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Dynamic prediction of survival data using single or multiple longitudinal markers
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Recurrent events and time-to-event data occur frequently in longitudinal studies. In

large clinical trials with survival endpoints, researchers collect a multitude of longitudinal

markers. There is a growing need to utilize these rich longitudinal information to build

prediction models and assess their prognostic performance. In this dissertation research,

I propose a novel approach of integrating longitudinal markers in modeling the recurrent

event or terminal event data, and conduct dynamic prediction of event risks. Under

joint a model framework, I jointly model a longitudinal outcome and a recurrent event

process with the two process correlated via shared latent function. The probability of

having a new occurrence of recurrent event in a given time interval is predicted based on

subject-specific longitudinal profile and disease history. When multivariate longitudinal

outcomes are considered, traditional joint model method has limitation on specifying ap-

propriate longitudinal structures and computation problem occur when using Bayesian

approach. To avoid these potential issues, I employ multivariate functional principal

component analysis approach which is more flexible, robust and time efficient. For ter-



minal event data, I specify a prognostic model incorporating multivariate longitudinal

information, the prediction can be updated with accumulated data over time. I also

propose a recurrent event model integrating multiple longitudinal markers and conduct

personalized dynamic prediction of new recurrent event risk, which helps physicians to

identify patients at risk and give personalized health care.
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Chapter 1

Background
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1.1 Literature Review

1.1.1 Cardiovascular disease

Cardiovascular disease (CVD), a leading cause of death and disability in both men and

women worldwide, causes one in every four deaths in United States and has raised a

major public health concern[1]. The estimated annual costs for CVD reached 207 billion

dollars in health care area in the United States [2]. Understanding the risk factors for

CVD yields important insights into prevention, treatment and prediction of disease pro-

gression. To this regard, numerous clinical studies were funded by National Heart, Lung,

and Blood Institute (NHLBI) aiming to identify risk factors for predicting future CVD

events and further more, to develop and assess performance of different risk prediction

models. For instance, NHLBI has sponsored Anti-hypertensive and Lipid-lowing Treat-

ment to Prevent Heart Attack Trial (ALLHAT) study [3], Cohorts for Heart and Aging

Research in Genomic Epidemiology (CHARGE) consortium which includes 3 studies:

Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), and Atheroscle-

rosis Risk in Communities (ARIC) [4]. Despite having different Cardiovascular disease

as study outcome, there are commonality among the aforementioned 4 clinical trials: (1)

Study participants with higher risk may experience several cardiovascular events includ-

ing coronary heart disease (CHD), stroke, and heart failure during the whole study. These

events occur repeatedly during their follow-up time and are correlated to each other, gen-
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erating recurrent event outcome; (2) longitudinal biomarkers of participants are available

in scheduled visits during their follow-up time, including systolic blood pressure, total

cholesterol which were proved to be predictive in cardiovascular disease events [5, 6].

Regardless of numerous research on inference or prediction of the survival risk in car-

diovascular disease area, these studies either employ simple survival models or logistic

models that fail to utilize the complete longitudinal health outcome trajectories that are

predictive of CVD, or fail to account for the recurrent nature of the CV event occur-

rence. Alternatively, leveraging frequently measured longitudinal health biomarkers and

survival outcome, we propose to develop a personalized dynamic prediction model using

these CVD study datasets. Our proposed model not only provides more accurate per-

sonalized predictions but also is able to dynamically update the prediction results upon

the availability of updated subject-specific data in new visits.

1.1.2 Parkinson’s disease

Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder manifested

as tremor, rigidity, slow movement, and impaired balance in clinics, affecting about 1%

of adults older than 60 years. PD is caused by the malfunction and death of neurons,

which are the nerve cells in the brain. Part of the the malfunctioned and dying neurons

produce dopamine, which is a chemical that helps control movement and coordination of

human body.

Previous literature studied a broad range of motor and non-motor symptoms which
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are clinically correlated with evolution of Parkinson’s disease [7–9]. However, due to

substantial heterogeneity of different symptoms and subjects, it is very challenging to

give accurate prognoses of disease progression. In the absence of a cure, there is a critical

need to identify significant and well-validated biomarkers associated with PD progression

[10]. As a complex progressive disease, a variety of endpoints have been established to

evaluate PD severity and work as a criteria to categorize subjects into different disease

stages. For example, Unified PD Rating Scale (UPDRS), modified Hoehn and Yahr (HY)

scale, and Ambulatory capacity evaluate patients’ movement ability [11, 12]. Among

these measures, Hoehn and Yahr (H&Y) scale has became one of the most commonly

and widely used measurement to assess overall PD dysfunction stage [13]. Schrag et

al. [14] examined the responsiveness of different PD progression outcome measures over

time and suggested the H&Y scale to be the most responsive measure. Based on motor

functions, the H&Y scale has served as a good endpoint of PD progression in many

published studies. The time to development of different H&Y stages from symptom

onset or enrollment has been widely studied as a way to evaluate disease progression in

past literature [15–18]. Although these literature discussed potential prognostic factors

in predicting the H&Y stage progression, only baseline variables were included in the

survival model and longitudinal information was not taken into account. Relatively few

studies considered modelling longitudinal marker in prediction of PD disease outcome. He

and Luo [19] proposed a joint model with multilevel item response theory sub-model for

the longitudinal data and Cox propotional hazard sub-model to handle time to terminal

4



event. They assessed the effect of tocopherol on time to initiation of symptomatic therapy

in early PD patients. Iddi et al. [20] applied a latent time joint mixed-effects model to

handle longitudinal outcomes and studied the association between different markers and

PD diagnostic category. However, to our best knowledge, no previous research has been

done regarding prognostication of time to the H&Y stage transition based on multiple

longitudinal markers.

1.1.3 Recurrent Event Data Analysis

Many disease and clinical study outcomes may reoccur in the same participant, which

makes the investigation of multiple time-to-event data for one subject important. Ex-

amples of recurrent events include recurrent strokes in elderly patients, recurrent heart

failure, and recurrent heart attack [21]. An important feature of these events is that

there exists intrinsic correlation between those repeated occurrences within the same

subject. Ignoring this unique feature of correlation of recurrent events, the estimated

event occurrence rates could be biased [21]. Hence, the most commonly used Cox pro-

portional hazard model in biostatistics and epidemiological field will not be appropriate

here, because they do not consider the correlation of the repeated occurrences.

Numerous researchers have conducted statistical research in recurrent event data anal-

ysis field. Vaida and Xu [22] proposed a general proportional hazards model with ran-

dom effects for handling clustered recurrent event data. Pepe and Cai [23] have proposed

semi-parametric procedures for making inferences about the mean and rate function of
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the counting process without the Poisson-type assumption . An approach to constructing

simultaneous confidence bands for the mean function was presented by Lin et al. [24].

Recurrent event data has two important features. One is that the recurrent events

are ordered (the second event can only occur after the first event), while another feature

is that the subject can only be at risk for one event at a time (i.e. within a small time

interval ∆t, only one event can happen) [21]. A common approach to model the recurrent

event data is to assume that the event process is poisson process so that the number of

events in disjoint time intervals is assumed to be independent [25]. The key aspect of

analyzing recurrent event data is to model the intensity function. Poisson process models

intensity function as a function of calender time. Assuming that n events occur in time

interval [0,τ ], we denote the event times as t1, t2, ...tn−1, tn ≤ τ . Therefore, the total

number of events up to time t is N(t), t > 0. Let H(t) = {N(s) : 0 ≤ s < t} denote the

event process history and information on the covariate process up to time t, we can write

the intensity function of the process λ(t,Hi) as below:

λ(t|Hi(t)) = lim
∆t→0

Pr{∆N(t) = 1 | Hi(t)}
∆t

= lim
∆t→0

Pr{N(t+ ∆t−)−N(t−) = 1}
∆t

, (1.1)

where ∆N(t) denotes the number of events over a small interval [t, t + ∆t). Denoting

λ(t|Hi(t)) = λi(t), the likelihood contribution from each subject in time period [0, τ ] can

be written as : [
ni∏
j=1

λi(tj)

]
× exp

[
−
∫ τ

0

λi(t)dt

]
. (1.2)

6



1.1.4 Overview of Dynamic Prediction via Joint Models

Joint models (JM) of longitudinal measurements and survival data have been widely

studied in the past two decades (first proposed by Faucett & Thomas [26] and Wulfsohn

& Tsiatis [27]), there is an increasing number of literature investigated the application

of joint models to large clinical studies, e.g., Henderson et al. [28], Han et al. [29] and

Crowther et al. [30]. Usually, a joint model involves two sub-models, one is a mixed ef-

fects model for longitudinal outcomes while the other is a Cox model for survival events.

To link the two sub-models together, shared random effects are usually utilized. Previous

literature have compared and investigated the association structure for random effects

[31]. For inference purpose, joint models can be used to estimate the parameters associ-

ated with the longitudinal models as well as the survival models. Although there exists

many literature discussing joint model of longitudinal markers and time-to-event data,

few studies has investigated the joint model of longitudinal markers and recurrent event

data. Henderson [28] proposed a joint model of longitudinal data and recurrent event

data, with association between two process captured by correlated latent trajectory. Liu

and Huang [32] established a JM approach where a more complex setting was considered,

i.e. a repeated measures process and a recurrent events process were correlated, both

subject to a terminal event. In addition to model inference, a novel usage of JM is to

provide dynamic prediction of the risk of target event and the trajectories of biomarkers.

Rizopoulos [33] has proposed a Monte Carlo approach to conduct dynamic prediction

7



on time-to-event data, which predicts subject-specific survival probability using the joint

model framework. The key feature of the dynamic prediction framework is that the

prediction can always be dynamically updated given the additional information of lon-

gitudinal trajectories and longer history of survival process. There are some literature

of the dynamic prediction problem under joint model of longitudinal and survival data

framework [34, 35]. Regarding the prediction for recurrent event data, Krol et al [36]

extended the usage of joint model to include recurrent event process, and estimated the

probability of having a terminal event in specific time interval, given historical longitu-

dinal data and recurrent event times. An alternative approach was proposed by Musoro

et al [37] by employing landmark method to handle the longitudinal data as time-fixed

covariate at different landmark time points, the dynamic prediction by landmarking was

then extended to recurrent event data in this way. However, to our best knowledge,

providing personalized dynamic prediction of recurrent events by joint model method

remains an open question. To propose a prediction model that incorporates clinical in-

formation and the recurrent disease history is of importance here. In this dissertation, we

develop a Bayesian joint model which consist of two sub-models, one is the linear mixed

effect model to model longitudinal trajectory, another is recurrent event model with in-

tensity function from Poisson process to handle the recurrent event process. The dynamic

prediction of recurrent events is derived and implemented in application datasets.
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1.1.5 Multivariate Principal Component Analysis

In most literature, dynamic predictions via joint models have been restricted to only in-

clude single longitudinal outcome. However, emerging evidence has suggested that many

diseases are correlated with multiple longitudinal clinical outcomes. Moreover, in large

clinical studies, rich clinical information including observations of multiple longitudinal

biomarkers is collected. Incorporating these clinical information in prediction of event of

interest becomes an urgent need. Extending the JM approach to incorporate multivariate

longitudinal outcomes has a major limitation that we need to specify appropriate param-

eter distributions and correlation structure between longitudinal processes. In addition,

the computation intensity is another concern when utilizing joint model under Bayesian

framework, especially with large sample size. As the number of candidate longitudinal

markers increase, the computation cost increases exponentially. To handle the multivari-

ate longitudinal outcomes and avoid involving in the aforementioned issues, we consider

an alternative approach which is more flexible, robust and computationally efficient. Yao

[38] first proposed a nonparametric approach to perform functional principal components

analysis (FPCA) on sparse longitudinal data. Since then, researchers has extended the

usage of FPCA to joint analysis of repeated measurements and survival data [39]. In

the two-step approach proposed by Holte et al [40], the feature of longitudinal trajec-

tory was extracted and represented by the functional principal component (FPC) scores

estimated from separate model in step one, and the estimated FPC scores were included
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in the survival model as new risk factors to build association between longitudinal tra-

jectory and the survival outcome. In regards of prediction, Yan et al [41] extended the

FPCA framework further to dynamic prediction area. Their work updates the estimated

FPCA scores as new longitudinal information come into available. However, these studies

only incorporated a single longitudinal marker in the survival model. Moreover, the Cox

model they used to model the terminal event is not suitable when the event of interest

has recurrent feature (e.g. CVD events). To our best knowledge, there is no existing

literature has investigated the prediction of recurrent event utilizing information from

multiple longitudinal markers. In this dissertation work, we develop an novel approach

to fit this critical need.

1.2 Public Health Significance

Even with the contemporary medical techniques nowadays, cardiovascular disease still

acts as a leading cause of death and disability in both men and women in United States

and worldwide. It causes one in every four deaths and has became a major public health

concern. Investigation in risk factors is a key step to cardiovascular disease treatment

and prevention. There is strong evidence suggesting that persons with healthier lifestyle

could significantly reduce the risk of incidence in cardiovascular events (e.g. quit smoking,

avoiding obesity, exercise routinely, consume green food, and keep a healthy diet) [42].

Therefore, identifying and quantifying risk factors is of great interest in modern public
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health area.

While discovering significant and well-validated risk factors, predicting risk of the

future event is another important mission. Accurate prediction of the risk of a subject’s

future cardiovascular event in a specific given time period enables physicians to make

personalized diagnostic and treatment. Based on subject-specific longitudinal profiles

and updated event history, the proposed work can help physicians target people with

higher risk of developing a CVD events in a near future. This task helps address the

critical need for model-based personalized dynamic predictions of future longitudinal

health outcome trajectories and CVD events.
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Chapter 2

Article 1: Dynamic prediction using joint models of

longitudinal and recurrent event data: A Bayesian

perspective
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Dynamic prediction using joint models of longitudi-

nal and recurrent event data: A Bayesian perspective

2.1 Introduction

As a leading cause of death and disability in both men and women worldwide, cardiovas-

cular disease (CVD) causes one in every four deaths in United States and has became a

major public health concern [1]. The estimated annual costs for CVD reached 207 billion

dollars in health care area in the United States [2]. It is of importance to understand

the risk factors for CVD which yields important insights into prevention, treatment and

prediction of disease progression. National Heart, Lung, and Blood Institute (NHLBI)

has funded many clinical studies aiming to identify risk factors for predicting future

CVD events. Anti-hypertensive and Lipid-lowing Treatment to Prevent Heart Attack

Trial (ALLHAT) study [3] is one of the largest CVD studies that sponsored by NHLBI.

Previous literatures have identified hypertension, high cholesterol level, diabetes etc. are

highly related to risk of developing cardiovascular disease [43, 44].

An important feature of cardiovascular disease is that the primary event outcomes

are often recurrent, i.e. patients can experience multiple CVD events during the follow-

up period. Examples of these recurrent events include strokes, reoccurred heart failure,
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and recurrent heart attack [21]. An important feature of these events is that there

exists intrinsic correlation between those repeated occurrences within the same subject.

