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In behavioral science research, many outcomes of interest can be influenced by 

interpersonal relationships (Gyarmathy & Neaigus, 2007). To assess such outcomes, data can 

be collected using dyads. Each dyad has two elements, an actor, who responds to a stimulus 

and a partner, who can potentially influence the actor (Kenny, Kashy, & Cook, 2006). One 

popular model for analyzing dyadic data is the Actor Partner Interdependence model 

(APIM). In this study, we proposed a variable selection method applied to a probit Bayesian 

Hierarchical Generalized Linear Model (Bayesian HGLM) to fit the APIM to dyadic data.  

The proposed method used stochastic search technology to identify key predictors of 

the Bayesian HGLM for APIM. It included a component for selecting interactions; selecting 

only interactions with both main effects also included. The proposed method was evaluated 

in two different forms, with simulated data and with real data. When we evaluated the 

method using simulated data, we examined its performance on 5 different simulated 

scenarios with varying associated predictors and two different sample sizes: a large sample 

size (2000 dyads) and a small sample size. And when we evaluated the method using real 



 

 

data, we used baseline data from an evaluation of the program Its Your Game-Family (IYG-

F). The baseline data set had the complete information of 61 dyads. 

Across the 5 scenarios, the proposed variable selection method selected the correct 

variables over 85% of the simulated data sets in either sample size. And using the real data, 

the proposed variable selection method selected one construct out of 6 to be associated with 

the binary outcome. Thus, using the real data, we concluded that the construct of teenage Sex 

Communication Self-Efficacy Relational explains the outcome Sexual initiation, and the 

effects are equal across dyad members (teenager-parent). 

In conclusion, in this study, we implemented the first variable selection procedure 

specifically to analyze dyadic data, based on stochastic search technology. The selection 

procedure can be applied in any research study that involves dyadic data from the APIM 

model with a binary outcome and a set of continuous covariates.  
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BACKGROUND  

Literature Review  

 

In behavioral sciences many outcomes of interest can be influenced by interpersonal 

relationships, and observed behaviors are often the result of interactions with more than one 

person. For example, the reaction that an adolescent may experience during an early sex 

encounter may be influenced by parents, siblings or friends opinions. Therefore, the unit of 

study in behavioral sciences is often not an individual, but a group of individuals. 

Specifically, when only a pair of individuals is involved in an interaction, the pair is called a 

dyad. According to social psychologists, a dyad comprises an actor and a partner. The actor 

is defined as the person who rates or responds to a stimulus; and the partner is someone 

whose characteristics influence the actor’s responses (Garcia, Kenny, & Ledermana, 2014). 

 

Classification of Research Models for Dyads 

There exist three main dyad-based models (Kenny, Kashy, & Cook, 2006), depending 

on the research question that has been raised. The first model, which is known as the Actor 

Partner Interdependency model (APIM), is used when every person in an interpersonal 

relationship belongs to one and only one dyad. It is often applied to research on interactions 

between a mother and her child, for example, when they both provide self-ratings about their 

communication styles and interaction quality. The APIM is also considered as the standard 

model for dyadic data (Kenny, Kashy, & Cook, 2006). The second model is the social 

relations model (SRM), or round robin design, where all members of a group of participants 
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interact with one another. In the SRM, a person (actor/partner) not only serves as a member 

of multiple dyads, but plays a dual role in multiple interactions (Ludtke, Kenny, & Ulrich, 

2013). The SRM is often used in studies on popularity among teenagers in a given high 

school and given grade, where each student is paired with the rest of the students in the same 

grade from his/her high school.  The third model involves one member being paired with 

multiple other members of dyads, but the rest of the members are not paired, because 

researchers are only interested in investigating one-way relationships. Partner level model 

(PLM) is an example of one-way relationships or one-sided designs (Mustanski, Starks, & 

Newcomb, 2015).  This design is often applied when young children are rated by teachers, 

but young children do not rate the teachers back. In short, in each dyad case, an actor and a 

partner are involved. In this study, we will use data arising from an APIM; thus, we will only 

focus on the APIM and appropriate statistical models for this design. 

 

Actor-Partner Interdependence Model (APIM) 

The APIM allows estimation of the effects from both elements of a dyad, the actor 

and the partner on the outcome variable. In a statistical model, both actor and partner effects 

are considered independent variables, and the outcome is a function of them. Furthermore, 

the outcome in the APIM will be a function of two groups of independent variables: one 

group that comes from the actor (the same person that generates the outcome), the other 

group consists of the same independent variables but measured from the perspective of the 

partner (the person that influences the actor). For example, in the APIM, when a mother and 

a child are asked about their communication about sex, both of them will provide answers 
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that are the outcomes. When the mother provides the outcome, the child is present in the 

analysis and considered the partner. Likewise, when the child provides the outcome, the 

mother is considered the partner (Figure 1). Dyadic partners in the APIM influence each 

other, and this partnership has an influence on their individual lives. What is more, if it is 

possible to identify both the actor effects and the partner effects in the model, the dyad 

involved is a distinguishable dyad; if it is not possible, it is an indistinguishable dyad 

(Kenny, Kashy, & Cook, 2006). In other words, a dyad is distinguishable if there are one or 

more characteristics to identify each member in the dyad. In the case of a parent paired with a 

child, it is a distinguishable dyad because each individual can be distinguished by factors or 

characteristics such as gender and age.  

 

Figure 1:  Children-mother communication problem using the APIM  

 

  

Children’s 
communication 

ability  

Children’s  outcome: 
communication 

about sex  

Mother’s 
communication 

ability  

Mother’s  outcome: 
communication 

about sex  

Children’s Actor effect 

Parent’s Actor effect 



4 

 

Constructs in Behavioral Science Research 

 

In statistics, “independent variable” or “covariate” is a very general term. In most 

cases, it is simply a measure of a specific characteristic of the subject under study, such as 

sex, gender, or economic status. However, in some cases it is not so simple, and it can be a 

function of different measures such as body mass index (BMI). In behavioral science 

research, in particular, some independent variables known as “constructs” can be complex in 

nature, because a construct is a conceptual variable that is known to exist, but cannot be 

directly observed (Privitera, 2013).  The construct is usually measured by a set of questions 

(known as items) related to an underlying individual psychological characteristic; these items 

are often highly interrelated. The answers to the questions are then combined to produce a 

single score that numerically represents the degree of presence of the construct in an 

individual. An APIM usually involves modeling the association between independent 

variables or constructs, such as gender, race and socioeconomic status with an outcome using 

dyadic data.  

Statistical Tools for Models of Dyads 

Dyadic partners affect each other, and their partnership influences their individual 

responses as well. From a statistical point of view, data from dyads cannot be considered a 

sample of independent observations. Therefore, the correlation structure cannot be ignored. 

For the APIM, one of the most common statistical tools to analyze dyads is the analysis of 

variance (ANOVA) (Gill & Swartz, 2007). One important derivation is the two-way 

ANOVA with random effects that decomposes the variance into actor, partner, and 

relationship effects. Other common methods include multilevel modeling, structural equation 
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modeling, and generalized estimation equations (Kenny, Kashy, & Cook, 2006). In 

particular, multilevel models have been extended to include Bayesian estimation to produce a 

hierarchical linear model (HLM) (Gill & Swartz, 2007). Under such an approach, Bayesian 

methods have enabled statistically reliable inferences considering variance components and 

correlations, even when sample sizes are small  (Gill & Swartz, Statistical Analyses for 

Round Robin Interaction Data, 2001). Moreover, the Bayesian HLM has been extended to 

provide a single unified estimation method for the APIM for continuous and categorical 

outcomes ( (Ahn, Liu, Wang, & Yuan, 2013); (Baragatti, 2011)). This integrative model is 

known as Bayesian Hierarchical Generalized Linear Model (Bayesian HGLM) and will be 

the focus of s dissertation.  

 

Bayesian Hierarchical Generalized Linear Models (Bayesian HGLM) 

The Bayesian HGLM for dyads consists of two levels: The first level models the 

variability within a dyad; and the second level models the variability between dyads. The 

first-level variables are called individual levels, and they are characteristics of the individual. 

An example of the individual-level covariate for a mother-and-child dyad would be 

educational level. Elements of the second level are called dyad-level independent variables or 

dyad-level constructs, and they are characteristics that equally apply to both elements of the 

dyad. An example of a dyad-level covariate for a mother-child dyad would be the family 

socioeconomic status, since in studies both the mother and child are often categorized with 

the same level of family socioeconomic status (Garcia, Kenny, & Ledermana, 2014). 
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If the research question involves finding the best set of independent variables or 

constructs to explain the outcome, a variable selection method should be applied to the 

dyadic model. The Bayesian HGLM is a type of generalized linear model, so model selection 

strategies can be applied to it. One such selection method that readily applies to generalized 

linear models under the Bayesian framework is stochastic search variable selection (SSVS) 

(George & McCulloch, 1993; Swartz, Mueller, & Amos, 2006; Ntzoufras, Forster, & 

Dellaportas, 2000). Other selection methods can be applied to Bayesian models, such as 

absolute shrinkage and selection operator (Lasso) and deviance criteria (DIC, BIC, and AIC). 

However, these methods have limitations when applied to an APIM for dyad data. For 

example, Lasso in its selection process selects only one variable out of a group of variables 

that are highly correlated (Zhang, et al., 2014), making this process highly restrictive. Lastly, 

the deviance criteria (DIC) may not be appropriate to implement as a selection method in our 

model due the large possible number of models to compare (2𝑝).  Therefore, this study 

focuses on SSVS applied to Bayesian HGLM. 

 

Stochastic Search Variable Selection (SSVS) 

When a statistical model is built, the main objective is to capture all relevant pieces of 

information that explain the variability of the responses. There are different methods in 

Bayesian statistics to determine the subset of explanatory variables.  The SSVS was 

originally used in linear models (George & McCulloch, 1993), but researchers have extended 

its use to most of the generalized linear models. For example, in conditional logistic 

regression models (Swartz, Mueller, & Amos, 2006), log-linear models (Ntzoufras, Forster, 
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& Dellaportas, 2000), in survival models (Stingo, Chen, Tadesse, & Vannucci, 2011), and in 

longitudinal logistic regression models (Ahn, Liu, Wang, & Yuan, 2013). For a given set of 

explanatory variables, the basic idea of the SSVS method is to include in a model all 

independent variables or constructs that balance good explanatory power with adequate 

estimation performance. Essentially, the SSVS framework uses a latent variable to represent 

the question “Does this variable belong to the model?” and describes the computational 

machinery to compute an answer to that question in a way that considers all possible models, 

or at least the most probable models.  

