 and E13 strains.  



40 

 

 

 

 

 

  

Figure 42: Comparative analysis of the amino acid sequences of S. aureus AgrBI-
IV and AgrB2 of C. difficile strains. Differences between S. aureus and C. difficile are 
shown in red while differences within C. difficile are highlighted in yellow. Solid boxes 
highlight functionally-relevant regions in S. aureus, including extracellular portions of 
AgrB-I (residues 1-45, and 132-148), and an intracellular loop (67-81). Dashed boxes 
show an extended region containing residues important for function in S. aureus’ AgrB-I. 
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The same pattern extends over to the catalytic regions of the dimerization and histidine 

phosphotransfer domain and the catalytic and ATP-binding domain. Figure 11 shows an alignment 

of the hypothetical catalytic regions of the C. difficile AgrC2 with the H-box, N- box, and G-box 

of S. aureus AgrCI. These catalytic regions show significant differences between C. difficile 

sequences, suggesting different interactions with AgrA. Generally, however, the catalytic residues 

of these three catalytic boxes are conserved, indicating conserved function. The same catalytic 

residues are also conserved between C. difficile AgrC2 alleles and that of S. aureus. However, the 

sensor domain is not conserved, as the function of the domain is very specific to the AgrD variants 

it interacts with. Given that the AgrA proteins in each species interacts with their cognate histidine 

kinase and different nucleotides, the AgrA sequences are different between C. difficile and S. 

aureus.  

Figure 12 shows the differences in C. difficile AgrA2, suggesting a similar pattern in the 

strains E13, CD175, and M68. There are only three positions with significant differences, and they 

are all within the recognition domain (REC) that interacts with AgrC. If there are no significant 

differences within the LytTR regulatory domain, then C. difficile AgrA can only interact with one 

promoter. Given that the AgrA of the three different strains may be binding to the same promoter 

as the rest of the strains, both would be upregulating the production of the same operon. Therefore, 

there are two immediately plausible situations assuming both operons function normally: either 

the promoters for both operons are the same, or the feedback loop would not be complete for the 

Agr system of E13, CD175, and M68. In the latter case, there would have to be a different step in 

the mechanism where another Agr component cross-interacts between both possible systems. In 

reference to the minimal differences between the AIPs of C. difficile, both versions of the AIP 

could interact with one or both of the AgrBs to provide the feedback loop for the Agr system of 
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E13, CD175, and M68. Although there is evidence for the existence of variants within the C. 

difficile Agr2 system, the lack of differences in the regulatory domain of AgrA might confirm that 

they are all the same protein. 
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Figure 43: Comparative analysis of the amino acid sequences of S. aureus AgrCI-IV and AgrC2 of C. difficile 

strains. Differences between S. aureus and C. difficile are shown in red while differences within C. difficile are 
highlighted in yellow. Solid boxes highlight functionally relevant regions in S. aureus, including extracellular portions 

of AgrC-I (residues 29-39, 104-113 and 178-190). Dashed boxes show an extended region that contains functionally 
relevant residues of S. aureus’ AgrC-I. 
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Figure 44: Comparative analysis of the amino acid sequences of S. aureus AgrA 
and AgrA2 of C. difficile strains. Differences between S. aureus and C. difficile are 
shown in red while differences within C. difficile are highlighted in yellow. 
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Sequence Identity in the Agr Components of C. sporogenes 

 The C. sporogenes Agr components are very similar to that of C. botulinum. The C. 

sporogenes AgrD1, like the S. aureus AgrDs, has a charged C-terminus, cyclization cysteine, and 

an AIP (Figure 13A). While the C-terminus has the charged amino acids in C. sporogenes AgrD1, 

the Asp34 is not conserved. Conversely, Glu41 and Leu42 are present. Instead of Asp34, the C. 

Sporogenes AgrD sequences have Tyr34, similar to the C. botulinum AgrD. Another motif that 

differs from the S. aureus AgrD is the amphipathic helix. While AMPHIPASEEK predicts a low 

likelihood of formation of an amphipathic helix, it likely forms a hydrophobic face (Figure 13B). 

However, only an experimental approach will be able to determine the presence of an amphipathic 

helix. An experimental approach will also be necessary to determine potential functional 

differences within the AIPs of C. sporogenes. The AIPs contain significant differences in every 

position of the macrocycle apart from the conserved cysteine (shown in yellow in Figure 13A). 

The residues at position 31 are different among the strains. 

  

  

Figure 45: (A) Comparative analysis of the S. aureus AgrDI-IV and AgrD1 
sequences of C. sporogenes strains. Relevant differences within C. sporogenes are 
highlighted in yellow. (B) Wheel diagram mimicking the putative amphipathic helix of C. 
sporogenes AgrD. 
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Figure 46: Comparative analysis of the sequences of S. aureus AgrBI-IV and AgrB1 
sequences of strains of C. sporogenes. Differences between S. aureus and C. 

sporogenes are shown in red, whereas differences within C. sporogenes are highlighted 
in yellow. Solid boxes highlight functional regions in S. aureus, including extracellular 
portions of AgrB-I (residues 1-45, and 134-152), and an intracellular loop (67-81). Dashed 
boxes show an extended region that contains functional residues of S. aureus’ AgrB-I. 
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The variety of the AIPs expected from the C. sporogenes AgrD1 sequences is reflected in 

the AgrB1 as well. The C. sporogenes AgrB1 is significantly different from S. aureus AgrBs. The 

boxed hypothetic functional regions show significant differences, as well as the regions outside of 

the box (Figure 14). Despite the differences, the catalytic residues are still present, suggesting a 

conserved function. In contrast to catalysis, the specific interactions between the C. sporogenes 

AgrD1 and agrB1 might not be the same throughout the strains due to the differences that are 

consistent within same positions. The C. sporogenes strains that have differences at the same 

position within the AgrD1 and AgrB1 include PA 3679, 88-0163, and CLS_DGF_0088_06; 87-

0535, 8-O, FDAARGOS_423, and NCTC275; and ATCC 15579, 66_C. botulinumOT, NCIMB 

10696, DSM 795, ATCC 3584, and NCTC13020. The significant differences in the sequences of 

AgrD1 and AgrB1 suggest the Agr1 operon of C. sporogenes is different. 

The sequences of AgrD2 of C. sporogenes show fewer differences than in the AgrD1 

(Figure 15A). The AIP found in AgrD2 has only one difference and the general motif of the 

cyclization cysteine is present. The charged C-terminal is also present in the AgrD2, even though 

AgrD2 is missing the Asp33, Glu40, and Leu41 that are present in S. auerus. These residue-

specific differences indicate a possible change in AgrB mechanism from S. aureus to Clostridial 

species. The presence of an amphipathic helix could also be a contrast between S. aureus and 

Clostridia, as AMPHIPASEEK predicted that a helix does not exist in the C. sporogenes AgrD2, 

even when the helix wheel in Figure 15B shows otherwise. 