Ignoring this unique feature of correlation of recurrent events, the estimated risk could

be biased [21]. Hence, the commonly used Cox proportional hazard model will not be

appropriate here, due to the fact that correlation of the repeated occurrences is not

considered. As the recurrent event process tend to be related to longitudinal markers,

analyzing the two processes separately may lead to biased estimation. Thus, to propose

an statistical approach that jointly models longitudinal markers and recurrent events

together is of importance here.

First proposed by Faucett & Thomas [26] and Wulfsohn & Tsiatis [27], joint mod-

els (JM) of longitudinal measurements and survival data (including terminal event and

recurrent event data) have been widely studied in the past decades and a increasing

number of studies applied joint models to large clinical studies, e.g., Henderson et al.

[28], Han et al. [29] and Crowther et al. [30]. A common joint model often involves two

sub-models, one is a mixed effects model for longitudinal outcomes while the other is a

Cox model for survival events. In such setting, shared random effects are usually utilized

to link the two sub-models together. Previous literature compared and investigated the

association structure for random effects [45]. Some extensions of the joint models have

been developed, e.g., relaxing some of the normality assumptions of random effects in

order to make a more general assumption [31].

Another novel usage of JM is to provide dynamic prediction of the risk of target event
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and the trajectories of biomarkers. Rizopoulos [33] has developed methodology to make

personalized predictions using the joint model framework. The prediction is dynamic in

that the prediction can always be dynamically updated given the additional information

of longitudinal trajectories and longer history of survival process. Although there are

some literatures of the dynamic prediction problem under joint model of longitudinal

and survival data framework [34, 35], to our best knowledge, providing personalized

dynamic prediction in recurrent events in large CVD studies remains an open question.

Numerous prediction models estimating the risk of developing CVD events are either

simple survival model or logistic regression models [46]. To propose a prediction model

that incorporates clinical information and the recurrent disease history is of importance

here. In this article, we develop a Bayesian joint model approach to fit this critical need.

The proposed model consists of two sub-models, one is the linear mixed effect model to

model longitudinal trajectory, another is recurrent event model with intensity function

from Poisson process to handle the recurrent event process. The two sub-models are

linked via shared latent trajectory, while a parameter is assigned to access the strength

of association between these two process.

The rest of the article is organized as follows. In Section 2, we introduce the motivat-

ing cardiovascular disease study that motivates this article. The recurrent nature of the

CVD events is visually displayed. The joint model framework and dynamic prediction

method are illustrated in Section 3, upon which we propose our approach to model re-

current event process with longitudinal trajectory. We conduct simulations in Section 4
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to validate inference accuracy of our proposed model, the prediction performance is also

accessed by utilizing time-dependent Area Under the Curve (AUC) and Brier score (BS)

as indexes of prediction accuracy. In Section 5, we apply our proposed model on the

motivating dataset, the Parallel MCMC method is employed to address our computation

issue caused by large sample size. For prediction purpose, we also specify a traditional re-

current event model (referred as simple recurrent event model later), which only take into

account baseline covariates. The prediction performance of our model outperform simple

recurrent event model in regards of higher time-dependent AUC, indicating incorporation

of longitudinal clinical information improves subject-specific prediction accuracy for risk

of new CVD events. In the last section, we summarize the findings in our study, and

discuss limitation of our work and some possible future directions.

2.2 Motivating dataset

The methodological research is motivated by Antihypertensive and Lipid-Lowering Treat-

ment to Prevent Heart Attack Trial (ALLHAT), a randomized, double-blinded, active-

controlled clinical trial conducted from February 1994 through March 2002 [3]. As the

primary outcome was composite fatal coronary heart disease (CHD) or non-fatal my-

ocardial infarction (MI), the aim of ALLHAT study is to determine whether newer anti-

hypertensive agents, including α-blocker doxazosin, differ from the reference treatment

chlorthalidone in regards of coronary heart disease events and other CVD events. During
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the study follow-up period, 15,255 subjects were randomized to chlorthalidone arm and

9,061 subjects were randomized to doxazosin arm, out analysis is conducted on subjects

from these two arms. The maximum follow-up time in analytical dataset was 5.57 years.

As death is treated as independent censoring in our study, subjects who were alive at the

end of the trial, or lost to follow-up during the trial are considered as independent ter-

mination (right censored). We are interested in the composite outcome of three types of

CVD recurrent events (CHD, stroke, heart failure) before death or censoring. To visualize

the data structure, we present Figure 2.1 to show the time plot of four selected subjects

who experienced composite CVD events before the end of their follow-up. For instance,

subject 1 experienced one CVD event in 59 month and was censored on 92 month, while

subject 4 experienced 5 recurrent CVD events and died in 67 month. Death process is

treated as non-informative censoring as our main interest lies in predicting next recurrent

event.

During the study, participants’ clinical information was collected and recorded dur-

ing each scheduled visits. Systolic blood pressure (SBP) is the most frequently measured

clinical outcome in ALLHAT study. Utilizing this rich clinical information in predicting

the probability of having next recurrent event is of our interest. It is well established that

high blood pressure, i.e. hypertension is one of the main risk factors for CVD events, pre-

vious literature has studied the mechanisms of how high blood pressure can cause CHD,

stroke, heart failure [47]. In terms of prediction of risk of CVD events, hypertension,

as a known significant risk factor, is usually included in the statistical model. Staessen
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Figure 2.1: Data display of CVD events in ALLHAT study

et al [48] found that in untreated patients with isolated systolic hypertension, the sys-

tolic blood pressure predicted cardiovascular risk. More recent publications pointed out

there was significant positive relationship between higher SBP and CVD events [34, 46].

On the other hand, subjects with previous CVD have high risks of CVD recurrence

[49]. Thus, incorporating the SBP trajectory and recurrent disease history is essential

to personalized-prediction of next occurrence of a CVD event. Of the existing literature

about joint modeling of longitudinal measurements and recurrent events, Henderson [28]

proposed a joint model of longitudinal data and recurrent event data, with association

between two process captured by correlated latent trajectory. Moreover, Liu and Huang

[32] considered a more complex setting where a repeated measures process and a re-
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current events process were correlated, both subject to a terminal event. While these

literature mainly focused on model inference, Krol et al [36] extended the usage of joint

model of longitudinal data, recurrent events, and a terminal event to dynamic prediction

area. They derived the estimated probability of having a terminal event in specific time

interval, given all previous history and no event occurred before prediction starting time.

Regarding prediction of recurrent events, Musoro et al [37] extended dynamic prediction

by landmarking to recurrent event data. Using landmark method, they handled the lon-

gitudinal data as time-fixed covariate at different landmark time point. However, to our

best knowledge, no research has been done in providing personalized dynamic prediction

in the recurrent events using joint model approach. In this article, we propose a joint

model of longitudinal data and recurrent event data and extend to dynamic prediction

of next occurrence of recurrent event within given time interval. Instead of using land-

mark method, the proposed joint model approach simultaneously models time updated

longitudinal biomarker and recurrent event process.

2.3 Methods

2.3.1 Joint model specification

Some clinical outcomes may occur in a recurrent fashion, making it important to investi-

gate recurrent event data. In many studies, clinical bio-markers of targeted patients are

often collected longitudinally, utilizing this information helps us to identify risk factors
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of recurrent events and predict the risk of future occurrence. There are different ways

to incorporate longitudinal information in recurrent event model building, to model the

longitudinal process and recurrent event process at same time, we extend the typical

joint model method to handle recurrent event data.

Let y
i
(t) = {yi(tij)} be the vector of longitudinal observation for subject i at time tij,

where i = 1, . . . , N , and j = 1, . . . ,mi. Let Tik be the recurrent event times from study

onset for subject i, k = 0, . . . , ni, where ni denotes the number of recurrent cardiovascular

events (including CHD, stroke, and HF). We use a linear mixed effects sub-model to model

the longitudinal health outcome and a poisson intensity recurrent event sub-model for

modeling the re-occurrence of CVD events. These two sub-models are correlated by

random effects and expected values of longitudinal outcomes.

The joint model for recurrent event and longitudinal processes is:

yi(t) = XY
i (t)α+Z(t)iui + V R(t)ζ + ei(t) = fi(t) + ei(t)

ri(t) = r0(t) exp{ZR
i β + νfi(t) + vi},

(2.1)

To allow flexibility and variation of baseline risk intensity, random effect vi is added in the

recurrent event submodel to explain the variation between subjects in baseline hazard.

We assume independence between ui and vi. The two sub-models are linked via an

association parameter ν, which quantifies the strength of correlation between the expected

longitudinal outcome and the hazard of recurrent CVD events. Parameters α and β

denote the estimated coefficients of longitudinal process related covariates and recurrent
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event process related covariates, respectively. One key assumption in the linear mixed

effects model is that all measurements from each patients are independent conditioning

on the random effects vector ui,1 and ui,2. Thus, the likelihood for the longitudinal process

of subject i is:

lYi =

mi∏
j=1

1√
2πσe

exp

[
− (yi(tij)−XY

i (tij)α−Zi(tij)ui − V R(t)ζ)2

2σ2
e

]
. (2.2)

Under the assumption that the number of recurrent events in non-overlapping time in-

tervals is a poisson process, we are able to model the event process via intensity function.

As in Eq (2.1), the covariate vector ZR
i can be identical or different from covariate vec-

tor XY
i in the longitudinal sub-model. To increase the robustness of our model fitting,

we utilize piece-wise constant baseline hazard model to obtain estimators for both fixed

effects and random effects. We divide the total follow-up time interval [0, τ ] by using

time knots τt = (0, τ1, ..., τR) by quantile of event times, and denote the baseline hazard

vector as g = (g0, g1, ..., gR−1). Then we can define the piecewise constant hazard func-

tion as h0(t) =
∑R−1

r=0 grIr(t), where indicator function Ir(t) = 1, if τr ≤ t < τr+1 and 0 if

otherwise. Therefore, the likelihood of the recurrent events process for subject i is:

lRi =

ni∏
k=0

hi(tik)
σikSi(xi)

=

ni∏
k=0

[
r0(tik) exp

{
vi +ZR

i β + νfi(tik)
}]δik

· exp

[
−
∫ xi

0

r0(t) exp
{
vi +ZR

i β + νfi(t)
}
dt

]
,
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where δik is the indicator of a recurrent event at time tik and xi is the observed follow-

up time. Here, the longitudinal outcome yi is assumed to be independent of time t,

conditioning on the random effects ui and vi. Thus, the full likelihood for subject i is

li = lYi · lRi · f(ui) · f(vi), (2.3)

where f(ui) and f(vi) is the density function of ui and vi respectively. Our unknown

parameter vector is θ = {α,β, ν, σ1, σ2, ρ, σv, σζ , σe}.

2.3.2 Dynamic prediction

We randomly partition the dataset into two part, one is the training datasest which

is used to build the model, another is the validation dataset to access the prediction

performance of proposed model. After obtaining the posterior samples of parameter

vectors from inference of training dataset, we illustrate the derivation and procedure to

conduct dynamic prediction of each subject in validation dataset. Suppose a new subject

i had ni (e.g., ni = 0, 1, 2, · · · ) recurrent events up to time t, with longitudinal profile

y
i
(t) = {yi(tij); 0 ≤ tij ≤ t}, we would like to predict his/her probability of having

the ni + 1 recurrent event before time t′ = t + ∆t (e.g., 1 year), denoted by πi(t
′|t) =

P (Ti,ni+1 ≤ t′|Ti,ni+1 > t, y
i
(t),θ), where θ is the parameter vector in model (2.1).
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We can derive πi(t
′|t) as follows:

πi(t
′|t)

=

∫ ∫
P (Ti,ni+1 ≤ t′|Ti,ni+1 > t,ui, vi, y i(t),θ)P (ui|Ti,ni+1 > t, y

i
(t),θ, vi)duiP (vi|Ti,ni+1 > t,θ)dvi

≈ 1

M

M∑
m=1

1− exp

[
−
∫ t′

t

r
(m)
i (s|u(m)

i , v
(m)
i ,θ(m))ds

]
.

(2.4)

Here θ(m) is the mth sample (m = 1, . . . ,M , where M is the number of post burn-in

samples) of parameter vector θ. For random effects, u
(m)
i and v

(m)
i is the mth sample of

ui and vi respectively. The term r
(m)
i denotes the intensity function from poission process

conditioning on mth copy of θ and corresponding random effects ui and vi. Detailed

derivation can be found in Appendix.

The key steps to approximate the event probability πi(t
′|t) are obtaining samples for

random effect ui and vi. The posterior samples of ui come from the posterior distribution

P (ui|Ti,ni+1 > t, y
i
(t),θ, vi). Specifically, conditional on the mth posterior sample θ(m),

we draw the mth sample of ui from its posterior distribution

P (ui|Ti,ni+1 > t, y
i
(t),θ(m), vi) =

P (y
i
(t), Ti,ni+1 > t,ui|θ(m), vi)

P (y
i
(t), Ti,ni+1 > t|θ(m), vi)

∝ P (y
i
(t), Ti,ni+1 > t,ui|θ(m), vi)

= P (y
i
(t)|ui,θ(m))P (Ti,ni+1 > t|ui,θ(m), vi)P (ui|θ(m)),

where P (Ti,ni+1 > t|ui,θ(m), vi) =
∏ni

k=0

[
r0(tik) exp{ZR

i β + νfi(tik) + vi}
]σik
· exp

[
−
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∫ t
0
r0(s) exp

{
ZR
i β + νfi(s) + vi

}
ds

]
.

We then draw the posterior samples of vi from distribution P (vi|Ti,ni+1 > t,θ) as

follows:

P (vi|Ti,ni+1 > t,θ(m),u
(m)
i ) =

P (Ti,ni+1 > t, vi|θ(m),u
(m)
i )

P (Ti,ni+1 > t|θ(m),u
(m)
i )

∝ P (Ti,ni+1 > t, vi|θ(m),u
(m)
i )

= P (Ti,ni+1 > t|vi,θ(m),u
(m)
i )P (vi|θ(m)),

For each of θ(m), m = 1, . . . ,M , we use adaptive rejection metropolis sampling

(ARMS) [50] in R HI package to draw 50 samples of ui and vi and retain the final sample.

This process is repeated for the M saved values of θ. Once the posterior distributions of

random effects are simulated, all calculations become straightforward and produce the en-

tire distribution of the future trajectory (health outcomes and risk) of a new subject. For

example, the outcome trajectory at time t′ is yi(t
′)|ui ∼ N(Zi(t

′)Yα(m) + u
(m)
i , σ2

e
(m)

).

Suppose that patient i does not have a recurrent event by time t′, then the outcome

history is updated to yi(t
′). We can dynamically update the posterior distribution to

p(ui|Ti > t′,yi(t
′),θ(m)) and p(vi|Ti > t′,θ(m)), draw new samples of ui and vi, and

obtain the updated predictions.
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2.3.3 Bayesian inference

We use Bayesian inference based on Markov chain Monte Carlo (MCMC) posterior sim-

ulations to infer unknown parameters. We use non-informative priors on all parameters

in vector θ. To be more specific, the prior distribution of all elements in the coefficient

vectors α,β, and the the association parameter ν are normal distribution with mean

equal to 0 and standard deviation being 10. To ensure the positivity of variance param-

eter, we use inverse gamma distribution with α = 0.01, β = 0.01 as the prior distribution

of σ1, σ2, σv, σζ , σe, so the corresponding variance is 100. For the correlation parameter

ρ between random intercept and random slope, we use the uniform prior distribution

ρ ∼ U(−1, 1).