Furthermore, Bayesian SSVS explores a set of different statistical models for a given 

set of covariates by limiting the posterior distribution of non-significant variables of the 

outcome in a small neighborhood around zero. Based on this assumption, the SSVS is easily 

implemented via the Gibbs sampler. Moreover, it can provide information regarding the 

inclusion of each variable in the final model by analyzing their corresponding posterior 

probability of inclusion at the end of the stochastic process (Yi, George, & Allison, 

Stochastic Search Variable Selection for Identifying Multiple Quantitative Trait Loci, 2003).  

Researchers have been using the core idea of SSVS to solve specific problems, such 

as deciding when an interaction term between two or more independent variables 

(independent variable will be a generic name for a construct or covariate in a model) needs to 

be included in a statistical model. Each independent variable involved in the interaction in 

this case often also needs to be included in the model for interpretability. Specifically, for the 

Bayesian HGLM, when it is applied to the APIM, if interactions between covariates at the 
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dyad level and individual level are considered important for the research question, both the 

dyad-level variable and the individual-level variable should be included. Chipman, George 

and McCulloch (2001) showed a derivation of SSVS that takes into account such criteria for 

including interactions in a statistical model. Their technique consists of assigning conditional 

probabilities to the interaction selection indicators that are conditioned on the selection status 

of the main effects.  

Advantages of using SSVS in Behavioral Science Research 

The SSVS has been shown to be a powerful statistical method to select an accurate 

model in logistic regression compared with standard selection methods, regardless of how 

much information was specified and expressed through the priors (Swartz, Yu, & Sanjay, 

2008). A Bayesian HGLM has also been applied to the APIM (Baragatti, 2011; Ahn, Liu, 

Wang, & Yuan, 2013). However, to date, there are limited methods that can select the 

interaction between constructs forcing the main effects of the interaction in the model for a 

small sample size. Statistical methods based on the SSVS, however, can fill this research gap 

and help identify constructs that are associated with an outcome/ behavior of interest and its 

interaction in a restricted parametric space. Therefore, in this study, we will develop a SSVS 

framework to select constructs as well as the interaction between constructs when analyzing 

dyadic data under the APIM.  To test the proposed method, we also perform simulations to 

show that selection process is working adequately for Bayesian HGLM when applied to the 

APIM. We will also apply it to dyadic data from an effective health promotion program to 

determine its suitability for real-world data. 
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Public Health Significance 

Many public health problems, such as teen pregnancy, are related to behaviors that 

are influenced by the behaviors of parents, siblings, friends, classmates, among others. The 

effects of parental-child relationships on health behaviors and outcomes have been widely 

studied, with mixed results ( (Latkin & Knowlton, 2015; Looze, Constantine, Jerman, 

Vermeulen-Smit, & ter Bogt, 2015). These findings may help the design and delivery of 

health interventions since interventions may be more effective when important interactions 

between individuals rather than individuals themselves are identified. Dyadic analysis is 

emergent in the context of sexual health research because it can consider interrelated 

behaviors. Therefore, the proposed SSVS jointly with Bayesian HGLM is expected to 

provide a set of models with different combinations of independent variables (constructs) for 

dyadic data under the standard model (APIM).  Moreover, the proposal statistical method can 

simplify a Bayesian HGLM by identifying the key items and interactions that are more 

related to the variability of the outcome of interest using a smaller sample size than that used 

by most statistical methods; thus, providing public health researchers a powerful tool to 

analyze dyadic data in the presence of small sample sizes.  

Specific Aims 

We will develop a stochastic search variable selection (SSVS) based method to select 

outcome related constructs when analyzing dyadic data from the actor-partner 

interdependence model (APIM). We will validate the proposed statistical method first using 

simulated data and second applying it to real world data.  We will use data from the baseline 
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assessment of a randomized control trial of the It’s Your Game Family (IYG-F) program. 

IYG-F is an internet-based intergenerational sexual health education program for adolescents 

and parents (Entitled the “Secret of Seven Stones”) (Ceglio L. , 2015). The data set includes 

complete information of 61 dyads at baseline.  The elements of the dyads are the parent or 

legal guardian, who provides most of the care, and their teen child, who is between the ages 

of 11-14 years old. The primary outcome of this study is parent-child communication about 

sex initiation. The constructs measured in the IYF-F program are intentions and beliefs about 

child disclosure, for example, communication about sex, quality of the communication about 

sex, self-efficacy for communication about sex etc. (Appendix 1 includes more details about 

the constructs).  

 

Specific Aim #1: Develop an SSVS framework to select independent variables or 

constructs in a Bayesian HGLM for the APIM. We will develop and evaluate a statistical 

method that performs the SSVS using a probit Bayesian HGLM for the APIM. We will 

evaluate our method using different scenarios of simulated data with a larger sample size 

(greater than 1000 dyads). 

 

Specific Aim #2: Test and application of the SSVS framework to select independent 

variables or constructs in a Bayesian HGLM for the APIM using a small data set. We 

will test the method from Aim #1 using simulated data for different scenarios with a small 

sample size (200 dyads or less), and we will apply it to the baseline data set of the IYG-F 

program.  
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CHAPTER II 

Stochastic Search Variable Selection Applied to a Bayesian Hierarchical Generalized 

Linear Model for Dyadic Data 

Journal of Statistical Computation and Simulation 

 

 

 

 ABSTRACT 

In behavioral science research, many outcomes of interest can be influenced by 

interpersonal relationships (Gyarmathy & Neaigus, 2007). To assess such outcomes, data can 

be collected using dyads. Each dyad has two elements, an actor, who responds to a stimulus 

and a partner, who can potentially influence the actor (Kenny, Kashy, & Cook, 2006). One 

popular model for analyzing dyadic data is the Actor-Partner Interdependence model 

(APIM). In this study, we proposed a variable selection method applied to a probit Bayesian 

Hierarchical Generalized Linear Model (Bayesian HGLM) to fit the APIM to dyadic data. 

The proposed method uses stochastic search technology to identify key independent variables 

of the BHGLM for APIM. It includes a component for selecting interactions; selecting only 

interactions with both main effects also included. The proposed method was evaluated by 

examining its performance on 4 different simulated scenarios with varying associated 

independent variables. In this study, we implemented the first variable selection procedure 

specifically to analyze dyadic data, based on stochastic search technology. The model is able 

to detect associated independent variables, but requires a larger sample size to detect that the 

effect of a covariate is different in the partner than in the actor.  
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INTRODUCTION 

In behavioral science research, many outcomes of interest (e.g., sexual behavior) can 

be influenced by interpersonal relationships (Gyarmathy & Neaigus, 2007). At the same 

time, interactions among interpersonal relationships (e.g., caregiver and care receiver) can 

influence the outcomes of interest. In order to truly analyze such outcomes, researchers 

collect information on both parties involved in the relationship, a data structure commonly 

referred to as dyads.   Each dyad has two elements, an actor and a partner. The actor is 

defined as the person who rates or responds to a stimulus, and the partner is someone whose 

characteristics will influence the actor’s responses (Kenny, Kashy, & Cook, 2006).When  it 

is possible to uniquely identify both the actor and partner, the dyad involved is known as a 

distinguishable dyad  (Kenny, Kashy, & Cook, 2006). For example, the case of a primary 

caregiver paired with a teenager is a distinguishable dyad because each person in the dyad 

can be distinguished by sociodemographic factors or characteristics, such as gender and age. 

In the literature, there are different models for analyzing dyadic data, each of them specific to 

the nature of the research question of interest. One of these models is the Actor-Partner 

Interdependence model (APIM). The APIM allows estimation of the moderation effects from 

both members (partner and actor) of the dyad on the outcome variable  (Maroufizadeh, 

Hosseini, Rahimi Foroushani, Omani-Samani, & Amini, 2018). The APIM assumes that the 

outcome variable is a function of two groups of independent variables: one group coming 

from the actor, and the other coming from the partner. When one member is assessed for the 

outcome, the other will be present in the analysis and considered as a partner. Finally, the 
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estimated parameters of the APIM helps to determine if the outcome is influenced by the 

actor only, partner only, or both in a given scenario (Kenny D. A., 1995). 

 In this study, we proposed a variable selection procedure applied to a probit Bayesian 

Hierarchical Generalized Linear Model (Bayesian HGLM) to fit the APIM to dyadic data. 

This method allows the inclusion of interaction effects when the main effects are included in 

a reduced parameter space to increase its efficiency  (Leon-Novelo, Moreno, & Casella, 

2012). In addition, we evaluated the performance of the proposed variable selection 

procedure using simulated data. 

 

Statistical Tools for Modeling Dyads 

From a statistical standpoint, dyadic data cannot be considered samples of 

independent observations.  Members are likely to be highly correlated within dyads, so the 

correlation structure cannot be ignored. For studies using APIM, one of the most common 

statistical methods used is the analysis of variance (ANOVA) (Gill & Swartz, Bayesian 

Analysis of Dyadic Data, 2007), especially the two-way ANOVA with random effects that 

decompose the variance into actor, partner, and relationship components. Other common 

statistical methods include multi-level modeling, structural equation modeling, and 

generalized estimation equations (Kenny, Kashy, & Cook, 2006). Bayesian multi-level 

modeling methods could generate reliable statistical inferences with a consideration of 

variance components and correlations, even when sample sizes are small (Gill & Swartz, 

Statistical analyses for round robin interaction data, 2001). Moreover, the Bayesian HGLM 
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has been extended to provide a single unified estimation method for APIM studies for 

continuous and categorical outcomes (Baragatti, 2011; Ahn, Wang, & Yuan, 2013).  

 

Bayesian Hierarchical Generalized Linear Models (Bayesian HGLM) 

The Bayesian HGLM for dyadic data consists of two levels: The first level models the 

variability within a dyad; the second level models the variability between dyads. Elements of 

the first level are called dyad-level independent variables, or dyad-level constructs, and their 

characteristics can be equally applied to both elements of the dyad. Elements of the second 

level are called individual-level independent variables, and they are characteristics of each 

individual. When the primary research question is to identify the set of independent variables 

or constructs that best explains an outcome, a variable selection method should be applied to 

the dyadic model. The reason is that most of the time in a predictive model, a variable 

selection method is needed to yield the simplest model and to avoid collinearity among 

independent variables that may be performing the same function. Variable selection 

strategies can be applied to the Bayesian HGLM because it is a type of generalized linear 

model. In fact, one model selection strategy that can be readily applied to generalized linear 

models under the Bayesian framework is Stochastic Search Variable Selection (SSVS) 

(George & McCulloch, 1993; Swartz, Mueller, & Amos, 2006; Ntzoufras, Forster, & 

Dellaportas, 2000; Stingo, Chen, Tadesse, & Vannucci, 2011; Ahn, Wang, & Yuan, 2013).  