The sequences of C. sporogenes AgrB2 do not show many differences. The differences 

present are random and only two out of the six varying positions are within hypothetic functional 

regions. Thus, it appears the sequences of the Agr2 components are similar. 
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Figure 47: (A) Comparative analysis of the Staphylococcus aureus AgrDI-IV and 
AgrD2 sequences of C. sporogenes strains. Relevant differences within C. 

sporogenes are highlighted in yellow. (B) Wheel diagram mimicking the putative 
amphipathic helix of C. sporogenes AgrB1. 
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Figure 48: Comparative analysis of the sequences of S. aureus AgrBI-IV and AgrB2 
sequences of strains of C. sporogenes. Differences between S. aureus and C. 

sporogenes are shown in red, whereas differences within C. sporogenes are highlighted 
in yellow. Solid boxes highlight functional regions in S. aureus, including extracellular 
portions of AgrB-I (residues 1-45, and 134-152), and an intracellular loop (67-81). Dashed 
boxes show an extended region that contains functional residues of S. aureus’ AgrB-I. 
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 Sequence Identity in the Agr Components Between Clostridial Species 

 

Comparison of the AgrD Sequences between the five Clostridial Species 

 Although they all have the same domain, the AgrDs of Clostridial species are different 

from each other. Figure 17 is an alignment of the AgrD showing the differences. Some of the 

species do not have a tail on their AIPs and their macrocycles are completely different. In addition, 

the cysteine residue is the most conserved residue of the macrocycles, but AgrD2 of C. difficile 

has a serine in that position that most likely cyclizes into a lactone. The specific residue differences 

 

 

 

  

Figure 49: Comparative analysis of the S. aureus AgrDI-IV and AgrD consensus 
sequences of Clostridium species with quorum-sensing Agr components. Relevant 

differences between S. aureus and Clostridium species are shown in red, whereas 
differences between Clostridium species are highlighted in yellow. Black and grey 
highlighting of amino acids indicates full conservation and similar residues, respectively. 
The grey shading of the species name indicates -pathogenic or toxigenic. The light blue 
shading shows empirically proven autoinducer peptides (AIPs) and the orange shading 
shows predicted AIPs based on bioinformatics analyses through SignalP, Predisi, and 
Phobius. 
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in the macrocycle include variations from the hydrophobic and bulky residues that normally 

populate the last two positions of the AIPs of S. aureus. Although the other residues in the 

Clostridial AIPs are hydrophobic and bulky, the small, polar, and potentially catalytic residues in 

Clostridia are still different between the species. 

Other motifs also show differences in the AgrDs of Clostridial species, for example, the 

cleavage site recognized by SpsB, which includes the three residues preceding the AIP and a 

conserved glycine or proline at position -5 or -6 from the AIP. Interestingly, the glycine and 

proline, which are thought to present the cleavage site to the peptidase, are absent. Nevertheless, 

there are conserved alanine residues at positions 26 and 30 that could fit the description. 

Downstream, the cleavage site is usually a variation of an A–X–A motif, but with significant 

wobble to the residues as shown in yellow highlight. The C-terminal recognition site for AgrB, 

where the S. aureus Asp40 aligns right after the AIP (Figure 17), is not exactly conserved amongst 

Clostridial species. The Glu47 that is essential for AIP production in S. aureus is also not conserved 

in Clostridia. The lack of conservation within these residues’ hints at differences in mechanism 

between AgrBs of Clostridia. The differences between the AIPs of the species are expected as they 

are specific molecules that have sensitivity and specific binding action. 

On the other hand, the similarities between the AgrD of Clostridia could make it easier to 

target therapeutically. This is because a single drug could be used to target the Agr system in 

multiple Clostridia. As shown in Fig. 17, the proline residues at positions 42 and 45 have specific 

function and structure that could provide a target for regulation within Clostridia (grey shading in 

Fig. 17). Similarly, if one of the alanine residues conserved at the N-terminal positions 26 and 30 

were found to function as the cleavage site for SpsB, these alanine residues could be another target 

for exclusive modulation of Clostridial regulatory pathways.  
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Comparison of the AgrB Sequences between the five Clostridial Species 

The consensus AgrB sequences of Clostridial species (Figure 18) show conservation of 

catalytic residues and significant differences in the boxed regions. The significant differences 

occur between Clostridia and between Clostridial species and S. aureus. The first 34 residues that 

are conserved and necessary in the S. aureus AgrBI show differences even between the same 

species of Clostridia. A specific residue, Gln38, when mutated to Pro38 in S. aureus led to the 

destabilization of the protein; the AgrBs of C. botulinum Agr2, C. sporogenes Agr1, C. 

perfringens, C. botulinum Agr2, and C. sporogenes Agr2 show an aromatic residue at that position. 

Another specific residue in the vicinity, Asn43, when mutated to Ile43 or Tyr43 in S. aureus led 

to loss of peptidase activity (Thoendel & Horswill, 2013). Ile43 is present in C. sporogenes Agr1 

and Phe43 in both C. difficile AgrBs. Although these mutations probably do not hinder the AgrBs 

of the Clostridial species, they do indicate that the proteins are likely different and that the positions 

might not be as crucial in the Clostridium genus. 

The other boxed regions (solid and dashed in Figure 18) include the catalytic residues of 

His81 and Cys88 and show differences amongst C. difficile AgrBs. Additionally, the two C. 

difficile AgrBs are the only ones with a significant difference at an experimentally tested position, 

Thr142, which if mutated to Ile142 in the S. aureus AgrBI would abolish peptidase activity 

(Thoendel & Horswill, 2013). Therefore, C. difficile might have a significantly different AgrB  
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respectively. The grey shading of the species’ name indicates pathogenicity or 
toxigenicity. Solid boxes highlight functional regions in S. aureus, including extracellular 
portions of AgrB-I (residues 1-49, and 141-156), and an intracellular loop (71-85). 
Dashed boxes show an extended region that contains functional residues of the S. 
aureus AgrB-I. Below the amino acid alignment is the alignment of the secondary 
structure of the AgrB of each species presented in the previous figures. 

Figure 50: Comparative analysis of the 
S. aureus AgrBI-IV and AgrB 
consensus sequences of Clostridium 
species. Relevant differences between 
S. aureus and Clostridium species are 
shown in red or at the top of the 
alignment, whereas differences between 
Clostridium species are highlighted in 
yellow. Black and grey highlighting of 
amino acids indicates full conservation 
and similar residues, respectively 
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compared to other Clostridial AgrB components. Continuing downstream, a lysine patch in 

positions 143-5 of the S. aureus AgrBs was found to be crucial for secretion of the cleaved AIP. 

The following mutations, Lys145Glu, Lys143Gln, Lys144Gln, or Lys145Gln, abolished secretion 

of the cleaved AIP (Thoendel & Horswill, 2013). Various inconsistent mutations are present across 

all of these positions, suggesting different AgrB processing mechanisms across Clostridial species.  

Despite the significant differences between Clostridial AgrBs and between Clostridial and 

S. aureus AgrBs, there are a few conserved residues at positions 36, 74, 79, 139, and 146. Out of 

these residues, Gly36 stabilizes the S. aureus AgrB, Arg74 and Gly79 are known as necessary for 

AIP production in S. aureus, and Pro139 is necessary for AgrB cleavage activity (Zhang et al., 

2002; Thoendel & Horswill, 2013). Interestingly, Pro146 is not known to have a specific function 

in the S. aureus AgrBs but could be involved in producing a specific shape for the interacting 

coiled-coil region alongside Pro139. Furthermore, PSIPRED program predicted that the secondary 

structures of all AgrBs are similar (Figure 18). The conserved residues and secondary structure 

could establish homology between the proteins, but the residue-based analysis above shows lack 

of significant similarity between the proteins. Given the significant differences in their amino 

acids, the proteins are different between and within Clostridial species. 