There are variety of MCMC sampler that can be used to conduct Bayesian inference,

including WinBUGS, OpenBUGS, JAGS, Stan and etc. We employ Stan to fit our proposed

model, because unlike WinBUGS, which uses Gibbs sampler, Stan uses Hamiltonian Monte

Carlo (HMC) sampler. Relying on deterministic mechanism inspired by Hamiltonian

dynamics, HMC method generates coherent exploration of target distribution. When

compared to standard Gibbs method, such approach not only improves posterior samples

convergence speed, but also gives the resulting estimator with stronger validity [51]. Our

proposed model is fitted in RStan while specifying aforementioned full likelihood function

and prior distributions of unknown parameters. To diagnose the convergence of posterior

samples, we use trace plot to decide the samples are converged if no apparent trends can
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be viewed from the plot. Another criteria to ensure convergence is Gelman and Rubin [52]

potential scale reduction statistic. we ensure the scale reduction statistics R̂ are smaller

than 1.1 for all parameters as an additional way to ensure convergence. In simulation,

2,000 after burn-in samples are draw for each parameter in θ, the convergence of these

posterior samples are ensured by meeting aforementioned criteria.

2.3.4 Parallelizing MCMC with Random Partition Trees

As large clinical studies being more and more prevalent, the scale of clinical datasets

has brought challenges to conventional MCMC sampling techniques. For these large

datasets, conducting Bayesian inference can be extremely time consuming. Moreover,

processing such large datasets in a single computer likely encounters the problem of non-

sufficient memory. Although there are various attempts to address these issues [53, 54],

they either rely on asymptotic normality of posterior distributions, or have the drawback

of insufficient of resampling. To the end, Wang et al. [55] proposed a embarrassingly

parallel MCMC (EP-MCMC) approach to address the large sample size problem without

assuming any distribution of posterior samples. The theoretical property of this EP-

MCMC approach grants its good performance when being applied to different models.

The algorithm consists of two step, first it partitions the data into multiple subsets and

independently run MCMC sampler on each of them, then it applies random partition

trees to combine the posterior draws from subset.

Simulation is conducted to ensure EP-MCMC method is valid under our proposed
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model setting. The simulation setting is illustrated in Section 2.4. To conduct EP-

MCMC, we randomly divide 2000 samples into 10 subsets, each subset contains 200

samples and sufficient recurrent events. We then conduct Bayesian data analysis em-

ploying our proposed model in each subset, which results in 2,000 after burn-in MCMC

posterior samples for every parameter of interest. For example, for the 12 parameters, we

will have 10 matrices of size 2, 000 by 12, each coming from one subset. After obtaining

the posterior samples of parameters in multiple subsets, we implement PART algorithm

[55] in Matlab to combine the posterior samples from 10 subsets. This algorithm aggre-

gates sub-chain posterior MCMC samples and draws a certain number of (e.g. 10,000)

samples for each parameter from the combined posterior with k-dimensional tree (k-d

tree) partition rules. Following aforementioned example, after we conduct the aggre-

gation step, a matrix of size 10, 000 × 12 is obtained as the posterior samples for the

whole dataset. The posterior mean of the samples suggest that the parameters estimated

by this EP-MCMC approach have minor bias from the true values. Also, the coverage

probability does not show evidence of biased estimation or overly conservative standard

error estimates, which ensures the validity of this parallel MCMC approach under our

proposed model.

Besides the ability of dealing with large sample problem in application, EP-MCMC

method has additional benefit in regards of efficiency in estimating survival probabilities

of all subjects. To avoid over-fitting, we separate the whole data into 10 subsets and

estimate parameters in training set (consists of 9 of the subsets), dynamic prediction is
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then conducted to estimate event-free probability in validation set (the unused 1 subset).

Instead of having to repeat the inference MCMC sampling process 10 times to get the

estimated survival probabilities for all subjects (each time, survival probabilities of sub-

jects from 1 validation set are estimated), EP-MCMC method enables us to aggregate

posterior samples from selected 9 subsets to obtain the estimation of parameters in the

training set. In this way, we no longer need to run MCMC sampler for 10 times in each

pooled training set, but just use the posterior samples of different subsets to obtain in-

ference results. As the Bayesian MCMC sampling technique is usually time-consuming,

this approach save a lot of computation time.

2.3.5 Assessing predictive performance

Accurate identification of patients with higher risk of having a new future event is one of

the most interested features in statistical models. It is important to access how well our

proposed risk prediction model performs and how accurately it predicts a future event

within specific given time period. Here, we access the prediction performance in three

aspect, global discrimination ability (the ability that the model correctly classifies event

and non-event.), validation performance (how well the model predicts the data), compar-

ison with other model. To be more specific, we employ receiver operating characteristic

(ROC) curve and the area under the ROC curves (AUC) to assess the discrimination

ability of the proposed model, the validation performance is assessed using the expected

Brier score (BS). Moreover, we adopt the methodology approach proposed by Blanche
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et al. [34] to quantify and compare the predictive accuracy of different models.

Area under the ROC curves

Following the definition in previous section, for a given cut value c ∈ [0, 1], the time depen-

dent sensitivity and specificity are P{πi(t′|t) > c|D(t, t′) = 1, T ∗i > t} and P{πi(t′|t) ≤

c|D(t, t′) = 0, T ∗i > t} respectively, whereD(t, t′) is an indicator function equals to 1 when

a new event happen during time interval (t,t’] and equals to 0 otherwise. Therefore, for

probability p ∈ [0, 1], the ROC curves will be ROCt′
t (p) = TP t′

t [FP t′
t ]−1(p), where TP t′

t

denotes the true positive rate, FP t′
t denotes the false positive rate [56]. With the de-

fined time-dependent sensitivity and specificity, we calculate a standard “concordance”

summary: the time-dependent Area Under Curve (AUC), the formula is as following [57]:

AUC(t, t′) =

∫ 1

0

ROCt′

t (p)dp.

With standard numerical integration methods, we can estimate the time-dependent AUC

straightforwardly, and it serves as a criteria to assess the global discrimination ability of

the proposed model.

Dynamic Brier score

By extending the Brier score (BS) defined in survival models to joint model frame-

work [58], we are able to define the expected BS for dynamic prediction as BS(t, t′) =

E[(D(t′|t)−π(t′|t))2], here D(t′|t) denotes the observed event status, which equals to 1 if
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subjects experience a new event during (t, t] and equals to 0 otherwise. As the dynamic

expected Brier score is a mean squared error, we can express it as

BS(t, t′) = E[(E[D(t′|t)]− π(t′|t))2] + E[(D(t′|t)− E[D(t′|t)])2].

The first term in aforementioned equation measures how close the predictions are to

expected event status E[D(t′|t)], in other word, evaluates how well the models predict

the observed data. The second term is an aggregation of resolution and uncertainty and

does not depend on the distribution of the predictions. Both AUC and BS are interesting

statistics when assessing the predictive accuracy, and they complement each other when

quantifying the overall performance of the dynamic prediction probability π(t′|t).

Comparing Dynamic Predictive Accuracy

While AUC and BS are well studied in quantifying the overall prediction performance of

a specific model, comparing these two indexes between different models is getting more

interest. By comparing the AUC and BS, it enables researchers to select appropriate

model which is useful enough regarding prediction purposes. Blanche et al. [34] proposed

a methodology approach to compute confidence regions of AUC and BS, also tests for

the difference of them in different models. The detailed derivations can be found in the

publication. As a consequence of the derivations, denoting either AUC(t, t′) or BS(t, t′) as

θ(t, t′), let θ̂(t, t′) denote the corresponding estimator and ∆θ̂(t, t′) denote the estimator
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of the difference of AUC or BS between two prognostic models at given landmark time

t. We are able to obtain the pointwise confidence interval

∆θ̂(t, t′)± z1−α/2
σ̂∆,t,t′√
n

,

here z1−α/2 is the critical value of standard normal distribution and σ̂2
∆,t,t′ is the empirical

estimator of variance, which can be consistently estimated by the influence function

following formulas in Blanche et al. [34]. Therefore, testing for comparison of two

prediction accuracy measurements can also be derived accordingly.

2.4 Simulation Setting

In this section, we examine the performance of parameter inference and prediction of the

proposed model via simulation. Consider binary covariates for xi1, xi2 which equals to

0 or 1 with probability 0.5. We generate the longitudinal measure Yi(tij) at time tij of

subject i as yi(tij) = α0 +α1xi1 +α2xi2 +α3tij +ui1 +ui2tij +ei(tij), where the error term

εi follows normal distribution, i.e. ei(tij) ∼ N(0, σ2
e), i = 1, . . . , I, and j = 1, . . . ,mi. For

recurrent event process, we assume non-informative censoring, the censoring time Ci is

sampled from uniform distribution Uniform(9, 10) with 50% censoring rate. Let Tik be

the kth recurrent event times from study onset (time 0) for subject i, k = 0, . . . , ni, where

ni denotes the number of recurrent events. Let ri(t) denote the intensity of the recurrent

process. Random intercept ui1 and random slope ui2 follows multivariate normal distri-
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bution with mean 0. And the covariance matrix is denoted by Σu, with σ2
1, σ

2
2 denote the

variance for random effects ui1, ui2 respectively while ρ represents the correlation between

two random variables. On the other hand, vi is the random variable only associated with

recurrent process and independent of ui1 and ui2, we assume that it follows a normal

distribution with variance denoted by σ2
v . Our simulation setting is as follows:

yi(tij) = α0 + α1xi1 + α2xi2 + α3tij + ui1 + ui2tij + ei(tij) = fi(tij) + ei(tij)

ri(tik) = r0 exp{β1zi + νfi(tij) + vi}

The inference results is based on 200 simulations with training sample size equal

to 600, on average, there are 2 recurrent events per subject. Table 2.1 displays the

bias of estimated parameter with true value, standard deviation of posterior mean (SD),

standard error (SE), coverage probability (CP), and root mean squared error (RMSE)

of inference results. The simulation results without using Parallel EP-MCMC method is

summarized in left panel of Table 2.1. To evaluate the performance of Parallel EP-MCMC

method under our proposed model setting, we randomly divide the training dataset into 3

subsets and apply the EP-MCMC method following aforementioned procedures in Section

2.3.4. We present the results in Table 2.1 right panel. The results suggest that under

simulation settings, parameters estimated by our proposed model have minor bias with

true value, small RMSE, and the coverage probability (close to 0.95) does not show

evidence of biased estimation or overly conservative standard error estimates. After

the inference is done, we apply our proposed dynamic prediction method in validation
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Results without Parallel MCMC Results with Parallel MCMC
Parameter BIAS SD SE CP RMSE BIAS SD SE CP RMSE
α0=−1.000 0.001 0.169 0.184 0.960 0.169 0.010 0.175 0.184 0.955 0.175
α1=−0.200 −0.007 0.235 0.244 0.955 0.235 −0.011 0.241 0.244 0.960 0.240
α2=0.800 0.000 0.037 0.038 0.955 0.037 0.000 0.037 0.038 0.955 0.037
σ1=1.500 −0.005 0.123 0.138 0.970 0.123 −0.003 0.123 0.138 0.970 0.123
σ2=0.150 0.008 0.025 0.030 0.980 0.026 0.007 0.025 0.030 0.985 0.026
σv=0.200 0.001 0.039 0.041 0.960 0.039 0.001 0.040 0.041 0.955 0.040
ρ=0.400 0.006 0.183 0.244 0.995 0.183 0.008 0.184 0.245 0.995 0.183
σe=5.000 −0.001 0.068 0.065 0.940 0.067 0.000 0.065 0.065 0.950 0.065
β1=−0.12 0.003 0.025 0.025 0.955 0.025 0.002 0.025 0.025 0.960 0.025
ν=0.750 −0.001 0.039 0.042 0.980 0.039 −0.001 0.038 0.042 0.980 0.038

Table 2.1: Parameter estimates in simulation

dataset, which contains 200 new subjects who has never been used in training. Results

for dynamic prediction in validation dataset are presented in Table 2.2. Here AUC is

the average of all AUC calculated within given time interval for 200 simulation times.

The last column represents the average bias of the estimated event-free probability and

the true probability that calculated using true value of parameters. The estimated AUC

and BS are acceptable rate, and bias are all under 0.005. In conclusion, the simulation

results suggest that our proposed model gives close estimation of parameter vector, also

has a good prediction performance.
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t t′ AUC BS Bias

5

6 0.746 0.014 0.002
7 0.756 0.016 0.003
8 0.759 0.017 0.004
9 0.761 0.020 0.004

6
7 0.788 0.016 0.003
8 0.788 0.017 0.004
9 0.789 0.019 0.005

7
8 0.814 0.018 0.003
9 0.812 0.021 0.004

Table 2.2: Time-dependent AUC in simulation

2.5 ALLHAT Study Application Results

In this section, we apply the proposed joint model to the motivating ALLHAT study.

Considering the recurrent non-fatal cardiovascular disease events (composite CHD, stroke,

and heart failure) as our primary survival outcome, we select SBP as our longitudinal

biomarker which showed significant association with time to CVD events in previous

literatures. The longitudinal process and recurrent event process are related by sharing

an underlying latent function, an association parameter serves as an measurement of the

relationship between longitudinal biomarker and recurrent CVD events.

A number of potential risk factors of cardiovascular disease are assessed and evaluated

in previous related studies, including age, gender, diabetes, hypertension, history of

cardiovascular disease, alcohol consumption, tobacco use, family history of cardiovascular

disease, environmental factors, etc. [44, 59]. We pre-select the following risk factors to

be included in our analysis upon availability of the ALLHAT data: trial randomization
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group (0 if chlorthalidone, 1 if doxazosin), age (in year), gender (0 if female, 1 if male),

race (0 if white and others, 1 if black), diabetes (0 if no, 1 if yes), history of MI or

Stroke at baseline (0 if no, 1 if yes), history of coronary revascularization (0 if no, 1

if yes), antihypertensive treatment before trial (0 if no, 1 if yes). These covariates are

separately tested to be significant either the linear mixed effect model or the recurrent

event model. After excluding subjects with pending death confirmation pending and

those with missing data in aforementioned covariates, we obtain the analytical dataset

with total 19,804 subjects. Among these subjects, 16,811 subjects are cardiovascular

disease events free until the end of follow-up period, 2,179 subjects experienced 1 event,

and 814 subjects experienced more than 1 events during the follow-up of the study.

Due to the fact that ALLHAT study is one of the largest cardiovascular disease studies

in U.S. and our analysis include around 20,000 subjects, running MCMC sampler to get

posterior samples of model parameters in the whole dataset can be very time consuming.

In order to speed up the computation, we adopt the parallel MCMC approach in Section

2.3.4. To employ EP-MCMC method, we divide the analytical dataset into 10 partitions,

each partition includes around 2,000 randomly sampled subjects. In each of the 10

subsets, we run two parallel MCMC chains with overdispersed initial values and each

chain is ran for 5,000 iterations. The first 3,000 iterations are discarded as burn-in and the

inference of all parameters are based on remaining 2,000 iterations from each chain. We

employ piece-wise constant baseline hazard function in our analysis. To ensure we have

enough observations in each piece-wise interval, we construct intervals by every 1/4th
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quantile of the CVD events time in ALLHAT dataset. Good mixing and convergence

properties of the MCMC chains are ensured in trace plots and R̂ for each parameter is

below 1.01.

