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Abstract
Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/
cellular properties, clinically observable properties such as morphology, and critical tumor behaviors
such as growth and invasiveness remain unclear, hampering more effective coupling of tumor
physical characteristics with implications for prognosis and therapy. Although molecular biology,
histopathology, and radiological imaging are employed in this endeavor, studies are severely
challenged by the multitude of different physical scales involved in tumor growth, i.e., from
molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often
difficult to determine the underlying dynamics across dimensions. New techniques are needed to
tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-
dimensional mathematical and computational model based on first-principle equations (conservation
laws of physics) that describe mathematically the diffusion of cell substrates and other processes
determining tumor mass growth and invasion. The model uses conserved variables to represent
known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as
biological functional relationships and parameters linking phenomena at different scales whose
specific forms and values are hypothesized and calculated based on in-vitro and in-vivo experiments
and from histopathology of tissue specimens from human gliomas. This model enables correlation
of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the
microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and
apoptosis rates, cell adhesion strength). Once functional relationships between variables and
associated parameter values have been informed, e.g. from histopathology or intra-operative analysis,
this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and
therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-
scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.
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Introduction
Generic molecular mechanisms and cell-scale migration dynamics are well described (Friedl
& Wolf, 2003, Keller et al., 2006, Sierra, 2005, van Kempen et al., 2003, Wolf & Friedl,
2006, Kopfstein et al., 2006, Yamaguchi et al., 2005, Elvin & Garner, 2005, Sahai, 2005, Friedl
et al., 2004, Friedl, 2004, Condeelis et al., 2005, Ridley et al., 2003) to the point that therapies
designed with this knowledge have been recently employed to attempt to curtail or prevent
growth and invasion of various cancers. However, the effects of therapies are often inadequate
or their benefits unclear. 3D culture and in-vivo studies of effects of cell-adhesion molecules
(CAM) and matrix metallo-proteinases (MMP) on cell migration have yielded inconsistent
results (Friedl & Wolf, 2003, Toker & Yoeli-Lemer, 2006, Khoshyomn et al., 1999, Giese et
al., 1996), and data on the function of proteases in tumor invasion and metastasis are not
completely as expected (Friedl & Wolf, 2003). Pharmacological inhibitors that regulate cell
adhesion are being employed in anti-invasive therapy to treat various cancers (McLean et al.,
2005, Yin et al., 2006, Lockett et al., 2006, Lah et al., 2006, Eble & Haier, 2006, Havot et al.,
2006, Dervcke et al., 2005, Huang et al., 2005) with conflicting results (Lah et al., 2006). While
recently approved anti-antiangiogenic drugs (e.g., bevacizumab) provide grounds for optimism
for cancer treatment (Ellis & Kirkpatrick, 2005) the effect of antiangiogenic therapy on length
of survival needs further investigation (Bernsen & van der Kogel, 1999, Kuiper et al., 1998).
Anti-angiogenic treatment can exacerbate hypoxic effects (Steeg, 2003) and cause glioma mass
fragmentation, cancer cell migration and tissue invasion (Rubenstein et al., 2000, Kunkel et
al., 2001, Lamszus et al., 2003, Bello et al., 2004). Similar effects have been recently predicted
by computer simulations for some chemotherapies (Sinek et al., 2004).

These variable observations of tumor invasion and response to therapy illustrate the critical
need for biologically realistic and predictive multi-scale theoretical models that quantitatively
connect tumor proliferation and invasion with vascular density, blood flow, and micro-
environmental substrate gradients. Indeed, it is clear from experience in the physical sciences
that such complex systems, dominated by large numbers of processes and highly non-linear
dynamics, are very difficult to approach by experimental methods alone and can typically be
understood only using appropriate mathematical models and sophisticated computer
simulations, in addition and complementary to laboratory and clinical observations (Cristini
et al., 2006; Sanga et al., 2007). Here we develop a computational (in-silico) model whose
parameter values and mathematical functions can be informed based on experimental and
clinical data to predict tumor prognosis and outcome, including glioma growth,
neovascularization, and response to treatment. This method is based on first principles (e.g.,
diffusion equation) and numerical algorithms that link the tissue scale tumor behavior to the
underlying molecular biology by experimentally tested functional relationships between the
molecular properties of tumor cells and the environment and tissue scale model parameters.
Our central hypothesis is inspired by an engineering approach whereby tumor lesions are
viewed as a complex micro-structured material, where the three-dimensional tissue architecture
(“morphology”) and dynamics are coupled in complex, nonlinear ways to cell phenotype, and
this to molecular factors and phenomena in the microenvironment acting both as tumor-
morphology regulators and as determinants of the invasion potential by controlling the
mechanisms of cancer-cell proliferation and migration (Friedl & Wolf, 2003) among the others.
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In our approach, we develop models of Functional Collective Cell-Migration Units (FCCMU)
that describe the large-scale morphology and 3-D cell spatial arrangements during tumor
growth and invasion and incorporate micro-macro functional relationships as described above.
This includes the application of mathematical and empirical methods to quantify the
competition between cell substrate gradient-related pro-invasion phenomena and molecular
forces that govern proliferation and taxis, and forces opposing invasion through cell adhesion.
The latter, under normoxic conditions, often enforce compact non-infiltrative tumor
morphology while local oxygen gradients promote invasion (Steeg, 2003, Page et al., 1987,
Seftor et al., 2002, Kunkel et al., 2001, Pennachietti et al., 2003, Lamszus et al., 2003, Bello
et al., 2004, Rubenstein et al., 2000, Rofstad & Halsor, 2000, DeJaeger & Kavanagh, 2001,
Cristini et al., 2005, Frieboes et al., 2006, Macklin & Lowengrub, 2007). Interactions between
cellular proliferation and adhesion and other phenotypic properties may be reflected in both
the surface characteristics, e.g., stability, of the tumor-host interface and the growth
characteristics of tumors (Cristini et al., 2003, Cristini et al., 2005, Frieboes et al., 2006,
Gatenby et al., 2006, Macklin & Lowengrub, 2007). These characteristics give rise to various
tumor morphologies and influence treatment outcomes. The model thus enables the
deterministic linking of collective tumor cell motion on the balance between cellular properties
and the microenvironment. In this paper, we focus on describing the gross morphologic
behavior resulting from a typical glioma phenotype. Direct links to the underlying genotype
are studied elsewhere (Bearer and Cristini, manuscript submitted).

