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Abstract   
Acute central nervous system (CNS) injuries such as 
spinal cord injury, traumatic brain injury, autoimmune 
encephalomyelitis, and ischemic stroke are associ-
ated with significant morbidity, mortality, and health 
care costs worldwide. Preliminary research has shown 
potential neuroprotection associated with adult tissue 
derived stem/progenitor cell based therapies. While 
initial research indicated that engraftment and transdif-
ferentiation into neural cells could explain the observed 
benefit, the exact mechanism remains controversial. A 
second hypothesis details localized stem/progenitor cell 
engraftment with alteration of the loco-regional milieu; 
however, the limited rate of cell engraftment makes this 
theory less likely. There is a growing amount of pre-

clinical data supporting the idea that, after intravenous 
injection, stem/progenitor cells interact with immuno-
logic cells located in organ systems distant to the CNS, 
thereby altering the systemic immunologic/inflammatory 
response. Such distant cell “bioreactors” could modulate 
the observed post-injury pro-inflammatory environment 
and lead to neuroprotection. In this review, we discuss 
the current literature detailing the above mechanisms of 
action for adult stem/progenitor cell based therapies in 
the CNS.
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INTRODUCTION
Acute central nervous system (CNS) injuries such as spi-
nal cord injury (SCI), traumatic brain injury (TBI), and 
ischemic stroke are associated with significant worldwide 
morbidity and mortality. Up to 5 million people are bur-
dened by the morbidity associated with TBI annually 
with approximately 40% of  patients reporting unmet 
needs 1 year after injury[1]. In addition, an initial cerebro-
vascular accident is associated with a lifelong loss of  9.5 
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quality adjusted life years[2]. Overall, the combined eco-
nomic impact of  SCI, TBI, and ischemic stroke surpass-
es several billion dollars annually in the United States[3,4]. 

Early preclinical research has shown potential benefit 
from adult tissue progenitor cell therapy for acute and 
chronic CNS injury. Adult tissue stem/progenitor cells 
are maintained in select microenvironments or niches 
throughout the body. Within the niche, stem cell pro-
liferation, depletion, and involvement in resident tissue 
regeneration and repair is tightly regulated[5]. Stem/pro-
genitor cells are prime candidates for novel therapies due 
to their observed capacity for self  renewal and ability to 
differentiate down multiple cell lines[6].

Preliminary in vivo and in vitro research has shown 
potential benefit associated with stem/progenitor cell 
therapy after TBI[7], ischemic stroke[8], and SCI[9]. While 
initial research indicated that engraftment and transdif-
ferentiation into neural cells could explain the observed 
benefit[10], the exact mechanism remains controversial. A 
second hypothesis details localized stem/progenitor cell 
engraftment with alteration of  the loco-regional milieu; 
however, the limited rate of  cell engraftment makes this 
theory less likely. There is a growing amount of  preclinical 
data supporting the idea that, after intravenous injection, 
stem/progenitor cells interact with immunologic cells lo-
cated in organ systems distant to the CNS thereby altering 
the systemic immunologic/inflammatory response. Such 
distant cell “bioreactors” could modulate the observed 
post-injury pro-inflammatory environment and lead to 
neuroprotection.

ENGRAFTMENT AND 
TRANSDIFFERENTIATION
Early preclinical research hypothesized that transplanted 
bone marrow-derived mesenchymal stromal cells (MSCs) 
could migrate and engraft at the site of  injury and adopt 
neuronal cell markers indicating their differentiation into 
neurons [neuronal nuclei (NeuN)] and astrocytes [glial 
fibrillary acidic protein (GFAP)][11]. Additional work 
completed by Hayase et al[12] showed induction of  neu-
rospheres from MSCs in vitro. The neurospheres were 
then implanted into rodent cerebral cortex after focal 
ischemic injury and remained engrafted at the injury 
site for up to 100 d. The engrafted progenitor cells dis-
played neural markers with a concordant improvement 
in animal behavioral recovery[12]. Using a rodent spinal 
cord injury model, the Ha laboratory implanted human 
umbilical cord blood mononuclear cells (HUCBCs) into 
the injury region and found engrafted HUCBCs up to 8 
wk after injury. HUCBCs were found to express the neu-
ral markers GFAP and microtubule-associated protein 2 
(MAP2). Functional improvement via locomotor testing 
was observed in the animals for up to 8 wk[13].