Parameters estimation using aforementioned method are presented in Table 2.3. For

longitudinal sub-model, the results suggests that there is significant different in random-

ization drug group, on average, the systolic blood pressure for subjects in doxazosin

group is 2.796 units (95% CI [2.428, 3.143]) higher than chlorthalidone group. Other risk

factors including age, gender, race, and baseline anti-hypertensive drug usage are found

to have significant effects on the systolic blood pressure. Specifically, 1 year increase

in age increases the systolic blood pressure by 0.136 units (95% CI [0.111, 0.162]) on

average. When compared to female subjects, male tend to have 1.2 units (95% CI [0.808,

1.584]) lower systolic blood pressure. On average, black subjects have 2.388 units (95%

CI [2.008, 2.773]) higher systolic blood pressure when compared to others. Subjects who

took anti-hypertensive drugs before baseline have 1.119 units (95% CI [0.469, 1.760])

higher systolic blood pressure than others. The results are consistent with the primary

ALLHAT publications [60]. For recurrent event sub-model, we find that subjects with di-

abetes history have significantly higher risk to develop new cardiovascular disease events

(RR= 1.578; 95% CI [1.418, 1.742]). Similar effects can be found in subjects with MI or

stroke (RR= 1.941; 95% CI [1.740, 2.160]), and subjects with history of coronary revascu-

larization (RR= 2.175; 95% CI [1.923, 2.479]). Moreover, the association parameter ν is

statistically significant, indicating the longitudinal systolic blood pressure measurements
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Mean 2.5% 97.5% SD

longitudinal submodel

Intercept 2.688 1.962 3.412 0.393
Trt(doxazosin) 2.796 2.428 3.143 0.186
Age(years) 0.136 0.111 0.162 0.013
Male 1.200 0.808 1.584 0.209
Black 2.388 2.008 2.773 0.196
BL Antihypertensive drug (Yes) 1.119 0.469 1.760 0.339
σ1 12.159 11.947 12.364 0.107
σ2 3.333 3.222 3.441 0.056
ρ −0.563 −0.584 −0.541 0.011
σe 12.416 12.363 12.470 0.028

recurrent event submodel

Diabetes (Yes) 0.456 0.349 0.555 0.054
History of MI or Stroke 0.663 0.554 0.770 0.054
History of coronary revascularization 0.777 0.654 0.908 0.065
Association 0.016 0.011 0.020 0.002

Table 2.3: Parameters estimation results

are positively associated with the risk of recurrent CVD event with a rate at 0.006 (95%

CI [0.001, 0.010]).

To assess and compare the prediction performance, we calculate time-dependent AUC

and BS of our proposed model (Model 1) and a simple recurrent event model (Model 2).

We present the estimated AUC and BS of different prediction time windows in Table 2.4.

The result suggests that our proposed model have higher AUC and lower BS than simple

recurrent event model in every prediction interval, suggesting that using longitudinal
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biomarker improves the prediction of patient’s risk of developing a new recurrent event.

The results also indicate that using more longitudinal and disease information tend to

improves the model prediction performance. For later prediction starting time, updated

SBP measurements are used in predicting risk of having a recurrent event, therefore the

prediction performance is improved.

To compare the dynamic prediction accuracy curves of these two prognostic models,

we employ the testing method proposed by Blanche et al. [34]. To illustrate the compar-

ison results, we plot the estimated AUC of Models 1 and 2 (upper panels) as well as the

difference of mean AUC from these two prognostic models (lower panels) in Figure 2.2.

The first graph of upper and lower panels displays the estimated AUC and difference of

AUC respectively for prediction landmark time year 1 with four prediction time windows

considered (0.25 year, 0.5 year, 0.75 year, and 1 year). Other graphs are constructed in a

similar fashion, but with different prediction landmark time (year 2, year 3, and year 4).

We find that for all landmark times, AUC from our proposed model (Model 1; solid black

line) is higher than it from simple recurrent event model (Model 2; solid gray line), and

the corresponding difference of AUC is above 0 for every prediction time window. For

prediction after year 1 visit, the estimated difference of AUC from Model 1 and 2 for 0.5,

0.75, and 1 year prediction window are significant at 0.05 level. Similarly, for prediction

made after year 2 visit, there is a significant difference of estimated AUC between Model

1 and 2 for 0.75 and 1 year prediction window at 0.05 significance level. On the other

hand, the differences of AUC estimated from predictions made after year 3 and year 4
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Model 1 Model 2
t(year) ∆t(month) AUC BS AUC BS

1

3 0.665 0.015 0.556 0.015
6 0.676 0.027 0.556 0.028
9 0.675 0.038 0.557 0.040

12 0.668 0.049 0.558 0.051

2

3 0.660 0.015 0.572 0.015
6 0.653 0.028 0.566 0.029
9 0.658 0.041 0.559 0.052

12 0.651 0.041 0.553 0.052

3

3 0.706 0.017 0.652 0.017
6 0.695 0.034 0.603 0.035
9 0.676 0.049 0.604 0.052

12 0.658 0.065 0.598 0.070

4

3 0.744 0.020 0.639 0.021
6 0.696 0.067 0.616 0.069
9 0.685 0.059 0.576 0.063

12 0.643 0.077 0.576 0.080

Table 2.4: Time-dependent AUC and BS for proposed joint model (Model 1) and reference
recurrent event model (Model 2)

from these two models are not significant at 0.05 level.

We select two subjects who experienced different occurrences of cardiovascular disease

events to illustrate our subject-level prediction results. Conditioning on their available

measurements, we predict their future longitudinal trajectory as well as the probability

of developing a new event in given time interval. With 11 recorded longitudinal SBP

measurements, subject 127 (upper panels) experienced total 5 recurrent CVD events

before year 4. Subject 15 (lower panels) had 13 recorded SBP measurements and only

had one CVD event during year 2 and year 3. Figure 2.3 presents the estimated SBP from

year 1 to year 5 for both subjects. When only 1 year information is used in prediction,
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Figure 2.2: Compare AUC for proposed joint model (Model 1) and reference recurrent
event model (Model 2)

the 95% confidence bands of both subjects are relatively wide, by using more follow-up

data, the 95% confidence band is narrower. Most of the actual SBP measurements fall

into the prediction confidence interval.

Besides the prediction of future trajectory of SBP, predicting the probability of having

a new CVD event in future is more of clinical interest. We illustrate the prediction

patterns of aforementioned two subjects in Figure 2.4. The upper penal of Figure 2.4

presents the event-free probability from different landmark time to year 5 for subject 127,

while the lower penal presents the probability for subject 15. Based on 1 year information,

subject 15 has a lower event risk between year 2 and year 5 when compared to subject

127 (the first plot of upper and lower panels). When year 2 data become available,

the prediction dynamically updates and the risk of having new CVD event decreases as
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Figure 2.3: Predicted SBP measurements for Subject 127 (upper panels) and Subject 15
(lower panels) in ALLHAT study. Dashed lines are the 2.5% and 97.5% percentiles. The
dotted vertical line represents the time of prediction t.

no event occurred for both of the subjects (the second plot of upper and lower panels).

However, for subject 127, predicted event risk after year 3 and year 4 increases sharply as

multiple CVD events occurred during this time interval (the third and last plots of upper

panels). Clinicians may closely monitor the subject and take personalized treatment

based on the prediction. A pattern which is similar to longitudinal trajectory prediction

is that when more data come into available, the prediction becomes more precise as the

confidence band narrows down.
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Figure 2.4: Predicted CVD event free probability for Subject 127 (upper panels) and
Subject 15 (lower panels) in ALLHAT study. Dashed lines are the 2.5% and 97.5%
percentiles.

2.6 Discussion

In this article, we propose a joint model of a longitudinal outcome and a recurrent event

process and apply our proposed model in ALLHAT dataset. The longitudinal process

and recurrent event process are correlated via shared latent function, an association pa-

rameter is set to model the relationship between these two process. The simulation study

indicates that the coefficients of covariates in both submodel and the association param-

eter estimated using our proposed model have small bias to true value and appropriate

coverage probability. Dividing the simulated dataset to training set and test set, we

conduct personalized prediction for each simulated sample in test set, and compute their
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probability of having an new event in given time interval. The prediction performance is

assessed by time-dependent Area Under Curve and dynamic Brier score. The Area Under

Curve and Brier score estimated using our proposed method are at acceptable rate and

mean survival probability bias are all below 0.005, indicating our proposed prediction

approach has good performance. We then apply our proposed model in ALLHAT study.

To address the computation issue caused by the large sample size of ALLHAT study, we

employ parallel MCMC method to do inference of parameters parallelly, which signifi-

cantly reduce our computing time. In every given prediction time interval, our proposed

model outperforms the simple recurrent event model in regards to AUC, which indicates

that utilizing subject-specific longitudinal information helps improve prediction accuracy

of having a new event in near future.

There are some possible future directions that we would like to pursue. One limita-

tion of our proposed model is that we treat death as non-informative censoring. This

assumption might not be true as death process can be related to longitudinal biomarker

or recurrent events. Joint model for the three correlated outcomes was proposed by recent

work in related area [32, 36]. Adding another submodel for death process, Liu & Huang

[32] proposed a joint random effects model with correlation between longitudinal process,

recurrent event process and death process modeled by shared random effects. Moreover,

Krol et al [36] not only proposed a trivariate joint model for longitudinal data, recurrent

events and a terminal event, but also extended the dynamic prediction for death process.

However, to our best knowledge, no work has been done regarding dynamic prediction
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for recurrent events. In the future work, we will extend the proposed model to take death

process into account while predicting future occurrence of recurrent events.

Another limitation of our work is that we only consider predicting future CVD events

utilizing under joint model framework, while the longitudinal trajectory is modeled via

linear mixed-effect submodel. Other methods including Principal Analysis by Conditional

Expectation (PACE) can be utilized to model longitudinal data without making linear

assumptions. In future studies, we plan to compare the prediction ability of these two

methods. As the occurrence of CVD events are usually related with multiple biomarkers

(e.g. serum cholesterol level, serum creatinine), including only longitudinal blood pressure

measurements in prediction model may results in relatively low AUC in our analysis.

Multivariate Functional Principal Component Analysis (MFPCA) method proposed by

Happ et al. [61] is a promising way to incorporate multiple longitudinal biomarkers in

predicting recurrence of CVD events. By leveraging other longitudinal outcomes, we may

be able to improve the prediction performance in future studies.

Moreover, numerous GWAS studies have been conducted in CVD area, incorporat-

ing genetic information in our prediction framework may improve prediction accuracy.

ALLHAT study also collected genetic information of participants during follow-up, how

to efficiently utilize these GWAS data to do the dynamic prediction warrants further

investigation.
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Appendix

We can derive πi(t
′|t) as follows:

πi(t
′|t)

=

∫ ∫
P (Ti,ni+1 ≤ t′|Ti,ni+1 > t,ui, vi, y i(t),θ)P (ui|Ti,ni+1 > t, y

i
(t),θ, vi)duiP (vi|Ti,ni+1 > t,θ)dvi

=

∫ ∫
P (Ti,ni+1 ≤ t′|Ti,ni+1 > t,ui, vi,θ)P (ui|Ti,ni+1 > t, y

i
(t),θ, vi)duiP (vi|Ti,ni+1 > t,θ)dvi

=

∫ ∫
P (t < Ti,ni+1 ≤ t′|ui, vi,θ)

P (Ti,ni+1 > t|ui, vi,θ)
P (ui|Ti,ni+1 > t, y

i
(t),θ, vi)duiP (vi|Ti,ni+1 > t,θ)dvi

=

∫ ∫
P (Ti,ni+1 > t|ui, vi,θ)− P (Ti,ni+1 > t′|ui,θ)

P (Ti,ni+1 > t|ui, vi,θ)

· P (ui|Ti,ni+1 > t, y
i
(t),θ, vi)duiP (vi|Ti,ni+1 > t,θ)dvi

= 1−
∫ ∫

P (Ti,ni+1 > t′|ui, vi,θ)

P (Ti,ni+1 > t|ui, vi,θ)
P (ui|Ti,ni+1 > t, y

i
(t),θ, vi)duiP (vi|Ti,ni+1 > t,θ)dvi

= 1−
∫ ∫

S(t′|ui, vi,θ)

S(t|ui, vi,θ)
P (ui|Ti,ni+1 > t, y

i
(t),θ, vi)duiP (vi|Ti,ni+1 > t,θ)dvi

= 1−
∫ ∫

exp

[
−
∫ t′

t

ri(s|ui, vi,θ)ds

]
P (ui|Ti,ni+1 > t, y

i
(t),θ, vi)duiP (vi|Ti,ni+1 > t,θ)dvi

≈ 1

M

M∑
m=1

1− exp

[
−
∫ t′

t

r
(m)
i (s|u(m)

i , v
(m)
i ,θ(m))ds

]
.

Here θ(m) is the mth sample (m = 1, . . . ,M , where M is the number of post burn-in

samples) of parameter vector θ and u
(m)
i , v

(m)
i is the mth sample of random effects ui

and vi respectively.
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Chapter 3

Article 2: Predicting time to PD progression using

multiple longitudinal outcomes in PPMI study
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Predicting time to H&Y stage reaching 3 using

multiple longitudinal outcomes in PPMI study

3.1 Introduction

Parkinson’s disease (PD) is a progressive, chronic neurodegenerative disease that affects

patients’ movement. In the absence of a curative treatment, there is an critical need to

identify significant and well-validated biomarkers associated with PD progression [10].

Moreover, there is an increasing interest in utilizing these disease related markers to

build prognostic model of PD progression. Previous literature studied a broad range of

motor and non-motor symptoms which are clinically correlated with evolution of Parkin-

son’s disease [7–9]. However, due to substantial heterogeneity of different symptoms and

subjects, it is hard to give accurate prognoses of disease progression. A lot of effort has

been made to build prediction models of PD outcomes based on single or multiple related

markers.

As a complex progressive disease, a variety of endpoints have been established to evalu-

ate PD severity and work as a criteria to categorize subjects into different disease stages.

Among these measures, Hoehn and Yahr (H&Y) scale has became one of the most com-

monly and widely used measurement to assess overall PD dysfunction stage [13]. Schrag
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et al. [14] examined the responsiveness of different PD progression outcome measures

over time and suggested the H&Y scale to be the most responsive measure. Based on

motor functions, the H&Y scale has served as a good endpoint of PD progression in many

published studies. The time to development of different H&Y stages from symptom onset

or enrollment has been widely studied as a way to evaluate disease progression in past

literature [15–18]. Although these literature discussed potential prognostic factors in pre-

dicting the H&Y stage progression, only baseline variables were included in the survival

model and longitudinal information was not taken into account. Relatively few stud-

ies considered modelling longitudinal marker in prediction of PD disease outcome. He

and Luo [19] proposed a joint model with multilevel item response theory sub-model for

the longitudinal data and Cox propotional hazard sub-model to handle time to terminal

event. They assessed the effect of tocopherol on time to initiation of symptomatic therapy

in early PD patients. Iddi et al. [20] applied a latent time joint mixed-effects model to

handle longitudinal outcomes and studied the association between different markers and

PD diagnostic category. However, to our best knowledge, no previous research has been

done regarding prognostication of time to the H&Y stage transition based on multiple

longitudinal markers.