We assemble this 3-D multiscale computational model of cancer as a key step towards the
transition from qualitative, empirical correlations of molecular biology, histopathology, and
imaging to quantitative and predictive mathematical laws founded on the underlying biology.
The model provides resolution at various tissue physical scales, including the microvasculature,
and quantifies functional links of molecular factors to phenotype that currently for the most
part can only be tentatively established through laboratory or clinical observation. This
mathematical and computational approach allows observable properties of a tumor, e.g., its
morphology, to be used to both understand the underlying cellular physiology and predict
subsequent growth (or treatment outcome), providing a bridge between observable,
morphologic properties of the tumor and its prognosis (Cristini et al. 2006; Sanga et al., 2007).

Method Overview
The FCCMU model is based on conservation laws (e.g., of mass and momentum) with
conserved variables that describe the known determinants of glioma (e.g., cell density) and
with parameters that characterize a specific glioma tissue. The conservation laws consist of
well established, biologically founded convection-reaction–diffusion equations that govern the
densities of the tumor cell species, the diffusion of cytokines and the concentration of vital
nutrients. The model describes the cells’ (collective) migratory response and interaction with
the extra-cellular matrix (ECM) and an evolving neovasculature. The collective tumor cell
velocity depends on proliferation-driven mechanical pressure in the tissue, chemotaxis and
haptotaxis due to gradients of soluble cytokines and insoluble matrix macromolecules. The
cell species velocity is obtained from a Darcy’s law coarse scale reformulation of the inertialess
momentum equation, which is the instantaneous equilibrium among the following forces:
pressure, resistance to motion (cell-adhesion), elastic forces, forces exchanged with the
extracellular matrix (ECM) leading to haptotaxis and chemotaxis and other mechanical effects
(e.g. Cristini et al., 2003, Zheng et al., 2005, Cristini et al., 2005, Frieboes et al., 2006, Sanga
et al., 2006, Li et al., 2007, Anderson & Chaplain, 1998, Anderson, 2005, Anderson et al.,
2000, Chaplain & Lolas, 2005, Adam, 1996, Bellomo & Preziosi, 2000, Chaplain & Anderson,
2003, Friedman, 2004, Araujo & McElwain, 2003, Macklin & Lowengrub, 2005, Greenspan,
1976, Byrne & Chaplain, 1996a, 1996b, Ambrosi & Guana, 2006, Macklin & Lowengrub,
2007, Ambrosi & Preziosi, 2002, Byrne & Preziosi, 2003, Chaplain et al., 2006). Cells produce
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proteases, which degrade the matrix locally, making room for cells to migrate. In the model,
matrix degradation releases cytokines and growth promoters, thus having biological effects on
tumor cells (e.g., Chaplain & Anderson, 2003). The model can account for cell-cell interactions
(cell-cell adhesion and communications), high polarity, and strong pulling forces exchanged
by cells and ECM (Friedl & Wolf, 2003).

The FCCMU model is coupled nonlinearly to a hybrid continuum-discrete, lattice-free model
of tumor-induced angiogenesis (Plank & Sleeman, 2003, 2004). The angiogenesis component
describes proliferation and migration due to chemotaxis and haptotaxis of endothelial cells in
response to tumor angiogenic regulators (e.g. VEGF) and matrix macromolecules,
respectively. The angiogenic regulators are released by perinecrotic tumor cells and host cells
near the tumor-host interface (Takano et al., 1996, Shweiki et al., 1999), which stimulate
vascular endothelial cells of the brain vasculature to proliferate and begin to form vessels (Jain,
2003). Anastomosed vessels may provide a source of nutrient in the tissue and may undergo
spontaneous shutdown and regression during tumor growth (Holash et al., 1999b). We note
that there are other related lattice-based models of tumor neovascularization (e.g. Sun et al.,
2005, McDougall et al., 2006). Although tumor angiogenesis may occur via the formation of
sprouts or intussuception (Patan et al., 2001b), for simplicity here only the former process is
incorporated in the model. Input parameter values to the model, e.g., cell proliferation and
apoptosis, are estimated from in-vitro cell lines and ex-vivo patient data. The parameters
governing the extent of neovascularization and nutrient supply due to blood flow are estimated
in part from Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI)
observations in patients (O’Connor et al., 2007).