Such preliminary work investigating the intravenous 
infusion of  MSCs has been promising. However, much 
debate remains about the frequency and clinical signifi-

cance of  progenitor cell “transdifferentiation” and the 
validity of  neural marker expression with most investi-
gators believing this to be erroneous[14-16]. Coyne et al[17] 
showed that MSCs labeled with BrdU transferred their 
label to replicating neurons and gave the erroneous im-
pression that MSCs were expressing these proteins when 
double labels were used. In addition, hematopoietic stem 
cells (HSCs) implanted into a spinal cord injury site[18] and 
murine striatum[16] failed to transdifferentiate into neurons 
and actually showed differentiation into macrophages and 
microglia. Furthermore, Hunt et al[19] observed the failure 
of  transdifferentiation with collagen deposition and axo-
nal injury after the implantation of  MSCs into demyelin-
ated spinal cord. 

Additional in vitro research has been carried out to 
investigate the capacity for stem/progenitor cell trans-
differentiation in to neurons. Barnabe et al[20] have shown 
that MSCs could be chemically induced to produce the 
neuronal proteins NF-200, S100, β-tubulin Ⅲ, NSE and 
MAP-2; however, the cells had an apoptotic rate greater 
than 50%. In vitro electrophysiological recordings did 
not show neuronal properties as no sodium / potassium 
gradients or action potentials were observed[20]. Further 
research has shown that bone marrow derived multipo-
tent adult progenitor cells (MAPCs) express the neural 
proteins β Ⅲ tubulin and NF200 at baseline. Culture of  
MAPCs in neural differentiation media failed to upregu-
late protein expression, indicating that the appearance 
of  neural transdifferentiation based upon neural anti-
gen expression can be misleading[21]. While preliminary 
work pointed towards transdifferentiation as a potential 
mechanism for cognitive improvement, a large body of  
preclinical research now indicates that this is an unlikely 
pathway towards functional benefit.

MODULATION OF THE LOCO-REGIONAL 
INFLAMMATORY RESPONSE
The observed functional benefit observed with intrave-
nous stem/progenitor cell therapy could be secondary to 
localized engraftment and interaction with resident mi-
croglia leading to modulation of  the loco-regional milieu. 
Work completed in the Cox laboratory measured the con-
centration of  the pro-inflammatory cytokines interleukin 
(IL)-1α, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, 
found in cortical tissue after TBI in a rodent model. A 
multiplex cytokine assay showed an increase in all of  the 
measured pro-inflammatory cytokines measured (IL-1α, 
IL-1β, IL-6, and TNF-α) in the direct injury and penum-
bral areas of  the injured brain as shown in Figure 1[22]. 
These results detail the post injury pro-inflammatory re-
sponse and identify a potential target for novel therapies.

Early in vitro work investigated the co-culture of  hu-
man immunologic cells with MSCs and showed an in-
crease in production of  the anti-inflammatory cytokines 
IL-4 and IL-10 in accordance with a decrease in produc-
tion of  the pro inflammatory cytokine interferon γ (IFN-γ). 
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Additionally, an increase in T regulatory cell (a known me-
diator if  the anti-inflammatory response) differentiation 
was observed[23]. Walker et al[24] found an increase in the 
cytokine interleukin 6 (IL-6) in rodent brain tissue super-
natant after the direct intrathecal implantation of  MSCs 
using a TBI model. To explore the potential mechanisms 
of  action, a series of  in vitro MSC and neuronal stem cell 
(NSC) co-culture experiments was devised. Direct contact 
co-culture led to activation of  the NSC NFκB pathway 
with a concordant decrease in NSC apoptosis which was 
not replicated in transwell (non contact) cultures, indicat-
ing the need for direct MSC/NSC contact for effect[24]. 
Additional work investigating the direct intracerebral 
implantation of  MSCs using a stroke model found in-
creased intracerebral IL-10 with a corresponding decrease 
in TNF-α production. The observed modulation of  the 
loco-regional milieu led to functional improvement[25]. 
Pluchino et al[26] have shown that the intravenous delivery 
of  neurosphere-derived stem/progenitor cells in a chronic 
CNS inflammatory model leads to the engraftment of  
cells in perivascular niches. Upon engraftment, the neuro-
sphere-derived cells induce apoptosis in circulating blood 
born T cells thereby decreasing the amount of  inflamma-
tory neuronal injury[26]. Such preliminary work has shown 
a potential mechanism to explain the observed benefit; 