Aiming at developing a prognostic model for time to disease progression measured by

H&Y stage transition, we incorporate longitudinal information from varies of clinical

markers by employing cutting-edge multivariate functional principal analysis (MFPCA)

method in this study. We apply the proposed model to data from the Parkinson’s Pro-
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gression Marker Initiative (PPMI) study, which collected a broad range of clinical mark-

ers that were frequently measured for untreated PD patients. External validation is

conducted in The Longitudinal and Biomarker Study in PD (LABS-PD) to assess the

prediction performance of the established prognostic model across different PD studies.

A set of prognostic index is estimated to calculate subject-level risk scores and can be

updated when new measurements come into available. The proposed approach enables

physicians to make clinical decision based on prognosis from enriched information, more-

over, identifying PD patients with higher risk of disease progression according to expected

prognostic risk score helps clinicians give adaptive treatment to targeted patients.

3.2 Patients

The Parkinson’s Progression Marker Initiative is a multicenter study of patients across

North America, Europe, Israel, and Australia. Detailed information regarding study

design, inclusion and exclusion criteria, and study protocols can be fould at https:

//www.ppmi-info.org/. Aiming at identify one or more markers of progression for

Parkinson’s disease (PD), the PPMI study recruited 423 newly diagnosed PD cases, who

must be untreated for PD at the time of enrollment. Clinical measurements, imaging

data and biological samples are collected longitudinally over a period of 6 years. For PD

patients, subjects were scheduled to visit sites every 3 months from enrollment during

their first year, and follow-up visits were conducted every 6 months. The LABS-PD pro-
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gram, whose main goal is developing biomarkers that measure risk for PD progression,

enrolled total 537 PD subjects at baseline [62]. Multiple motor and non-motor markers

were evaluated annually during study follow up period. Before initiating the study, all

sites of PPMI study and LABS-PD have been approved by the institutional review board,

and all study participants from both studies were given a written informed consent for

research.

Our interest is to study the prediction ability of multiple longitudinal risk factors for

disease progression. Following definition in study conducted by Müller et al [15], we

define time to PD progression as time from enrollment to patients reach H&Y stage 3,

which will be our primary outcome. Among all PD subjects from PPMI study, 3 of them

already reached H&Y stage 3 at baseline and has been excluded in following analysis.

We select the candidate longitudinal risk factors that were suggested to have associa-

tion with PD progression in previous literature [63] and are available in PPMI study:

Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS),

Montreal Cognitive Assessment (MoCA), total Scale for Outcomes in Parkinson’s - auto-

nomic questionnaire (SCOPA-AUT), Modified Schwab and England Activities of Daily

Living Scale (SEADL), Symbol Digit Modalities Test (SDM), Geriatric Depression Scale

(GDS), Letter Number Sequencing (LNS), Semantic verbal fluency and Questionnaire

for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP). Cerebrospinal fluid

(CSF) biomarkers including total tau (t-tau), phosphorylated tau (p-tau) and amyloid-

beta (Aβ1−42), which have been suggested as significant predictor for PD progression
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Progressed to Not progressed to Combined
H&Y stage 3 H&Y stage 3

Total 98 325 423
Age (years) 66.01 (9.40) 60.39 (9.44) 61.70 (9.72)
Education (years) 15.47 (2.74) 15.56 (3.07) 15.54 (2.99)
Male 58 (59.18%) 219 (67.38%) 277 (65.48%)
White 93 (94.90%) 308 (94.77%) 401 (94.80%)
Right handed 87 (88.78%) 288 (88.62%) 375 (88.65%)
Years of PD diagnosis (years) 0.62 (0.61) 0.53 (0.53) 0.55 (0.55)
MDS-UPDRS 1 7.67 (5.01) 4.93 (3.50) 5.57 (4.06)
MDS-UPDRS 2 7.86 (4.48) 5.30 (3.92) 5.89 (4.19)
MDS-UPDRS 3 24.09 (8.46) 19.93 (8.76) 20.89 (8.86)
MoCA 26.81 (2.51) 27.24 (2.25) 27.14 (2.32)
SDM 37.34 (9.49) 42.34 (9.51) 41.18 (9.73)
SEADL 91.84 (6.19) 93.54 (5.74) 93.14 (5.89)
QUIP 0.35 (0.73) 0.34 (0.89) 0.34 (0.86)
SCOPA-AUT 10.63 (5.75) 7.75 (5.25) 8.42 (5.50)
t-tau 49.29 (22.03) 43.36 (16.83) 44.69 (18.28)
p-tau 15.33 (10.30) 15.73 (9.99) 15.64 (10.05)
Aβ1−41 347.36 (103.68) 377.33 (98.55) 370.56 (100.39)

Table 3.1: Descriptive statistics measured at baseline of PPMI participants.

[64–66], are considered as potential risk factors in our analysis. Baseline characteristics

including patients’ age, gender and years of PD diagnosis are controlled in the prediction

model. We present the sample size and descriptive statistics for key baseline variables in

Table 3.1.
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3.3 Statistical Analysis

To model the time-to-event outcome (e.g. PD progression defined as HY stage reach 3)

accounting for multiple available longitudinal biomarkers, we adopt a novel approach inte-

grating features of longitudinal trajectories. By assuming there exists a latent process for

observed measurements of each longitudinal biomarker, we employ functional principal

component analysis (FPCA) approach to extract the features of each longitudinal process

[38]. While the mean trajectory of a longitudinal marker is estimated by entire sample

set, a set of subject-specific FPC scores for this biomarker is calculated to summarize the

changing pattern in individual level. There are two advantages when utilizing FPC scores

to capture longitudinal feature of subjects. First, by employing FPCA method, we do

not assume a trajectory model. In most cases, it is hard to specify a proper parametric

model for longitudinal process, and a miss-specified model will lead to biased estimation

and inaccurate prediction. Second benefit is that while extracting features of longitudi-

nal measurements, we use the observed values only, which means we allow subjects to

have different missing visits from one to another, and no need to impute the missing

values while calculating FPC scores. Moreover, with the eigenfunctions and eigenvalues

obtained from FPC analysis, we are able to reconstruct the longitudinal process and

estimate the value of biomarker at given time point. This feature of FPCA enables us

to handle irregular missing visits among study subjects while provides a practical way to

estimate missing values. However, one potential drawback of using FPCA on multiple
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markers separately is that, it is likely for the markers to have significant correlations be-

tween each other, which could cause the FPC scores computed from candidate markers

become highly correlated and fail the independent covariates assumption in subsequent

analysis. To solve this problem, We adopt multivariate functional principal component

analysis (MFPCA) method proposed by Happ et al [61] to properly address this issue.

Unlike using separate FPCA which fail to assess the joint variation of markers, MFPCA

captures the joint variation of markers and addresses the potential correlation directly

while estimating the matrix of covariances. As consequence, the MFPC scores derived

from candidate markers are uncorrelated and more parsimonious when compared with

separate FPC scores. To model the survival outcome integrating the impact of multiple

longitudinal markers, we use the MFPC scores to represent the feature of trajectories

and put them in the Cox-PH model as new risk factors.

3.3.1 MFPCA

To illustrate Multivariate FPCA method, we first introduce the univariate FPCA ap-

proach. The principal component model was first proposed by James et al. [67]. Let

Xi(t) denote the underlying latent longitudinal process for subject i, i = 1, · · · , n. We de-

note the total follow up time of the study as τ . The observed survival time is denoted by

Ti, which is the minimum of subject’s survival time Si and censoring time Ci. Let Zi(t) =

Zi1(t), · · · , Zir(t) denote vector of candidate covariates valued at time t that have signifi-
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cant effects on longitudinal process, and Vi(t) = Vi1(t), · · · , Vis(t) represent the covariates

valued at time t associated with recurrent event processes. Let µ(t) be the overall mean

effect of longitudinal process without considering covariates Zi(t), then the mean function

of longitudinal process is: µi(t) = µ(t|Zi) = µ(t) + βZi(t), where β denotes the coeffi-

cients of covariates associated with longitudinal data. Define G(s, t) = cov(Xi(s), Xi(t)),

and denote orthogonal eigenfunctions as φk, k = 1, 2, · · · , non-decreasing eigenvalues as

λk, k = 1, 2, · · · , then we can write G(s, t) =
∑

k λkφk(s)φk(t). From Karhunen-Loéve

theory [68], individual trajectory Xi(t) can be expressed as Xi(t) = µi(t) +
∑

k ξikφk(t),

here coefficients ξik =
∫ τ

0
{Xi(t) − µi(t)}φk(t)dt are uncorrelated random variables with

mean zero and variances Eξ2
ik = λk. By supposing that G can be approximated by first

finite terms in eigen-decomposition, we can truncate the eigenfunctions and model the

trajectory using first K leading principal components, Xi(t) = µi(t)+
∑K

k=1 ξikµk(t). Let

Yij be the observation of longitudinal process at time tij, we can express the longitudinal

observation Yij as:

Yij = Xi(tij) + εij = µ(tij) +
M∑
n=1

ξinφn(tij) + εij.

where εij is measurement error with mean zero and variance σ2 and is independent of

ξik. Note that we can model the eigenfunctions using expansions of a set of smooth basis

functions, such as B-splines or regression splines.

The principal analysis by conditional estimation (PACE) algorithm was proposed by
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Yao, Müller & Wang [38] to estimate the mean function µ(tij), covariance function

G(s, t), eigenfunction φn and FPCA scores ξn, where n = 1, · · · ,M . The PACE method

was demonstrated to be powerful when applied to sparse longitudinal data with noise.

Basically, the estimated mean function µ̂(tij) is obtained by a one-dimensional kernel

smoother, following the estimation of mean function, the covariance matrix Ĝ can be es-

timated by a two-dimensional kernel smoother with pairwise products {Yij− µ̂(tij)}{Yil−

µ̂(til)}. Thus we are able to obtain eigenfunctions φ̂n and eigenvalues λ̂n, n = 1, · · · ,Mj,

by spectral decomposition of covariance matrix Ĝ. Based on the estimation results,

the FPCA scores for longitudinal trajectory of subject i can be estimated by ξi,n =∫
(Zi(t) − µ(t))φn(t). Other than integration, Yao, Müller & Wang [38] proposed an-

other way to estimate FPCA scores by assuming ξi,n and εij are independent. Define

ΣYi = cov(Zi, Zi) + σ2I, it can be estimated following details given in Yao, Müller &

Wang’s paper [38].Thus, we can estimate univariate FPCA scores based on its condi-

tional expectation, specifically:

ξ̂i,n = Ê(ξi,n|Yi) = λ̂nφ̂
′

n(tij)Σ̂
−1
Yi

(Yi(tij)− µ̂(tij)).

MFPCA method proposed by Happ & Greven [69] provides a way to extract features

of multiple longitudinal outcomes while capturing the joint variation between different

outcomes. Let X(t) denote the vector that combined p different functions, i.e, X(t) =
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(X(1)(t), · · · , X(j)(t), · · · , X(p)(t)), where j = 1, · · · , p. Following the assumptions for

univariate FPCA, multivariate Karhunen-Loéve theory give a representation as:

X(t) = (X(1)(t), · · · , X(j)(t), · · · , X(p)(t))

=

(
∞∑
m=1

ρmψ
(1)
m (t), · · · ,

∞∑
m=1

ρmψ
(j)
m (t), · · · ,

∞∑
m=1

ρmψ
(p)
m (t)

)

here multivariate FPC score ρ = (ρ1, ρ2, · · · , ρm, · · · ) are random variables with zero

mean, ψm is an orthonormal basis of Hilbert space. The eigenvalue νm represents the

amount of variability in X that explained by corresponding multivariate functional prin-

cipal components ψm, while the multivariate FPC scores ρm serves as weights of ψm. As

non-decreasing eigenvalues νm goes to 0 when m → ∞, we can truncate the Karhunen-

Loéve expression using first M components of ψm, M can be selected using model selec-

tion techniques (e.g. AIC, backward selection, proportion of variance explained, etc.).

Next we give our approach for estimating multivariate FPCA based on properties given

in section 3 of Happ & Greven. [69].

1. For each elementX(j), j = 1, · · · , p, estimate univariate FPCA based on observation

for N subjects, as a result, eigenfunctions φ̂
(j)
m and FPC score ξ̂

(j)
i,m can be estimated.

Here, i = 1, · · · , N , m = 1, · · · ,Mj is the truncation parameter of element X(j).

2. Let M+ =
∑p

j=1 Mj, define matrix B ∈ RN×M+ , each row of B is a vector of es-

timated FPC scores of subject i for p-dimensional functional covariates, Bi,. =

(ξ̂
(1)
i,1 , · · · , ξ̂

(1)
i,M1

, · · · , ξ̂(p)
i,1 , · · · , ξ̂

(p)
i,Mp

). Hence we can get the estimated Z matrix,
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ẐM+×M+ = (N − 1)−1B>B.

3. We then perform spectral decomposition of Ẑ matrix, resulting estimated eigenval-

ues (v̂1, · · · , v̂m, · · · , v̂M+) and eigenvectors (ĉ1, · · · , ĉm, · · · , ĉM+).

4. Estimation of multivariate eigenfunctions are given as follows:

ψ̂(j)
m (t) =

Mj∑
n=1

[ĉm](j)n φ̂(j)
n (t),

here [ĉm]
(j)
n is the nth(n = 1, · · · ,Mj) element of jth(j = 1, · · · , p) block of eigen-

vector ĉm(m = 1, · · · ,M+), φ̂
(j)
n (t) is the univariate FPC eigenfunction obtained

from step 1. Multivariate FPC scores for each observation can also be calculated

using following formula:

ρ̂i,m =
P∑
j=1

Mj∑
n=1

[ĉm](j)n ξ̂
(j)
i,n = Bi,.ĉm,

here i = 1, · · · , N , m = 1, · · · ,M+, ξ̂
(j)
i,n is the estimated univariate FPC score

obtained from step 1. Therefore, we are able to express multivariate functional

covariates for subject i as Xi(t) in terms of estimated multivariate eigenfunctions

and scores,

Xi(t) = (X
(1)
i (t), · · · , X(p)

i (t)) =

(
M+∑
m=1

ρ̂i,mψ̂
(1)
m (t), · · · ,

M+∑
m=1

ρ̂i,mψ̂
(p)
m (t)

)
. (3.1)
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Following the theory foundation in aforementioned sections, we are able to estimate the

MFPC scores, which is included in the proposed Cox regression model 1 to integrate

multivariate longitudinal information.