 

Comparison of the AgrC Sequences between the five Clostridial Species 

The AgrC sequences of Clostridial species are homologs, as they contain the catalytic 

residues of the histidine kinase, but within the hypothetically functional regions there are definite 

differences between the C. acetobutylicum and C. difficile AgrC sequences. These regions include 

the AgrD sensing and binding specificity regions, the AgrC activation region, binding sites for 

ATP and AgrA, and residues responsible for protein structure stability.  
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The sensor domain’s three functional extracellular loops are shown in Figure 19 as solid 

boxes, while dashed boxes surround buried regions with functional residues. All boxes have 

significant differences and most of the differences are dissimilar between C. acetobutylicum and 

C. difficile. The transmembrane domains between the boxes have few similar residues (shaded 

gray) and one fully conserved lysine between the AgrCs of S. aureus, C. acetobutylicum, and C. 

difficile. Although these similar residues appear within the membrane, they could still make a 

significant functional difference within the protein as other residues have been shown to affect the 

protein from within membranes (Thoendel & Horswill, 2013). Considering the activation and 

specificity properties of the sensor domain region, the differences observed are expected, and 

similarities could be further investigated for specific functions in the histidine kinase. 
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Figure 51: Comparative analysis of the S. aureus AgrCI-IV and AgrC consensus sequences of 
Clostridium species with quorum-sensing Agr components. Relevant differences between S. aureus 

and Clostridium species are shown in red font or at the top of the alignment, whereas differences between 
Clostridium species are highlighted in yellow. Black and grey highlighting of amino acids indicates full 
conservation and similar residues, respectively. The grey shading of the species’ name indicates a 
pathogenicity or toxigenicity. Solid boxes highlight functional regions in SA, including extracellular portions 
of AgrC-I (residues 33-43, 112-121 and 186-198). Dashed boxes show an extended region that contains 
functionally relevant residues of SA’s AgrC-I. Below the amino acid alignment is the alignment of the 

secondary structure of the AgrB of each species presented in the previous figures. 
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Continuing downstream, there are also a significant number of conserved residues that 

appear within the end of the S. aureus AgrCI’s last transmembrane segment and the linker to the 

dimerization and histidine phosphotransfer domain (positions 207-245). These partially conserved 

residues might be necessary to maintain the shape and orientation of the helix to allow for proper 

sequestration and exposure of the ATP-binding domain. Supporting this point is the destabilization 

of S. aureus AgrC’s interaction with AgrA when Tyr247 is substituted for Cys247 (Norrby-

Teglund et al., 2016). While C. acetobutylicum has Tyr247, C. difficile has Asn247 that possibly 

implies a different mechanism for the C. difficile AgrC. In addition to the dimerization and 

histidine phosphotransfer domain, the second part of the protein also holds the catalytic and ATP-

binding domains. These two domains have three functional boxes, including the H-box, where 

phosphotransfer occurs, and the two boxes that shape the ATP-binding cleft, N-box and G-box. 

The sections of the sequences of the C. acetobutylicum and C. difficile AgrCs that align with the 

S. aureus catalytic boxes all show significant differences. The H-box, containing the phosphoryl 

acceptor motif F[RK]HDYXN, shows significant variation from the C. difficile AgrC2 to C. 

acetobutylicum AgrC, which is almost identical to the S. aureus motif. The same box also has 

residues that interact with AgrA between positions 266 and 275. The other two functional boxes 

are similar between the Clostridial species. Another similarity between the sequences lies in the 

predicted secondary structure of Clostridial AgrCs. Loops in the transmembrane sensor domain 

are reasonably aligned, as are the beta-sheets and helices that form the dimerization and histidine 

phosphotransfer domain and the catalytic and ATP-binding domain. 

As the AgrC is a histidine kinase commonly found in two-component regulatory systems, 

more similarities are expected between the AgrCs of the Clostridial species and even between the 

Clostridial species and S. aureus. Therefore, the nature of the histidine kinase combined with the 
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homology of the proteins explains the similar secondary structure and similarities among the 

residues in the functional regions. Despite the similarities between the Clostridial AgrCs, their 

activation, sensory, and phosphotransfer regions may have differences that distinguish them. 

 

Comparison of the AgrA Sequences between the five Clostridial Species 

AgrA is also part of the two-component regulatory system where it promotes the expression 

of the Agr system and the RNA that will further regulate cellular functions. The AgrA of C. 

acetobutylicum and C. difficile contain all the catalytic residues necessary for function and are the 

components with the most similarities among all the Agr components. The majority of the 

conserved residues (Figure 20) are present within the recognition (REC) domain that spans 

positions 1-103 and interacts with AgrC. The differences between the C. acetobutylicum and C. 

difficile AgrA components appear mostly in the LytTR domain that binds DNA. 

One of the differing sites between the C. acetobutylicum and C. difficile AgrAs includes 

the intermolecular recognition motif located at positions 111 and 112. While the AgrAs of C. 

acetobutylicum and S. aureus have the same residues for intermolecular recognition, C. difficile  
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has a different motif composed of Lys-Pro-Ile (positions 111-113). The residues in AgrA that make 

contact with specific bases in DNA vary throughout the LytTR family of proteins. This is also the 

case for the C. difficile and C. acetobutylicum LytTR domains. C. difficile has Ile171 instead of 

His171. C. acetobutylicum also has different residues in one of the most conserved DNA-binding 

motifs, where it has Tyr201 and Lys205 instead of the conserved F201 and N205. Interestingly, 

the S. aureus AgrA has the ability to respond to oxidative stress by creating a disulfide bond 

between Cys203 and Cys232 (Sun et al., 2012). Both cysteines are conserved in C. acetobutylicum, 

but not in C. difficile. The Tyr233, following the second cysteine involved in disulfide bonding, 

bears a significant role in transcription activation by AgrA, as substitution by alanine led to a 

significant decrease in transcription (Wang & Muir, 2016). The Tyr233 is substituted in C. 

acetobutylicum for Leu233, which is similar enough to Tyr233. However, C. difficile has a 

Figure 52: Comparative analysis of the S. aureus AgrA and AgrA consensus 
sequences of Clostridium species. Relevant differences between S. aureus and 

Clostridium species are shown in red, whereas differences between Clostridium species 
are highlighted in yellow. Black and grey highlighting of amino acids indicates full 
conservation and similar residues, respectively. The grey shading of the species’ name 
indicates pathogenicity or toxigenicity. 
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substitution for Pro233, which most likely indicates a significant difference between the AgrA of 

Clostridial species. 

Despite the relatively extensive similarities and the small number of significant differences 

between the AgrA sequences of C. acetobutylicum and C. difficile, the differences are enough to 

suggest that the proteins are different. The recognition domain of AgrA should show similarities 

between species, as it is an essential part for relaying the signal of the two-component regulatory 

system. Similarly, the LytTR domain should be different between species as the DNA-binding 

bases have to be specific to the different promoters of each Agr operon. The differences in the 

intermolecular recognition motifs adds to the evidence suggesting that the AgrA proteins are 

different amongst species. 