however, the majority of  studies are based upon the direct 
intracerebral or intrathecal implantation of  progenitor 
cells. 

A potential barrier to the direct implantation of  stem/
progenitor cells is related to the size or the multifocality 
of  the lesion. A significant injury cavity can occur after 
TBI, SCI, or ischemic stroke that could potentially require 
multiple stereotactic injections (needle tracts) which could 
exacerbate the inflammatory response to injury. More 
commonly, there are multiple foci of  diffuse injury that 
would make stereotactic implantation impractical. In order 
to circumvent the need for multiple injections, alternate 
delivery methods such as intravenous injection need to be 
considered.

The intravenous delivery of  stem/progenitor cells is 
attractive subject to the potential for widespread distri-
bution and the lack of  invasiveness from the procedure. 
Biodistribution studies completed by Fischer et al[27] have 
shown that the vast majority of  injected progenitor cells 
remain sequestered in the lungs, as illustrated in Figure 
2, and have described this as a significant pulmonary 
first pass effect[27]. These findings have been replicated 
by many investigators with Harting et al[28] showing only 
0.001% of  intravenously transplanted cells engrafted in 
the brain parenchyma with significant sequestration of  
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Figure 1  Elevated intracerebral cytokines identified in specific areas and at specific time points relative to the traumatic brain injury. The proinflammatory 
cytokines interleukin (IL)-1α (A), IL-1β (B), IL-6 (C), and tumor necrosis factor-α (D) were significantly elevated 6 h after CCI in the injury and penumbral regions when 
compared with sham animals (bP < 0.01 for all). IL-1α, IL-1β, and IL-6 remained elevated through 12, 12 and 24 h, respectively (bP < 0.01 or aP < 0.05). In the frontal area, 
IL-6 was significantly increased at 24 h (33- to 50-fold; P < 0.01; Dunnett's test), but not at 6 or 12 h after traumatic brain injury.  Reproduced with permission[22].

b

b

a a

b

b
b

b

b

b
b

b

b

b

b

b

Walker PA et al . Stem cell modulation of the inflammatory response

        February 26, 2011|Volume 3|Issue 2|WJSC|www.wjgnet.com



12

Figure 2  Fluorescent imaging of QDOT (green) labeled mesenchymal stromal cells, neuronal stem cells, multipotent adult progenitor cells, and bone mar-
row mononuclear cells after intravenous injection. Less than 1% of mesenchymal stromal cells (MSCs) bypassed the lungs into the arterial circulation (as shown 
by high levels of green fluorescence). A two fold increase in pulmonary bypass was observed with neuronal stem cells (NSCs) and multipotent adult progenitor cells 
(MAPCs) with a 50 fold increase observed with bone marrow mononuclear cells (BMMCs). Reproduced with permission[48].
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MSCs in the lung up to 3 d after injection. Additionally, 
Lee et al[29] found significant pulmonary sequestration 
with only 0.001% of  intravenously injected MSCs in any 
distant organ system. 

The observed significant pulmonary first pass effect 
greatly decreases the number of  stem/progenitor cells 
that reach the systemic circulation, thereby limiting the 
quantity that could interact with the injury area and en-
graft. It is possible that only a few MSCs are needed to ac-
tivate resident microglia leading to modulation of  the loco 
regional inflammatory/immunologic response. However, 
emerging data indicates that the hypothesis of  stem/pro-
genitor cells acting as local “bio-reactors” seems more 
unlikely and requires further investigation.