3.3.2 Longitudinal marker selection

As PPMI study collected many longitudinal markers of participants during follow up pe-

riod, we first investigate the prediction ability of each candidate markers in order to select

appropriate markers in disease progression prognostic model. Joint modeling method is

employed to simultaneously model time to reaching H&Y stage 3 and candidate longitu-

dinal markers, and assess the association strength of each markers and survival outcome

[28, 70]. The joint model consists of two sub-models, one is the linear mixed-effects

model for longitudinal data, another is the Cox regression model for survival data. The

time metric for both models is years from enrollment. As the intention is to assess the

prognostic ability of different markers, we standardize each longitudinal outcome before

fitting the model to make them comparable. The association parameter from the fitted

joint model is used to capture the relation between longitudinal marker and survival out-

come, which in our case, quantifies the prediction ability of time to disease progression

for candidate markers. An significant estimation of association parameter meant that the

marker accounts for the variation of time to H&Y stage transition to 3. In all models, we

control for baseline covariates: gender, race, age, education years, years of PD diagnosis

and handedness. The joint modelling results are presented in Table 3.2, with longitudi-
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nal markers ranked by the absolute value of association parameter’s Z-score. Candidate

markers ranked within top 5 are selected to be the longitudinal predictor included in

our proposed prognostic model, i.e., MDS-UPDRS 3, MDS-UPDRS 2, QUIP, SDM, and

SCOPA-AUT.

Longitudinal N Association P-value Z-Score

marker (SE)

MDS-UPDRS 3 417 1.124(0.011) <0.001 6.413

MDS-UPDRS 2 417 0.730(0.007) <0.001 5.577

QUIP 410 -3.026(0.162) <0.001 -3.226

SDM 410 -0.378(0.004) 0.002 -3.164

SCOPA-AUT 410 0.328(0.008) 0.007 2.715

SEADL 417 -0.361(0.009) 0.025 -2.279

MDS-UPDRS 1 417 0.309(0.009) 0.031 2.120

MoCA 417 -0.244(0.006) 0.060 -1.973

Derived LNS 410 -0.201(0.005) 0.140 -1.455

GDS15 410 0.106(0.008) 0.476 0.715

Semantic Fluency 410 0.031(0.009) 0.856 0.172

Table 3.2: Prediction of time to H&Y stage reaching 3 using longitudinal marker: joint
modelling results.
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3.3.3 MFPCA based Cox regression model

To predict the time to reaching H&Y stage 3, we specify our proposed Cox regression

model integrating the longitudinal information from selected 5 markers by extracting

features using MFPCA method (referred as Model 1). To ensure at least 99% of total

variation is explained, we select the first 10 MFPC scores as the extracted features of

those 5 longitudinal markers. For comparison purpose, we also specify another Cox

regression model with only subject’s demographic variables and baseline measurements

of selected 5 markers (referred as Model 2). Comparing the prediction performance of

these two models help us assess the gain from incorporating longitudinal information.

Before conducting the analysis, we fit a separate Cox model to select significant baseline

demographic variables, age, gender, baseline t-tau, and baseline Aβ1−41 are identified as

significant predictors. Due to the fact that the exact date of patient transit to H&Y

stage 3 is unknown, we define the time to event outcome as time to the first visit that

patient was rated as H&Y stage 3 while subjects who did not reach H&Y stage 3 yet are

considered as censored. Controlling for common baseline variables, we specify the hazard

function for Model 1 (Equation 1) and Model 2 (Equation 2) as following:

61



hi(t) = h0(t) exp{β1Agei + β2Malei + β3t-taui + β4Aβi +
10∑
k=1

αkMFPCscoresik} (3.2)

hi(t) = h0(t) exp{β1Agei + β2Malei + β3t-taui + β4Aβi + β5MDS-UPDRS3i

+ β6MDS-UPDRS2i + β7QUIPi + β8SDMi + β9SCOPA-AUTi}.
(3.3)

Here, h0(t) represents the baseline hazard function, β denotes the coefficients associated

with risk factors, and α denotes the regression coefficients for MFPC scores. To ensure

we have sufficient observations for each longitudinal markers to calculate MFPC scores,

we exclude subjects only have less or equal than two available longitudinal measurements

for any of the markers.

We assess the prediction performance of the previous specified models from two aspect.

To assess the global discrimination ability, we employ the integrated area under the

time-dependent receiver operating characteristic curve (iAUC) proposed by Uno et al

[71], which is based on inverse-probability-of-censoring weights. On the other hand, we

evaluate the calibration ability of prognostic models by integrated Brier score (BS) [72].

Moreover, while iAUC and BS are well studied in quantifying the overall prediction

performance, comparing the time-dependent AUC between the two pre-specified models

is also important. We employ the methodology approach proposed by Blanche et al [73]

to compute confidence region of time-dependent AUC and test for the difference between

them in the two aforementioned prognostic models. Regards of prediction, we use 10-
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fold cross validation (CV) strategy to avoid overestimation. We repeatedly conduct

CV in PPMI dataset for 100 times using different random seed to reduce the variation

caused by data splitting. The internal iAUC and BS for both models are calculated

to assess the improvement when integrating longitudinal information in prognostication,

and the confidence region of difference of time-dependent AUC from the two models is

calculated to test for significance. With the intention to establish an index that can

be used across studies, we computed the prognostic index (PI) from the MFPCA based

Cox regression Model 2. The formula for calculating prognostic index is based on the

estimated regression coefficients:

PI = β1Agei + β2Malei + β3t-taui + β4Aβi +
10∑
k=1

αkMFPCscoresik. (3.4)

We use data from LABS-PD to conduct external validation. Since LABS-PD did not

collected all the top 5 ranked longitudinal markers in PPMI (MDS-UPDRS 3, MDS-

UPDRS 2, QUIP, SDM, and SCOPA-AUT), we rank the available markers in both studies

by their absolute Z-score and select the top 5 to be included in validation prognostic

models, i.e., MDS-UPDRS 3, MDS-UPDRS 2, MDS-UPDRS 1, SEADL, MDS-UPDRS

1, MoCA. In external validation session, we refer the two Cox regression models as The

Model 1a and Model 2a, which are similar to Equation 1 and Equation 2 respectively,

with the only difference that instead of using the optimal 5 longitudinal markers, we use

the 5 top ranked markers among available ones in both studies. We exclude the subjects
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who only measured less or equal than twice for any of these longitudinal markers during

follow up. To better compare the prediction performance of proposed models across

studies, we first conduct internal validation for Model 1a and Model 2a in PPMI and

LABS-PD separately. The external validation is conducted by applying models fitted

from PPMI data on LABS-PD data. Prediction performance is evaluated by iAUC and

BS. Based on the Model 2a fitted in PPMI data, we establish the formula for calculating

prognostic index using regression coefficients. We then apply the formula on LABS-PD

data to assess the ability of categorizing risk groups across studies.

3.4 PPMI Study Application Results

The results of the prognostic models are summarized in Table 3.3. While the the internal

prediction performance index (iAUCINT ) for baseline Cox regression Model 2 on PPMI

is 0.758, the internal iAUC for MFPCA based Cox regression Model 1 gets 5 percentage

point higher by incorporating longitudinal information of selected markers. Similarly, the

internal Brier Score (BSINT ) for Model 1 is 0.094, which is about 1 percentage point lower

than Model 2, indicating the bias between predicted and true risk is smaller in Model

1. To illustrate the comparison results, we plot the estimated time-dependent AUC of

MFPCA model (Model 1) and Baseline Model (Model 2) as well as the difference of mean

AUC from these two prognostic models in Figure 3.1. From the AUC plot (left panel), We

find that the estimated time-dependent AUC is higher for MFPCA model when compared
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to Baseline model at all landmark time. Moreover, the right panel shows the difference of

mean AUC is alway above 0 across time, and the confidence interval does not contain 0

after around 40 months, indicating the AUC difference between two prognostic models is

significant when in later prediction time. As the analysis results favor Model 1 in regards

of higher iAUC and lower BS, we select Model 1 to establish the prognostic index. Based

on the regression coefficients estimated from Model 1, we follow formula in Equation (3)

to calculate PI for each subject in PPMI. We then use the PI quartiles (50%, 75%, 100%)

to categorize subjects into three risk groups (high, mid and low). For comparison purpose,

we also calculate a similar prognostic risk score based on Model 2 and classify subjects into

different risk groups according to calculated risk scores. The Kaplan-Meier (K-M) curves

for PD progression risk groups categorized from two prognostic models are presented in

Figure 3.2. Comparing the Kaplan-Meier curves for the 3 risk groups classified according

to PI from Model 1 (left panel) and the curves for risk groups classified based on Model 2

(right panel), we find PI quartiles from Model 1 separate risk groups better in the sense

of non over-lapping survival probability confidence band in later follow-up time, which

agrees with the difference of estimated AUC plot in Figure 3.1. The finding suggests

that incorporating longitudinal information in prognostic model help to identify subjects

with higher risk of reaching H&Y stage 3 after enrollment. We then apply the proposed

prognostic models in LABS-PD to assess the prediction performance across studies. Due

to the availability of longitudinal markers in LABS-PD, we choose the 5 top ranked

markers that is collected in both PPMI and LABS-PD studies instead of using the optimal
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5 longitudinal markers. The MFPCA based Cox regression model adjusted for data

availability is referred as Model 1a, and the corresponding prognostic model only includes

baseline measurements is referred as Model 2a. To establish a benchmark for comparison,

we conduct 10-fold class internal validation in PPMI and LABS-PD respectively, after

that the external validation is carried out in LABS-PD using models fitted in PPMI

dataset. Results for internal and external validation are summarized in Table 3.3. The

iAUC calculated from Model 1a, which includes the top 5 available markers, is 0.797,

about 1 percentage point lower than iAUC for Model 1 including optimal 5 markers.

When compared with the baseline Cox regression Model 2a, mean iAUC estimated from

Model 1a incorporating longitudinal information is about 5 percentage point higher. In

internal validation for LABS-PD study, iAUC for Model 1a is 0.806, which is about 8

percentage higher than Model 2a which only accounts for baseline measurements. For

external validation, we fit the proposed models in PPMI, and apply the prognostic models

on LABS-PD data. As a result, Model 1a is also favored with higher iAUC and lower BS.

The consistent internal and external findings suggests Model 1a has a better prognostic

ability regarding prediction of time to H&Y stage reach 3 across studies. When it comes

to the comparison between iAUC from internal and external validation in LABS-PD, we

find the iAUC of external validation is 8 percentage point lower in Model 1a, while the

difference is 2 percentage point in Model 2a. This could be caused by the nature of the

two studies. While PPMI only recruited early, untreated PD patients, the 537 subjects

in LABS-PD PostCEPT were part of participants from previous conducted PRECEPT
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study and not necessarily de-novo patients. Figure 3.3 shows the Kaplan-Meier plot for

the high, mid and low risk groups of PD progression in PPMI and LABS-PD respectively.

The risk curves for LABS-PD is similar to the curves for PPMI with the top curve for

low risk subjects, bottom curve for high risk group and the curve in the middle for mid

risk group. The plots indicate the PI formula established in PPMI can be well applied

to LABS-PD to classify subjects with different level of progression risk. Moreover, the

low risk group in LABS-PD study progresses faster than the same risk group in PPMI,

which is consist with the characteristic of LABS-PD subjects that they have longer PD

disease history than PPMI subjects and tend to progress in nearer future. With the

calculated PI, We are able to estimate the survival probability for subjects in different

risk groups based on the Kaplan-Meier curves in Figure 3.3 correspondingly. Also, with

the approximated baseline risk function (e.g. using piece-wise constant or splines) we are

able to calculate the survival risk of time to H&Y stage reaching 3 for specific subject.
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Model 1 Model 2 Model 1a Model 2a

Study iAUCINT iAUCINT iAUCINT iAUCEXT iAUCINT iAUCEXT

PPMI (n=375) 0.808 0.758 0.797 - 0.752 -

LABS-PD (n=459) - - 0.806 0.720 0.721 0.701

BSINT BSINT BSINT BSEXT BSINT BSEXT

PPMI (n=375) 0.094 0.106 0.089 - 0.097 -

LABS-PD (n=459) - - 0.184 0.165 0.292 0.172

Table 3.3: Comparison of prognostic models in internal validation and external valida-
tion. Model 1 is the proposed prognostic model with optimal 5 markers, Model 2 is the
corresponding baseline prognostic model. Model 1a and Model 2a are similar models
with top 5 ranked available markers.

(a) Estimated AUC plot over time (b) Difference of estimated AUC plot over time

Figure 3.1: Time-dependent AUC plot for Model 1 and Model 2.
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(a) Risk groups categorized based on Model 1 (b) Risk groups categorized based on Model 2

Figure 3.2: Kaplan-Meier plot for risk groups of PD progression to H&Y stage 3.

(a) Kaplan-Meier plot for subjects in PPMI (b) Kaplan-Meier plot for subjects in LABS-PD

Figure 3.3: Kaplan-Meier plot for risk groups of PD progression to H&Y stage 3 in PPMI
and LABS-PD.
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Chapter 4

Article 3: Dynamic prediction of recurrent events

using multiple longitudinal outcomes
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Dynamic prediction of recurrent events using multiple

longitudinal outcomes

4.1 Introduction

Over the past decades, the prevalence of cardiovascular disease (CVD) has motivated

systematic investigation into its risk factors, prevention strategy and treatment method.

As the first large CVD study with longitudinal follow up visits, Framingham Heart Study

(FHS) has been collecting longitudinal clinical outcomes at each schduled exam since 1948

[74]. Due to the emerging evidence of the role of shared familial factors in developing

CVD, researchers are interested in study the next generation of participants. FHS inves-

tigators recruited the Offspring Cohort, which consists of a group of children of Original

Cohort members with coronary disease and the spouses of those children [75]. Starting

from 1972, the FHS Offspring Cohort conducted in-person examinations for participants

to collect longitudinal measurements including systolic blood pressure (SBP), body mass

index (BMI), blood glucose and etc. Although there are numerous literature aiming at

identifying risk factors for CVD, a growing interest lay in the prediction of the occurrence

of cardiovascular events. As the primary outcome of FHS Offspring Cohort is the CVD

events, which have feature of recurrence (i.e. the event of interest often occurs multiple
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times from the same subject), the commonly used Cox proportional hazard model will

not be appropriate, since it ignores the intrinsic correlation between those repeated oc-

currences within the same subject [21]. To avoid the biased estimated risk, proposing an

effective prediction model for the next-occurrence of CVD event is of importance here.

Moreover, as the recurrent CVD events tend to have significant association with clini-

cal longitudinal markers, incorporating those rich longitudinal information in prediction

models meets the urgent need of improving the prognostic performance. A few of studies

has investigated joint analysis of longitudinal marker and recurrent event [28, 32, 36,

37], however, utilizing information from multiple longitudinal markers to predict the risk

of re-occurrence of events remains an open question. Motivated by the FHS Offspring

data, our study focuses on the joint analysis of multiple longitudinal clinical markers and

recurrent CVD events. A prediction model is proposed to estimate the risk of having

another recurrent CVD event in given time interval. Moreover, we develop a dynamic

prediction framework for the next occurrence of CVD event using subject-specific longi-

tudinal profiles, which enables physicians give personalized and precision treatment to

patients.