The FCCMU model describes nutrient/oxygen delivery from the neo-vasculature (via
convection and diffusion (Chaplain, 1996, Jain, 2001)) and cellular uptake, and nutrient,
oxygen, and growth factor diffusion through the tumor tissue (Byrne & Chaplain, 1997).
Oxygen/nutrient availability limits the fraction of cycling cells. Regions of tissue become
hypoxic and then necrotic where nutrient/oxygen concentration falls below a threshold. The
model describes evolution of local mass fractions of viable tumor species, necrotic and host
tissues. Cell mass exchange occurs due to mutations, mitosis, necrosis, and apoptosis. Lysis
rates describe the disintegration of tumor cell mass and the radial effusion of fluid away from
the necrotic regions. All rates are inverse times (unit time=1 day).

By solving the nonlinearly coupled FCCMU/angiogenesis equations numerically we predict
the combination of variables most likely to lead to growth and invasion, such as nutrient and
angiogenic regulator concentrations and diffusion rates; rates of proliferation, apoptosis and
nutrient consumption; genotypic mutations in oncogenes, tumor suppressors, and migration-
associated genes. At any given time during tumor growth, the model outputs the computed
values of all relevant variables at every location within the three-dimensional tumor tissue,
e.g., the spatial distributions of oxygen, nutrients and tumor cell species. The result is a
description of the complex, multi-scalar dynamics of in-vivo 3-dimensional tumors through
avascular, neo-vascular, vascular growth, and invasion stages.

Summary of Materials & Equipment Used
Histopathology of human glioma

Four archived autopsied brains obtained from the Brown University-Rhode Island Hospital
Brain Bank were examined in haemotoxylin-eosin stained paraffin sections prepared according
to standard autopsy procedures. Autopsied diagnosis of glioblastoma multiforme was
confirmed by two neuropathologists, and morphology at the tumor margins imaged on a Zeiss
Axiolmager by standard bright field and by fluorescence using FITC and rhodamine filters.
Selective fluorescence in the rhodamine channel of hemoglobin in red blood cells combined
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with autofluorescence of connective tissue in the FITC channel greatly enhances detection of
vasculature patterns in H&E sections of archived material (Bearer, unpublished methodology).

Multiscale Model
The minimal formulation of the FCCMU model is based on reaction-diffusion equations that
govern a tumor cell density, an evolving neovasculature, a vital nutrient concentration, the
ECM, and matrix degrading enzymes. Extensions to include more complex biophysics, e.g.,
multiple nutrients, growth inhibitors and matrix remodeling, are straightforward.

In our approach, each constituent moves with its own velocity field; mass, momentum and
energy equations are posed for each constituent. Through experimental comparisons and the
inclusion of molecular-scale effects, we formulate functional relationships that close the
FCCMU model. Generically, the reaction-diffusion equations take the form

vt = − ∇ ·J + Γ+ − Γ−, (1)

where ν is the evolving variable, J is the flux, Γ+ and Γ− are the sources and sinks. Letting
ν=ρi, σ, f, m, respectively be the tumor cell density of species i or host density, the vital nutrient
concentration (e.g. oxygen), the (nondiffusible) matrix macromolecule (e.g. fibronectin
(Anderson & Chaplain, 1998, Anderson, 2005)), and matrix degrading enzyme, MDE (e.g.
matrix metalloproteinases, urokinase plasminogen activators (Anderson et al., 2000,
Anderson, 2005, Chaplain & Lolas, 2005) concentrations, we may take

J = {ρiui + Jmechanics,i ifν = ρi
σuw − Dσ∇σ ifν = σ

0 ifν = f
muw − Dm∇m ifν = m

, Γ+ = {ρiλproli,fi +∑
j

Sij
+ ifν = ρi

λblood ifν = σ

λf ifν = f

λmde ifν = m

Γ− = {ρiλdeath,i +∑
j

Si, j
− ifν = ρi

λσ,uptake ifν = σ

λf ,degrade ifν = f

λmde,degrade ifν = m

(2)

where ui is the cell-velocity of species/host i, uw is the velocity of water (i.e. assuming transport
of chemical factors is primarily through the interstitial liquid), the D’s are diffusion constants,
and λprolif, λdeath, λblood, λuptake, λf, deg rads, λmde, λmde, deg rade are the mitosis, apoptosis and
necrosis, blood-tissue nutrient transfer and uptake and decay rates, respectively, for matrix
molecules and MDE. An additional equation (not shown) is posed for the mass fraction of
water. The flux Jmechanics, i accounts for the mechanical interactions among the different cell
species. A major component of the FCCMU model is the development of the constitutive law
for Jmechanics,I. This is obtained from a variational approach from an energy formulation that
accounts for the mechanical forces, e.g. cell-cell and cell-matrix adhesion, and elastic effects
(residual stress). A feature of this approach is the incorporation of a novel continuum model
of adhesion in this flux. Following the variational approach developed for diffuse interface
models of multiphase flows and materials by Lowengrub and coworkers (e.g., Lowengrub &
Truskinovsky, 1998, Leo et al., 1998, Lee et al., 2002, Kim et al., 2004a, Kim et al., 2004b,
Wise et al., 2004, Kim & Lowengrub, 2005) and others (e.g. Garcke et al., 2004, Jacqmin,
1999, Anderson et al., 1998) we introduce a continuum model of cell-cell and cell-matrix
adhesion energy which can be written as an integral taken over the entire tumor/host domain

Eadhesion,i = ∫ f i(ρ1, ‥, ρN ) + 1
2 ∑

j=1

N
εi, j

2|∇ρj|
2dx. The first term is a bulk energy, which

accounts for the degree of miscibility of cell and host species, as directed by experiments. The
second term introduces cell-cell adhesion forces that generate a surface tension between the
phases and further accounts for intermixing across a diffuse interface of thickness that roughly
scales with ei,i. Typically, the cell-adhesion energy enforces phase separation of tumor and
host tissues sharing a diffuse interface with thickness 1–100 µm. Under the assumption that
tumor cells prefer to stay bonded with each other rather than being in any other configuration,
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that the cell density is roughly constant and that there is only isotropic stress (pressure p), this
reduces, in an asymptotic limit, to the “jump” boundary condition[p] = τκ where τ measures
the affinity and κ is the total curvature of the interface (Wise et al., Frieboes et al., manuscripts
submitted). This is akin to surface tension in multiphase flows and can also be used to describe
tumor encapsulation by ECM fragments and is characteristic of collective cell migration (Friedl
& Wolf, 2003).