 

Comparison of all the AgrD Sequences between Clostridial Species 

 AgrD carries a lot of information within its residues and to achieve specificity, the signal 

peptide needs a reasonable degree of variation. The alignment of the different AgrD sequences of 

Clostridia against the AgrD alleles of S. aureus is shown in Figure 21. There is extensive variation 

in the N-terminus and AIP portions of the protein. The C-terminus contains significant differences, 

but it is generally more similar between the species. The alignment of the AgrD sequences shows 

that the Agr component is different between the species. 

 The N-terminus of the S. aureus AgrD is not conserved, although the amphipathic helix is 

conserved in all of S. aureus AgrDs. The same amphipathic helix was found only in some of the 

Clostridia species, indicating differences in Clostridia. The amphipathic helix is followed by a 

helix breaking motif composed of Ile42-Gly43 that allows a turn in the helix, but is not necessary  
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Figure 53: Comparative analysis of the S. aureus AgrDI-IV and AgrD consensus sequences of all 
Clostridium species. Relevant differences between S. aureus and Clostridium species are shown in red 
whereas differences between Clostridium species are highlighted in yellow. Black and grey indicates full 
conservation and similar residues, respectively. The grey shading of the species’ name indicates 
pathogenicity or toxigenicity. The light blue shading shows empirically proven autoinducer peptides (AIPs) 
and the orange shading shows predicted AIPs based on bioinformatics analyses through SignalP, Predisi, 
and Phobius. 
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for AIP production (Cisar et al., 2009). Although there are many small residues in position 46, 

they do not possess the helix-breaking property of Gly43, therefore the position is not conserved 

in Clostridia. The lack of a conserved glycine following the amphipathic helix indicates that 

Clostridia might have a different method of presenting the AgrD prepeptide to AgrB and a SpsB-

like peptidase. The N-terminal cleavage site is also necessary for AIP processing and is composed 

of certain residues recognizable by SpsB in the S. aureus AgrD I, II, and IV (Kavanaugh et al., 

2007). These recognition residues include a proline/glycine at the position -5 or -6, a small or 

branched chain residue at -3, and a glycine/serine/alanine at the -1-position relative to the cleavage 

site or beginning of the AIP (Kavanaugh et al., 2007). The putative recognition sites are shown in 

Figure 21 as the three residues preceding the shaded AIP sequences and show significant variation. 

The proline/glycine at the position -5 or -6 are missing, but the small or branched chain residue at 

-3, and a glycine/serine/alanine at the -1 position are present in most Clostridia. The AIP sequences 

that are empirically unknown were predicted by SingalP, Predisi, and Phobius and shown as orange 

in the shaded area. Thus, the N-terminus of Clostridia contains different motifs necessary for 

processing of the AgrD compared to S. aureus and within the species, suggesting modified 

peptidase-interactions. 

 Similar to the N-terminus, the AIPs within the AgrDs do not demonstrate conservation. 

Position 51, highlighted in green at the top of the alignment, is the only semi-conserved position, 

as it mostly has cysteine and serine residues. These small residues form the important thioester 

(cysteine) and ester (serine) bonds in the macrocycles of the AIPs (Thoendel & Horswill, 2009). 

Another important motif within the AIP macrocycles of S. aureus is the hydrophobic motif 

composed of two or three bulky hydrophobic residues at the end of the AIP. The corresponding 

positions in the alignment (54-56) do not show conserved hydrophobicity in at least the last two 
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positions. Evidently, many AIPs have polar or small residues at positions 55 or 56 instead of bulky 

hydrophobic residues. The different cyclization residues and variation in the macrocycle residues 

indicate that the AgrDs of Clostridia are different and specific to each species. Although there is 

little conservation within features of the AIP, some sequences of Clostridial AgrD are exactly the 

same across species. 

  Despite its conserved positions, the C-terminus also has significant differences throughout 

Clostridia. In S. aureus, the entire terminus is considered charged due to the presence of 5 or 6 

charged residues (Thoendel & Horswill, 2009). In Clostridia, however, the number of charged 

residues in the sequences varies between two and seven. The lack of conservation is demonstrated 

by the large presence of small, uncharged residues at position 64, which is a conserved position 

essential in S. aureus given that mutation from Glu64 to alanine abolished AIP production 

(Thoendel & Horswill, 2009). Given that the charge of the S. aureus C-terminus is necessary for 

proper interaction and cleavage of AgrD, the different degrees of charge present in the C-termini 

of Clostridia suggest other mechanism of interaction or fewer necessary charged residues for 

cleavage. 

In contrast to the variation in charge, position 65, one of the most conserved residues in the 

S. aureus AgrDs and essential for endopeptidase activity and AIP production, has hydrophobicity 

conserved in Clostridia. The C-terminus also has a small patch between positions 58 and 62 that 

shows strong conservation. The first position, Glu58 shaded in grey, has one of the two residues 

presumed to allow recognition by AgrB in S. aureus. The other AgrD recognition residue is Asp57 

(George & Muir, 2007), occupied with mostly aromatic residues in the Clostridia sequences. 

Positions 58 and 57 are likely to hold residues with similar recognition functions in Clostridia as 

well given their higher degree of conservation. Notice that the other three residues in the shaded 
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positions do not have specific functions like Glu58. Following position 58, is the first conserved 

position, Pro59. The six Clostridial sequences without Pro59 contain acceptable substitutions. The 

next shaded position is Lys/Glu60, conserved with these two residues, even though five Clostridial 

sequences have acceptable substitutions instead. The last conserved position is the Pro62 with only 

four Clostridial sequences diverging from the conservation, although only one has an unacceptable 

Leu65 substitution. Although the C-terminus is necessary for AIP production in S. aureus, the 

conservation of these C-terminal residues in Clostridia suggests they should be further investigated 

in both S. aureus and Clostridia. Pro59 in addition to Pro62 could provide a binding cleft for 

regulation of AgrD activity and possibly the interaction with AgrB. 

The AIP sequences of Clostridia are different, reflecting their role and specific interactions 

with AgrC. Their N-termini have different amphipathic helices and cleavage recognition sites, 

their AIPs do not follow a specific pattern besides the cyclization cysteine and serine, and their C-

termini are not significantly charged. However, the semi-conserved recognition site for cleavage 

by a SpsB-like peptidase and the conserved residues within their C-termini are a promising 

therapeutic targets of the Clostridia’s Agr system. 

 

Comparison of all the AgrB Sequences between Clostridial Species 

 The AgrB component of the Agr system is a unique protein without homologs apart from 

other AgrBs (Novick et al., 1995), indicating how specific its role is within the Agr system. The 

alignment of the Clostridial AgrBs (Figure 22) shows conserved residues aligning with the 

catalytic residues in active sites of the S. aureus AgrBs. Proportionally, however, the AgrBs of 

Clostridia have fewer conserved positions compared to the other Agr components, matching the 

diversity of AgrD proteins. 
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The conserved residues of Clostridial AgrBs are present in the protein’s binding site, 

including the His84 and Cys91 necessary for AIP production. Only two Clostridial AgrB 

components do not have these catalytic residues, C. josui ‘Agr1’, probably due to a sequencing 

error, and C. argentinense AgrB^. Although not catalytic, Arg77 is a transmembrane residue 

required for AIP production in S. aureus and is conserved in Clostridial AgrBs through both Arg77 

and Lys77. Another conserved and required residue present in the vicinity is Gly82 (Thoendel & 

Horswill, 2013), which follows an additional conserved G81. The Gly81 is exclusive to Clostridia 

and can indicate a less strict interaction with AgrD or a different type of interaction altogether due 

to the glycine’s hydrogen side-chain and freedom in movement. 