Joint models (JM) of longitudinal measurements and survival data (including ter-

minal event and recurrent event data) have been a popular method to analyze clinical

measurements and event of interest together in the past decades. Among the existing

literature, Henderson [28] proposed a joint model of longitudinal data and recurrent event

data, with association between two process captured by correlated latent trajectory. Liu
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and Huang [32] established a JM approach where a more complex setting was consid-

ered, i.e. a repeated measures process and a recurrent events process were correlated,

both subject to a terminal event. In terms of prediction of terminal event risk under JM

framework, Krol et al [36] extended the usage of joint model of longitudinal data, recur-

rent events, and a terminal event to dynamic prediction area. As a result of their work,

the probability of having a terminal event in specific time interval is estimated, given

previous longitudinal profile and recurrent event history. In recurrent events prediction

area, Musoro et al [37] employed landmark method to handle the longitudinal data as

time-fixed covariate at different landmark time point, and in this way extended dynamic

prediction by landmarking to recurrent event data. However, these publications only

investigated the prediction ability of single longitudinal outcome. While it is challeng-

ing to specify appropriate parameter distributions when modelling multiple longitudinal

trajectories, the major limitation occurs in extending the JM approach to incorporate

multivariate longitudinal outcomes. In addition to the issue in statistical aspect, the com-

putation intensity becomes another concern when joint model under Bayesian framework

is considered, especially with a large number of candidate longitudinal markers.

To avoid involving in the potential issues when extending JM framework, we con-

sider a novel approach which is more flexible, robust and time efficient. Since Yao [38]

proposed a nonparametric approach to perform functional principal components analysis

(FPCA) on sparse longitudinal data, researchers has extended the usage of FPCA to

joint analysis of repeated measurements and survival data [39]. In the two-step approach
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proposed by Holte et al [40], the feature of longitudinal trajectory was extracted and

represented by the functional principle component (FPC) scores estimated from separate

model, and the estimated FPC scores were included in the survival model as new risk

factors to build association between longitudinal trajectory and the survival outcome.

Yan et a [41] extended the FPCA framework further to dynamic prediction area, their

work enables the estimated FPCA scores can be updated as new longitudinal information

come into available. However, these studies focused only incorporating information from

single longitudinal marker in the survival model, moreover, the Cox model they used to

model the terminal event is not suitable when the event of interest has recurrent feature

(e.g. CVD events). To our best knowledge, no existing literature has investigated the

prediction of recurrent event utilizing information from multiple longitudinal markers.

In this article, we develop an novel approach to fit this critical need. In the proposed ap-

proach, we first extract the feature of multiple longitudinal trajectories using multivariate

FPCA (MFPCA) method, and then fit a recurrent event model with intensity function

incorporating the feature scores from longitudinal markers. The dynamic prediction for

the risk of next occurrence of recurrent event is also derived to conduct personalized

prediction based on subject-specific longitudinal measurements.

The rest of the article is organized as follows. In Section 2, we illustrate the modeling

framework with detailed description of MFPCA method that used to extract features of

longitudinal outcomes, the recurrent event model with Poission intensity function, and

the dynamic prediction derivation. In Section 3, the proposed approach is applied on

74



the motivating FHS Offspring Cohort, and the estimated AUC is compared across can-

didate models. The simulation results are presented in Section 4 to assess the prediction

performance of our proposed model under different scenarios. In the last section, the

concluding remarks and future research directions are discussed.

4.2 Methods

In this section, we give a detailed description of the proposed approach to model the

recurrent CVD events incorporating information from multiple longitudinal outcomes.

Considering a study of N subjects. Let {Yijq} = {Yiq(tij)} be the vector of longitudinal

observation of the q-th (q = 1, · · · , Q) clinical marker for subject i at time tij, where

i = 1, . . . , N , and j = 1, . . . ,mi. Assuming there exists an underlying latent trajectory

Xiq(t) for each observed longitudinal measurement Yiq, we denote the corresponding error

term as εijq and re-write the longitudinal observation as Yij(tij) = Xiq(tij) + εijq, where

epsilonijq has zero mean and variance σ2
εq . Let Tik be the recurrent event times from

study onset for subject i, k = 0, . . . , ni, where ni denotes the total number of recurrent

CVD events subject i experienced.

4.2.1 multivariate FPCA method and implement

LetX i(t) denote the vector that combined q different functions, i.e, X i(t) = (Xi1(t), · · · ,

Xiq(t), · · · , XiQ(t)), where q = 1, · · · , Q. Before getting into multivariate FPCA, We
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first illustrate univariate FPCA method for single longitudinal outcome q. We denote

the smoothed mean function of Xiq(t) as µq(t), and the covariance function which mod-

els correlation of longitudinal outcome q’s latent trajectory between time t and t′ as

Σq(t, t
′) = cov{Xiq(t), Xiq(t

′)}. Using spectral decomposition, the covariance function can

be re-write as Σq(t, t
′) = Σ∞n=1λqnφqn(t)φqn(t′), with {λqn} represent the non-increasing

eigenvalues for outcome q, and {φqn(t)} denote the corresponding eigenfunctions. The

Karhunen-Loéve theory give a representation of Xiq(t) as:

Xiq(t) = µq(t) +
∞∑
n=1

ξiqnφqn(t). (4.1)

Here, {ξiqn} is the set of uncorrelated FPC scores with 0 mean and variance λqn. The

FPC scores describes how the observed profile of subject i follows the changing pattern

φqn(t), and can be viewed as the extracted feature of subject i. Moreover, the latent

trajectory can be approximated with finite terms as Xiq(t) ≈ µq(t) +
∑Nq

n=1 ξiqnφqn(t),

where Nq can be selected according to pre-specified percentage of variance explained

(PVE). As the actual observed longitudinal data for outcome q is usually only available

for irregular visit time and tend to be sparse data, we employ the principle analysis by

conditional estimation (PACE) [38] to conduct analysis. We can express the longitudinal

observation Yijq as:

Yijq = Xiq(tij) + εijq = µq(tij) +

Nq∑
n=1

ξiqnφn(tij) + εijq. (4.2)

76



The PACE method was demonstrated to be powerful when applied to sparse longitudinal

data with noise. We use it to estimate the mean function µq(tij), covariance function

Σiq(t, t
′), eigenfunctions {φqn} and FPCA scores ξiqn, where n = 1, · · · , Nq. Basically,

the estimated mean function µ̂q(tij) is obtained by a one-dimensional kernel smoother.

Following the estimation of mean function, the covariance matrix Σ̂ can be estimated by

a two-dimensional kernel smoother with pairwise products {Yijq− µ̂q(tij)}{Yilq− µ̂q(til)}.

Thus we are able to obtain eigenfunctions φ̂qn and eigenvalues λ̂qn, n = 1, · · · , Nq,

by spectral decomposition of covariance matrix Σ̂iq. Based on the estimation results,

the FPCA scores for longitudinal trajectory of subject i can be estimated based on its

conditional expectation, specifically:

ξ̂iqn = Ê(ξiqn|Yiq) = λ̂qnφ̂
′

qnΣ̂−1
Yiq

(Y iq − µ̂q). (4.3)

Since the estimated FPC scores from q longitudinal clinical outcomes can be correlated

due to their intrinsic relationship, we use MFPCA method to extract features of multiple

longitudinal outcomes while capturing the joint variation between different outcomes [69].

Let M+ =
∑Q

q=1Nq, define matrix B ∈ RN×M+ , each row of B is a vector of estimated

FPC scores of subject i for q-th outcome, Bi,. = (ξ̂i11, · · · , ξ̂i1Nq , · · · , ξ̂iQ1, · · · , ξ̂iQNQ
).

Hence we can get the estimated Z matrix, ẐM+×M+ = (N − 1)−1B>B. We then per-

form spectral decomposition of Ẑ matrix, resulting estimated eigenvalues (v̂1, · · · , v̂m,

· · · , v̂M+) and eigenvectors (ĉ1, · · · , ĉm, · · · , ĉM+). Estimation of multivariate eigenfunc-
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tions are given as ψ̂mq(t) =
∑Nq

n=1[ĉm]nqφ̂nq(t), here [ĉm]nq is the nth(n = 1, · · · , Nq)

element of q-th(q = 1, · · · , Q) block of eigenvector ĉm(m = 1, · · · ,M+), φ̂nq(t) is the

univariate FPC eigenfunction obtained from training dataset. Multivariate functional

principle component (MFPC) scores for each observation can also be calculated using

following formula:

ρ̂im =

Q∑
q=1

Nq∑
n=1

[ĉm]nq ξ̂iqn = Bi,.ĉm, (4.4)

here m = 1, · · · ,M+, ξ̂iqn is the estimated univariate FPC score obtained from step 1.

We select first D ≤M+ FPC scores based on pre-specified PVE or other criterion such as

Akaike information criterion (AIC) to represent the features extracted from multivariate

longitudinal trajectories, and use them in the recurrent event model. Therefore, we are

able to express the underlying trajectories of q-th longitudinal outcome for subject i in

terms of estimated multivariate eigenfunctions and scores:

Xiq(t) ≈ µ̂q(t) + ΣD
m=1ρ̂imψ̂qm(t) (4.5)

4.2.2 Recurrent event model

Assuming that the number of recurrent events in non-overlapping time intervals is a

poisson process, we are able to model the event process via intensity function. To in-

tegrate multivariate longitudinal information, we use the estimated MFPC scores ˆrhoim

as predictors in the intensity function, to model the relationship between longitudinal
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outcomes and recurrent events. Following previous notation, the intensity function of

recurrent events for subject i is:

ri(t) = r0(t) exp{ZR
i β + ρ̂iγ + vi}. (4.6)

Here, the covariate vector ZR
i is the time-independent covariates and β is the correspond-

ing coefficient vector, γ is the vector of coefficient for the estimated MFPC scores {ρ̂im},

m = 1, · · · , D, vi is the random effect follows normal distribution N(0, σv). We utilize

piece-wise constant baseline hazard model to obtain estimators for both fixed effects and

random effects, which increase the robustness of our model fitting. The total follow-up

time interval [0, τ ] is divided using time knots τt = (0, τ1, ..., τR) by quantile of event

times, and the baseline hazard vector is denoted as g = (g0, g1, ..., gR−1). Then we can

define the piecewise constant hazard function as h0(t) =
∑R−1

r=0 grIr(t), where indicator

function Ir(t) = 1, if τr ≤ t < τr+1 and 0 if otherwise. Therefore, conditioning on random

effect vi, the likelihood of the recurrent events process for subject i is:

lRi =

ni∏
k=0

ri(tik)
σikSi(xi)

=

ni∏
k=0

[
r0(tik) exp

{
ZR
i β + ρ̂iγ + vi

}]δik
· exp

[
−
∫ τi

0

r0(t) exp
{
ZR
i β + ρ̂iγ + vi

}
dt

]
,
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where δik is the indicator of a recurrent event at time tik and τi is the observed follow-up

time. Thus, the full likelihood for subject i is

li = lRi · f(vi), (4.7)

where f(vi) is the density function of vi. The unknown parameter vector is θ = {β,γ, σv, r0(t)}.

4.2.3 Dynamic prediction

In order to extend the proposed model framework to dynamic prediction of event risk,

we randomly partition the dataset into two part, one is the training datasest which is

used to build the model, another is the validation dataset to access the prediction per-

formance of proposed model. We first apply our proposed MFPCA approach on training

dataset and estimate parameters and MFPC scores ρ̂m using all available longitudinal

observations. With the estimated MFPC scores and time-independent covariates, we fit

recurrent event model (4.6) in training dataset. After obtaining the estimated parameter

vectors β̂, γ̂, r̂0(t), we then illstrate the derivation and procedure to conduct prediction

in validation dataset. Suppose a new subject L had nL (e.g., nL = 0, 1, 2, · · · ) recur-

rent events up to time t, with q longitudinal outcomes Y Lq = {YLq(tLj); 0 ≤ tLj ≤ t},

we fist compute the FPC scores for the q-th outcome using equation (4.3), specifically,

ξLqn = λ̂qnφ̂
′

qnΣ̂−1
YLq

(Y Lq−µ̂q). With the estimated FPC scores for each of the longitudinal

outcomes, We then compute the MFPC scores ρ̂L for subject L following equation (4.5).
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Our goal is to predict his/her probability of having the nL+1 recurrent event before time

t′ = t + ∆t (e.g., 1 year), denoted by πL(t′|t) = P (TL,nL+1 ≤ t′|TL,nL+1 > t,ZL, ρ̂L,θ).

The probability πL(t′|t) can be derived as follows:

πL(t′|t)

=

∫
P (TL,nL+1 ≤ t′|TL,nL+1 > t,ZL, ρ̂L,θ, vL)P (vL|TL,nL+1 > t,θ)dvL

≈ 1

M

M∑
m=1

1− exp

[
−
∫ t′

t

r
(m)
L (s|v(m)

L ,ZL, ρ̂L,θ
(m))ds

]
.

(4.8)

When new information come into available, the estimated prediction probability πL(t′|t)

can be updated, which leads to dynamic risk prediction that change over time when

more data accumulate. We first update the estimated MFPC scores ρ̂L using enriched

multivariate longitudinal information. The updated MFPC scores reflect the trends that

altered by new observations. Then we update the estimated recurrent event risk. Here

θ(m) is the mth sample (m = 1, . . . ,M , where M is the number of post burn-in samples)

of parameter vector θ. For random effect, v
(m)
L is the mth sample of vL. The term r

(m)
L

denotes the intensity function from poission process conditioning on mth copy of θ and

corresponding random effect vL. To approximate the event probability πL(t
′|t), we need

to obtaining samples for random effect vL. The posterior samples of vL is drew from its
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posterior distribution P (vL|TL,nL+1 > t,θ) as follows:

P (vL|TL,nL+1 > t,θ(m)) =
P (TL,nL+1 > t, vL|θ(m))

P (TL,nL+1 > t|θ(m))
∝ P (TL,nL+1 > t, vL|θ(m))

= P (TL,nL+1 > t|vL,θ(m))P (vL|θ(m)),

It is important to access how well our proposed risk prediction model performs. Here, we

access the prediction performance in terms of global discrimination ability. To be more

specific, we employ receiver operating characteristic (ROC) curve and the area under the

ROC curves (AUC) to assess the discrimination ability of the proposed model. Following

the definition in previous section, for a given cut value c ∈ [0, 1], the time dependent

sensitivity and specificity are P{πi(t′|t) > c|D(t, t′) = 1, T ∗i > t} and P{πi(t′|t) ≤

c|D(t, t′) = 0, T ∗i > t} respectively, where D(t, t′) is an indicator function equals to 1

when a new event happen during time interval (t,t’] and equals to 0 otherwise. Therefore,

for probability p ∈ [0, 1], the ROC curves will be ROCt′
t (p) = TP t′

t [FP t′
t ]−1(p), where

TP t′
t denotes the true positive rate, FP t′

t denotes the false positive rate [56]. With the

defined time-dependent sensitivity and specificity, we calculate a standard “concordance”

summary: the time-dependent Area Under Curve (AUC) [57], the formula is AUC(t, t′) =∫ 1

0
ROCt′

t (p)dp.
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4.3 Application to FHS Offspring Cohort

In this section, we apply the proposed dynamic prediction approach to the motivating

Framingham Offspring Cohort. The primary survival outcome of FHS is the recurrent

general cardiovascular disease event. Scheduled every 4 year, investigators of FHS Off-

spring Cohort conducted exam on study participants, during which multiple longitudinal

clinical markers were measured. The whole follow-up period is from year 1972 to year

2015 with total 9 exams. Our primary goal is to assess the prediction performance of

combined multiple longitudinal outcomes on recurrent CVD events. Among the avail-

able clinical markers, we select the markers that are longitudinal collected and measured

at every exam. Specifically, we include 6 longitudinal clinical outcomes in the analysis:

systolic blood pressure (SBP), body mass index (BMI), blood glucose (BG), high-density

lipoprotein (HDL), total cholesterol (TC), triglycerides (TG). Evidence in previous re-

lated studies has shown significant correlation between these markers and CVD events

[76–80]. We also include other relevant time-independent covariates, i.e., age (in year),

gender (0 if female, 1 if male), diabetes (0 if no, 1 if yes) and smoking status (0 if no, 1 if

yes). After removing incomplete observations with missing data, our analysis focuses on

4221 participants in FHS Offspring Cohort. In the study, the participants were assessed

during each exam cycle, and had up to 9 longitudinal observations. As the exact date for

conducting exam varies across participants, we refer the average mean visit time for each

exam as the corresponding exam time. Among the participants, 734 subjects experienced
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1 general CVD events, and 801 subjects experienced more than 1 events, while the rest of

the participants are cardiovascular disease events free until the end of follow-up period.