A thermodynamically consistent constitutive law for the flux Jmechanics,I is obtained by taking
the gradient of the variational derivative of the total energy: Jmechanics,i, ∝ ∇(δEmechanics,i/
δρi), where Emechanics,l is obtained by adding the contributions from each mechanism modeled,
i.e. adhesion, elasticity, etc. The velocities ui and uw are determined from momentum
equations. For example, following previous approaches (e.g., Cristini et al., 2003, Zheng et
al., 2005, Cristini et al., 2005, Frieboes et al., 2006, Li et al., 2007, Macklin & Lowengrub,
2005, Macklin & Lowengrub, 2007) that are reformulations and generalizations of models in
(Greenspan, 1976, Byrne & Chaplain, 1996a, 1996b Adam, 1996, Bellomo & Preziosi, 2000,
Chaplain & Anderson, 2003) and neglecting viscoelastic effects, we take Darcy’s law as a
coarse scale reformulation of the inertialess momentum equation, which is the instantaneous
equilibrium among the following forces: pressure, resistance to motion, elastic forces, forces
exchanged with the ECM leading to hapto- and chemo- taxis and other mechanical effects
within Emechanics as discussed above. This leads to

ui = − Mi∇ p + γi(δEmechanical,i / δρi)∇ρi + χf ,i∇ f + χσ,i∇σ (3)

where p is the pressure (isotropic stress) and M, γi, χf and χσ are the spatially inhomogeneous
mobility, mechano-, hapto- and chemo- taxis tensors that also take into account cell-matrix
adhesion. The parameter M depends on the extent of cell-to-cell and cell-to-ECM adhesion in
bulk regions. Since a number of different parameters in the model describe various effects of
cell-cell and cell-ECM adhesion it is expected that this model should have enough complexity
to reproduce nontrivial and non-monotonic dependences of migration on CAMs (Friedl &
Wolf, 2003). Note that other models such as Stokes, viscoelastic and nonlinear-elastic/plastic
can be incorporated as required.

The FCCMU continuum-scale convection-reaction-diffusion equations are solved numerically
using a novel adaptive finite-difference method (Wise et al., Frieboes et al., manuscripts
submitted). This method features an adaptive, block-structured Cartesian mesh refinement
algorithm (e.g. Berger & Colella, 1989), centered differences in space and an implicit time
discretization for which there is no stability constraint on the space and time steps. The
nonlinear equations at the implicit time level are solved efficiently using a multilevel, nonlinear
multigrid method (e.g. Brandt, 1977). A typical simulation (e.g. Fig. 1) required two days of
CPU time on a Xeon processor with 3.06 GHz and 2 GB of RAM.

Tumor Vasculature
We model the physiology and evolution of glioma neovasculature in 3D using a hybrid
continuum-discrete, lattice-free model of tumor angiogenesis which is a refinement of earlier
work (Plank & Sleeman, 2003, 2004). This was shown to create dendritic structures consistent
with experimentally observed tumor capillaries (Less et al., 1991, Skinner et al., 1990). This
random-walk model generates vascular topology based on tumor angiogenic regulators, e.g.,
vascular endothelial growth factor (VEGF) (Takano et al., 1996), represented by a single
continuum variable that reflects the excess of pro-angiogenic regulators compared to inhibitory
factors. Peri-necrotic tumor cells and host tissue cells close to the tumor boundary are assumed
to be a source of angiogenic regulators (e.g., VEGF). Endothelial cells near the sprout tips
proliferate and their migration is described by chemotaxis and haptotaxis (e.g., motion up
gradients of angiogenic regulators and matrix proteins such as fibronectin). For simplicity, only
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leading endothelial cells are modelled and trailing cells passively follow. The vasculature
architecture, i.e., interconnectedness and anastomoses, is captured via a set of rules, e.g., a
leading endothelial cell has a fixed probability of branching at each time step while anastomosis
occurs if a leading endothelial cell crosses a vessel trailing path. Glioma vessels are more
tortuous than normal vessels (Bullitt et al., 2005). This can be quantified by various means
including a “Sum of Angles Metric” (SOAM) that sums total curvature along a space curve
and normalizes by path length, indicating high frequency, low-amplitude sine waves or coils
(Bullitt et al., 2005).

The tumor-induced vasculature does not initially conduct blood, as the vessels need to form
loops first (anastomosis) (Augustin, 2001). As observed experimentally, the neovasculature
model may also account for increasing vessel diameters and spontaneous shutdown and
consecutive regression of initially functioning tumor vessel segments or whole microvascular
areas (Holash et al., 1999b). Here, functional anastomosed vessels were assumed to provide a
source of nutrient in the tissue proportionally to local pressure.