Stochastic Search Variable Selection (SSVS) 

SSVS was originally developed using linear models (George & McCulloch, 1993), 

but it has been subsequently extended to most generalized linear models, such as logistic, and 
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conditional logistic regression models (Swartz, Mueller, & Amos, 2006; Koslovsky, et al., 

2018), log-linear models (Ntzoufras, Forster, & Dellaportas, 2000), survival models (Stingo, 

Chen, Tadesse, & Vannucci, 2011), and longitudinal logistic regression models (Ahn, Wang, 

& Yuan, 2013). The SSVS framework uses a latent indicator variable to represent the 

question “Does this variable belong to the model?” and it defines computational machinery 

to compute an answer to that question in a way that considers all possible models, or at least 

the most probable models.  

Using a spike and slab prior on the regression coefficients, SSVS explores a set of 

independent variables by limiting the posterior distribution of the predictor coefficients of 

variables unrelated to the outcome to a small neighborhood around zero. Because of this 

prior specification, SSVS can be easily implemented via the Gibbs sampler. Then the 

variable inclusion in the final model depends on each variable’s posterior inclusion 

probability at the end of the stochastic process (Yi, George, & Allison, 2003). However, 

given that there are not restrictions in the variable inclusion, the final model may include 

interactions without the presence of their main effects, which produces interpretability 

problems. To avoid the interpretability problem Chipman, George and McCulloch (2001) 

developed a version of SSVS which uses priors for interactions that condition on the 

selection status of the main effects composing that interaction. Using such priors, it is 

possible to assign probability zero to the models with interactions but without main effects, 

and ensure interpretability.  
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Although different variable selection methods have been proposed for the Bayesian 

HGLM  (O'Hara & Sillanpaa, 2009), to our knowledge, no variable selection method for 

Bayesian HGLM applied to the APIM dyads has been proposed. Therefore, the present study 

seeks to fill this gap by offering a variable selection method for the APIM using dyads and 

implemented via a Bayesian HGLM framework. Our variable selection method, using the 

Chipman et. al(2003) version of SSVS that facilitates interpretable interactions, includes an 

interaction if both main effects are included in the Bayesian HGLM. Furthermore, this 

method will apply a restriction to the parametric space of the interaction defined by one’s 

research question of interest. This property will help the method to converge when a large 

number of covariates are included in the model (Leon-Novelo, Moreno, & Casella, 2012).   

 

METHODS 

In the APIM, independent variables are correlated (𝑋𝐴 denotes the set of independent 

variables from the actor, and 𝑋𝑃 the set of independent variables from the partner); and the 

error terms, 𝜀, are allowed to be correlated to control for the sharing variance in the outcomes 

(e.g., due to elements of the dyad being similar on the predictor variable).  
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Model Specification 

 

Probit mixed model 

 

Let 𝑌𝑖𝑗 denote a binary responses for the 𝑗𝑡ℎ member (𝑗 = 1,2) of the 𝑖𝑡ℎ  dyad (𝑖 =

1,2, . . 𝑛) with a probability of success equal to 𝑝𝑖𝑗 that is related to a set of independent 

variables or constructs through a probit model given by 

𝑃(𝑌𝑖𝑗 = 1|𝑈, 𝛽) = Φ(𝑋𝑖𝑗𝛽 + 𝑈𝑖),                    Equation 1 

where 𝛽 is a vector of coefficients for the fixed effects of dimension 𝑝; 𝑋𝑖𝑗 is a vector of 

independent variables (it may contain main effects and interaction effects of dimension 𝑝); 

𝑈𝑖 is an independent random effect for each dyad i=1,..,n; and Φ is the standard normal 

cumulative distribution function. 

Following Albert and Chib (1993), let 𝐿𝑖𝑗 = (𝐿11, . . , 𝐿𝑛1, 𝐿12, . . , 𝐿𝑛2)  denote the set 

of 2𝑛 latent variables whose distribution is given by 𝐿𝑖𝑗~𝑁(𝑋𝑖𝑗𝛽 + 𝑈𝑖, 1), and the set is 

related to the original binary response variable through the relationship: 

𝑌𝑖𝑗 = {
1 𝑖𝑓 𝐿𝑖𝑗 > 0

0 𝑖𝑓 𝐿𝑖𝑗 < 0
  

Therefore,  

𝑃(𝑌𝑖𝑗 = 1|𝑈𝑖, 𝛽) = 𝑃( 𝐿𝑖𝑗 > 0|𝑈𝑖, 𝛽) = Φ(𝑋𝑖𝑗𝛽 + 𝑈𝑖).  

The latent random variable 𝐿 can also be expressed as the response in a normal linear 

regression:  
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𝐿𝑖𝑗 = 𝑋𝑖𝑗𝛽 + 𝑈𝑖 + 𝜀𝑖𝑗, 

where 𝜀𝑖𝑗 are independent residuals ∀ 𝑖 = 1,2, . . 𝑛 and 𝑗 = 1,2; and 𝑈𝑖 is defined as above.  

Consider 𝐿𝑖𝑗 the response variables, and 𝑿𝑖𝑗 = (𝑋𝐴𝑖𝑗, 𝑋𝑃𝑖𝑗) a vector of independent 

effect that contains information of main effects and interactions. The sub-vector 𝑋𝐴𝑖𝑗 

corresponds to the set of independent effects recorded from the actor. Similarly, 𝑋𝑃𝑖𝑗 is the 

set of covariates recorded from the partner. The within-dyad correlation is accounted through 

the dyad-specific random effect (𝑈𝑖). Thus, the level 1 model of the APIM can be translated 

to a Bayesian HGLM as follows: 

𝐿𝑖𝑗 = 𝛽0𝑖 + 𝑋𝐴𝑖𝑗𝛽𝐴𝑖 + 𝑋𝑃𝑖𝑗𝛽𝑃𝑖 + 𝐶𝑖𝑗𝛽𝐶𝑖 + 𝑋𝐴𝑖𝑗𝐶𝑖𝑗𝛽𝐴𝐶𝑖 + 𝑋𝑃𝑖𝑗𝐶𝑖𝑗𝛽𝑃𝐶𝑖 + 𝜀𝑖𝑗,         

Equation 2 

Where 𝑖 = 1,2, . . 𝑛;   𝑗 = 1,2;  𝐶 is an indicator variable for a particular member of the dyad. 

Specifically here, we use 𝐶 = 1 when 𝑗 = 2; and thus allow the model to incorporate a 

different effect of each actor or partner covariate on the outcome for each member of the 

dyad.  For instance, we will be discussing child-parent dyads, and 𝑗 = 2 denotes the 

parent. 𝐶 = 1 allows for a covariate to have a different effect on the parent’s outcome, 

whether that covariate is an actor covariate or partner covariate.  Once we incorporate the 

distinguishable indicator, we can rearrange terms in our APIM BHGLM such that the model 

can be expressed as follows: 

𝐿𝑖𝑗 = 𝛽0𝑖 + 𝐶𝑖𝑗𝛽𝐶 + 𝑋𝐴𝑖𝑗(𝛽𝐴 + 𝐶𝑖𝑗𝛽𝐴𝐶) + 𝑋𝑃𝑖𝑗(𝛽𝑃 + 𝐶𝑖𝑗𝛽𝑃𝐶) + 𝜀𝑖𝑗 ,           

Equation 3 
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where 𝜀𝑖𝑗~𝑁(0,1). 

Because a dyad can be considered as a cluster of only two elements, there is not 

enough information to estimate both the random slope and the random intercept. Therefore, 

we restricted our level 2 models to include only the random intercept. The random intercept 

can be expressed as a sum of an overall mean �̃�000 and a normal random effect 𝑢0𝑖, if the 

dyad-level variables and the individual-level variables are either effect-coded or grand mean-

centered (Hox & Roberts, 2011). Here we have T independent variables or constructs at the 

dyad level. Let 𝑫 = (𝐷1, . . , 𝐷𝑇) be a dyad-level predictor (independent variable): 

𝛽0𝑖 = 𝜂00 + 𝐷𝑖𝜂0𝐷+𝑢𝑖 

𝛽𝐶𝑖 = 𝜂0𝐶 + 𝐷𝑖𝜂𝐶𝐷 

𝛽𝐴𝑖 = 𝜂𝐴 + 𝐷𝑖𝜂𝐴𝐷 

𝛽𝑃𝑖 = 𝜂𝑃 + 𝐷𝑖𝜂𝑃𝐷 

𝛽𝐴𝐶𝑖 = 𝜂𝐴𝐶 + 𝐷𝑖𝜂𝐴𝐶𝐷 

𝛽𝑃𝐶𝑖 = 𝜂𝑃𝐶 + 𝐷𝑖𝜂𝑃𝐶𝐷 

Under this new re-parametrization, Equation 3 can be re-expressed as: 

𝐿𝑖1 = 𝜂00+𝑢𝑖 + 𝐷𝑖𝜂0𝐷 + 𝑋𝐴𝑖1(𝜂𝐴 + 𝐷𝑖𝜂𝐴𝐷) + 𝑋𝑃𝑖1(𝜂𝑃 + 𝐷𝑖𝜂𝑃𝐷) + 𝜀𝑖1 

𝐿𝑖2 = 𝜂00+𝜂0𝐶 + 𝑢𝑖 + 𝐷𝑖(𝜂0𝐷 + 𝜂𝐶𝐷) + 𝑋𝐴𝑖2((𝜂𝐴 + 𝜂𝐴𝐶) + 𝐷𝑖(𝜂𝐴𝐷 + 𝜂𝐴𝐶𝐷)) + 𝑋𝑃𝑖2((𝜂𝑃 +

𝜂𝑃𝐶) + 𝐷𝑖(𝜂𝑃𝐷 + 𝜂𝑃𝐶𝐷)) + 𝜀𝑖2,                                                                                    𝑖 = 1,2, . . , 𝑛  
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Equation 4 

where 𝑢𝑖 , the level 2 random effects, also follows a normal distribution with mean zero and 

variance 𝜎𝑢
2. Here, 𝜂𝐴 estimates the average effect of the actor independent variables (𝑋𝐴) on 

the response 𝑌, and 𝜂𝐴𝐷 estimates the effect of the interaction of the dyad-level predictor and 

the independent actor variables 𝐷𝑋𝐴 on the response 𝑌. For ease of notation, when we refer 

to the set of all ’𝑠 as . 

Let 𝜸 be a vector of indicator variables that determine the subset of 𝜼 that are more 

important independent effects to the model, and let 𝑀𝛾 be the Bayesian HGLM based on the 

𝛾𝑡ℎ subset of independent variables. The overall selection was based on the posterior 

distribution of  𝑃(𝑀𝛾|𝑌), taking into account the fact that if an interaction term is considered, 

each individual covariate/construct should be included in the model for interpretability. This 

process was done using a specific modification of SSVS (Chipman, George, & MCCulloch, 

2001).  In this study, we focused on performing variable selection on the independent 

variables or constructs and their interactions with the dyad-level covariate or construct, and 

the method can be easily extended to select dyad-level covariates or constructs.  