The AgrBs of Clostridial species also lack functionally-relevant residues of S. aureus 

AgrB. The Staphylococcal AgrB is dependent on A85, which is not conserved in all Clostridia. 

The ability of AgrB to cleave AgrD in S. aureus is dependent on the fully conserved P139 and 

AgrD secretion is dependent on a lysine patch that precedes the proline (Thoendel & Horswill, 

2013). Although Pro139 is conserved, the patch (positions 143-5) only shows a semi-conserved 

Lys145 with occasional Arg145 and His145. As the lysine patch allows for secretion of the 

processed AgrD, the significant differences may indicate a potentially different secretion 

mechanism for the AgrD of Clostridia. 

 Apart from residues responsible for direct interactions with other proteins, the Clostridial 

AgrB components also have residues vital for stability of the protein. In S. aureus, residues Gly39 

and Gln41 resulted in a destabilized AgrB when mutated to Val39 and Pro41 (Thoendel & 

Horswill, 2013). Apart from the first few sequences, Gly39 is conserved throughout Clostridia. 

Residue Gln41, however, is not conserved in Clostridia. There is also a position with hydrophobic 

and mostly aromatic residues conserved at position 38 that is not mentioned in literature and could 
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be relevant to Clostridia. Given that the residues are hydrophobic, they are likely transmembrane 

residues involved in protein stability. Furthermore, position 46 also harbors a necessary asparagine 

in S. aureus, as isoleucine or tyrosine mutation lead to inhibition of cleavage of AgrD (Thoendel 

& Horswill, 2013), but the position does not have asparagine nor polarity conserved in Clostridia. 

A transmembrane mutation at Ser167 lead to similar destabilization most likely due to the 

introduction of a charged residue in the membrane (Thoendel & Horswill, 2013). Although there 

is no charged residue at position 167, a majority of bulky and hydrophobic residues occupy 

position 167. Residues that hold the protein together are bound to vary and possibly lose their 

function across homologs. Therefore, even if there were significant similarities between the AgrBs 

of Clostridial species and S. aureus, they would probably be less significant than the differences 

in their catalytic regions. 
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Figure 54: Comparative analysis of regions with relevant similarities and differences between the 
sequences of S. aureus AgrBI-IV and AgrB consensus sequences of all Clostridium species. 
Relevant differences between S. aureus and Clostridium species are shown in red or highlighting at the 
top of the alignment, whereas differences between Clostridium species are highlighted in yellow. Black 
and grey highlighting of amino acids indicates full conservation and similar residues, respectively. The 
grey shading of the species’ name indicates pathogenicity or toxigenicity. 
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 Altogether, the interacting residues of the AgrBs in Clostridia support the proteins function, 

but there are sufficient differences to distinguish between the proteins. The similarities lie in the 

catalytic intracellular membrane loop and in its AgrD cleaving motif. The differences, on the other 

hand, are also present in positions aligning with residues in the catalytic region and other relevant 

positions of S. aureus. Interestingly, the AgrBs of Clostridia also have additional conserved 

residues that are not relevant in S. aureus but are still located in relevant regions of the protein. 

 

Comparison of all the AgrC Sequences between Clostridial Species 

Most Clostridial species have the main functional residues of the S. aureus AgrCs 

conserved. The regions of most conservation surround the active sites of the catalytic boxes in the 

dimerization and histidine phosphotransfer domain and the catalytic ATP binding domain. The 

conservation is enough to maintain the function of the protein, but there are still significant 

differences within these domains. The least conserved domain is the sensor domain, as it varies 

from species to species. The specific motif and residues are shown in Figure 23 and outlined 

below. 

The three fully conserved residues within the AgrC of Clostridia are the ones that define 

the ATP binding cleft and the ATP binding motif and composed of the H-box, N-box, and the G-

box. The essential residues corresponding to the boxes include His399, Asn524, and G593. The 

only sequences that do not contain all of these residues are the AgrC of C. indolis Agr3, both of 

the operons of C. mangenoti, and C. ragsdalei. The absence of these crucial residues is probably 

a result of mutations or sequencing errors, as it appears their sequences are incomplete. Both the 

H-box (positions 379-410) and the N-box (positions 515-528) have three semi-conserved positions 
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in addition to the fully conserved His399 and Asn524. However, the functionality of the residues 

of the N-box has not been as thoroughly explored. 

Generally, the H-box shows low conservation and significant differences regarding S. 

aureus in a significant number of sequences. Researchers have found specific residues within the 

S. aureus H-box that interact with AgrA, these are Val402, Ile404, Leu405, and Leu408. Out of 

these positions, 402 and 404 (shaded in red at the top of the alignment, Fig. 23) showed significant 

differences from S. aureus. Conversely, the other two leucine residues are conserved through 

hydrophobic residues. Specific mutations within the H-box of S. aureus, for example, the mutation 

of Met383 to Leu383 lead to constitutive activation of the protein, which is significantly present 

in the alignment. Arg387 mutations to histidine/cysteine/glycine387, none of which was found in 

the alignment, also lead to constitutive activation. However, a significant number of the species 

have Leu387 at that position, a residue that is not favorable in place of arginine. Lastly, Tyr401 

mutation to Cys401 that also turns on the constitutive phenotype, is absent from the other 

Clostridial species and has hydrophobicity conserved. Some of the functional residues of the S. 

aureus H-boxes form a motif (F[RK]HDYXN) around His399 that is conserved in other histidine 

kinases and is part of the HPK10 category of Histidine Kinase (HK) domains. This pattern is not 

conserved in the putative H-boxes of Clostridial species and indicates significant variation in 

DNA-binding residues within the genus. Despite the variation in the H-box, the G-box (positions 

583-599) contains the least number of similar residues between the AgrCs of Clostridium species 

whilst being the largest box motif. The similarities are limited to the conserved G-X-G (591-X-

593) motif, with X being hydrophobic and bulky in most sequences.  
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Figure 55: Comparative analysis of regions with relevant similarities and differences between the 
sequences of S. aureus AgrCI-IV and AgrC consensus sequences of all Clostridium species. Relevant 

differences between S. aureus and Clostridium species are shown in red or highlighting at the top of the 
alignment, whereas differences between Clostridium species are highlighted in yellow. Blue highlights at the 
top of the alignment indicate a specific mutation of potential importance and green highlights indicate positions 
with conserved amino acids. Black and grey highlighting of amino acids indicates full conservation and similar 
residues, respectively. Solid boxes highlight functionally relevant regions in S. aureus, including extracellular 
portions of AgrC-I.  Dashed boxes show an extended region that contains functionally-relevant residues of 
the S. aureus AgrC-I. Specific domains span the colored bars above the alignment. The grey shading of the 
species name indicates pathogenicity or toxigenicity. 
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An additional G-box is present in other HK domains whereas in most Clostridia, a 

conserved Asn559 takes the place of the G-box’s aspartate residue. This G-box is also absent in 

other HPK10 categories, but most HPK10 HK domains have the original aspartate. Only a few 

sequences contain the original aspartate, including C. kluyveri ‘Agr2’, kluyveri ‘Agr3’, ljungdhali 

‘Agr1’*, ragsdalei*, autoethanogenum*, ljungdhali ‘Agr2’*, almost the same cluster from the H- 

and N-boxes. This difference in addition to the significant differences that the (F[RK]HDYXN) 

motif carries raises the question of whether the Agr HK domain of Clostridia can be categorized 

differently. Although there are still significant differences in relevant positions of the histidine 

kinase domain, it is the most conserved domain across Clostridia in comparison to the sensor 

domain. 