MODULATION OF THE SYSTEMIC 
INFLAMMATORY RESPONSE
The intravenous delivery of  stem/progenitor cells re-
mains the ideal delivery vehicle due to the potential for 
widespread distribution and simplicity although cell 
delivery is limited by a significant pulmonary first pass 
effect. Despite the limited number of  cells reaching the 
systemic circulation, multiple investigators have reported 
neuroprotection with intravenous therapy[30,31]. Such 
results indicate that it may not be necessary for a large 
number of  cells to reach the injury zone to produce ef-
fect. It is also possible that the stem/progenitor cells 
are interacting with immunologic cells in remote organ 
systems and acting as distant “bioreactors” which alter 
the systemic inflammatory/immunologic response and 
lead to the observed benefit. The possible locations of  
remote progenitor/immunologic cell interactions include 
the lung, spleen, liver, lymph nodes, and kidney.

Pulmonary immunologic cells
Secondary to the significant pulmonary first pass effect, 
the majority of  stem/progenitor cells are sequestered 
within the lung after intravenous injection, indicating a 
high probability of  interaction between the transplanted 
cells and resident pulmonary immunologic cells[27]. Mei 
et al[32] found a reduction in lipopolysaccharide (LPS)-
induced pulmonary inflammation after the intravenous 
injection of  MSCs in a murine acute lung injury model. 
A further reduction in alveolar inflammation and perme-
ability was observed when the MSCs were transfected 
with vasculoprotective gene angiopoietin 1 (ANGPT1) 
prior to injection. A reduction in neutrophils as well as 
the pro inflammatory cytokines IFN-γ, TNF-α, IL-6 and 
IL-1β was found with both treatment groups[32]. 

A recent study completed in the Mezey laboratory 
investigated the effect of  intravenous MSC therapy on 
systemic inflammation due to sepsis using a murine cecal 
ligation and puncture (CLP) model. This seminal study 
characterized the cellular interactions between MSCs 
and lung-derived monocytes/macrophages. MSC treat-
ment improved survival, organ function and reduced pro-
inflammatory cytokines (TNF-α and IL-6) in the serum, 

as shown in Figure 3. The injected MSCs were found to 
directly interact with pulmonary macrophages resulting in 
an increase in serum levels of  IL-10, which is produced 
by monocytes and macrophages[33] and associated with a 
reduction in the migration of  neutrophils[34] and decreased 
oxidative damage[35]. The role of  IL-10 production in 
the observed improvement in mortality and end organ 
function was confirmed via a series of  experiments using 
IL-10 knockout mice and IL-10 receptor antibodies as 
shown in Figure 4. Furthermore, a series of  in vitro and 
in vivo experiments was completed showing that MSC 
derived prostaglandin E2 production stimulated resident 
macrophages to produce IL-10 via activation through EP2 
and EP4 receptors[36]. 

These preliminary studies have shown the poten-
tial importance of  interactions between transplanted 
stem/progenitor cells and pulmonary macrophages. The 
observed interaction appears to modulate both the lo-
cal and systemic inflammatory response increasing anti- 
inflammatory cytokine production which could lead to 
enhanced neuroprotection. 

Interaction with splenocytes 
Recent work completed in the Pennypacker laboratory has 
shown the release of  immunologic T cells from the spleen 
into the systemic circulation with a concordant reduction 
in splenic mass after ischemic stroke in a rodent model. 
Adrenergic output appeared to mitigate this effect as treat-
ment with the pan adrenergic blocker, carvediol, reversed 
the observed loss in splenic mass and reduced stroke cav-
ity volume[37]. Vendrame et al[38] showed that the observed 
reduction in splenic mass associated with ischemic stroke 
was likely due to the release of  cytotoxic CD8+ T cells 
which could contribute to the secondary injury seen after 
stroke. Injection of  HUCBCs 24 h after ischemic stroke 
restored splenic mass, secondary to the retention of  the 
splenocyte derived cytotoxic T cells. Results also showed 
a reduction in injury cavity volume as well as an increase 
in IL-10 and decreases in the pro inflammatory cytokines 
TNF-α and INF-γ[38]. 