Given the complexity of the APIM model parameters, for convenience, we use two 

vectors of coefficients to define the APIM model: One vector represents the coefficients of 

the main effects and interactions with the dyad-level covariate associated with the actor 

denoted by 𝜼𝑨 = (𝜂𝐴, 𝜂𝐴𝐶 , 𝜂𝐴𝐷 , 𝜂𝐴𝐶𝐷); and the other vector represents the coefficient of the 

main effects and interaction with the dyad-level covariate associated with the partner denoted 

by 𝜼𝑷 = (𝜂𝑃, 𝜂𝑃𝐶 , 𝜂𝑃𝐷 , 𝜂𝑃𝐶𝐷) . Each of these vectors, (𝜼𝑨, 𝜼𝑷 ), has a dimension 𝑑1 whose 
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value is 𝑑1 = 2(𝑍 + (𝑇 ∗ 𝑍)), where 2𝑍 is the number of independent variables or constructs 

from the partner and the actor, and 𝑇 is the number of independent dyad-level variables or 

constructs. In general, the total number of interactions (2 ∗ 𝑇 ∗ 𝑍) exceeds the number of 

interactions in which a researcher will be interested. Therefore, we use the method of 

controlled-dimension stochastic search proposed by Leon-Novelo et al  (Leon-Novelo, 

Moreno, & Casella, 2012), to reduce the parameter space of the interactions to make our 

algorithm more efficient. After the number of interactions of interest is set to a number (𝑞), 

the dimension of the latent indicator vector 𝜸 will be limited to 𝑑 = 4 ∗ 𝑍 + 𝑞. 

In this study, we applied the SSVS method for the Bayesian HGLM for the APIM. 

This method identifies the subset of independent variables that are most important to the 

model invoking a Gibbs sampler. The SSVS will visit the models with highest posterior 

probability. In the case of binary outcomes, the posterior distribution of this HGLM is 

described as 

𝑃(𝑀𝛾|𝑌, 𝜂) ∝ 𝑙(𝜂, 𝑦)𝜋(𝜂|𝛾)𝜋(𝛾), 

 where 𝑙(𝜂, 𝑦) is the likelihood function of the probit model. Specifically,   

𝑙(𝐿𝑖𝑗 ,, 𝜎𝑈
2)  ∝ ∏ ∏ 𝑓(

𝑛

𝑖=1

2

𝑗=1

𝐿𝑖𝑗|, 𝜎𝑦
2) ∏ 𝐼(𝐿𝑖𝑗 < 0)

{𝑖,𝑗:𝑌𝑖𝑗=1}

∏ 𝐼(𝐿𝑖𝑗 > 0),

{𝑖,𝑗:𝑌𝑖𝑗=0}

 

Equation 5 
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where 𝑓(𝐿𝑖𝑗|, 𝜎𝑦
2) is the kernel of a normal pdf with variance 1 and mean given by Equation 

4, and 𝜋(𝜂|𝛾) and 𝜋(𝛾) are the coefficients of the HGLM model and inclusion indicator 

priors. 

Prior distributions 

To complete the specification of the Bayesian HGLM, we first defined the priors. For 

ease of notation, we denoted all combination of indexes by 𝜉; for example, when 𝜉= A1, 𝜉 is 

the index that corresponds to the coefficient of the first actor predictor.  For the coefficients 

of the regression (𝜂𝜉), we used a continuous spike-lab normal prior distribution, which 

models the inclusion or exclusion of covariates in the model:  

𝜋(𝜂𝜉|𝛾𝜉) = (1 − 𝛾𝜉)𝑁(0,  𝜏𝜉
2) + 𝛾𝜉𝑁(0,  𝑐𝜉

2𝜏𝜉
2).                   Equation 6 

Here, 𝛾𝜉 is a Bernoulli indicator with probability 𝜋𝜉 . The parameters 𝑐𝜉
2 and  𝜏𝜉

2 

control the variable selection by concentrating the prior probability on possible values of the 

coefficient around zero (spike) when the corresponding independent variable is not selected; 

and by dispersing the variance to distribute the probability over a wider range of possible 

values (slab) for the coefficient when it is important to the model (George & McCulloch, 

1993). Determining how to choose 𝑐𝜉
2 and  𝜏𝜉

2  is crucial in the SSVS algorithm, and effective 

strategies can be found in Swartz, Mueller and Amos (2006). Specifically, in our case we 

choose  𝜏𝜉
2 = .001 and  𝑐𝜉

2 = 36/0.001 to force the range of the 𝜂𝜉  to be between -6 and 6 

with a probability of 99% when the covariate is associated and shrunk to zero those 

coefficients of covariates non-associated.  
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The set of latent variables can then be divided into two groups: one for independent 

variables and one for interactions. For interpretability, we identify variable indicators 

separately for main effects and interactions. Our indicators for main effects are denoted as 

𝛾𝑤𝑟 and defined as  

𝛾𝑤𝑟 = {
1 𝑖𝑓 𝜂𝑤𝑟  ≠ 0 i. e. , independent variable is selected              

0 𝑖𝑓 𝜂𝑤𝑟 = 0 i. e. , the independent variable is not selected,
 

where  𝑟 = 1, . . , 𝑍 with 𝑤 ∈ {𝐴, 𝐴𝐶, 𝑃, 𝑃𝐶}, and each 𝛾𝑤𝑟 was independent and followed a 

Bernoulli distribution with probability of success 0 < 𝑝𝑤𝑟 ≤ 1. We assumed 𝑝𝑤𝑟 was 

equal across all 𝑤𝑟 (𝑝𝑤𝑟 = 𝜋). The other group of indicators for interaction effects are 

denoted as 𝛾𝑤𝑟′, where 𝑤 ∈ {𝐴𝐷, 𝐴𝐶𝐷, 𝑃𝐷, 𝑃𝐶𝐷} 𝑎𝑛𝑑 𝑟′ = 1. . 𝑍 ∗ 𝑇  and they are defined as 

𝛾𝑤𝑟′= 

{
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜋), if 𝛾

𝑤element1𝑟′ =  𝛾
𝑤element2𝑟′ = 1           𝑖. 𝑒, both main effects in the interaction are selected               

0, if 𝛾
𝑤element1𝑟′ = 0   𝑜𝑟   𝛾

𝑤element2𝑟′ = 0 𝑖. 𝑒, at least one main effect in the interaction is not selected
 

 

Furthermore, the random intercepts 𝑈 = (𝑢01, . . , 𝑢0𝑛) are independent variables with 

a normal prior distribution with mean zero and variance 𝜎𝑈
2      

   
𝑖𝑖𝑑                                                                             

𝑢0𝑖 ~ 𝑁(0, 𝜎𝑈
2) with 𝑖 = 1, . . , 𝑛 and 𝜎𝑈

2~𝐼𝐺(𝑎, 𝑏).
 

As mentioned previously, we restricted our space of possible models to include interactions 

when their main effects are present, yet they do not have more than 3 interaction terms.          
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Gibbs Sampler implementing SSVS for APIM 

It is known that the SSVS is a Gibbs sampler whose stationary distribution is the 

posterior distribution of the models; and therefore the SSVS tends to visit the models with 

the highest posterior probability. To implement a SSVS, we simulate from the following list 

of full conditionals:  

Given initial values for 𝛾(0), 𝛽(0), 𝐿𝑖1
(0), 𝐿𝑖2

(0), 𝑈(0), 𝜎𝑢
2(0)

, 

1- Generate 𝛾(𝑡+1) from the full conditional  

𝑃(𝛾|𝐿, 𝑈) ∝ (
1

|Γ||𝑋𝑡𝑋 + Γ−1|
)

1
2 exp {−

1

2
[(𝐿 − 𝑈)𝑡(𝐼 − 𝑋𝑉𝑡𝑋𝑡)(𝐿 − 𝑈)]} ∏ 𝜋

𝑗

𝛾𝑗(𝜋𝑗)1−𝛾𝑗

𝑃

𝑗=1

  

 

2- Simulate 𝜂𝛾
(𝑡+1)

 from the full conditional 𝑓(𝜂|𝐿𝑖1
(𝑡), 𝐿𝑖2

(𝑡), 𝑈(𝑡), 𝛾(𝑡+1)) 

3- Simulate 𝜎𝑢
2(𝑡+1)

 from the full conditional  

𝑓(𝜎𝑢
2|𝑈)= 𝐼𝑛𝑣 𝐺𝑎𝑚𝑚𝑎(𝑎 +

𝑛

2
, 𝑏 +

∑ 𝑈𝑖
𝑛
𝑖=1

2
) 

4- Simulate 𝐿𝑖𝑗
(𝑡+1) from the full conditional  

𝐿𝑖𝑗|𝛽, 𝑈, 𝑌𝑖𝑗 = 1~𝑁(𝑋𝑖𝑗𝜂 + 𝑈𝑖, 1) left truncated at zero 

𝐿𝑖𝑗|𝛽, 𝑈, 𝑌𝑖𝑗 = 0~𝑁(𝑋𝑖𝑗𝜂 + 𝑈𝑖, 1) right truncated at zero 

For 𝑗 = 1, the mean is given by 

𝜂00+𝑢𝑖𝑗 + 𝐷𝑖𝜂0𝐷 + 𝑋𝐴𝑖𝑗(𝜂𝐴 + 𝐷𝑖𝜂𝐴𝐷) + 𝑋𝑃𝑖𝑗(𝜂𝑃 + 𝐷𝑖𝜂𝑃𝐷) 

Equation 7 
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and for 𝑗 = 2 , the mean is given by 

 
𝜂00+𝜂0𝐶 + 𝑢𝑖𝑗 + 𝐷𝑖(𝜂0𝐷 + 𝜂𝐶𝐷) + 𝑋𝐴𝑖𝑗((𝜂𝐴 + 𝜂𝐴𝐶) + 𝐷𝑖(𝜂𝐴𝐷 + 𝜂𝐴𝐶𝐷)) + 

 

𝑋𝑃𝑖𝑗((𝜂𝑃 + 𝜂𝑃𝐶) + 𝐷𝑖(𝜂𝑃𝐷 + 𝜂𝑃𝐶𝐷)) 

Equation 8 

 

5- Simulate 𝑈(𝑡+1) from the full conditional 𝑓(𝑈(𝑡)|𝐿𝑖𝑗
(𝑡+1), 𝜂𝛾

(𝑡+1)
, 𝜎𝑢

2(𝑡+1)
) for 𝑗 = 1,2 

𝑓(𝑈|𝐿𝑖𝑗 , 𝜂𝛾 , 𝜎𝑢
2) = 𝑁 ((2𝑛 +

1

𝜎𝑢
2

)
−1

∗ (
𝑤𝑖1 + 𝑤𝑖2

𝜎𝜀
2

) , (2𝑛 +
1

𝜎𝑢
2

)
−1

)  

where  

𝑤𝑖1 = 𝐿𝑖1 − (𝜂00 + 𝐷𝑖𝜂0𝐷 + 𝑋𝐴𝑖1(𝜂𝐴 + 𝐷𝑖𝜂𝐴𝐷) + 𝑋𝑃𝑖1(𝜂𝑃 + 𝐷𝑖𝜂𝑃𝐷) 

and 

𝑤𝑖2 = 𝐿𝑖2 − (𝜂00+𝜂0𝐶 + 𝑢𝑖𝑗 + 𝐷𝑖(𝜂0𝐷 + 𝜂𝐶𝐷) + 𝑋𝐴𝑖2((𝜂𝐴 + 𝜂𝐴𝐶) + 𝐷𝑖(𝜂𝐴𝐷 + 𝜂𝐴𝐶𝐷)) + 

 

                𝑋𝑃𝑖2((𝜂𝑃 + 𝜂𝑃𝐶) + 𝐷𝑖(𝜂𝑃𝐷 + 𝜂𝑃𝐶𝐷))). 