The sensor domain significantly varies in the four S. aureus Agr groups and also varies 

between Clostridia. In S. aureus, the first extracellular loop is responsible for activating 

interactions as alanine mutations of residues Leu43, Phe46, Phe47, Ile58, Val59, Ser61, and Thr62 

abolished activation in AgrC–AIP interactions in group I and diminished activation in group IV 

(Cisar & Elizabeth, 2009). In the second extracellular loop, the S. aureus AgrC I has residues 

necessary for its activation by and responsible for specificity with AIP I, including Tyr131, 

Ala132, Thr139, Ser142, and Ser151 (Cisar & Elizabeth, 2009). These positions are within highly 

variable recognition domains so the lack of conservation of any residue is justified. Some of the 

positions also have many gaps, rendering them obsolete. However, the following positions 

(highlighted in green, Figure 24) have traits conserved; most residues at position Tyr131 have a 

bulky hydrophobic character; position Phe46 has mostly Lys46 and Arg46; Phe47, Ile58, Val59, 

and Ser61 all have hydrophobicity conserved and a reasonable number of aromatic residues. The 

characters of these residues suggest the possibility of interaction, given the capability of 
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hydrophobic interactions between aromatic rings and aliphatic chains or hydrogen bond through 

the charge on position 46. However, the functions of these residues can only be confirmed through 

in vitro testing. 

A few specific sensor domain mutations at positions Arg259, Ser262, Thr286, and Leu294 

lead to constitutive activity of AgrC (Geisinger, Muir, & Novick, 2009), but the Arg259 aligned 

to that position with mostly gaps. Ser262 and Thr268 had mostly hydrophobic residues and some 

were aromatic, matching the mutation leading to AgrC’s constitutive activity. The Ser262 position 

is conserved through polarity of the residues. These significant differences and variations support 

the fact that the sensor domain, and consequently the AgrC components are different from each 

other. They also confirm that the mechanisms of recognition of the AIP are different between S. 

aureus and Clostridia, as the mutations leading to constitutive activation in S. aureus are unlikely 

to lead to constitutive activation in Clostridia. 

There is data on very specific mutations in the S. aureus AgrC that could be relevant, and 

their positions are highlighted in blue (Fig. 24). A mutation at Ile250 to lysine led to lack of 

sensitivity to AIPs of other groups (Geisinger et al., 2009). The Ile250Lys mutation is present in a 

significant number of Clostridial sequences, and other sequences have a charged residue at position 

250. At the least, the presence of this mutation in Clostridia indicates a difference in AgrC-AgrD 

interactions between S. aureus and Clotridia. The Tyr372 of the S. aureus AgrC, located in the 

sensor domain, has been implicated in AgrC-AgrA interaction, as a cysteine mutation in the 

position led to different genetic regulation resulting in a colonizing phenotype rather than a 

cytotoxic effect (Norrby-Teglund et al., 2016). Many Clostridia have a tyrosine residue at position 

372, however, other polar residues are also present, such as glutamine and histidine. Another 
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mutation that lead to constitutive activation, glutamine489 to histidine/arginine/glutamate489 

(Geisinger et al., 2009), is present in some of the species.  

The functions of the Clostridial residues that align with the mutated functional S. aureus 

residues are unknown within Clostridia. The mutations that showed some effect on the S. aureus 

AgrCs are probably obsolete within the Clostridium genus, however, the variation in these 

positions provide evidence that the AgrC components are different from S. aureus and different 

between the Clostridial species. Additionally, the variations within both the Senor and HK domains 

suggest that the AgrCs of Clostridia are different, even within the same species. Despite these 

differences, the AgrCs of Clostridia and S. aureus are probably homologous and carry out the same 

function within their Agr systems. 

 

Comparison of all the AgrA Sequences between Clostridial Species 

 The AgrA components of Clostridia have the majority of the functional residues of the 

LytTR response regulator conserved throughout the sequences of all species. Figure 24 shows the 

conservation of the catalytic residues, dimerization domain, and intermolecular recognition 

domain. On the other hand, Figure 24 also demonstrates that the DNA-binding domain and 
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Figure 56: Comparative analysis of the S. aureus AgrA and AgrA consensus sequences of all 
Clostridium species. Relevant differences between S. aureus and Clostridium species are shown in red 
or highlighted at the top of the alignment, whereas differences between Clostridium species are 
highlighted in yellow. Black and grey highlighting of amino acids indicates full conservation and similar 
residues, respectively. The grey shading of the species name indicates pathogenicity or toxigenicity. 
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response regulator recognition domain is not conserved in the Clostridia AgrA. Therefore, the data 

establishes the Clostridial AgrA as distinguishable proteins with relevant similarities. 

All Clostridia contain the three aspartates (or two aspartates and one glutamate) in the 

shaded positions 15, 16 and 74. The sequences have a partially conserved Lys-Pro-Ile (KPI) 

dimerization domain, as only the Lys128 residue is fully conserved, but positions 129 and 130 

have significant conservation of proline and a bulky hydrophobic residue, respectively. The 

conserved Lys128 and semi-conserved Pro129 are also functional in the binding of ATP, as the 

lysine forms a salt-bridge with the phosphorylation site and the proline directs the site lysine 

towards the active site (Gao & Stock, 2009; Marchler-Bauer et al., 2017). Given the prevalence 

and possible dual function of Lys128 and Pro129, these residues could be valuable targets for 

deactivation of the Agr system in pathogens toxins are regulated by the operon. 

The DNA-binding residues of S. aureus, His194, and Asn247 are not conserved in the 

Clostridial species, but all sequences have acceptable polar substitutions in their place. The third 

DNA-binding residue of the S. aureus AgrA, Arg283, does not have polarity conserved in the 

position. These positions, however, do not necessarily represent DNA-binding sites, as they vary 

considerably within the LytTR domain (Sidote et al., 2009). The other DNA-binding motif present 

in the LytTR domain is composed of FFRCHNS (McGowan et al., 2002). In the AgrA alignment, 

the only truly conserved residues within the motif is phenylalanine(242), serine(248), and 

histidine/tyrosine(246). The other positions of the motif, however, are not conserved, although the 

majority of the residues at positions arginine(244) and arginine(247) are polar. Other locations that 

affect DNA-binding by AgrA in S. aureus include position 196, which has a conserved 

hydrophobicity, and position 206, which has polar residues (Nicod et al., 2014). The S. aureus 

AgrA also has a residue that is necessary for the beginning of transcription even after binding to 
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promoter P3 (Wang & Muir, 2016). Transcription at the P3 promoter is halted in an Ala mutant at 

position Tyr279, where Clostridia mostly have a disfavored Pro as a substitute. The residues that 

affect AgrA interaction with DNA are not conserved in Clostridia, suggesting different and 

specific mechanisms of regulation from S. aureus, including within the Clostridium genus. 