Calculation of model parameters
Previous measurements of growth and histology of in-vitro ACBT (human glioblastoma
multiforme) tumor spheroids (Frieboes et al., 2006), and of human glioma (Bearer and Cristini,
manuscript submitted) were used to inform the parameters of the simulation presented herein.
Briefly, higher-grade glioma mitosis and apoptosis rates were taken to be 1 day-1 and 0.32
day-1 respectively. The characteristic time scale was taken to be the inverse mitosis rate. The
diffusion penetration length was measured to be 100 µm (Cristini et al., 2003, Frieboes et al.,
2006), and is used herein as the characteristic unit of length. The necrosis threshold was taken
to be σN/σV =0.5, where σN is the nutrient concentration needed for viability and σV is the
nutrient concentration in the far-field. Mutation rates from low to high grade glioma were also
estimated in previous work (Bearer and Cristini, manuscript submitted) but not utilized here.
In previous work, a critical value of cell adhesion parameter was determined from shape
stability analysis of experimental and simulated spheroids (Frieboes et al., 2006): compact
spherical morphologies exist only for sufficiently large adhesion, which is implemented via
the parameter γi (after non-dimensionalization) in equation (3). The above set of parameters
provided the baseline for our simulations (Fig. 1 shows a simulation using a sub-critical value
of the adhesion parameter). Simulations were performed using one fixed set of parameters as
described above. Parameter sensitivity studies were performed where cell adhesion (γi ) and
cell chemotaxis (χσ,i) parameters were varied to study their effect on the morphology of
infiltrating collective-cell patterns (i.e., cell chains vs. strands vs. detached clusters (Friedl &
Wolf, 2003)). Representative resulting morphologies are reported elsewhere and confirm that
for relatively low cell adhesion morphologic instability occurs when nutrient heterogeneity is
present leading to the development of infiltrative cell protrusions (Cristini et al. 2003, Frieboes
et al., 2006, Macklin & Lowengrub 2007; Bearer and Cristini, manuscript submitted). The
shape features of these protrusions further depends on the relative strengths of cell proliferation
and cell chemotaxis. A control was provided by simulations corresponding to relatively high
cell adhesion, for which tumors grow spherical and morphologic instability does not occur.

Complex tissue structure
To model complex tissue structures, an additional variable S is introduced to model the local
structure of the tissue. For example, in the simulation described below, we take S =1 where
there is bone (e.g. cranium). We then take the mobility, mechano-, hapto- and chemo- taxis
tensors M, γi, χf and χσ to be spatially inhomogeneous such that that these tensors (assumed to
be isotropic in the simulation below) are small in regions where S is approximately equal to 1.
In the attached movie, we simulate an aggressive tumor growing in a 1.3 cm square of brain
tissue (upper left frame), which includes white matter (lightest gray), gray matter (medium

Frieboes et al. Page 7

Neuroimage. Author manuscript; available in PMC 2008 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



gray), bone (white), external blood vessels (darkest gray), and fluid (black) in the folds of the
cerebral cortex. As the tumor grows, oxygen levels drop (upper right frame), leading to hypoxia
(blue regions in upper left frame), the secretion of pro-angiogenic growth factors (lower right
frame), and necrosis (brown regions in the upper left frame).

The tumor response to oxygen availability leads to pressure variations. During the early period
of rapid growth, pressure increases in the tumor and the surrounding tissue. Later, volume loss
in the necrotic core moderates the pressure. (See day 10.) The inhomogeneous necrotic volume
loss leads to morphological instability, seen in the formation of rapidly developing buds that
invade the surrounding tissue and increase the pressure. (See days 20 to 30.) Thereafter, we
see a cyclic pattern of rapid proliferation and pressure buildup, followed by necrosis-induced
pressure relief. The tissue geometry plays a critical role in this process. Tumor buds invading
the white matter (top of the tumor) encounter less mechanical resistance, leading to the
formation of relatively slender invasive fingers, compared to the blunt bulbs invading the gray
matter. The tumor buds also rapidly elongate and grow along the folds of the cortex where the
tumor cells are highly mobile. As the tumor continues to grow, pressure builds between the
tumor and the cranium, which retards the growth of the tumor towards the skull in spite of
ample oxygen and nutrients (top right frame).

Results
The 3-D multiscale model correctly predicts gross morphologic features of growing tumors
(Fig. 1). (A movie of this simulation is in Supporting Online Material.) Figure 1A shows a
mm-sized glioblastoma during early stages of growth simulated using our 3-D multiscale
model. The model predicts regions of viable cells, necrosis in inner tumor areas, and a tortuous
neovasculature as observed in vivo (Bullitt et al., 2005). The vessels labeled in red are capable
of releasing nutrient. The rate of nutrient released may depend on their age and the solid
pressure in the tissue. The vessels migrate towards the tumor/host interface since peri-necrotic
tumor cells and host tissue cells close to the tumor boundary are assumed to produce angiogenic
factors and other regulators. The tumor eventually coopts and engulfs the vessels. The tumor-
induced vasculature does not initially conduct blood, as the vessels need to form loops first
(anastomosis) (Augustin, 2001), i.e., more mature vessels that have anastomosed conduct blood
and may release nutrient. By hypothesizing the underlying mechanisms driving these
phenomena, the model enables a quantitative analysis, e.g., viable region thickness of about
100–200 µm and extent of necrosis as seen in Fig. 1B are shown to be strongly dependent on
diffusion gradients of oxygen/nutrient in the microenvironment and agree with previous
experiments (Helmlinger et al., 1997,Frieboes et al., 2006). Chaotic angiogenesis leads to
heterogeneous perfusion in the tumor that then might be responsible for regression of parts of
the vascular network and necrosis of tumor cells (Carmeliet & Jain, 2000,Patan et al.,
2001b), further enhancing variable tumor cell proliferation. By taking vessel maturation into
account, the simulations correctly predict that as tumor size increases, inner vessels may regress
or shut down, leading to nutrient depletion and resulting in the formation of a large necrotic
core (data not shown), as observed in patients. For example, cm-sized human glioblastoma at
later stages as seen through Magnetic Resonance Imaging (MRI) in patients (e.g., Wurzel et
al., 2005) is composed of viable cells delineating its boundary and surrounding extensive
necrosis in its inner region.