 

We repeated the algorithm until it converged and we burn-in the first 500 iterations to 

facilitate convergence. Convergence was checked using trace plots, coefficient sample 

histograms, and different starting values for the covariate coefficients. These values were: 

using the lmer function implemented in R (R Core Team, 2017), all zeros and using the same 

values used to generate the data set. The starting point for the gamma were always one for all 

the covariate coefficients considered in the model. Lastly, we selected all covariates where 

𝑃(𝛾𝜉 = 1|𝑑𝑎𝑡𝑎) ≥ 50%; this method is known as the median model decision rule, which 

was first described by Barbieri et al. (2002). 
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Simulations 

To test the performance of the algorithm developed above, we conducted a simulation 

study. We used R to implement the proposed algorithm and to simulate the data. Our 

program that was built to test our proposed model used 4 main covariates and 2 dyad-level 

covariates. These covariates produce a model with 52 terms. The terms were: 4 main effects 

from the partner and 4 main effects from the actor in 𝐿1 and 𝐿2. In addition to 16 terms that 

correspond to the interactions between these 16 main effects and the 2 dyad-level covariates. 

Therefore, the program was tested using simulated data that included 50 terms and 2 

intercepts. The simulated data was divided in five scenarios, each of these scenarios was 

chosen to represent real data. The data were simulated as follows: There are 4 covariates 

from the actor and 4 covariates from the partner; each of them was simulated from a 

univariate standard normal distribution. Two dyad-level covariates were simulated from a 

binomial distribution, with success rate of 0.54 and 0.5, respectively. These values were 

chosen from commonly observed percentages of dyad concordance for certain 

characteristics, such as sex. We set the coefficients 𝜂 ∈ [0,2] and generated a random error 

from a normal distribution centered at 0 and variance 0.2. We explored five simulation 

scenarios where the data-generating model (1) was under a null model; (2) included only one 

main effect, two intercepts and one dyad-level covariate coefficient different than zero; (3) 

included 2 main effects 1 of the actor and 1 of the partner, two intercepts and two dyad-level 

effect and one interaction with the dyad-level covariate; (4) included 2 main effects ; and (5) 

included 2 interactions with no main effects, two intercepts and one dyad-level covariate 

were included. 
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For each scenario, we simulated 200 simulated datasets (simulation replicates), where 

each dataset consisted of 𝑛 = 1,000 dyads.  To compute the posterior distribution of our 

model space, we ran the Markov Chain Monte Carlo simulation for 2,000 iterations, with a 

burn-in of 500 iterations.  For each simulated replicate, we calculate the median model given 

by: the number of times a variable was selected in any model divided by total number of 

models visited. Furthermore, at the end of the 200 simulation replicates we calculate the 

percent correct. The percent correct for a given coefficient was defined as the number of 

correctly selected or correctly not selected divided by the number of models visited. 

Discussion 

Table 2.1 shows the results for each of the simulated scenarios. The table depicts 10 

coefficients that were main effects, 2 intercepts, and 4 interactions that were non-zero in the 

simulations. These coefficients were randomly selected from all non-zero coefficients from 

the simulation, and the results were similar when different coefficients were selected (data 

not shown).  

Results for Scenario 1 (null model) showed that the median model was always the 

null model, since the probability of being correctly selected in the model was 100%. For 

Scenario 2, the most frequently selected model (across the 200 simulation replicates) was 

very close to the simulated models, except our method seemed to have trouble identifying 

one of the interactions (𝑋𝑎12𝐷1) present in the simulation models. Intercepts and covariates 

with a non-zero coefficient (𝐵0, 𝐵1, 𝐷1, 𝑋𝑎11𝐷1) and those with zero coefficients had a 100% 

probability to being correctly selected equal, except for the interaction (𝑋𝑎12𝐷1) which was 
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simulated with a non-zero coefficient, but it only had a 0.19 probability to be correctly 

selected. This interaction is part of 𝐿2 (Equation 4) and represents the relationship between 

an actor covariate and a dyad-level covariate. For Scenario 3 we observe that the most 

included terms in the model were very close to the simulated models. The simulated model 

included only one main effect in 𝐿1 and 𝐿2 in addition to the dyad level variables and the 

intercepts. Results show that the probability to being correctly selected for the covariates 

with a non-zero coefficient was 1. However, for those covariates with a zero coefficient, the 

probability to be correctly not included was 0.89 in some cases and 1 in others. Similar 

results were observed for Scenario 4. Scenario 4 results show that the probability to be 

correctly selected or not selected for each term in the model was at least 0.89.  In Scenario 5, 

the data set included the intercepts and two interactions (𝑋𝑎11𝐷1, 𝑋𝑎12𝐷1) without main 

effects. The results show the probability of correctly not being included of zero and 0.32 for 

the main effects related to the interactions (𝑋𝑎11,𝑋𝑎12). Overall, these results indicate that our 

variable selection procedure performs well. 

Conclusions: 

In this study, we implement the first variable selection procedure specifically to 

analyze dyadic data based on SSVS technology.  This is a model selection procedure in the 

space of a Bayesian HGLM for dyadic data from an APIM model. It allows the inclusion of 

interaction effects only when the main effects are included in the model.  The proposed 

variable selection procedure uses the spike and slab prior that allows easier computation than 

for example using the g-prior that requires the inversion of (𝑋′𝑋). The implemented program 
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used to apply our variable selection procedure was restricted to include a maximum of 4 

interactions (𝑞 = 4) to ensure the identifiability of the model with n=1,000 dyads but more 

interactions can be considered with larger sample sizes. When applying our variable selection 

procedure, the simulation results show that the median model included and excluded 

covariates with coefficients non zero and zero, respectively, of the generating model, with 

high probability. The simulation results also show that the median model will include an 

interaction effect with low probability if the generated data only included one main effect of 

the two involved in the interaction effect. These results were expected since our model 

selection algorithm is able to include an interaction only when the two main effects are 

included.  

The proposed variable selection procedure is able to detect if a covariate has an 

impact on the response but requires more information (i.e., larger sample size) to detect that 

the effect of this covariate is different in partner and actor. Furthermore, our variable 

selection procedure may have a problem finding the best model if a set of highly correlated 

covariates are present in the model since it will violate an assumption of the median model. 

Finally, our variable selection procedure was tested only with continuous covariates in the 

model; however, there is no restriction against the inclusion of discrete covariates in the 

model where our variable selection will be applied. Nevertheless, future work is needed in 

this direction. 
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Table 2.1. Average percentage of term inclusion in each simulated scenario. 
 

   

Scenario 
1 

 Scenario 
2 

 Scenario 
3 

 Scenario 
4 

 Scenario 
5 

 

 Term 

 

Coefficient %correct  Coefficient %correct  Coefficient %correct  Coefficient %correct  Coefficient %correct  

 

 𝐵0 0 100 -2 100 -2 100 -2 100 -2 100 

 𝐵1 0 100 2 100 2 100 2 100 6 100 

Dyad  

𝐷1 0 100 4 100 2 100 2 100 0 0 

𝐷2  0 100 0 100 2 100 2 100 0 100 

L1 

Main 
effects 

Actor 

𝑋𝑎11 0 100 0 100 1.2 100 0 89 0 0 

𝑋𝑎21 0 100 0 100 0 100 1.2 100 0 99.5 

Partner 

𝑋𝑝11 0 100 0 100 0 89 0 89.5 0 99.5 

𝑋𝑝21 0 100 0 100 0 100 0 89.5 0 99.5 

Interactions 

Dyad* Actor 𝑋𝑎11𝐷1  0 100 1.7 100 0 100 0 95 1.7 82.5 

Dyad * partner 𝑋𝑝21𝐷1 0 100 0 100 0 89 0 94 0 100 

L2 

Main 
effects 

Actor  

𝑋𝑎12 0 100 0 100 0.8 100 0 89 0 31.5 

𝑋𝑎22 0 100 0 100 0 100 0.8 99 0 100 

Partner  

𝑋𝑝12 0 100 0 100 0 89 0 89.5 0 99 

𝑋𝑝22 0 100 0 100 0 89 0 89.5 0 99.5 

Dyad * Actor 𝑋𝑎12𝐷1 0 100 0.9 19 1.7 100 0 93.5 0.9 2 

Interactions 

Dyad * Partner 𝑋𝑝221𝐷1 0 100 0 0 0 89 0 94 0 100 
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CHAPTER III 

 

Bayesian Variable Selection for Dyadic Data: An Application to a Parent-Teenager 

Computer-based Sexual Health Education Program for Middle School Youth 

Journal of Statistical Computation and Simulation 

 

 

ABSTRACT 

The analysis of dyadic data with a small data set can be challenging due to the large 

number of terms in the model. Based on a Bayesian hierarchical generalized linear model we 

propose a Bayesian variable selection method to analyze dyadic data when there is a small 

sample. The proposed method takes into account the interdependence between the actor and 

partner in a restricted parametric space. The proposed statistical technique was evaluated using 4 

different scenarios and applied to a real data set. 

INTRODUCTION 

In behavioral science, many outcomes of interest can be influenced by interpersonal 

relationships, and observed behaviors are often the result of interactions with more than one 

person. For example, an adolescent’s decision to engage in early sexual initiation can be 

influenced by interactions with of his/her friends, classmates, siblings, or parents, among others. 