However, the residues between positions 242-8 are the best candidates for targeted modulation of 

the Agr system by impeding DNA-binding. 

A peculiar trait of S. aureus AgrA is the ability to form a disulfide bond between C245 and 

C278 in oxidative conditions (Sun et al., 2012), interrupting its activity. Similarly, a few Clostridial 

species have the cysteine residues conserved at the same position, including C. acetobutylicum, 

roseum, papyrosolvens, and aceticum. All species but C. roseum are non-pathogenic or non-

toxigenic. 

 Apart from DNA, AgrA also interacts with AgrC through the response regulator 

recognition domain, which has an intermolecular recognition domain (IMRD) (Marchler-Bauer et 

al., 2017). In S. aureus, the IMRD is composed of residues leucine77, serine78, isoleucine81, 

asparaginen82, and glycine83, out of which position 77 has conserved hydrophobicity and 

glycine83 is conserved in Clostridia. The polarity of asparagine82 is also conserved and the 

hydrophobicity of isoleucine81 is somewhat conserved through isoleucine, valine, tyrosine, 

methionine, and leucine. serine78 is the only position that has the first few sequences with 

conserved polarity but has a gap in most of the species. The higher conservation primes IMRD as 

a target for halting the Agr system by severing the interaction between AgrA and AgrC, removing 

the intracellular response. 

 Some positions do not have direct implications on the interactions of AgrA but do keep the 

integrity of the protein. Asn252 and Ile256 of the S. aureus AgrA are examples of such residues 
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that are conserved. The former residue is fully conserved, and the latter has hydrophobicity 

conserved. Locations nearby (250 and 251) also have hydrophobicity conserved throughout. While 

these residues demonstrate similarity between the AgrA of Clostridia, other residues that are 

necessary for detection of AgrA expression in S. aureus distinguish between Clostridial the AgrA. 

Among these residues are Lys192, His199, and Asn255 (Nicod et al., 2014). Lys192 aligns with a 

position that includes a gap in most of the species. His199 is not conserved as there are a series of 

hydrophobic residues at that position. Lastly, Asn255 is not conserved, as there are many 

significantly different residues at that position. 

 Met228 of the AgrA in C. perfringens is usually conserved through a leucine in similar 

response regulators, as it is responsible for stabilizing the response regulator-DNA complex. In 

the Clostridial AgrA, the position has hydrophobicity fully conserved, presenting another 

interesting residue for intervention and supporting a degree of similarity in AgrA. C. perfringens’s 

VirR has a serine-lysine-histidine-arginine motif at positons 281-284 (McGowan et al., 2002; 

McGowan, O’Connor, Cheung, & Rood, 2003) with side chains essential for DNA-binding 

activity. However, there is significant variability within these positions, as shown previously 

through AgrA’s Arg283. 

 The AgrA components of Clostridia have relevant residues that are conserved, but also 

have residues in relevant regions that are not conserved. While the AgrA of Clostridia do not show 

full conservation of any motif, the dimerization domain, a DNA-binding motif, stabilizing 

residues, and the IMRD are the most similar across the genus. Therefore, they provide the most 

uniform targets for modulation of Agr function. Despite the similarities, the AgrA of Clostridia 

are still different as other residues in the DNA binding motifs, and the response regulator 

recognition domain are not conserved. 
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Evolutionary inference of the Agr components 

 The Agr system could be split into two operons with AgrC and AgrA on one hand and the 

AgrB and AgrD on the other. This categorization originates from their function and is reflected in 

their maximum likelihood phylogenetic trees as shown in Figures 25 and 26. The trees of AgrD 

and AgrB show a more dissimilar topology compared to the trees of AgrC and AgrA. The trees 

show pathogenic Clostridia in bold, which are dispersed throughout the leaves of all four trees. 

The dispersion of pathogens throughout the tree is evidence of the lack of relationship between the 

structure of the Agr components and the pathogenicity of the species. However, the pathogens C. 

difficile, C. perfringens, C. sordellii, and C. bifermentans do form a polytomous clade in both 

AgrA and AgrC trees, meaning the sequences do not provide enough information to discern 

branching, or the nodes were not statistically significant. The polytomous clade of AgrA is much 

more statistically robust than the corresponding clade in AgrC. AgrB also shows clustering of 

sequences of these four pathogens, but the clade is statistically significant and not polytomous. 

Another clade containing sequences from pathogens C. roseum and C. butyricum, in addition to 

C. acetobutylicum, is the most related to S. aureus compared to the rest of the clades. Interestingly, 

this clade is present in all four trees. Many of the AgrC without the AgrA at their flanks (AgrC*) 

cluster into a clade with statistical robustness, although some other sequences with these orphan 

AgrCs are not in the same clade. Most of the orphan AgrC*s have a corresponding AgrD2* and 

AgrB2*. The AgrD2* and AgrB2* sequences are found in mostly polytomous clades that are 

topologically equivalent to the AgrC2* sequences. Interestingly, all of the AgrA orphan sequences 

are present in non-pathogenic genomes, apart from the orphan histidine kinase of C. difficile. 

Furthermore, C. difficile is the only species that has all its sequences most related to each other in 

every tree. 
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Figure 57: The bootstrap phylogenetic trees of the consensus AgrD (right) and AgrB (left) 
sequences of Clostridium species. The trees inferred by using the maximum likelihood method and 

JTT matrix-based model. The percentage of replicate trees in which the associated taxa clustered 
together in the bootstrap test (300 replicates) are shown next to the branches. The species in bold are 
pathogenic or toxigenic. Evolutionary analyses were conducted in MEGA X. 
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Figure 58: The bootstrap phylogenetic trees of the consensus AgrC (left) and AgrA 
(right) sequences of Clostridium species. The trees were constructed using the 
maximum likelihood method and JTT matrix-based model. The percentage of replicate 
trees in which the associated taxa clustered together in the bootstrap test (300 replicates) 
are shown next to the branches. The species in bold are pathogenic or toxigenic. 
Evolutionary analyses were conducted in MEGA X. 
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CONCLUSION 

Antibiotic resistance has been a major threat to our best defense against bacterial infections. 

Antibiotic-based treatment of bacterial infections has saved many lives, since the first antibiotic 

was discovered in 1928. Now, the effectiveness of many antibiotics is under threat due to 

antimicrobial resistance. Thus, antimicrobial resistance poses a major to public health. . The genus 

Clostridium has its own multidrug-resistant bug, C. difficile (Davies J & Davies D, 2010), a 

bacterium that itself has become a major threat and an enormous burden to public health authorities 

(Gupta & Khanna, 2014). As a result, various non-antibiotic therapies that pose minimum risk of 

resistance are being explored. C. perfringens is also a concern, since it is a common perpetrator of 

foodborne illnesses with strains that are resistant to antibiotics (Labbe & Juneja 2017). The Agr 

system controls toxin production and virulence in both of these pathogens as well as other 

Clostridial species. The virulence-associated processes controlled by the Agr operon include  toxin 

production, colonization (Darkoh & Asiedu, 2014; Darkoh et al., 2015; Darkoh et al., 2016; Martin 

et al., 2013) and  motility (Martin et al., 2013) in C. difficile, and  sporulation in C. perfringens 

(McClane et al., 2012). In this study, the components of the Agr system in different pathogenic 

Clostridia was compared and the results identified similarities and differences that could serve as 

targets for the development of non-antibiotic, anti-virulence therapies against these pathogens. 