The multiscale model enables the prediction of tumor morphology by quantifying the spatial
diffusion gradients of cell substrates maintained by heterogeneous cell proliferation and an
abnormal, constantly evolving vasculature. Figure 1A,C shows a simulated time-sequence over
the course of three months predicting that the glioblastoma grows with a thin layer of viable
tissue on its periphery, displacing nearby tissue and internally generating necrosis. The
morphology is directly influenced by angiogenesis, vasculature maturation, and vessel
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cooption (Vajkoczy et al., 2002, Augustin, 2001, Holash et al., 1999a). The model predicts that
the tumor boundary moves at a rate of about 50–100 µm per week, presenting a mass of diameter
of about 5 cm in one year (data not shown). These results are supported by well-known clinical
observations (e.g., Naganuma et al., 1989). As the tumor grows and engulfs vessels in its
vicinity, the tumor may compress the vessels (Padera et al., 2004) and disrupt flow of nutrients,
leading to further necrosis and even temporary mass and vascular regression (Zagzag et al.,
2000, Holash et al., 1999b). The crucial role of cell substrate gradients on tissue structure and
tumor invasion is further analyzed below (Figure 2 and Figure 3). Figure 1B shows a histology-
like section of the last frame of the simulation in Fig. 1A, obtained by slicing horizontally
through the simulated tumor. Viable tumor regions (white) surround necrotic tissue (dark), as
seen in vivo in MRI (e.g., Wurzel et al., 2005) and ex-vivo in histopathology (see below).

A growing tumor contends with increasing mechanical resistance from normal brain tissue,
which has physical properties resembling a gel (Ommaya, 1968, Fallenstein et al., 1969).
Nevertheless, this resistance is insufficient to contain tumor growth, e.g., gliomas have been
observed to displace cartilage (Kumar et al., 2003). Only hard bone (e.g., the skull) will be a
physical barrier. The effect of such physical barriers on tumor morphology and growth can be
incorporated in the multiscale model (see Summary of Materials & Equipment Used).

Tumor structure and morphology is significantly affected by diffusion gradients, e.g., of
oxygen and nutrients, in the cellular microenvironment (Figure 2). The computer model
(histology-like sections of the last frame of the simulation in Fig. 1A, obtained by slicing
vertically through the simulated tumor) predicts that viable regions of thickness of about 100–
200 µm encircle the neo-vessels (Kunkel et al., 2001), with acellular (necrotic) areas in between
them, thereby determining the tumor tissue architecture (Fig. 2A) based on the diffusion limit
for cell substrates (Fig. 2B) (Helmlinger et al., 1997). As a consequence, overall tumor shape
is also determined by the distribution of vessels (Figure 2A). These results are supported by
numerous experimental observations in animal glioblastoma models (Rubenstein et al.,
2000,Kunkel et al., 2001,Lamszus et al., 2003,Bello et al., 2004), and from histopathology of
brain tumors in patients, and may also apply to solid tumors in general (Cristini et al.,
2005,Frieboes et al., 2006) beyond the context of brain tumors. A histology section of
glioblastoma from a patient (Figure 2C) reveals a bulb-shaped group of cells with evident
internal vascularization and tissue structure that supports the predictions of the computer model
(Fig. 2A, B). Note that overall computed tumor shape (Fig. 2A) is different from that in the
patient (Figure 2C) as the tumor shapes are dictated by the (relatively random) distribution of
vessels. However, the internal tissue structures of the computed and in vivo tumors are similar
as set by (deterministic) diffusion gradients of cell substrates.

The computer model predicts that substrate diffusion gradients strongly affect tumor invasion
in addition to tumor and host tissue morphology and structure (Figure 3). In-silico
histopathology of a computer simulation shows that glioma cells may rely on vessels beyond
the tumor boundary—and grow towards blood vessels in the host tissue that they contribute to
stimulate (Figure 3A) (Bartels et al., 2006,Preusser et al., 2006). The simulation illustrates an
invasive front of tumor cells collectively moving up towards the neovasculature, revealing the
dramatic effect of cell substrate gradients on the tumor morphology and invasion beyond
molecular-scale signaling events (Tysnes & Mahesparan, 2001). The dynamics of this invasion
mechanism, termed “diffusional instability,” have been studied elsewhere (Cristini et al.
2003,Cristini et al., 2005,Frieboes et al., 2006,Macklin & Lowengrub 2007). Representative
histologic sections from four examples of glioblastoma multiforme in patients also reveal
protruding fronts of cells in collective motion away from necrotic areas, up gradients of cell
substrates, into areas of the brain where neo-vascularization is evident and strongly resembling
tumor boundary morphologies predicted by the computer simulations. Figure 3B provides a
more detailed image of a glioblastoma histology section from a patient that reveals a tumor
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front (bottom) pushing into the healthy brain tissue (top). Normal brain (white matter) has
fewer cell bodies and more abundant amorphous matrix. Invading malignant astrocytes (in the
middle) have pleiomorphic nuclei and an irregular distribution. Note clearly demarcated
margin between tumor and normal brain tissue, as well as green fluorescent outlines of more
mature vascular channels deeper in the tumor. Neovascularization at the tumor-brain interface
is readily detected by red fluorescence from erythrocytes inside the vessels. These vessels
generate substrate diffusion gradients across the tissue, which in turn drive collective tumor
cell infiltration into the brain. More mature vessels within the tumor may be compressed which
may restrict the blood flow. Here this is shown by relative lack of red fluorescence from RBCs
in the deeper tumor vessels as compared to the vessels in the brain at the tumor margin. This,
together with vessel aging, may also reduce the vessel permeabilty for nutrient/oxygen
exchange between the vessels and the tissue (Padera et al., 2004), further promoting substrate
gradients pointing outwards from the tumor mass.