Therefore, the unit of analysis in behavioral science research is often not an individual, but a 

group of individuals. Specifically, when only a pair of individuals is involved in an interaction, 

the pair is called a dyad, which comprises an actor and a partner (Garcia, Kenny, & Ledermana, 

2014). The actor is the person who rates or responds to a stimulus; the partner is a person whose 

characteristics influence the actor’s responses.  
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There are different dyad-based models (Kenny, Kashy, & Cook, 2006), depending on the 

research question. One of these models is the actor partner interdependence model (APIM), 

which is considered the standard model, and it is used when every person in an interpersonal 

relationship belongs to one and only one dyad. The APIM allows estimation of the effects from 

both elements of the dyad, the actor and the partner effect, on the outcome variable. In a 

statistical model, both actor and partner effects are considered independent variables and the 

outcome is a function of both. Furthermore, the outcome of the APIM can be considered a 

function of two groups of independent variables: one group that comes from the actor (the same 

person who generates the outcome), the other group consists of the same independent variables 

but measured from the partner (the person who influences the actor). 

There are different statistical methods available to analyze data from an APIM, i.e., 

bivariate logistic regression (Busse, Fishbein, Bleakley, & Hennessy, 2010), percent change 

(Aronowitz, Ogunlade, Nwoso, & Gona, 2015), hierarchical regression model based on possible 

cluster effects at the classroom level (Looze, Constantine, Jerman, Vermeulen-Smit, & ter Bogt, 

2015) and Bayesian hierarchical model (Ahn, Wang, & Yuan, 2013). In most of the cases, these 

statistical methods require a sample size of more than 100 dyads (Tambling, Johnson, & 

Johnson, 2011). Consequently, when the sample size is less than 100 dyads, it may be difficult to 

use any of the traditional methods. 

Within the field of behavioral science, dyadic data are generated, for example, when a 

study includes parents and their children (i.e., parent-child dyad). This population is a focus of 

public health research because young people (13 to 24 years of age) face health problems due to 

their risky sexual behaviors. In 2016, young people accounted for 21% of the new HIV cases 

(Prevention, Morbidity and Mortality Weekly report (MMWR), 2018). Specifically, 488,700 
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cases of chlamydia, gonorrhea, and syphilis (Kann, et al., 2018) were reported among those aged 

13 and 24 years; and 1,688 cases of HIV were reported between among those 13 and 19 

(Prevention, HIV surveillance: Adolescents and young adults. Atlanta, GA: National Center for 

HIV/AIDS, Viral Hepatitis, STD & TB Prevention, Centers for Disease Control and Prevention, 

2016). Furthermore, teenagers between 15 and 19 years old gave birth to 209, 890 babies. 

The IYG-F program has as a main objective to prevent teen pregnancy and STI/HIV 

infections by delaying sexual activity in middle school students through the use of video game 

components as learning tools. Video game components have already been proven to be effective 

in delaying sexual activity (Shegog, et al., 2014). However, in other studies, it has been reported 

that communication between friends (Busse, Fishbein, Bleakley, & Hennessy, 2010) or parents 

and teenagers may trigger the sexual activity (Looze, Constantine, Jerman, Vermeulen-Smit, & 

ter Bogt, 2015). Other studies have reported that communication between mothers and daughters 

may play an important role in HIV-prevention behaviors (Aronowitz, Ogunlade, Nwoso, & 

Gona, 2015). 

In this article we evaluated the small sample performance of a novel variable selection 

procedure using simulated data, and we apply the method to IYG-F baseline data.  

METHODS 

In the APIM, the set of independent variables from the actor (𝑋𝐴) and the set of 

independent variables from the partner (𝑋𝑃) are correlated. Furthermore, the error terms (𝜀) are 

allowed to be correlated to control for the sharing variance in the outcomes.  Therefore, to 

analyze dyads under the APIM framework with a Hierarchical Bayesian Linear model (HGLM), 

we use a probit mixed model expressed as: 

𝐿𝑖1 = 𝜂00+𝑢𝑖 + 𝐷𝑖𝜂0𝐷 + 𝑋𝐴𝑖1(𝜂𝐴 + 𝐷𝑖𝜂𝐴𝐷) + 𝑋𝑃𝑖1(𝜂𝑃 + 𝐷𝑖𝜂𝑃𝐷) + 𝜀𝑖1 
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𝐿𝑖2 = 𝜂00+𝜂0𝐶 + 𝑢𝑖 + 𝐷𝑖(𝜂0𝐷 + 𝜂𝐶𝐷) + 𝑋𝐴𝑖2((𝜂𝐴 + 𝜂𝐴𝐶) + 𝐷𝑖(𝜂𝐴𝐷 + 𝜂𝐴𝐶𝐷)) + 𝑋𝑃𝑖2((𝜂𝑃 +

𝜂𝑃𝐶) + 𝐷𝑖(𝜂𝑃𝐷 + 𝜂𝑃𝐶𝐷)) + 𝜀𝑖2,                                                                                    𝑖 = 1,2, . . , 𝑛  

Equation 1 

where 𝑢𝑖 , are the level 2 random effects following a normal distribution with mean zero and 

variance 𝜎𝑢
2; n is the number of dyads, 𝜂 is a vector of coefficients of dimension 𝑝; 𝑋𝑧𝑖𝑗 is a 

vector of independent variables (it may contain main effects and interaction effects of dimension 

𝑝 and 𝑗 = 1,2); Here, 𝜂𝐴 estimates the average effect of the actor independent variables (𝑋𝐴) on 

the response 𝑌, and 𝜂𝐴𝐷 estimates the effect of the interaction of the dyad-level predictor and the 

independent actor variables 𝑋𝐴𝐷 on the response 𝑌.  

Our selection method consist in fitting the HGLM using a Markov Chain Monte Carlo 

(MCMC) algorithm (Described in Chapter 2).  We iterated the algorithm until it converged and 

we burn-in the first 𝑘 iterations to facilitate convergence. Convergence was checked using trace 

plots, coefficient sample histograms, and different starting values for the covariate coefficients. 

Initial values were taken from the lmer function implemented in R, or setting all the parameters 

to zero when lmer could not be used due a small sample size. The implemented program used to 

apply our variable selection procedure was restricted to include a maximum of 2 interactions 

(𝑞 = 2) to ensure the identifiability of the model. 

Simulations 

To test the performance of the algorithm in a small data set, we conducted a simulation 

study. We used R (R Core Team, 2017) to implement the proposed algorithm and to simulate the 

data. Our program, that was built to test our proposed model, used 4 main covariates and 2 dyad-

level covariates. These covariates produce a model with 52 terms. The terms were: 4 main 
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effects from the partner and 4 main effects from the actor in 𝐿1 and 𝐿2. In addition to 16 terms 

that correspond to the interactions between these 16 main effects and the 2 dyad-level covariates. 

Therefore, the program was tested using simulated data that included 50 terms and 2 intercepts.  

We generated outcomes under five scenarios, each of which was chosen to represent real 

data. The data were simulated as follows: There are 4 covariates from the actor and 4 covariates 

from the partner; each of them was simulated from a univariate standard normal distribution. 

Two dyad-level covariates were simulated from a binomial distribution, with success rate of 0.54 

and 0.5, respectively. These values were chosen from commonly observed percentages of dyad 

concordance for certain characteristics, such as sex. We set the coefficients 𝜂 ∈ [0,2] and 

generated a random error from a normal distribution centered at 0 and variance 0.2. We explored 

five simulation scenarios where the data-generating model (1) was under a null model; (2) 

included only one main effect, two intercepts and one dyad-level covariate coefficient different 

than zero; (3) included 2 main effects 1 of the actor and 1 of the partner, two intercepts and two 

dyad-level effect and one interaction with the dyad-level covariate; (4) included 2 main effects ; 

and (5) included 2 interactions with no main effects, two intercepts and one dyad-level covariate 

were included. 

For each scenario, we simulated 200 simulated datasets (simulation replicates), where 

each dataset consisted of 𝑛 = 200 dyads.  To compute the posterior distribution of our model 

space, we ran the MCMC simulation for 2,000 iterations, with a burn-in of 500 iterations.  For 

each simulated replicate, we calculate the marginal probability of inclusion given by: the number 

of times a variable was selected in any model divided by total number of models visited. For 

selection, we used the median model decision rule: select the model consisting of all variables 

with marginal probability of inclusion greater than 50%.  Furthermore, at the end of the 200 



39 

 

simulation replicates we calculate the percent correct. That is given by (the number of correctly 

selected or correctly not selected) divided by the number of data sets. In addition, when applying 

our variable selection procedure, we included an adjustment that restricted models to include a 

maximum of 2 interactions (𝑞 = 2) to ensure the identifiability of the model with 𝑛 = 200 

dyads. Furthermore, for only one scenario, we simulate 200 simulation replicates with 61 dyads 

in each data set. For this scenario specifically, we use the value of the coefficients that were 

observed from fitting our algorithm to the real data. Therefore, the model for this scenario 

included 7 main effects and only one dyad-level covariate (59 terms in total). We generated 

2,500 and the first 500 iterations were burned-in, the media model decision rule was used and the 

percent correct was calculated.  

Application 

We applied the selection method to the baseline data set of the IYG-F program. The main 

objective was to find the best subset of covariates that best explained the relationship between 

early sexual initiation and communication in the parent-teenager dyad. 

The proposed algorithm was implemented using 6 constructs pre-determined to be individually 

statistically associated (Sedory, 2016) as predictors with the binary response (“Have you and 

your caregiver ever talked about when to start having sex?”). The 6 constructs were part of the 

initial set of 7 constructs: 1-Quality of the Communication About Sex, 2-Sex Communication 

Self-Efficacy Basic, 3-Sex Communication Self-Efficacy Relational, 4-Sex Communication 

Outcome Expectancy Cognitive, 5-Sex Communication Outcome Expectancy Emotional, 6-Sex 

Communication Outcome Expectancy Social and 7-Communication Ability. Each of these 

constructs was an aggregate score from different questions that are explained in more detail in 

Appendix 1. The final 6 constructs (2-7) were selected after identifying a high correlation 
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between construct 1 and construct 3 and consulting an expert regarding which is more of interest. 

When applying the algorithm, we use 100,000 posterior samples for inference after burning-in 

5,000. The initial values were all set to zero since lmer could not fit the full model due to our 

small sample. Our analysis investigated 6 main covariates and 1 dyad-level covariate. These 

covariates produced a model with 51 terms. The terms were: 6 main effects from the partner and 

6 main effects from the actor (𝐿1 and 𝐿2) in addition to 24 terms that correspond to the 

interactions between these 24 main effects and 1 dyad-level covariate. Therefore, the algorithm 

used 49 terms and 2 intercepts. As in the simulation study, we selected the median model as our 

final model.  