Given the virulence and other important functions of the Agr system, similarities in Agr 

proteins across Clostridium species can be targeted for single therapies that could inhibit different 

Clostridial pathogens. Apart from the catalytic residues present in S. aureus and Clostridia, novel 

similarities were found between Clostridium species. The AgrD sequences of Clostridia 

demonstrate a similar C-termini composed of a rigid proline-based motif with charged residues. 

Given the charges and rigid motif, a therapeutic drug could be developed to bind to the C-termini 
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of AgrD with high affinity to abort its interaction with AgrB, the peptidase mediating AIP 

cyclization. The absence of cyclization inhibits the production of the AIP, which in turn would 

halt toxin production and other cellular processes. The AgrBs of Clostridia are also similar in their 

catalytic loop region that is novel and could be explored as a potential target. The catalytic loop 

appears to be very flexible given the presence of a second conserved glycine residue and because 

it is the active site of the protein, these residues are likely important in the processing of AgrD. 

Targeting this site may interrupt the ability of the AgrB protein to cyclize AIP and toxin production 

would be abolished. In Addition, the dimerization domain of AgrA is another similar motif that 

could be targeted for anti-virulence treatment against Clostridial pathogens. Since AgrA 

dimerization is necessary for function, sequestering the binding site between AgrA would inhibit 

the regulation and promotion of toxin producing genes.  

New Agr operons were also found in species with reported functional Agr systems, such 

as C. botulinum and C. sporogenes. Most interestingly, the C. botulinum Agr1, C. difficile Agr2, 

and C. sporogenes Agr1 have components where the same groups of strains have similar sequence 

variations in both components, suggesting divergence into different components that could interact 

with each other. These findings, combined with the data on sequence identity, indicated that some 

of the Agr components could be different and must be further investigated for different functions 

or interactions compared to the other Agr systems. This may potentially lead to categorizing the 

Agr components into different groups. The implications of a different Agr operon within the same 

species, or even within the same operon, could indicate the ability to cross-regulate their Agr 

operons. Although S. aureus does not seem to have two Agr operons in the same strain’s genome, 

its different Agr components can regulate each other, either by activation or inhibition of the Agr 

systems (Geisinger et al., 2009). Research on S. aureus demonstrates that this cross-regulation of 
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the operons has physiological consequences in mouse models (Wright, Jin, & Novick, 2005) and 

suggests that the same can happen within Clostridia, especially given the different operons are 

within the same bacterium. The ability to cross-regulate could provide C. difficile, for example, 

the ability to increase the efficiency of the system, depending on the AIP activate the other AgrC. 

This could result in increased toxin production and possibly, contribute to hypervirulence.  

Some Clostridia have components with significant differences in key functional motifs. 

Despite the differences, the components are likely functional within their own species. Therefore, 

these differences are interesting but do not necessarily have phenotypic and systemic effect. 

However, some differences might have an effect, for example, AgrD has differences in the size 

and presence of the amphipathic helix. If the helix is non-existent, then the Agr system is probably 

less efficient than others as the tethering of AgrD to the membrane by the amphipathic helix allows 

for quick processing of the AgrD. The cyclization residue might have a more significant effect on 

the system, as an AIP cyclized at a cysteine residue is more ephemeral than a serine-based AIP 

(Gorske & Blackwell, 2006). Therefore, the thiolactone AIP could lead to a more stable AIP and 

an increased effect of the system, such as the transcription of the downstream genes it regulates.  

There was no relationship between the structures of the Agr proteins and pathogenicity or 

toxigenicity. However, a significant number of the sequences of the pathogenic species cluster 

together in all trees, indicating that they have a closer common ancestor and are somewhat similar. 

Therefore, the phylogenetic trees support the idea of having a unique therapy to treat a subset of 

pathogenic Clostridia. There is also clustering of many sequences of species with operons that are 

missing an AgrA.  

 Despite the thorough comparisons made between Agr components within and between 

species, the study demonstrates limitations. The sequences of the components varied in size 
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between species, reducing the overall effectiveness of the comparisons. Some species, such as C. 

difficile, C. sordellii, C. botulinum, and C. perfringens, have more strains published in NCBI, 

therefore, some species have more data with increased validity compared to other species. Another 

source of uncertainty includes the taxonomy of the species. Species’ names change due to 

misclassification and there is a possibility that some Clostridia included in this analysis are not 

truly part of the Clostridium genus. Thus, some Clostridia might have to be removed from the 

analysis if their taxonomy is changed. Another detail to notice is that the sequences were stopped 

being collected in September of 2018, meaning there could be more sequences of Agr components 

that have not been included in the analysis. On the other hand, the breadth of the analysis would 

not have been possible without the approach used to retrieve the sequences from NCBI. The 

BLASTP and the Entrez search methods enabled the retrieval of Agr sequences from most, if not 

all, Clostridium species containing the operon, providing largest collection of sequences of 

Clostridial Agr proteins in the literature. The residue-centered comparisons provided specific 

blueprints for experiments that will explore the function of the Agr components in both pathogenic 

and industrially relevant Clostridia. The deeper analysis of the functional Agr components focused 

on the sequences of proteins with empirical function, supporting a stronger argument and clearer 

understanding of the potential applications and implications of the differences and similarities. 

Furthermore, it provides a library of sequenced Agr proteins that could be used by synthetic 

biologists to develop custom regulator systems. Looking forward, it would be interesting to 

investigate predictive methods, such as a modeling the docking of the interacting components to 

predict what areas or residues of the Agr components would to better understand the function of 

the proteins. 
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Although the interactions and mechanisms of the Agr components may likely be different 

between species, the results from this study showed similarities in Clostridia species that could be 

explored for drug development.  It is envisioned that small molecule drugs designed to target the 

motifs in the Agr system identified to be similar in the pathogenic Clostridia may be harnessed to 

develop non-antibiotic therapies against these public health important pathogens. These potential 

non-antibiotic therapies are less likely to stimulate resistance, since the Agr system is not directly 

associated with growth (Darkoh & DuPont, 2017). 
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APPENDIX I 

 

List of species included in analysis 

 

 

 

C. aceticum 

C. acetobutylicum 

C. arbusti 

C. argentinense 

C. autoethanogenum 

C. baratii 

C. beijerinckii 

C. benzoelyticum 

C. bifermentans 

C. botulinum 

C. butyricum 

C. carboxidivorans 

C. celatum 

C. celerecrescens 

C. cellulovorans 

C. chauvoei 

C. citroniae 

C. clariflavum 

C. clostridioforme 

C. colicanis 

C. collagenovorans 

C. difficile 

C. diolis 

C. homopropionicum 

C. indolis 

C. intestinale 

C. josui 

C. kluyveri 

C. litorale 

C. ljungdahlii 

C. magnum 

C. mangenoti 

C. methoxybenzovorans 

C. nexile 

C. papyrosolvens 

C. paraputrificum 

C. pasteuranium 

C. perfringens 

C. ragsdalei 

C. roseum 

C. saccharolyticum 

C. sartagoforme 

C. scatologenes 

C. scindens 

C. sordellii 

C. sphenoides 

C. sporogenes 

C. temitidis 

C. tepidum 

C. tetanomorphum 

C. thermocellum 

C. tunisiense 

C. tyrobutyricum 
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