Similar work carried out by Schwarting et al[39] using a 
rodent ischemic stroke model has shown increased levels 
of  the pro-inflammatory cytokines TNF-α and IL-1β in 
the serum as well as chemokine receptor 2 and CX3CR1 
within splenocytes. After intravenous injection, HSCs were 
found primarily in the spleen with levels of  TNF-α, IL-1β, 
CX3CR1, and chemokine receptor 2 towards sham levels. 
A reduction in microglial activation and macrophage in-
filtration was also observed in the peri-injury parenchyma 
with a concordant decrease in injury cavity volume and 
neuronal cell apoptosis[39]. 

Lee et al[40] have investigated the role of  NSC therapy 
for the treatment of  intracerebral hemorrhage in a ro-
dent model. The intravenous injection of  human NSCs 
2 h after injury was associated with improved functional 
outcomes and decreased cerebral edema as well as de-
creased intracerebral inflammatory infiltration and neuro-
nal apoptosis. In addition, a reduction in the pro inflam-
matory cytokines TNF-α and IL-6 was measured in the 
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brain and spleen. Histology completed to track the NSCs 
showed very few to be engrafted in the cortical tissue; 
however, a higher number of  NSCs were found in the 
marginal zone of  the spleen. Further experiments com-
pleted with a non-specific cell line (fibroblasts) or with 
rats after splenectomy failed to show functional benefit 
or decreased edema, thereby confirming the need for the 
splenocyte/progenitor cell interaction to obtain the ob-
served immunomodulation[40]. 

These data represent a growing field of  research into 
the role of  the spleen in post injury inflammation and the 
ways that progenitor cells may modulate that response. 
In stroke models, progenitor cell therapy has been shown 
to preserve splenic mass and modulate the inflammatory 
response. More studies are required to further investigate 
the mechanism of  immunomodulation in order to opti-
mize the timing and dosage for cell delivery.

Other distant organ systems
The Uccelli laboratory recently completed a series of in 
vivo and in vitro experiments to investigate the potential role 
of  MSCs in a murine experimental autoimmune encepha-
lomyelitis (EAE) model. Co-culture of  MSCs and T cells 
inhibited T cell proliferation with a concordant decrease in 
TNF-α and IFNγ production. The intravenous injection 
of  MSCs in the murine encephalomyelitis model showed 
MSC engraftment in the lymphoid tissue and a decrease in 
the autoimmune response secondary to T cell unrespon-
siveness[41]. Additional work carried out by Kassis et al[42] 
using a similar model showed engraftment in lymphoid tis-
sue associated with a decrease in both mortality and CNS 
inflammation as well as protection of  the resident axons.

Research completed by Refei et al[43] using a murine 
EAE model showed a decrease in spinal cord CD4+ T 
cell infiltration associated with the amelioration of  symp-
toms after the intraperitoneal injection of  MSCs. The ob-
served benefit is secondary to the inhibition of  CD4+ T 
cell activation via suppression of  STAT3 phosphorylation 
by MSC-derived CCL2[43].

There is limited data on the interaction of  implanted 
adult stem/progenitor cells with other organ systems in 
the setting of  neurological injury. Distribution studies 
have demonstrated stem/progenitor cells to engraft in the 
liver and kidney as well as the lung and spleen[44-47]. At the 
time of  this review, there is no published data on the liver 
and/or kidney acting as potential bioreactors to modulate 
the systemic inflammatory or immune response.

CONCLUSION
Preliminary research has shown the potential benefit of  

adult tissue stem/progenitor cell therapy for a wide ar-
ray of  acute and chronic CNS injuries. While initial work 
indicated that the transdifferentiation of  stem/progenitor 
cells into new neurons could account for the observed 
neuroprotection, the frequency of  CNS engraftment 
and clinical significance of  transdifferentiation remains 
controversial. A growing amount of  evidence supports 
the idea that injected stem/progenitor cells interact with 
distant organ systems and immunologic cells leading 
to modulation of  the systemic inflammatory response. 
Multiple investigators have shown a decrease in the pro-
inflammatory response to injury which could account 
for the observed neuroprotection. Such promising work 
should stimulate the design of  additional pre-clinical ex-
periments to further outline the therapeutic mechanism 
prior to implementation of  clinical trials.
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