Results 

Simulations 

Table 3.1 displays the results for each of 5 the simulation scenarios. The results shown in 

Table 3.1 belong to the coefficients of 10 main effects, 2 intercepts, and 4 interactions that were 

non-zero in at least one of the simulations. These coefficients were randomly selected to be set 

different from zero. The results were similar when different coefficients were selected (not 

shown). Results for Scenario 1 (null model) showed that the probability of selecting the correct 

model was 100%, based on the median model. For Scenario 2, the most frequently selected 

model, across the 200 simulation replicates, was very close to the simulated models. Results 

showed that the probability to be correctly selected for the term 𝑋𝑎22 was lower (78.9%) 

compared to the probability to be correctly selected for the main effect 𝑋𝑎21(100%). For 

Scenario 3 results showed a low probability for the term 𝑋𝑎12 to be correctly selected (49.75%) 

compared with the interaction term 𝑋𝑎12𝐷1 (65.83%) and the main effect 𝑋𝑎11 (100%).  When 

generating the data for Scenario 4, the main effect 𝑋𝑎11 had a coefficient equal to 0, but it only 
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had a 2.56% probability to be correctly non-selected. Similar results were observed for the 

interaction term 𝑋𝑎12𝐷1, that was given a non-zero coefficient to generate the data, but it only 

had a 6.41% probability to be correctly selected. This interaction is part of 𝐿2 (Equation 1) and 

represents the relationship between an actor covariate and a dyad-level covariate. However, the 

interaction term 𝑋𝑎11𝐷1 has 88.46% probability to be correctly selected. Overall, these results 

indicate that our variable selection procedure performs well in a small data set.  

Table 3.2 displays the results of 1 simulation scenario. The results shown in Table 3.2 

includes the results of 5 of the coefficients of the main effects and the coefficient of one 

interaction that were simulated with value different than zero from a total of 59. Results showed 

that based on the median model only 2 main effects were included in the model (𝑋𝑎11, 𝑋𝑎31). 

 

Real data 

Table 3.3 and Table 3.4 display the results from analyzing the baseline data from the 

IYG-F study. Using the median model criterion, results show only the main effect of the teenager 

construct Sex Communication Self-Efficacy Relational -teenager (𝑋𝑎11) was included in the 

model (inclusion probability 89.71%). None of the interactions with the dyad-level covariate 

were included in the model because their inclusion probability was less than 50%. Table 3.3 

displays the posterior mean conditional on inclusion (𝛾=1) and the central 95% credible interval 

for the construct Sex Communication Self-Efficacy Relational-teenager (conditional posterior 

mean: 0.31; central 95% credible interval (CI): (0.01, 0.52). Furthermore, Table 3.3 also shows 

the conditional posterior mean and the central 95%CI for 2 interaction terms with high posterior 

inclusion probability (greater than 25%) that did not meet the 50% (interaction: Gender & Sex 
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Communication Self-Efficacy Relational -teenager and the interaction: Gender &  Sex 

Communication Self-Efficacy Relational –parent).  

The results in Table 3.3 can be interpreted as: the construct of the teenager Sex 

Communication Self-Efficacy Relational explains the outcome Sexual initiation, and the effects 

are equal across dyad members (teenager-parent). Furthermore, the positive sign of the 

coefficient of Sex Communication Self-Efficacy Relational-teenager (conditional posterior mean: 

0.31; Central 95% CI: (0.01, 0.52)) means that a unit increase in its score will increase the 

probability to have a positive response to Have you and your caregiver ever talked about when to 

start having sex?. 

Discussion 

Scenarios 3 and 4 (Table 3.1) showed that the median model will include an interaction 

effect with low probability if the generated data only included one main effect of the two 

involved in the interaction effect. And that probability will be even lower if the term is the one 

that represents the difference between the teenager acting as an actor and the parent acting as an 

actor (𝐿2 𝑡𝑒𝑟𝑚). Similar results in Table 3.2 were observed for the 𝐿2 𝑡𝑒𝑟𝑚s with coefficient 

different than zero. These results were expected since our sample size is small. In addition, we 

implemented a simulation study generating responses from models using the coefficient values 

estimated from the IYG-F data, simulating  𝑛 = 61 dyads and 200 replicates. Our findings were 

similar as the results presented from the simulation study with 200 dyads: the terms included 

were those in the response generating model with a non-zero coefficient (details not shown).  

The application results showed that only one main effect was included in the model. 

However, two other terms had a posterior probability substantially higher than all other excluded 

terms, yet did not meet the median model inclusion criterion of 50% 
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(𝑋𝑎12𝐷1: 29.88% and 𝑋𝑝12𝐷1: 33.21%) . These interaction terms are formed by the dyad-level 

covariate Gender concordance and the construct Sex Communication Self-Efficacy Relational 

measure in the teenager and the parent (𝑋𝑎12𝐷1: 𝑡𝑒𝑒𝑛𝑎𝑔𝑒𝑟, 𝑋𝑝12𝐷1: 𝑝𝑎𝑟𝑒𝑛𝑡), and could be 

worth exploring in future research using other data sets. 

Collectively, our findings suggest that the proposed algorithm can adequately handle 

small data sets of dyadic data and that sexual communication, especially self-efficacy relational, 

is important for delaying sexual initiation. 

 

 



44 

 

Table 3.1. Simulation results: Average percentage of term inclusion in each simulated scenario, using 200 dyads. 
 

   

Scenario 
1 

 Scenario 
2 

 Scenario 
3 

 Scenario 
4 

 Scenario 
5 

 

 

  Term Coefficient %correct  Coefficient %correct  Coefficient %correct  Coefficient %correct  Coefficient %correct  

 

 

 
𝜂00  0 100 -2 100 -2 100 -2 

100 
 

-2 
100 

 

𝜂0𝐶  0 100 2 100 2 100 2 100 6 100 

Dyad  

𝐷1 0 100 2 100 4 100 4 100 0 100 

𝐷2  0 100 2 100 2 100 0 100 0 100 

L1 

Main 
effects 

Actor 

𝑋𝑎11 0 100 0 100 1.2 100 0 2.56 1.2 100 

𝑋𝑎21 0 100 1.2 100 0 100 0 100 0 0.83 

Partner 

𝑋𝑝11 0 100 0 100 0 100 0 100 0 0.82 

𝑋𝑝21 0 100 0 100 0 100 0 100 0 0.84 

Interactions 

Dyad* Actor 𝑋𝑎11𝐷1  0 100 0 98.99 0 100 1.7 88.46 1.7 0.95 

Dyad * partner 𝑋𝑝21𝐷1 0 100 0 100 0 100 0 100 0 0.94 

L2 

Main 
effects 

Actor  

𝑋𝑎12 0 100 0 98.99 0.8 49.75 0 93.58 0.8 0.64 

𝑋𝑎22 0 100 0.8 74.87 0 100 0 100 0 0.82 

Partner  

𝑋𝑝12 0 100 0 99.49 0 99.50 0 100 0 0.82 

𝑋𝑝22 0 100 0 100 0 100 0 100 0 0.81 

Dyad * Actor 𝑋𝑎12𝐷1 0 100 0 98.99 1.7 65.83 0.9 6.41 0.9 0.31 

Interactions 

Dyad * Partner 𝑋𝑝21𝐷1 0 100 0 100 0 100 0 100 0 0.93 
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                           Table 3.2. Simulation results: Average percentage of term inclusion for 61 dyads 

 

  
    

Scenario 1  

     Term Coefficient %correct  

  

 
Intercept 

𝜂00 -2 100 

𝜂0𝐶 2 100 

Dyad  𝐷1 1 100 

L1 

Main effects 

Actor 
𝑋𝑎11 1.5 100 

𝑋𝑎31 0.8 100 

Partner 
𝑋𝑝11 0 100 

𝑋𝑝31 0.4 0.03 

Interactions 
Dyad* Actor 𝑋𝑎31𝐷1  2 0.32 

Dyad * partner 𝑋𝑝21𝐷1 0 100 

L2 

Main effects 

Actor  
𝑋𝑎22 1.8 0.27 

𝑋𝑎32 1.2 0 

Partner  
𝑋𝑝12 0 100 

𝑋𝑝22 0 100 

Dyad * Actor 𝑋𝑎12𝐷1 0 100 

Interactions 
Dyad * Partner 𝑋𝑝21𝐷1 0 100 
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Table 3.3. Application to IYG-F baseline data: Probability of term inclusion for each construct included in the model. 

 
 

  

Term 

Inclusion 
probability 

Conditional posterior mean 
(central 95% credible 

interval) 

 

Term 

Inclusion 
probability 

Conditional posterior mean 
(central 95% credible 

interval) 

 

 

Intercept 𝜂00  100.00%  
    

Dyad 
level 

𝐷1: Gender Concordance 100.00%  

L1 
Main 

effects 

Teenager 

𝑋𝑎11:sex communication self-efficacy 
basic 

0.89%  

L1 Interactions 

Teenager 

𝑋𝑎12 0.94%  

𝑋𝑎12:sex communication self-efficacy 
relational 

89.71% 0.31 (0.01, 0.52) 𝑋𝑎12𝐷1 29.88% 0.02 (-0.01, 0.71) 

𝑋𝑎13:sex communication outcome 
expectancy cognitive 

6.02%  𝑋𝑎13𝐷1 9.26%  

𝑋𝑎14:sex communication outcome 
expectancy emotional 

8.15%  𝑋𝑎14𝐷1 3.70%  

𝑋𝑎15:sex communication outcome 
expectancy social 

0.63%  𝑋𝑎15𝐷1 2.35%  

𝑋𝑎16:communication ability 0.14%  𝑋𝑎16𝐷1 1.51%  

Parent 

𝑋𝑝11:sex communication self-efficacy 

basic 
0.82%  

Parent 

𝑋𝑝11𝐷1 1.98%  

𝑋𝑝12:sex communication self-efficacy 

relational 
8.73%  𝑋𝑝12𝐷1 33.21% 0.002 (0.01, 0.52) 

𝑋𝑝13:sex communication outcome 

expectancy cognitive 
0.96%  𝑋𝑝13𝐷1 1.22%  

𝑋𝑝14:sex communication outcome 

expectancy emotional 
1.92%  𝑋𝑝14𝐷1 1.07%  

𝑋𝑝15:sex communication outcome 

expectancy social 
2.09%  𝑋𝑝15𝐷1 2.93%  

𝑋𝑝16:sex communication self-efficacy 

basic 
0.41%  𝑋𝑝16𝐷1 0.31%  
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                 Table 3.4. Application to IYG-F baseline data: Probability of term inclusion for each construct included in the model. 