We specify the intensity function of our proposed recurrent event model integrating the

multivariate longitudinal information in Model 1. In order to ensure at least 99% of total

variation is explained, we select the first 10 MFPC scores as the extracted features of

those 6 longitudinal markers. To compare the prediction performance of our proposed

model with other candidate models, we also specify another simple recurrent event model

with only subject’s time-independent covariates and baseline measurements of 6 longitu-

dinal outcomes (referred as Model 2). Moreover, to test whether incorporating multiple

longitudinal information can improve the prediction ability on recurrent event data, we

apply the joint model of single longitudinal outcome (SBP, one of the most relevant clin-

ical marker with CVD events) and recurrent event data (referred as Model 3) on FHS

Offspring dataset and compare it with our proposed approach. While controlling for

common baseline variables, we specify the intensity function for Model 1 as:

ri(t) = r0(t) exp{β1Agei + β2Malei + β3Smokei +
10∑
k=1

αkMFPCscoresik + vi}, (4.9)

and Model 2 as:

ri(t) = r0(t) exp{β1Agei + β2Malei + β3Smokei + β4SBPi + β5BMIi

+ β6BGi + β7HDLi + β8TCi + β9TGi + vi}.
(4.10)
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The Model 3 specification is as following:

SBPi(t) = γ0 + γ1Agei + γ2t+ ui + ei(t) = fi(t) + ei(t)

ri(t) = r0(t) exp{β1Agei + β2Malei + β3Smokei + νfi(t) + vi}.
(4.11)

Here, r0(t) represents the baseline intensity function, β denotes the coefficients associ-

ated with risk factors, and α denotes the regression coefficients for MFPC scores. In the

joint model, ui denotes the random effect in longitudinal process, and ν is the association

parameter. Subjects with less or equal than two available longitudinal measurements for

any of the markers are excluded while estimating MFPC scores. The prediction perfor-

mance of the previous specified models are assessed by calculating the time-dependent

Area Under Curve (AUC) at different prediction starting point over the follow-up pe-

riod. The 10-fold cross validation is conducted to avoid overestimation of the prediction.

The values of time-dependent AUC calculated based on the three candidate model are

presented in Table 4.1. From the summarized results, we find both three models have ac-

ceptable AUCs indicating a good prediction performance. Among the three models, our

proposed Model 1 has better prediction performance in regards of highest AUC for each

prediction time interval. The AUCs estimated from Model 1 have about 0.05 increase on

average when compared to Model 2 while the differences become larger in later prediction

time such as Exam 6 and Exam 7. This pattern indicates incorporating longitudinal in-

formation in prediction of recurrent CVD events will enhance the accuracy of predicting

risk of events, especially when prediction start at later follow-up time. When comparing
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Model 1 Model 2 Model 3
T (year) T ′(year) AUC AUC AUC

13 (Exam 3)

16 0.756 0.717 0.733
20 0.801 0.765 0.781
24 0.793 0.754 0.762
26 0.791 0.759 0.768
34 0.744 0.733 0.741
38 0.769 0.768 0.761

16 (Exam 4)

20 0.842 0.799 0.807
24 0.805 0.745 0.762
26 0.791 0.745 0.767
34 0.741 0.734 0.739
38 0.763 0.727 0.740

20 (Exam 5)

24 0.756 0.731 0.742
26 0.762 0.752 0.759
34 0.733 0.728 0.730
38 0.754 0.733 0.744

24 (Exam 6)
26 0.796 0.720 0.742
34 0.715 0.661 0.678
38 0.736 0.701 0.713

34 (Exam 7)
34 0.720 0.695 0.705
38 0.737 0.725 0.729

Table 4.1: Time-dependent AUC for Model 1 and candidate Model 2 & 3. Model 1 is the
proposed model based on MFPCA method, Model 2 is the baseline model, and Model 3
is the joint model with single longitudinal marker.
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Model 1 and Model 3, we notice an average of 0.03 increase in AUCs for our proposed

Model 1, suggesting the gain of prediction accuracy when include multivariate longitudi-

nal information instead of considering single longitudinal outcome. As a result, we select

Model 1 as our final model and conduct dynamic prediction in the validation dataset. In

order to illustrate the personalized dynamic prediction, we select two subjects who have

different patterns of longitudinal profiles and experienced different occurrences of cardio-

vascular disease events. Conditioning on the available observations of 6 clinical markers,

we predict their longitudinal trajectory from different prediction starting time. Figure

4.1 and Figure 4.2 shows how the predictions of longitudinal outcomes are updated over

time for Subject 103 and Subject 122 respectively. From the left panel to the right panel

of these two figures, the predicted trajectories are closer to the true observed values, also,

the 95& confidence interval becomes more narrower, suggesting with more follow-up data

the prediction improves. In Figure 4.3, we present the predicted probability of developing

a new event in given time interval. Subject 103 did not experiance any CVD event during

the follow-up period, while subject 122 (lower panels) had 2 CVD events between Exam

3 and Exam 7. At the beginning of prediction, although both Subject 103 and subject

122 did not experience any CVD event, the estimated event-free probability of Subject

122 is lower than Subject 103, which consist with his/her worse longitudinal profiles (i.e.

significantly higher SBP, BMI, BG). The results suggest that Subject 122 has a higher

risk of developing re-occurrence CVD events and should be closely monitored.
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4.4 Simulation Study

In this section, we evaluate the performance of our proposed approach via simulation,

in which the simulated data mimic the application dataset. The primary goal of the

simulation study is to evaluate predictive performance of our proposed model under

different scenarios, and compare it with multivariate joint modelling approach. Focusing

on q longitudinal outcomes, q = 1, 2, 3, we use the linear mixed-effects models to generate

simulated longitudinal data, which is:

Yiq(t) = Xiq(t) + εiq. (4.12)

Here, Xiq(t) denotes the latent trajectory of the q-th longitudinal outcome, and εiq is

the error term which follows normal distribution. Since in practise, the longitudinal

trajectories could follow different distributions, we consider three different scenarios of

latent trajectory Xiq(t) in the simulation:

1. Linear Model Xiq(tij) = aq + bq1Zi + bq2tij + uiq

2. Exponential Model Xiq(tij) = cq + exp(aqtij) + uiq

3. Quadratic Model Xiq(tij) = aq(tij − bq)2 + cqk + uiq
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Let ri(t) denote the intensity of the recurrent process, we then assume the recurrent event

intensity function of subject i as:

ri(t) = r0(t) exp{z1γ1 +
3∑
q=1

αqXiq(t) + vi}. (4.13)

We assume non-informative censoring for recurrent event process, the censoring time

Ci is sampled from uniform distribution with 50% censoring rate. Let Tik be the kth

recurrent event times from study onset (time 0) for subject i, k = 0, . . . , ni, where ni

denotes the number of recurrent events. Here, αq represents the association parameter

between q-th longitudinal outcome and the recurrent event process. Random effect from

longitudinal outcomes is denoted by ui1, ui2 and ui3, we assume them follow multivariate

normal distribution with mean 0. The covariance matrix is denoted by Σu, with σ2
1, σ

2
2, σ2

3

denote the variance for random effects ui1, ui2, ui3 respectively, and ρ12, ρ23, ρ13 represents

the correlation between the three random effects. On the other hand, vi is the random

variable only associated with recurrent process and independent of ui1, ui2 and ui3, we

assume that it follows a normal distribution with variance denoted by σ2
v . For each of

the 200 simulated datasets, the total sample size is 600, with randomly selected 400 sub-

jects as the training dataset and the remaining 200 subjects for validation dataset. On

average, there are 2 recurrent events per subject. In each scenario, we conduct the model

inference in the training dataset using our proposed model based on MFPCA method,

and the true joint model which is used to simulate the data. Moreover, since it is always
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MFPCA Model 1 True JM Miss-specified JM
Scenario T (year) T ′(year) AUC AUC AUC

Linear Model

4
2 0.737 0.756 0.612
4 0.752 0.761 0.614

5
2 0.756 0.759 0.621
4 0.753 0.763 0.634

6
2 0.778 0.788 0.639
4 0.782 0.792 0.641

Exponential
Model

4
2 0.775 0.780 0.601
4 0.781 0.785 0.605

5
2 0.798 0.810 0.610
4 0.802 0.813 0.612

6
2 0.809 0.815 0.623
4 0.812 0.820 0.629

Quadratic
Model

4
2 0.721 0.741 0.593
4 0.725 0.745 0.602

5
2 0.742 0.754 0.603
4 0.738 0.749 0.604

6
2 0.761 0.770 0.611
4 0.759 0.768 0.615

Table 4.2: Time-dependent AUC for 3 scenarios

challenging to specify appropriate distribution for longitudinal process in applications,

assessing the performance of joint model with miss-specified latent trajectories is also

worth investigation. After fitting the model, for each scenario, we conduct dynamic pre-

diction for subjects in validation dataset using three methods: our proposed model, joint

model with true latent trajectories, and joint model with miss-specified latent trajecto-

ries. The time-dependent AUCs are calculated for different prediction time interval, and

serve as a criteria to evaluate prediction performance. Results for dynamic prediction in

validation dataset are presented in Table 4.2. The AUC here is the average of all AUC

calculated within given time interval for 200 simulation times. From the summarized
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results, although the our proposed model has an average of 0.01 lower AUC than the

joint model under true trajectories, it outperforms the joint model when the longitudinal

distributions are miss-specified in regards of an average of 0.15 higher AUC. The results

suggest that the MFPCA approach is more robust compared to JM approach when the

underlying latent trajectory for longitudinal process is unknown. Moreover, the compu-

tation cost for multivariate joint model of longitudinal markers and recurrent event is

significantly higher than using our proposed MFPCA approach, which makes it hard to

implement JM approach when application sample size is large. Overall, our proposed

method has a robust predictive performance, also significantly improve computation ef-

ficiency.

4.5 Discussion

We integrate longitudinal information from varies of clinical markers in predicting the

risk of next occurrence of recurrent event in this study. By employing multivariate func-

tional principle component analysis method, we develop a novel two-step approach to

model recurrent cardiovascular disease events with the extracted feature from histori-

cal observations of multiple relevant longitudinal clinical markers. Without assuming

parametric distribution of longitudinal trajectories, the multivariate functional principle

components analysis is a robust way to deal with joint variations between clinical markers

and captures the feature of subjects. Among all available candidate markers, we select
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the optimal 6 markers that are frequently measured and has been demonstrated as risk

factors of cardiovascular disease events in previous literature. We specify three prediction

models, one is the recurrent event model with estimated MFPC scores capturing feature

of multivariate longitudinal trajectories, one is the baseline recurrent event model only

accounting for demographic characteristics and baseline measurements of selected mark-

ers, another is the joint model of single longitudinal marker (SBP) and recurrent CVD

event. The application results suggest that including the historical observations of mul-

tivariate longitudinal markers improves prediction performance of recurrent CVD events

when compared to only consider baseline covariates or single longitudinal outcome. In

addition, we conduct a simulation study to evaluate the performance of our proposed ap-

proach under different circumstances. The results indicates that the MFPCA approach

is more robust than the parametric multivariate joint model in regards of significantly

higher AUCs when the underlying longitudinal trajectories are miss-specified. One lim-

itation of the proposed two-stage approach is that in order to estimate parameters of

MFPCA, we will need the subjects in training dataset to have more than two observa-

tions for each of the selected longitudinal markers to ensure estimation accuracy. When

the sample size is small, excluding subjects without sufficient longitudinal observations

may lead to non-universal useful outcome. Another limitation is that when modeling

the recurrent event, we treat death as non-informative censoring, which may ignore the

correlation between recurrent CVD events and death. We plan to extend the proposed

model to take death process into account while predicting future occurrence of recurrent
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events in future research work. In summary, our study propose a novel approach to

conduct personalized prediction of risk of recurrent cardiovascular disease events with

multivariate longitudinal clinical markers, which helps physicians to closely monitor high

risk participants and give personalized health care.
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Figure 4.1: Predicted longitudinal trajectories for Subject 103. Dashed lines are the 2.5%
and 97.5% percentiles. The dotted vertical line represents the time of prediction T.
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Figure 4.2: Predicted longitudinal trajectories for Subject 122. Dashed lines are the 2.5%
and 97.5% percentiles. The dotted vertical line represents the time of prediction T.
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Figure 4.3: Predicted CVD event free probability for Subject 103 (upper panels) and
Subject 122 (lower panels) in ALLHAT study. Dashed lines are the 2.5% and 97.5%
percentiles.
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58. Proust-Lima, C., Séne, M., Taylor, J. M. & Jacqmin-Gadda, H. Joint latent class

models for longitudinal and time-to-event data: A review. Statistical Methods in

Medical Research 23, 74–90 (2014).

59. Finegold, J. A., Asaria, P. & Francis, D. P. Mortality from ischaemic heart disease

by country, region, and age: statistics from World Health Organisation and United

Nations. International Journal of Cardiology 168, 934–945 (2013).

104



60. Kaplan, N. M. & Vidt, D. G. Major cardiovascular events in hypertensive patients

randomized to doxazosin versus chlorthalidone. Current Hypertension Reports 2,

431–431 (2000).

61. Happ, C. & Greven, S. Multivariate functional principal component analysis for data

observed on different (dimensional) domains. Journal of the American Statistical

Association, 1–11 (2018).

62. Ravina, B., Tanner, C., DiEuliis, D., Eberly, S., Flagg, E., Galpern, W. R., Fahn,

S., Goetz, C. G., Grate, S., Kurlan, R., et al. A longitudinal program for biomarker

development in Parkinson’s disease: a feasibility study. Movement disorders: official

journal of the Movement Disorder Society 24, 2081–2090 (2009).

63. Latourelle, J. C., Beste, M. T., Hadzi, T. C., Miller, R. E., Oppenheim, J. N., Valko,

M. P., Wuest, D. M., Church, B. W., Khalil, I. G., Hayete, B., et al. Large-scale

identification of clinical and genetic predictors of motor progression in patients with

newly diagnosed Parkinson’s disease: a longitudinal cohort study and validation.

The Lancet Neurology 16, 908–916 (2017).
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