Figure 4 shows the anatomic features of the tortuous tumor vasculature as simulated by the
multiscale model (Figure 4A) and as seen in vivo (Bullitt et al., 2005) (Figure 4B), enabling
both qualitative and future quantitative analyses. In the model, the vasculature structure, e.g.,
tortuosity and tumor vessel location, is influenced by intermittent tumor tissue hypoxia coupled
to both endothelial and tumor cell chemo- and hapto-taxis as a function of diffusion gradients
of growth factors and other substances in the microenvironment (Li et al., 2000,Bullitt et al.,
2005).

Discussion
We have performed, for the first time to our knowledge, 3-D computer simulations of growing
glioma and neovascular morphologies as predicted by a multiscale mathematical model based
on first principles and informed by experimental and clinical data, e.g., histopathology data
transformed into model input parameters, and calibrated so that tumor morphology can be
predicted beyond a purely empirical, observational approach. Results of glioma morphology,
growth, and vascularization obtained through the model are also supported by previous
experimental and in vivo studies. Although high-grade gliomas are highly angiogenic and this
characteristic correlates with clinical progression (Boegler & Mikkelsen, 2003), microvascular
inadequacy may induce necrosis, drive glioma cells to aggressively invade adjacent tissue in
vivo (Vajkoczy et al., 2002), and trigger angiogenic sprouting from the surrounding
microvasculature (as seen in the simulation in Figure 1A, left). By the second week after
implantation in an animal model, gliomas had established their own vasculature and were
maintaining it through continued angiogenic sprouting from both host and tumor vessels
(Vajkoczy et al., 2002), as is also observed with other tumors (Li et al., 2000). Although some
cells showed a strong affinity for the perivascular space of host vessels, the bulk of the tumor
did not move towards cerebral vessels. Within one week, adjacent host vessels lost the brain-
blood barrier, dilated, increased in tortuosity, and produced vascular sprouts, which penetrated
the tumor mass and formed the initial tumor neovasculature, in agreement with our results
(Figure 1A, middle). The computer model can accommodate the increase in new tumor vessel
diameter (about 1.5x) during a period of 2 weeks, as seen in vivo (Vajkoczy et al., 2002). The
model implements a tumor vessel maturation period of 3 weeks that agrees with common
physiological models of vessel formation (Cai et al., 2004, Patan et al., 2001a, Cursiefen et
al., 2006), and hypothesizes that an evolving vasculature will affect a growing tumor through
heterogeneous perfusion (Bernsen et al., 1995), vascular network regression, and tumor cell
necrosis, based on in vivo observations (Patan et al., 2001b). The neovasculature is chaotic, of
heterogeneous angio-architecture, has large caliber vessels and sluggish blood flow. While
undergoing constant remodeling, the neovasculature is also characterized by spontaneous
shutdown and consecutive regression of initially functioning tumor vessel segments or whole
microvascular areas, thus maintaining strong diffusion gradients in the microenvironment and
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directly affecting tumor morphology. This effect is dramatically seen through the model in
Figure 1A, right and Fig. 1C. In this scenario, the tumor grows avascularly first, either coopts
the existing vasculature or forms a new one, and then becomes necrotic as this vasculature
undergoes regression, leading to new cycles of angiogenesis and growth. Vascular regression
associated with the onset of necrosis in the tumor, followed by further angiogenesis at the tumor
margins was also observed experimentally (Holash et al., 1999b).

The multiscale model predicts that glioma tissue structure and tumor invasiveness are
significantly influenced by diffusion gradients in the microenvironment, as observed
experimentally (Rubenstein et al., 2000, Kunkel et al., 2001, Lamszus et al., 2003, Bello et al.,
2004, Frieboes et al., 2006) and in human patients (Bearer and Cristini, manuscript submitted).
These gradients may have a strong effect on glioma morphology (Cristini et al., 2005, Macklin
& Lowengrub, 2007), and are hypothesized in the model to reciprocally influence a growing
tumor’s continuously evolving vasculature in complex ways. The 3-D model facilitates this
study by calculating the chemotactic and haptotactic response of the blood vessels at the cell
scale (see Summary of Materials & Equipment Used) and its cumulative effect at the tumor
scale (Figure 4A).