 

  

 Term 

Inclusion 
probability 

 

  Term 

Inclusion 
probability 

 
 Intercept 𝜂0𝐶  100.00% 

 
    

L2 
Main 

effects 

Parent 

𝑋𝑎21:sex communication self-efficacy 
basic 0.01% 

L2 Interactions 

Parent 

𝑋𝑎22𝐷1 
0.00% 

𝑋𝑎22:sex communication self-efficacy 
relational 7.75% 

𝑋𝑎22𝐷1 
0.18% 

𝑋𝑎23:sex communication outcome 
expectancy cognitive 0.11% 

𝑋𝑎23𝐷1 
0.10% 

𝑋𝑎24:sex communication outcome 
expectancy emotional 0.11% 

𝑋𝑎24𝐷1 
0.01% 

𝑋𝑎25:sex communication outcome 
expectancy social 0.02% 

𝑋𝑎25𝐷1 
0.00% 

𝑋𝑎26:communication ability 0.00% 𝑋𝑎26𝐷1 
0.00% 

Teenager 

𝑋𝑝21:sex communication self-efficacy 

basic 0.00% 

Teenager 

𝑋𝑝21𝐷1 
0.00% 

𝑋𝑝22:sex communication self-efficacy 

relational 0.77% 
𝑋𝑝22𝐷1 

0.20% 

𝑋𝑝23:sex communication outcome 

expectancy cognitive 0.00% 
𝑋𝑝23𝐷1 

0.00% 

𝑋𝑝24:sex communication outcome 

expectancy emotional 0.01% 
𝑋𝑝24𝐷1 0.02% 

𝑋𝑝25:sex communication outcome 

expectancy social 0.06% 
𝑋𝑝25𝐷1 

0.02% 

𝑋𝑝26:sex communication self-efficacy 

basic 0.00% 
𝑋𝑝26𝐷1 

0.00% 
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CHAPTER IV 

 

Conclusion 

In this work we present a stochastic search variable selection framework applied to a 

probit model with random effects as a Bayesian approach for dyadic data under an APIM 

model.  We introduced a two dimensional selection indicator to facilitate modeling both actor 

and partner effects.  In order to make the model more identifiable in small samples, we 

incorporated three key concepts.  First, an interaction will be selected if both main effects 

were selected. Second, the parametric space for the coefficients of the interactions is 

restricted to a number less than the total number possible of interaction in the model. Third, 

the use of a Spike and Slab prior for the selection variable allows an easier computation than 

other priors. These three properties provide an alternative selection method for dyadic data 

with a binary outcome, especially when classical methods have difficulty making inference 

due to a small sample size. To accomplish these 3 properties, the method brings together 

statistical theory already tested and published. 

The method stochastic search variable selection applied to a Bayesian hierarchical 

generalized linear model for dyadic data was assessed in different scenarios. These scenarios 

used simulated data and real data with different sample sizes. The scenarios included 

different values assigned to the coefficients of the terms in the model to generate the 

response variable. We observe that if the term in the model was generated with a small 

coefficient (<0.2) and it was a differential factor (differentiating a dyad member as a partner 

relative to as the actor), the method will have difficulty to include it in the model when the 
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sample was small. However, for bigger samples this inclusion problem was not observed. 

Furthermore, each of the covariates included in the model was generated using standard 

normal distribution. Even though there are no theoretical limitations for using categorical 

predictors, we did not directly simulate categorical predictors. 

The covariates included to generate the data to test the model were independent, and 

the proposed selection method worked without a problem. When we applied our method to 

the real data, however, we observed that our proposed selection method included a different 

set of covariates conditional on the number of iterations used. This was due to having highly 

correlated covariates in the set of possible variables, a known challenge for SSVS based 

methods (George & McCulloch, 1993).  A practical approach to this situation is to consult 

content experts to identify the most important factors among those correlated, to reduce the 

correlated variables in the search. This will help to have a more consistent decisions 

regarding the final model which are independent of the number of iterations used. To our 

knowledge there is no selection method applicable to the APIM model. Therefore we were 

not able to compare our selection method with other except with the simulations performed. 

This work can be extended in different ways. One immediate extension would be to 

restrict the parametric space of main effects only to help the use of the method in small 

samples. A second possibility would be to determine the minimum sample size required for 

covariate inclusion, especially the differentiable coefficients, in the model. A third possibility 

will be to use the expected maximization variable selection method instead of SSVS. Finally, 

this method can be extended to select elements within in constructs, when constructs consists 

of multiple elements per score. 
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APPENDICES 

Appendix A:  Constructions in the IYG-F used in this study.  

Domain Construct Actor (child) Items 
Parent (or main 

caregiver) item(s) 

Scale 

response 

outcomes of study 
Communication 

about sex 
 

Have you and your 
caregiver ever talked about 
when to start having sex? 

Have you and your child 
ever talked about when 
to start having sex? 

Yes; No; 
Refuse to 
Answer 

(0,1) 

 

Constructs of 
interest 

Quality of parental 
communication 

about sex 

I don't know enough about 
sexual topics like these to 
talk to my child. 

My caregiver doesn't 
know enough about 
sexual topics like this to 
talk to me 

N=5, 5-point 
(Strongly 
disagree to 
strongly 
disagree) 

I want to know my child's 
questions about these 
sexual topics. 

My caregiver wants to 
know my questions 
about sexual topics like 
this 

I try to understand how my 
child feels about sexual 
topics like these. 

My caregiver tries to 
understand how I feel 
about sexual topics like 
this 

When I talk to my child 
about these sexual topics, I 
warn or threaten them 
about the consequences. 

When my caregiver 
talks to me about 
sexual topics, they 
warn or threaten me 
about the 
consequences 

I know how to talk to my 
child about sexual topics like 
these. 

My caregiver knows 
how to talk to me 
about sexual topics like 
this 

My child can ask me the 
questions they really want 
to know about sexual topics 
like these. 

I can ask my caregiver 
the questions I really 
want to know about 
sexual topics like this 

My child and I talk openly 
and freely about these 
sexual topics. 

My caregiver and I talk 
openly and freely about 
these sexual topics 

I tell my child things about 
these sexual topics that they 
already know. 

My caregiver tells me 
things about these 
sexual topics that I 
already know 

If my child talked to me 
about these sexual topics, I 
would think they are doing 
these things. 

If I talked to my 
caregiver about these 
sexual topics, they 
would think I'm doing 
these things 
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Domain Construct Actor (child) Items 
Parent (or main 

caregiver) item(s) 

Scale 

response 

I don't talk to my child 
about these sexual topics, I 
lecture my child. 

My caregiver doesn't 
talk to me about these 
sexual topics, they 
lecture me 

 
Sex communication, 
self-efficacy, basic 

How to tell if a boy or girl 
really loves you 

You can explain to your 
child how to tell if a boy 
or girl really loves 
them. 

 

Why you need to wait until 
you're older before you have 
sex (e.g. vaginal or oral sex) 

You can explain to your 
child why they need to 
wait until they are older 
before they have sex. 

How to make a boy or girl 
wait until you are ready to 
have sex 

You can explain to your 
child how to make a 
boy or girl wait until 
they are ready to have 
sex. 

How to tell a boy or girl "no" 
if you do not want to have 
sex 

You can explain to your 
child how to tell a boy 
or girl if they do not 
want to have sex. 

Ways to have fun with a boy 
or girl without having sex 
(e.g. vaginal or oral sex) 

You can explain to your 
child ways to have fun 
with a boy or girl 
without having sex. 

     

 

Sex communication, 
self-efficacy, 

relational  

How sure are you that you 
can talk to your caregiver 
about: 
How to use birth control 

You can 
explain to your child 
how to use birth 
control. 

N=16; 7 point 

(Not sure at all 

to completely 

sure) 

Where to buy or get birth 
control 

You can explain to your 
child where to buy or 
get birth control. 

How birth control keeps 
girls from getting pregnant 

You can explain to your 
child how birth control 
keeps girls from getting 
pregnant. 

 

Where to buy or get 
condoms 

You can explain to your 
child where to buy or 
get condoms. 

How to put on a condom 
You can explain to your 
child how to put on a 
condom. 

Why an unmarried person 
should use a condom when 
they have sex 

You can explain to your 
child why an unmarried 
person should use a 
condom when they 
have sex. 

Using a condom if you 
decide to have sex 

You can explain to your 
child that they should 
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Domain Construct Actor (child) Items 
Parent (or main 

caregiver) item(s) 

Scale 

response 
use a condom if they 
decide to have sex. 

What is happening when a 
girl has her period 

You can explain to your 
child what is happening 
when a girl has her 
period. 

Why wet dreams occur 
You can explain to your 
child why wet dreams 
occur. 

How someone can get 
HIV/AIDS if they don't use a 
condom 

You can explain to your 
child how someone can 
get HIV/AIDS if they 
don't use a condom. 

What you think about a 
teen your age having sex 

You can explain to your 
child what you think 
about adolescents their 
age having sex. 

    

Sex communication 
outcome 

expectancy-
emotional 

You will feel you did the 
right thing 

If you talk with your 
child about sexual 
topics, you will feel that 
you did the right thing. 

 

You will be proud 

If you talk with your 
child about sexual 
topics, you will be 
proud. 

 

You will be embarrassed 

If you talk with your 
child about sexual 
topics, you will be 
embarrassed. 

 

You will feel comfortable 

If you talk with your 
child about sexual 
topics, you will feel 
comfortable. 

 

You will find some things 
difficult to talk about 

If you talk with your 
child about sexual 
topics, you will find 
some things difficult to 
talk about. 

 

It will be unpleasant 

If you talk with your 
child about sexual 
topics, it will be 
unpleasant. 

 

You will feel ashamed 

If you talk with your 
child about sexual 
topics, you will feel 
ashamed. 
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Domain Construct Actor (child) Items 
Parent (or main 

caregiver) item(s) 

Scale 

response 

Sex communication 
outcome 

expectancy-social 

You will be less likely to get 
pregnant or get a girl 
pregnant 

If you talk with your 
child about sexual 
topics, your child will be 
less likely to get 
pregnant or get a girl 
pregnant. 

 

You will be less likely to 
have sex (e.g. vaginal or 
oral sex) as a young teen 

If you talk with your 
child about sexual 
topics, your child will be 
less likely to have sex as 
a young teen. 

 

You think it will do some 
good 

If you talk with your 
child about sexual 
topics, you think it will 
do some good. 

 

You will feel relieved 

If you talk with your 
child about sexual 
topics, you will feel 
relieved. 

 

You will do what you want 
no matter what they say  

If you talk with your 
child about sexual 
topics, your child will do 
what they want no 
matter what you say. 

 

You will be less likely to get 
pregnant or get a girl 
pregnant 

If you talk with your 
child about sexual 
topics, your child will be 
less likely to get 
pregnant or get a girl 
pregnant. 

 

    

 
Communication 

ability 

How would you rate your 
ability to communicate with 
your caregiver about sexual 
topics? Remember, sexual 
topics refer to issues related 
to when to start having sex, 
birth control, condoms, 
AIDS/HIV, pregnancy, 
physical/sexual 
development, sexually 
transmitted diseases (STDs), 
and peer pressure about sex 
 

How would you rate 
your ability to 
communicate with your 
child about sexual 
topics? 
 

Terrible; Very 
Poor; Poor; 
Fair; Good; 
Very Good; 
Excellent; 
Refuse to 
Answer 
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