Glioma invasion introduces barriers to tumor resection and to therapy, and even when resection
is an option, accurate prediction of the lesion’s invasive potential could help decide on a case-
by-case if resection is indeed the best option and the optimal volume of lesion to be removed,
thus directly impacting the grim outlook of this disease. The multiscale model proposed herein
could be of benefit to develop novel intervention strategies and better understand current ones.
By modeling tumor behavior in response to chemotherapeutic drugs whose target is known,
outcomes may be predicted for individual patients. In addition, experiments in silico using this
modeling algorithm may also serve as test-beds for drug development thereby avoiding any
need initially for clinical efficacy testing in real people.

With its predictive capability, the model can be used to understand and predict growth, as well
as the outcome of different therapies, thereby aiding in the selection of patient-specific
treatment. Furthermore, because the underlying molecular and cellular biology are complex,
the targets available for intervention strategies and their combinations are virtually infinite.
The parameter space can be searched using the mathematical model to identify critical
parameters or combinations of parameters to sharpen the experimental focus (Cristini et al.,
2006). The advanced state of this modeling technology, coupled with the availability of high
performance computing, enables us to propose that it is time to start integrating and further
developing this methodology with therapeutic practice. We envision that future computer
simulators will build on the developments and findings of studies such as this one to
complement current clinical practice, and to design novel minimally or non invasive treatment
strategies aimed at achieving therapeutic cell kill levels while preventing invasion.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Multiscale 3-D computer model predicts gross morphologic features of a growing
glioblastoma. (A movie of this simulation is in Supporting Online Material.) A: Viable (VT)
and necrotic (NT) tissue regions, and vasculature (MV: mature blood-conducting vessels in
red; NV: new non-conducting vessels in blue) are shown. The time sequence (from left to right,
over a period of 3 months) reveals that the morphology is affected by successive cycles of
neovascularization, vasculature maturation, and vessel cooption (VC). Bar, 250 µm. B:
Histology-like section of the last frame of the simulation in A (obtained by slicing horizontally
through the simulated tumor) reveals viable tumor regions (white) surrounding necrotic tissue
(dark). Tumor mass spatial distribution is calculated using Eq. 1 with ν = ρ and cell viability
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as a function of nutrient ν = σ. Input parameters were calibrated from in-vitro and ex-vivo
glioma data (Summary of Materials & Equipment Used). In particular, tumor cells are
estimated to proliferate at a rate λprolif =1 day-1 (Frieboes et al., 2006). C: Another view from
simulation shown in Fig. 1A, right.
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Figure 2.
Multiscale model predicts that tumor tissue morphology is determined by diffusion gradients.
A: Tumor histology predicted by the computer model (obtained by slicing vertically through
the simulated tumor corresponding to last frame in Fig. 1A) reveals clusters of viable cells
(VT) surrounding blood vessel cross-sections (MV), and zones depleted of cells or necrotic
farther away (NT). Viable tissue is confined within 100–200 µm of the conducting intra-
tumoral vessels and of the brain parenchyma (cross sections of conducting vessels are in red,
non-conducting in blue). Bar, 200 µm. B: Calculated diffusion gradients of cell substrates
corresponding to the tumor structure predicted by the simulation in A indicate high nutrient
(white) in the vicinity of blood conducting vessels and low nutrient (black) otherwise, thereby
determining the regions of cell viability. Legend: arbitrary units. C: Glioblastoma histologic
section from a patient shows tissue structure of a large bulb-shaped tumor area. This
morphology reveals viable cells (VT) cuffing and surrounding blood vessels in cross-sections
(MV), and depleted inter-vessel zones (NT). The thickness of the cuff of viable cells
corresponds to the diffusion gradient of oxygen and nutrients they require emanating from the
vessel. These results indicate that tumor architecture in this specimen is determined by cellular
metabolism and intra-tumoral diffusion gradients of required nutrients provided by the
vasculature, also confirming the presence of substrate gradients and the parameter estimates
for diffusion length used in the simulations (Summary of Materials & Equipment Used). Bar,
200 µm.
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Figure 3.
Multiscale model predicts that tumor tissue invasion is driven by diffusion gradients. A: Detail
of computer simulated glioma histology (obtained by slicing through the 3-D simulated tumor
of Fig. 1) showing invasive tumor front (white) moving up towards extra-tumoral conducting
neo-vessels (NV), supporting the hypothesis that diffusion gradients of cell substrates released
by the neovasculature drive collective tumor cell infiltration into the brain in addition to
determining the tumor structure (Figure 2). The model predicts that the movement of tumor
fronts towards sources of cell substrate strongly influences glioma invasiveness. Aged vessels
inside the tumor have thicker walls and thus are assumed to provide fewer nutrients than the
thin-walled neovasculature at the tumor periphery (Padera et al., 2004). Conducting vessels
(red), non-conducting (blue). Bar, 100 µm. B: Glioblastoma histopathology from one patient
showing tumor (bottom) pushing into more normal brain (top). Note demarcated margin
between tumor and brain parenchyma to the middle top of the image and green fluorescent
outlines of large vascular channels deeper in the tumor. Neovascularization (NV) at the tumor-
brain interface can be detected by red fluorescence from the erythrocytes inside the vessels
(see materials and methods for microscopic imaging of archived tissue in H&E by
fluorescence). Bar, 100 µm.
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Figure 4.
Anatomic features of glioma vasculature predicted by a simulation (A), highlighting the
tortuous nature of the tumor vessels (conducting vessels in red, nonconducting in blue), and
observed in vivo (adapted with permission from Bullitt et al. (2005)) (B). The multiscale model
predicts that the vasculature is heavily influenced by diffusion gradients of cell substrates
driving heterogeneous tumor cell proliferation and concomitant expression of angiogenic
regulators.
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